Periodica Mathematica Hungarica Vol. 25 (1), (1992), pp. 105-111

ARITHMETICAL PROGRESSIONS AND THE NUMBER OF SUMS

I. Z. RUZSA (Budapest)

1. Introduction

Let A be a finite set of integers, $|A| = n$. Freiman (1966/1973, Theorem 2.30) proved the following theorem. If $|A + A| \le cn$ and $n > n_0(c)$, then A contains a three-term arithmetical progression. We give an effective version of this result.

Let $r_k(n)$ denote the maximal number of integers that can be selected from the interval $[1, n]$ without including a k term arithmetical progression and write

 $\omega_k(n) = n/r_k(n)$.

We know from Szemerédi's (1975) theorem that $\omega_k(n) \to \infty$ for every fixed k.

THEOREM 1. Assume that $|A| = n$ and A does not contain any k-term arith*metical progression. We hare*

(1.1)
$$
|A + A - A - A| \geq \frac{1}{12} \omega_k(n) n,
$$

(1.2)
$$
|A+B| \geq \frac{1}{2} \omega_k(n)^{1/4} n^{1/4} |B|^{3/4}
$$

for every set B.

(1.3)
$$
|A+B| \geq \frac{1}{2}\omega_k(n)^{1/4}n
$$

for every set B such that $|B| = n$,

(1.4)
$$
|A+A| \geq \frac{1}{2} \omega_k(n)^{1/4} n,
$$

(1.5)
$$
|A-A| \geq \frac{1}{2} \omega_k(n)^{1/4} n.
$$

* Supported by Hungarian National Foundation for Scientific Research, Grant No. 1901.

Mathematics subject classification numbers, 1991. Primaxy. 11A99 *Key words and phrases.* Progressions, number of sums.

> $Akadémiai Kiadó, Budapest$ K luwer Academic Publishers, Dordrecht

It is known that $\omega_3(n) \gg (\log n)^c$ with a positive constant c (Heat-Brown (1987) , Szemerédi (1990)). Applying this estimate we obtain the following version of Freiman's theorem.

COROLLARY 1.1. *Assume that* $|A| = n$ and *A* does not contain any 3-term *arithmetical progression. With a positive absolute constant c and* $n > n_0$ *we have*

$$
(1.6) \t\t |A+B| \ge \frac{1}{2}n(\log n)^c
$$

for every set B such that $|B| = n$, *in particular*

$$
(1.7) \t\t\t |A+A| \geq \frac{1}{2}n(\log n)^c,
$$

$$
(1.8) \t\t |A-A| \geq \frac{1}{2}n(\log n)^c.
$$

Freiman's proof is based on his main theorem, which gives a covering of a set A satisfying $|A + A| \leq \alpha |A|$ by another set isomorphic (in his sense, to be defined later) to a set of lattice points in a convex region of size C_n , $C = C(\alpha)$. He gives no estimate of $C(\alpha)$. His results (Chapter 1, sect. 3) show that $C(\alpha)$ must be at least an exponential function of α , so in his way one cannot get a better lower estimate in (1.4) than $\log \omega_k(n)$. Our proof goes along completely different lines, though we also use Freiman's fundamental concept of isomorphism.

PROBLEM. Can the exponent 1/4 in (1.4-5) be improved to 1 or at least to $1 - \varepsilon?$

2. A partial Freiman isomorphy

Let G_1 , G_2 be commutative groups, $A_1 \subset G_1$, $A_2 \subset G_2$. We say that a mapping $\Phi: A_1 \to A_2$ is a *homomorphism of order r in the sense of Freiman*, or an F_r -homomorphism for short, if for every $x_1, \ldots, x_r, y_1, \ldots, y_r \in A_1$ (not necessarily distinct) the equation

(2.1)
$$
x_1 + x_2 + \cdots + x_r = y_1 + y_2 + \cdots + y_r
$$

implies

$$
(2.2) \qquad \Phi(x-1)+\Phi(x_2)+\cdots+\Phi(x_r)=\Phi(y_1)+\Phi(y_2)+\cdots+\Phi(y_r).
$$

We call Φ an F_r -isomorphism, if it is (1-1) and its inverse is a homomorphism as well, that is, (2.2) holds if and only if (2.1) does.

Any affine linear function is an F_r -isomorphism for every r , and the nondegenerate ones are F_r -isomorphisms.

For iterated additions of a set to itself we introduce the following notation:

$$
Ak = A + A + \cdots + A, \qquad k \text{ summands.}
$$

THEOREM 2. Let A be a set of integers, $|A| = n, r \ge 2$ an integer and $D =$ $Ar - Ar$. *Write* $|D| = N$.

- (a) For every $m > 2r(N-1)$ there exists a set $A' \subset A, |A'| > n/r$ which is *Fr-isomorphic to a set T' of residues* mod m.
- *(b)* There is a set $A^* \subset A$, $|A^*| \ge n/r^2$ which is F_r -isomorphic to a set T^* of *integers,*

$$
T^*\subset [1,2N].
$$

PROOF. (a) Select a prime $p \equiv 1 \pmod{m}$,

$$
(2.3) \t\t\t\t p > 4r \max_{a \in A} |a|
$$

The isomorphism will be given by

$$
\Phi(a) = ((aq) \bmod p) \bmod m
$$

with a suitable $1 \le q \le p-1$; here we used x mod y to denote the least nonnegative residue of x modulo y .

We consider Φ as a composition of four maps:

$$
\mathbf{Z} \xrightarrow{\psi_1} \mathbf{Z}_p \xrightarrow{\psi_2} \mathbf{Z}_p \xrightarrow{\psi_3} \mathbf{Z} \xrightarrow{\psi_4} \mathbf{Z}_m.
$$

Here ψ_1 maps every integer to its residue class modulo p, ψ_2 is a multiplication by q, ψ_3 maps a residue class into its representant in [0, p-1] and ψ_4 is the residue class modulo m.

Here ψ_1 is an F_r-isomorphism on A by (2.3), and ψ_2 is one obviously. The critical point is ψ_4 ; we shall show that it is an isomorphism for a suitable choice of q, and we return to ψ_3 afterwards.

The composition of ψ_1, ψ_2, ψ_3 is the function

$$
\vartheta(a)=(qa) \bmod p=qa-p\left[\frac{qa}{p}\right].
$$

Let $U = \vartheta(A)$ be the image of A. We show that ψ_4 is an F_r -isomorphism between U and $\psi_4(U)$ for a suitable q. This means that

$$
\psi_4(u_1) + \psi_4(u_2) + \cdots + \psi_4(u_r) = \psi_4(v_1) + \psi_4(v_2) + \cdots + \psi_4(v_r)
$$

is possible only if $u_1 + \cdots + u_r = v_1 + \cdots + v_r$, in other words,

(2.4)
$$
m|u_1 + \cdots + u_r - (v_1 + \cdots + v_r) = z
$$

with $u_i, v_j \in U$ can hold only if $z = 0$.

Let $u_i = \vartheta(a_i), v_j = \vartheta(b_i), w = a_1 + \cdots + a_k - (b_1 + \cdots + b_k)$. We have $w \in D$, and by definition we know that

$$
z \equiv q w \pmod{p},
$$

and also that $|z| \le r(p-1)$, since $u_i, v_j \in [0, p-1]$. Hence

$$
z = (qw) \bmod p + xp, \qquad -r \leq x \leq r-1.
$$

Thus to avoid (2.4) it is sufficient to exclude

$$
(2.5) \t m|(qw) \bmod p + xp, \t w \in D, \t w \neq 0, \t -r \leq x \leq r-1.
$$

We count the number of those triplets (q, x, w) for which (2.5) holds. For a fixed $w \neq 0$, the value of (qw) mod p runs over all numbers $1, 2, \ldots, p-1$, of which $\frac{p-1}{m}$ fall in each residue class modulo m, hence $\frac{p-1}{m}$ satisfy (2.5). Taking into account the $N-1$ possible values of $w\neq 0$ and the 2r values of x, (2.5) has altogether at most

$$
2r(N-1)\frac{p-1}{m}
$$

solutions. If

(2.6)
$$
2r(N-1)\frac{p-1}{m} < p-1,
$$

then there is at least one choice of q without a solution. (2.6) is equivalent to the condition $m > 2r(N-1)$ of the theorem.

Now we return to ψ_3 . We need to slect an $A' \subset A$ such that ψ_3 is an isomorphism on $V' = \psi_2(\psi_1(A'))$. We split $V = \psi_2(\psi_1(A)) \subset [0, p-1]$ into r parts,

$$
V_i = V \cap \left[\frac{i-1}{r}(p-1), \frac{i}{r}(p-1)\right], \qquad i=1,\ldots,r
$$

We show that ψ_3 is an isomorphism on each V_i . Indeed, if $u_1,\ldots, u_r \in U_i$, then

$$
u_1 + \cdots + u_r \in [(i-1)(p-1), i(p-1)],
$$

an interval of length $p-1$, thus two such sums can be congruent modulo p only if they are equal.

At least one part satisfies $|V_i| \ge n/r$. We put $V' = V_i$, and this concludes the proof of part (a).

To prove part (b), we add another map to our diagram,

$$
\mathbf{Z}_m \xrightarrow{\psi_5} \mathbf{Z},
$$

where ψ_5 is again the smallest nonnegative representation of a residue class. We put $m = 2rN$ and repeat the last argument. We split the integers of the interval $[0, m-1]$ into r equal subintervals of type $[2(i-1)N, 2iN-1]$, $i = 1, \ldots, r$. The r-fold sums from a fixed interval lie in an interval of length $\lt m$, thus they are incongruent modulo m unless they the equal. In this way we can achieve

$$
|A^*| \geq |A'|/r \geq n/r^2.
$$

The isomorphic image of A^* lies in an interval of type $[2(i-1)N, 2iN-1]$, and a shift takes it into $[1, 2N]$.

3. On the size of double and multiple sums

To apply the previous results for sets where only an estimate of $|A + A|$ is known, we connect this quantity to $|Ak - Al|$.

LEMMA 3.1. Let $1 \leq j \leq k$ be integers, A, B subsets of an arbitrary Abelian *group.* Write $|B| = n$, $|B + Aj| = \alpha n$. There is a nonempty $B' \subset B$ such that

$$
(3.1) \t\t |B' + Ak| \leq \alpha^{k/j} |B'|.
$$

This can be proved by applying Plünnecke's (1970) method, developed to study the Schnirelman density of sumsets. (3.1) was deduced and a simplified proof of Pliinnecke's theorem was given in Ruzsa (1989).

LEMMA 3.2. For arbitrary sets U, V, W (in an Abelian group) we have

$$
(3.2) \t|U||V - W| \leq |U - V||U - W|.
$$

See Ruzsa (1978).

LEMMA 3.3. Let A , B be subsets of an arbitrary Abelian group. Write $|B| =$ $n, |B + A| = \alpha n$. For arbitrary positive integers k, *l* we have

$$
(3.3) \t\t\t |Ak-Al| \leq \alpha^{k+1}n.
$$

PROOF. Without restricting generality we may assume $k \leq l$. We apply Lemma 3.1 with $j = 1$ to find a set $\emptyset \neq B' \subset B$ such that

$$
(3.4) \t\t |B' + Ak| \leq \alpha^k |A'|.
$$

Next we apply Lemma 3.1 with A' , k, l in the place of A, j, k to get a set $\emptyset \neq B'' \subset B'$ such that

$$
(3.5) \t\t |B''+Al| \leq \alpha^l|B''|.
$$

Substituting $U = -B''$, $V = Ak$, $W = Al$ into (3.2) and applying (3.5) we obtain

$$
|B''||Ak - Al| \le |B'' + Al||B'' + Al| \le \alpha^l|B'' + Ak|.
$$

Now we can divide by $|B''|$ and use (3.4) to deduce

$$
|Ak - Al| \leq \alpha^l |B'' + Ak| \leq \alpha^l |B' + Ak| \leq \alpha^l \alpha^k |A'| \leq \alpha^{k+l} n.
$$

\blacksquare

way: By substituting $\alpha = |B + A|/|B|$, Lemma 3.3 can be rewritten in the following

$$
|Ak - Al| \leq |B + A|^{k+l} |B|^{1-k-l}
$$

or

$$
(3.6) \t\t |A+B| \geq |B|^{1-\frac{1}{k+1}}|Ak-Al|^{\frac{1}{k+1}}.
$$

4. Estimates on arithmetical progressions

We prove Theorem 1.

LEMMA 4.1. *If one of two F2-isomorphic sets contains a k.term arithmetical progression, then so does the other.*

PROOF. The numbers x_1, \ldots, x_k form an arithmetical progression if and only if they satisfy the equations

$$
x_1 + x_3 = 2x_2,
$$

\n
$$
x_2 + x_4 = 2x_3,
$$

\n...
\n
$$
x_{k-2} + x_k = 2x_{k-1},
$$

which are preserved by an F_2 -isomorphism.

PROOF OF THEOREM 1. Write $|A| = n$ and $|A2 - A2| = \beta n$. We apply the case $r = 2$ of Theorem 2, part (b). We get a set $A^* \subset A$, $|A^*| \ge n/4$ which is

isomorphic to a set $T \n\subset [1, 2\beta n]$. By the previous lemma, T contains no k-term arithmetical progression.

Since in an interval of length n there can be at most $r_k(n)$ integers without k-term arithmetical progression and the interval $[1, 2\beta n]$ can be covered by $[1 + 2\beta]$ such intervals, we have

$$
n/4 \leq |T| \leq [1+2\beta]r_k(n) \leq 3\beta r_k(n),
$$

therefore

$$
\beta \geq \frac{1}{12} \frac{n}{r_k(n)},
$$

which is equivalent to (1.1).

To obtain (1.2) we apply (3.6) with $k = l = 2$ and (1.1) as follows:

$$
|A + B| \ge |B|^{3/4} |A2 - A2|^{1/4} \ge \frac{1}{2} |B|^{3/4} \omega_k(n)^{1/4} n^{1/4}.
$$

 (1.3) is the case $|B| = n$ of (1.2) , while $(1.4-5)$ are the cases $B = A$ and $B = -A$ of $(1.3).$

REFERENCES

G. A. FREIMAN, (1966), *Foundations of a Structural Theory of Set Addition* (in Russian), Kazan Gos. Ped. Inst., Kazan.

G. A. FREIMAN, (1973), *Foundations of a Structural Theory of Set Addition*, Translation of Mathematical Monographs Vol. 37, Amer. Math. Soc., Providence, R. I., USA.

D. R. HEATH-BROWN, (1987), Integer sets containing no arithmetic progressions, *J. London Math. Soc.* 85, 385-394.

H. PLÜNNECKE, (1970), Eine zahlentheoretische Anwendung der Graphtheorie, J. *Reine Angew. Math.* 243 171-183.

I. Z. RUZSA, (1978) , On the cardinality of $A + A$ and $A - A$, in: *Coll. Math.* Soc. J. Bolyai 18, Combinatorics, Keszthely 1976, North-Holland - Bolyai Társulat, Budapest (1978), 933-938.

I. Z. RUZSA, (1989), An application of graph theory to additive number theory, *Scientia, Ser. A \$* 97-109.

E. SZEMERÉDI, (1975) , On sets of integers containing no k-elements in arithmetic progression, *Acta Arithmetica* 27, 299-345.

E. SZEMERÉDI, (1990), Integer sets containing no arithmetic progressions, Acta *Math. Acad. Sci. Hungar.* 56, 155-158.

(Received November 20, 1991)

Mathematical Institute of the
Hungarian Academy of Sciences
Budapest, Pf. 127 H-1364
Hungary