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ARITHMETICAL PROGRESSIONS
AND THE NUMBER OF SUMS

I Z. RUZSA (Budapest)

1. Introduction

Let A be a finite set of integers, |A| = n. Freiman (1966/1973, Theorem 2.30)
proved the following theorem. If |A + A| < ¢n and n > ng(c), then A contains a
three-term arithmetical progression. We give an effective version of this result.

Let ri(n) denote the maximal number of integers that can be selected from
the interval [1, n] without including a k term arithmetical progression and write

wi(n) = n/re(n).
We know from Szemerédi’s (1975) theorem that wi(n) — oo for every fixed k.

THEOREM 1. Assume that |A| = n and A does not contain any k-term arith-
metical progression. We have

(1.1) [A+A-A-A|> %wk(n)n,

(1.2) : |A+ B|> %wk(n)1/4n1/4lB|3l4

for every set B,

(1.3) IA+B|> %wk(n)l/"n

Jor every set B such that |B| =n,

(14) A+ 4] 2 Jur(n)/*n,

(1.5) IA—A]> %w,,(n)ll‘*n.
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It is known that w3(n) > (logn)® with a positive constant ¢ (Heat-Brown
(1987), Szemerédi (1990)). Applying this estimate we obtain the following version
of Freiman’s theorem.

COROLLARY 1.1. Assume that |[A] = n and A does not contain any 3-term
arithmetical progression. With a positive absolute constant ¢ and n > ny we have

(1.6) |A+ B| > %n(log n)¢

for every set B such that |B| = n, in particular

(L7) |4+ A] 2 gn(logn)",

(1.8) |A— A| > %n(log n)°.

Freiman’s proof is based on his main theorem, which gives a covering of a set
A satisfying |A + A| < a]A| by another set isomorphic (in his sense, to be defined
later) to a set of lattice points in a convex region of size Cn,C = C(a). He gives no
estimate of C(a). His results (Chapter 1, sect. 3) show that C(a) must be at least
an exponential function of a, so in his way one cannot get a better lower estimate
in (1.4) than logwi(n). Our proof goes along completely different lines, though we
also use Freiman’s fundamental concept of isomorphism.

PRrROBLEM. Can the exponent 1/4 in (1.4-5) be improved to 1 or at least to
1-¢?

2. A partial Freiman isomorphy

Let G4, G2 be commutative groups, A; C Gi, A2 C G;. We say that a
mapping ® : A; — A is a homomorphism of order r in the sense of Freiman, or an
F,-homomorphism for short, if for every z;,...,2,,%,...,% € A1 (not necessarily
distinct) the equation

(21) zy+zo+tzr=ntyt-+ Y

implies

(22) @(z-1)+0(z2) +--+B(zr) = (1) + B(v2) + -+ + B(wr).

We call ® an F.-isomorphism, if it is (1-1) and its inverse is a homomorphism as
well, that is, (2.2) holds if and only if (2.1) does.
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Any affine linear function is an F,-isomorphism for every r, and the nonde-
generate ones are F,-isomorphisms.
For iterated additions of a set to itself we introduce the following notation:

Ak =A+A+.---+ A, k summands.

THEOREM 2. Let A be a set of integers, |A| = n,r > 2 an integer and D =
Ar — Ar. Write |D| =
(a) For every m > 2r(N — 1) there ezists a set A’ C A, |4 > n/r which is
F,-isomorphic to a set T' of residues mod m.
(b) There is a set A* C A,|A*| > n/r? which is F.-isomorphic to a set T* of
inlegers,

T C[1,2N).

PRrOOF. (a) Select a prime p = 1{modm),

(2.3) P> 4rr‘PEa.}|a|
The isomorphism will be given by

®(a) = ((ag)mod p)mod m

with a suitable 1 < ¢ < p—1; here we used £ mod y to denote the least nonnegative
residue of £ modulo y.
We consider $ as a composition of four maps:

z¥hg, Yy, B0,
Here 11 maps every integer to its residue class modulo p, ¥ is a multiplication by
¢,%s maps a residue class into its representant in [0,p — 1] and 14 is the residue
class modulo m.

Here 4, is an F.-isomorphism on A by (2.3), and 3 is one obviously. The
critical point is 14; we shall show that it is an isomorphism for a suitable choice of
¢, and we return to 3 afterwards.

The composition of v, %3, ¥3 is the function

3(a) = (q@)modp = ga —p [%] .

Let U = ¥(A) be the image of A. We show that 14 is an F,-isomorphism between
U and v4(U) for a suitable ¢. This means that

Ya(u1) + Ya(uz) + - - + Ya(ur) = Ya(v1) + Ya(va) + - - + Ya(vy)
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is possible only if uy +---+ u, = vy + - -+ + v,, in other words,

(2.4) mlup 4+ +u.—(1+--+v)=2

with u;,v; € U can hold only if z = 0.
Let u; = ¥(a;),v; = 9(bj),w=a;+---+ar —(b1+---+b;). Wehave w € D,
and by definition we know that

= qu(modp),
and also that |z| < r(p — 1), since u;, v; € [0,p— 1]. Hence

z = (qw)mod p + zp, —r<z<r-1
Thus to avoid (2.4) it is sufficient to exclude

(2.5) m|(qw)mod p + zp, weE D, w#0, —-r<z<r-1.

We count the number of those triplets (g, , w) for which (2.5) holds. For a
fixed w # 0, the value of (gw) mod p runs over all numbers 1,2,...,p— 1, of which
?ﬁl fall in each residue class modulo m, hence %1 satisfy (2.5). Taking into account

the N — 1 possible values of w # 0 and the 2r values of z, (2.5) has altogether at
most

p—1
m

2r(N - 1)

solutions. If

-1
(2.6) 2r(N — 1)”T <p-1,

then there is at least one choice of ¢ without a solution. (2.6) is equivalent to the
condition m > 2r(N — 1) of the theorem.

Now we return to 13. We need to slect an A’ C A such that 13 is an isomor-
phism on V'’ = ¢5(¢1(4’)). We split V = ¢5(¢¥1(A4)) C [0, p— 1] into r parts,

i—1
r

V,-:Vﬁ[ (p—l),%(p—l)], i=1,...,r
We show that 13 is an isomorphism on each V;. Indeed, if uy,...,u, € U;,
then

up+---+u € [(1— 1)(1’—1),1(?— 1)]7
an interval of length p — 1, thus two such sums can be congruent modulo p only if
they are equal.
At least one part satisfies |V;| > n/r. We put V' = V;, and this concludes the
proof of part (a).
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To prove part (b), we add another map to our diagram,

Zm 251,

where 15 is again the smallest nonnegative representation of a residue class. We
put m = 2rN and repeat the last argument. We split the integers of the interval
[0, m — 1] into r equal subintervals of type {2(i — 1)N,2iN — 1], i = 1,...,r. The
r-fold sums from a fixed interval lie in an interval of length < m, thus they are
incongruent modulo m unless they the equal. In this way we can achieve

|4*] > |A|/r > n/r.

The isomorphic image of A* lies in an interval of type [2(i — 1)N,2iN — 1}, and a
shift takes it into [1,2N]. MW

3. On the size of double and multiple sums

To apply the previous results for sets where only an estimate of |A + A| is
known, we connect this quantity to |Ak — Al|.

LEMMA 3.1. Let1 < j <k be integers, A, B subsets of an arbitrary Abelian
group. Write |B| =n, |B + Aj| = an. There is a nonemply B' C B such that

(3.1) |B' + Ak| < o*/9|B|.

This can be proved by applying Plinnecke’s (1970) method, developed to
study the Schnirelman density of sumsets. (3.1) was deduced and a simplified proof
of Plinnecke’s theorem was given in Ruzsa (1989).

LEMMA 3.2. For arbitrary sets U,V,W (in an Abelian group) we have

(3.2) UV -w|<|U-VI||U-W|.
See Ruzsa (1978).

LEMMA 3.3. Let A, B be subsets of an arbitrary Abelian group. Write |B| =
n,|B + A| = an. For arbitrary positive integers k,l we have

(3.3) |Ak — Al| < a*tin.

ProoF. Without restricting generality we may assume k < . We apply
Lemma 3.1 with j = 1 to find a set § # B’ C B such that
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(3.4) |B' + Ak| < o*|A'|.

Next we apply Lemma 3.1 with A’, k, lin the place of A, j, k to get aset § # B” C B’

such that

(3.5) |B" + Al| < o'|B"|.

Substituting U = ~B”,V = Ak, W = Al into (3.2) and applying (3.5) we obtain
|B"||Ak — Al| < |B" + Al||B" + Al| < &'|B" + Ak|.

Now we can divide by |B”| and use (3.4) to deduce

|Ak — Al| < o'|B" + Ak| < o'|B' + Ak| < a'a¥|A'| < o*Hin.

|
By substituting o = |B+ A|/|B|, Lemma 3.3 can be rewritten in the following
way:
|Ak — Al| < |B + A*Y|Bt-*1
or
(3.6) |A + B| > | B!~ "7 | Ak — Al|7F.

4. Estimates on arithmetical progressions

We prove Theorem 1.

LEMMA 4.1. If one of two Fa-isomorphic sets contains a k-term arithmetical
progression, then so does the other.

ProoF. The numbers z,, ..., z; form an arithmetical progression if and only
if they satisfy the equations

z1 + 23 = 2z3,
z3+ z4 = 2z3,

Tp_2 + Tk = 2231,
which are preserved by an Fs-isomorphism. W

PROOF OF THEOREM 1. Write |4] = n and |A2 — A2| = fn. We apply the
case r = 2 of Theorem 2, part (b). We get a set A* C A, |A*| > n/4 which is
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isomorphic to a set 7' C {1,28n]. By the previous lemma, T contains no k-term

arithmetical progression.
Since in an interval of length n there can be at most r;(n) integers without

k-term arithmetical progression and the interval [1,28n] can be covered by [1+ 2]
such intervals, we have

n/4 < [T] < [1 +26lre(n) < 3fri(n),

therefore

B2z

Sl
3

x(n)’

which is equivalent to (1.1).
To obtain (1.2) we apply (3.6) with k = = 2 and (1.1) as follows:

1A+ B| > |B[*/442 — 424 > %|B|3/4wk(n)l/4n1/4.

(1.3) is the case |B| = n of (1.2), while (1.4-5) are the cases B = A and B = —A of
(1.3). =
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