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A R I T H M E T I C A L  P R O G R E S S I O N S  
A N D  T H E  N U M B E R  O F  SUMS 

I. Z. RUZSA (Budapest) 

1. I n t r o d u c t i o n  

Let A be a finite set of integers, IAI = n. Freiman (1966/1973, Theorem 2.30) 
proved the following theorem. If [A + A[ _< cn and n > n0(c), then A contains a 
three-term arithmetical progression. We give an effective version of this result. 

Let rt(n) denote the maximal number of integers that can be selected from 
the interval [1, n] without including a k term arithmetical progression and write 

~ ( n )  = nlr~Cn). 
We know from Szemer~di's (1975) theorem that wk(n) --, ~ for every fixed k. 

THEOREM 1. Assume that IAI = n and A does not contain any k-term arith- 
metical progression. We hare 

(1.1) IA + A -  a - AN >__ ~wk(n)n, 

(1.2) 

for erery set B, 

[A + B I ~ lwk(n)X/4nX/4lBl3/4 

1 
(1.3) IA + e l  _> ~(-)X/~n 
for every set B such that [BI = n ,  

(1.4) IA + Am >_ lwk(n)l/4n, 

(1.5) IA - al >_ loak(n)x/4n. 
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It is known that ¢v3(n) ~ (log n) e with a positive constant c (Heat-Brown 
(1987), Szemer~di (1990)). Applying this estimate we obtain the following version 
of Freiman's theorem. 

COROLLARY 1.1. Assume that [A[ = n and A does not contain any 3-term 
arithmetical progression. With a positive absolute constant c and n > no we have 

1 
(1.6) [A 4- BI _> ~n(log n) c 

for every set B such that IBI = n, in particular 

(1.7) 1 ¢ 
[A 4- AI > ~n(logn), 

(1.8) 
1 ¢ 

IA- A[ >_ ~n(logn) . 

Freiman's proof is based on his main theorem, which gives a covering of a set 
A satisfying [A 4- AI _< c~IA [ by another set isomorphic (in his sense, to be defined 
later) to a set of lattice points in a convex region of size Cn, C = C(a) .  He gives no 
estimate of C(a) .  His results (Chapter 1, sect. 3) show that C(~) must be at least 
an exponential function of a, so in his way one cannot get a better lower estimate 
in (1.4) than log~k(n). Our proof goes along completely different lines, though we 
also use Freiman's fundamental concept of isomorphism. 

PROBLEM. Can the exponent 1/4 in (1.4-5) be improved to 1 or at least to 
i - ~? 

2. A pa r t i a l  F r e i m a n  i s o m o r p h y  

Let G1, G2 be commutative groups, A1 C G1, A2 C G2. We say that a 
mapping • : A1 ---, A2 is a homomorphism of order r in the sense of Freiman, or an 
Fr-homomorphism for short, if for every z l , . . . ,  zr, yx . . . .  , yr E A1 (not necessarily 
distinct) the equation 

(2.1) Z l  4- Z2 4- ' ' "  4- Zr  = Yl 4- Y2 4- " ' "  4- Yr 

implies 

(2.2) ~(x - 1) 4- ~(z2) + . . .  4- ~.(Xr) = ~(Yl) 4- ~(Y2) 4 - " "  4- ~(Yr). 

We call • an Fr-iSomorphism, if it is (1-1) and its inverse is a homomorphism as 
well, that  is, (2.2) holds if and only if (2.1) does. 
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Any afline linear function is an Fr-isomorphism for every r, and the nonde- 
generate ones are Fr-isomorphisms. 

For i terated additions of a set to itself we introduce the following notation: 

A k  = A + A + . . .  + A,  k summands. 

THEOREM 2. Let A be a set of integers, IAI = n, r > 2 an integer and D = 
A r  - Ar .  Write IDI = N.  

(a) For every m > 2 r ( N -  1) there exists a set A '  C A,  la ' l  >_ n / r  which is 
Fr-isomorphic to a set T '  of residues mod m. 

(b) There i s .  set A" C A, IA'I >_ n / r  2 which is Fr-isomorphic to a set T* of 
integers, 

T ° C [1, 2N]. 

PROOF. (a) Select a prime p _= l (mod  m), 

(2.3) p > 4r~lal 
The isomorphism will be given by 

¢~(a) = ( ( a q ) m o d p ) m o d m  

with a suitable 1 _< q _< p -  1; here we used x mod y to denote the least nonnegative 
residue of z modulo y. 

We consider ~b as a composition of four maps: 

Here ~bl maps every integer to its residue class modulo p, ~b2 is a multiplication by 
q, ~ba maps a residue class into its representant in [ 0 , p -  1] and ~b4 is the residue 
class modulo m. 

Here ~bl is an F,-isomorphism on A by (2.3), and tb2 is one obviously. The 
critical point is tb4; we shall show that  it is an isomorphism for a suitable choice of 
q, and we return to ~ba afterwards. 

The composition of tbl, ~b2, ~bs is the function 

O(a) = (qa)mod p =  q a - p  [ ? ]  . 

Let U = tg(A) be the image of A. We show that  ~b4 is an Fr-isomorphism between 
U and ~b4(U) for a suitable q. This means that  

~,+.(,,i) + ~+.(,.+2) + . . .  + ,/'4(,,+) = +4(+v+,) + ,/,+.(v2) + . . .  + ~4(~,.) 
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i s  possible only i f  u 1 J r  - .  • J r  Ur ~-- ?)1 J r  "" • J r  Vr, i n  o t h e r  words, 

( 2 . 4 )  r n l u l  J r . . .  J r  Ur  - (Vl  J r ' "  J r  Vr )  = z 

with  ui, vj E U can hold only if z = 0. 
Let  ui = ,~(a~), vj = d(bj), w = al J r . . .  Jr ak - (b, J r . . .  + bk). We have w E D,  

and by definition we know that 

z -- qw(modp), 

and also that [z I _< r(p- 1), since ui, vj E [0,p- 1]. Hence 

z = (qw)modp + zp, -r < z < r - 1. 

Thus to avoid (2.4) it is sufficient to exclude 

(2.5) m[(qw)modp Jr zp, w E D, w ~ O, -r < z < r - 1. 

We count the number of those triplets (q, z, w) for which (2.5) holds. For a 
fixed w ~ 0, the value of (qw) rood p runs over all numbers 1, 2,... ,p - 1, of which 
t-1 fall in each residue class modulo m, hence P_:A satisfy (2.5). Taking into account 
rn m 

the N - 1 possible values of w ~ 0 and the 2r values of z, (2.5) has altogether at 
most 

solutions. If 

2r (N  - 1) p -  1 
m 

(2.6) 2 r ( N -  1) p -  1 < P -  1, 
m 

then  there is a t  least  one choice of  q wi thout  a solution.  (2.6) is equivalent  to the 
condi t ion m > 2r(N - I )  of  the theorem.  

Now we re tu rn  to  ~3- We need to slect an A ~ C A such tha t  ~3 is an  isomor-  
p h i s m  on V' = ~2(~1(A ' ) ) .  We spli t  V = ~2(~1(A))  C [ 0 , p -  1] into r par ts ,  

g i = V N  - - - ~ ( p - 1 ) ,  ( p - l )  , i = l , . . . , r .  

We show t h a t  ~b3 is an i somorph i sm on each l,'i. Indeed,  if  u l , . . . ,  ur E Ui, 
then  

Ul  J r ' ' '  J r  Ur E [ ( i  - -  1)(p - 1 ) ,  i(p - 1 ) ] ,  

an  interval  of  length p - i ,  thus two such sums  can be  congruent  modu lo  p only if 
they  are equal.  

At  least  one p a r t  satisfies IV~I > n/r .  We put  V ~ = ~ ,  and  this concludes the 
p roo f  of  pa r t  (a). 



RUZSA: A R I T H M E T I C A L  PROGRESSIONS AND T H E  NUMBER OF SUMS 1 0 9  

To prove part (b), we add another map to our diagram, 

Zm ~5 Z, 

where ~'5 is again the smallest nonnegative representation of a residue class. We 
put m = 2 r N  and repeat the last argument. We split the integers of the interval 
[0, m -  1] into r equal subintervals of type [ 2 ( i -  1)N, 2iN - 1], i = 1 , . . . ,  r. The 
r-fold sums from a fixed interval lie in an interval of length < m, thus they are 
incongruent modulo m unless they the equal. In this way we can achieve 

IA*I > IA'l/r >_ n/r  2. 

The isomorphic image of A* lies in an interval of type [2(i - 1)N, 2 iN  - 1], and a 
shift takes it into [1, 2N]. • 

3. On the  size of  double  and mult iple  sums  

To apply the previous results for sets where only an estimate of IA + AI is 
known, we connect this quantity to IAk - A11. 

LEMMA 3.1. Let 1 < j < k be integers, A,  B subsets of an arbitrary Abelian 
group. Write IBI = n, IB + Aj] = an.  There is a nonempty B '  C B such that 

(3.1) IB' + Akl < a ~/~ IB'I. 

This can be proved by applying Plfinnecke's (1970) method, developed to 
study the Schnirelman density of sumsets. (3.1) was deduced and a simplified proof 
of Pliinnecke's theorem was given in Ruzsa (1989). 

(3.2) 

LEMMA 3.2. For arbitrary sets U, V, W On an Abelian group) we have 

Itr l lV- Wl < I U -  v I I U -  Wl. 

See Ruzsa (1978). 

LEMMA 3.3. Let A,  B be subsets of an arbitrary Abelian group. 
n, IB + AI = an. For arbitrary positive integers k, i we have 

(3.3) Iak - A t  I < ak+lTl. 

Write IBI = 

PROOF. Without restricting generality we may assume k _< I. 
Lemma 3.1 with j = 1 to find a set 0 ~ B ~ C B such that  

We apply 
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(3.4) [B' + Akl <_ ~tlA'l.  

Next we apply Lemma 3.1 with A', k, I in the place of A, j, k to get a set 0 # B"  C B'  
such that  

(3.5) [B" +All <_ aZlB"l . 

Substituting U = - B " ,  V = Ak, W = AI into (3.2) and applying (3.5) we obtain 

IB"IIAt - All <_ IB" + AIIIB" + All <_ o, rlB '' + Akl. 

Now we can divide by IB"[ and use (3.4) to deduce 

[Ak - All <_ atlB" + Ak[ < atlB ' + Ak[ < ataklA'[ _< ak+Zn. 

way: 
By substituting a = [B + A[/IB[, Lemma 3.3 can be rewritten in the following 

lAk - All S [B -4- AIk+~IBI a-k-~ 

o r  

(3.6) iA+B[ > IBI l - t '~]Ak-Al l~+'r .  

4 .  E s t i m a t e s  o n  a r i t h m e t i c a l  p r o g r e s s i o n s  

We prove Theorem 1. 

LEMMA 4.1. I f  one of two F2-isomorphic sets contains a k . term arithmetical 
progression, then so does the other. 

PROOF. The numbers Z l , . . . ,  z t  form an arithmetical progression if and only 
if they satisfy the equations 

Z I  "~- X3 =- 2x2, 
x2 -F x4 : 2x3, 

Z k - 2  + Z k  --- 2 Z k _ l ,  

which are preserved by an F2-isomorphism. • 

PROOF OF THEOREM 1. Write [A I = n and [A2 - A21 =/~n.  We apply the 
case r = 2 of Theorem 2, part  (b). We get a s e t  A* C A, [A*[ _> n /4  which is 
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isomorphic to a set T C [1, 2/3n]. By the previous lemma, T contains no k-term 
arithmetical progression. 

Since in an interval of length n there can be at most rk(n) integers without 
k-term arithmetical progression and the interval [1, 2/3n] can be covered by [1 + 2/3] 
such intervals, we have 

n /4  < ITI < [I + 2/3]rk(n) _< 3/3rk(n), 

therefore 

I n 

/3 > "12 rk(n) '  
which is equivalent to (1.1). 

To obtain (1.2) we apply (3.6) with k = l = 2 and (1.1) as follows: 

IA + B[ > IBIZ/4IA2 - A211/4 >_ 2[Bla/4wk(n)l/4nl/4. 

(1.3)  is the c a s e  Inl = n o f  (1.2),  whi le  (1 .4-5)  a r e  the  cases B = A and B = - a  of  
(1.3). • 
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