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Abstract  

The fra.cture of materials under the action of compressive forces, directed along 

cracks which are parallel: in plane cannot be described within the framework of the 

linear fiacture mechanics. The  criteria of fracture of the Griffith-lrvin or COC type, 

Used in classical linear fracture mechanics, are not applicable in  this problem, since 

these forces have no influence on stress intensity coefficients and on values of cracks 
opening|l, 21. 

The problems of such a class may be described only by using new approaches. 

One of possible approaches is presented by the first author, which involves using 

linearized relations, derived from exact non-linear equations of deformable solid body 

mechanicsl3. 4, 51. It should be remarked here that this.approach has been widely Used in 

problems of deformable bodies stability. 

As a criterion of the initiation of fracture the criterion of local instability near 

defects of the crack type is used. In these cases the process of loss of stability initiates 

the fracture process. 

Key words fracture, internal parallel crack, criterion of the initiation of 

fracture 

I. Relations of  Non-Linear  Theory  and Derivat ion of  Linearized Relat ions in 
Coordinates o f  N o n - D e f o r m e d  S t a t e  

Notations are introduced: x j _ x J - L a g r a n g i a n  coordinates which in the natural (non- 

deformed) state coincide with Cartesian coordinates with orths g~.  Coordinates xj will be 

assumed to be ~freezed" into the body. As a measure of  deformation the Green 's  deformation 

tensor will be used 

0 0 
_ ~  § ou, . ou~ ou~ (1.1) 

2e*-.,o--~. ~ ~ Ox. ox. 

where u ~ as components of  displacement vector u .  Here and everywhere below index value 

denoted by the ~zero" are related to precritical (initial) state. 

In problems considered in this paper, as a rule, the body's  geometry in non-deformed 

state is prescribed. For  this reason it is convenient to relate all values to volume and area units 
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in non-deformed state. Consequently, for  description of  the stressed state we will use the 

asymmetric stress tensor of  Kirchhoff t o and symmetric stress tensor S014], which corresponds 

to the tensor of  generalized stresses if*~ Components of  tensors t o and S01 are related by 

exp re s s ions  

where 3 ~  as  Kronecker's symbol. 

Equations of equilibrium in precritical state have the form t4! 

0 0 ax, t ,  j + F  s = 0  ( 1 . 3 )  

as components of  mass forces. 

Boundary conditions in stresses on the part St of  body's surface and boundary conditions 

in displacements on the part $2 of body's surface are represented by (41 

0 0 N,  t, j l s ,=P~ (1.4) 
"~ (!.5) 

where ]V'~ as components of the orth of  the normal to body's surface in non-deformed state; 

P~ as components of surface traction forces, acting in deformed state; f l  as components 

of  right sides of  boundary conditions in displacements. The components of surface and of  

mass forces are related, respectively, to the unit of  area and the unit of the volume of the body 

in undeformed state. 
For  incompressible bodies it is also necessary to write the condition of incompressibility, 

for example, in f o r m  [41 

d e t l 3 , , + 2 e , ~  ( I . 6 )  

Linearized relations were obtained by linearization of  respective relations of  the non-linear 

theory. Main principles of linearization are presented in detail in [4] .  In this paper 

simplifications in linearized relations are also considered for various variants of  the small 

initial deformations theory. 
We consider two states of the deformed body: the first one is precritical (or initial, 

undisturbed), the second one is the disturbed state. All values related to the disturbed state will 

be represented in the form of the sum of values of  initial state (with index "zero") and of 

disturbances (without special index). Values of  disturbances will be assumed small as compared 

with respective values of the undisturbed state. In view of  the smallness of  disturbances, main 

relations for the second state will be linearized. Then We subtract from these relations 

respective relations of  the first state. We will name relations for disturbances of values 

obtained in such a way relations of the linearized elasticity theory. 

As a result of  application of the procedure of  linearization t41 of geometric relations, Of 

equilibrium equations and of boundary conditions we obtain linearized: 

geometric relations 
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equilibrium equations 

boundary conditions 

condition of incompressibility 

519 

OOx~ .t,# + F j =  0 (1.8) 

N,t,#IsI=Pj, u j l s , = f #  0.9) 

*~ (1 .to) 

where * ~ fl,,, as covariant components of the metric tensor in deformed state in associated with 

the body coordinate system x,R in non-deformed state. 

The relation between the Kirchhoff tensor t and the symmetric tensor $: is represented by 

relation t31 

+ a.~ ~ S"+S~" o., t . ,=(d. j  a-'~-, / ox'.. 

Values S ~', S~*= are determined by decomposition t31 

t~#g#=S~Jg~Q (I. 12) 

where g#, g~0 as covariant basic vectors in non-deformed and deformed state. 

All linearizcd relations presented in this paragraph are valid for the theory of large 

precritical deformations; relations for variants of the theory of small precritical deformations 

are derived from thc relations presented as a result of respective simplifications [3]. In these 

cases we have values S~1~cr~~ which are used in the sense of ordinary stresses. 

II. Formulation of the Problem and Representation of Solutions 

We consider the plane problem of fracture 

under uniaxial compression of the infinite material 
with two parallel cracks of the length 2a in the 

direction of the compression of the x,-axis; the 

cracks are infinite in the direction of the xraxis. 

Cracks are located in planes x..=0 andx2=-2h; 

compressive forces are parallel to cracks planes 

(Fig. l). 

As a result of uniform uniaxial compression 

in the infinite body the homogeneous precritical 
state arises t31 
S~ S*,=O, S,~ S~=~O) 
. . * = & . ( ) . , - 1 ) x , ,  A , = c o n s t ,  ; q = t  / (2" t )  

( i = I  ,2,3) 

where A~ as initial elongations along the axes (At < 1). 

~2 

Uln 

o 

"2" 

-2h 

Fig. 1 

General solutions of equations of the linearized problem in potential functions 
2) at precritical state (2.1) for compressible bodies have following two forms [6. 71 

For equal roots (n~ = h i )  of characteristic equation 

Xl 

(1 .11 )  

~ (i= I. 
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Oq~ OF 
u l ~ - -  OXx z t  Oxl 

OF 

o~m~ (2.2) 

)t, 1 OF h~=bI,~,[~-W,,~ ' +mr t +m:  ~ -  I 

( co:nz + ~l' OrI) [ co:,,, +rn: )Z:z, a'F1 

z , =  (n~)-"'x,~ m = -  (~pj +~0,)~ F = -  am, ~ _  # r  
Ozt ' Ozt 

Fo r unequal roots (n 14= n ~ ) 

=, =-~xl @, +~W) 

,,~=mf ( .;)-"~ ,a~o, ~_..., ( , : )_ , , ,  O~ 

t , . =  ,, t.~ ~,,,,, / "a-~-~ -~, co,:,~ + ' :  a-TT-.= ] 

a coz,,,, +mr ( n f ) - m  4" ' , +rn: (n~, )  - ' ' "  t=l=C'~' ~ ~m~ Oz~ corm Oz2 ] 

z ,=  (n, ' )-"~x. ( i = I , ~ )  
(2.~) 

The index "p" denotes that the values belong to the plane problem. For incompressible 

bodics the tensor components o are substituted by tensor components m. Values C~, n[, 
m~, I~ are determined by formulae in [8], the index "3" is changed into "2 ~. 

III.  R e d u c t i o n  of  the  P rob lem t o  S y s t e m s  o f  Pa i red  In t eg ra l  E q u a t i o n s  

We consider separately the bending and the symmetric forms of stability loss. In view of 

the symmetry of these forms, the problems for plane arc reduced to problems for the upper 
half-plane ( Xz>~-- h ) with respective boundary conditions on its boundary for each forms. 

Bending form of stability loss. Boundary conditions for the half-plane x , > ~ - h  have the 
form 

h~=0, t,,=0, (x,=+o,  Ix, l<a) 
1 

t:~=0, u ~ = 0 ,  (x ,= -h ,  0~<lxtl<oo) J 
(~.I) 

Symmetric form of stability loss, Boundary conditions for the half-plane x , ~ - h  
have the form 

hz=0 ,  t=,=0 (x~ ---- _+ O, Ix~ l<a)  
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( (3.2) t=,=o, u,=o ( x f f - h ,  0~lx, l<~)l~ 
# 

w 

We consider the construction of the solutioxa for the bending form. The half-plane 
xz~- ,h  is divided into regions x~>0 (region 1) and -h~.~x~<.~O (region 2), see Fig. 1. We 

represent harmonic functions F ,  ~b(equal roots) and q~t, q~z (unequal roots) in each region in 
the form of integral cosinus-decompositions of Fotirier along the coordinate x,. 

In the case of unequal roots 

WI') (x,,z,) =17 A(/!.)exp[-,;tZl]COS).x, d22 

( : , ,  z , )  = ' 

or d2 q/,') (x,, z,) =Io [D,(2) chA(z,+hz) § D,(2)sh2(zz+hz)]eos2x, 

(3.3) 

N2 ($,~) =R~(~ +$) -R,(I +$) +Rz(~-~) -R{(l-~) 

For equal roots they are represented by formulae 

R,($)  = - 2 1 2 - ' s L _ , ( ~ )  +L0(~)]~ S , ( ~ ) = - L , ( ~ )  

Rz(~) = - L _ I ( ~ ) ~  S~(~)=2[2"~sL_t(~)-Lo(~)] 

where h~=(n~)-l':h, i=l ,  2. 
In the case of equal roots the representations for F and ~ are analogous to (3.3). 

However, in those representations zl=zz, ha=hz and the multiplier A "1 is absent. 
The conditions of continuity of stresses and displacement must be satisfied on the 

boundary x:=O, x~)a of these regions outside of the crack. When these conditions as well 
as boundary conditions (3.1) or (3.2) are satisfied, after transformations analogous to [6, 7] the 
problems are reduced to systems of  integral equations of the first kind with kernels possessing 
logarithmic singularity. After representation in dimensionless form analogous to [6, 7] are 

obtained systems have the form 
! 

fi a(o)a,=0, 0<,;~<1, 0~<~<1 

(3.4) 
In the case of symmetric form the signs before integrals with kernels M~, N~, M2, N2 are 

changed into opposite ones. 
The kernels of integral equations have the form 

M~ (~e,~/) -----R, (r/+$) - R , ( 1  +$)  +R~ ( r / -$ )  - R , ( 1 - ~ )  

N,(~e,r/) =S,(r/+~) +S,(r/--~e), Mz(~,r/)=Sz(r/+~5) +S,(r/-$) ~, (3.5) 
J 
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L_,(~) -- - 2 - q n [ ~ Z +  (2fl~)']j Lo(~) =2f l :  [~'-{-. (2~,~ z] -~ l 
L, (t) =~,' r(2/~,) =-  t ']  [ (2/~,) = + t'] -' I (3.6) 
s = ( l ,  t --l~) (2cott,,cos q - m ~ -  1) (cat,nco[,t,t +m,  t) - ' ( ! ,  t) -t 

#,ffi (.,)-,,,/~, /~_ha,,  

F o r  unequal roots 

Rt (t) ---k,I-t ( 2 f l , , t )  - ktI_: ( 2 f l t , ~ )  

R, (t) = - 2-'k, [I_~ (2/~,, t) - I_, (2/~,, ~) ] 
St (t)  = - 2"tk, [I0 (28, ,~) - 1 0  (2ill , t )  ] 

s , ( t )  =kJ_ ,  (2P,, t)  - k ,  L t  (2Pt,t)  
I o ( P , t )  = t i P ( t ' +  P' )  7t, I_,  (p ,$)  = - 2 - q n  ($2.+ f )  (3.7) 

l _ , ( P , t )  =,8- '  [2 :"pln  ($ ,+  p2) - - t a r e  t g  ($p- ' )  ] 

s=k,-k,, k i l l , ' ( . ; )  -t ' ' ,  k , = l ; ( . t )  ~t'' 

flt=fl(n~)-"' ( i = 1  2)t fl=ha-' 9 

Critical values ,i~ i 0 f the surface instability in the plane problem at precritical state (2.!) 
are determined, by condition s(21)=0.  Kernels Ml, NI, M2, N2 are continuous everywhere, 
except at points X~i. Critical values of the problem (3.4) should be higher than 2~i, 

consequently, the values in this case should be sought in the region 2~i < t , < f ,  where 

kernels M1, N~, M2, N2 are continuous. 

IV. D e l a m i n a t i o n  of  Compos i te  M a t e r i a l s  

The analysis of results of numerous studies on fracture of composite materialstg~~4lleads to 
the conclusion that in fracture of composite in compression along the delarriination arise two 
stages. Initial stage of fracture is determined by loss of stability of local character near defects. 
In the course of possible second stage the propagation of defect in postcritical state is 
investigated. We may conciude that local loss of material stability under compression along the 
cracks (this is equivalent to analysis of the possibility of fracture in precritical state)determines 
the initial moment of fracture, after which to the fracture mechanism by stability loss other 
fracture mechanisms may be possibly added. However till recently this initial stage of fracture 
has not been analysed strictly and accurately. The analyses were based o n  application of 
approximate computational schemes with the use of applied theories of plates, beams, 
shells t~t-t3j. In this paper in the analysis of the initial stage of fracture the strict linearized 

stability theory is used. 
kd31 In the following the analysis is related to macrocrac ~ . The characteristic dimensions of 

these cracks are considerably larger than dimensions of microstructures. The composite is 
considered in continual approximation and is modelled by anisotropic medium with 

normalized characteristics t3~. 
In the paper the transversely-isotropic model of composite is considered of which values 

C~4, n~, l~, tn~ are determined by relations t~! 
tAz2 +/.tl, ~t n' ,~ = 2-t (A,, + ~o , )  - ,  (gt~ + ~o t) -q  (A,, A,~ + aS ~0 

[ (AaIA~,  + ~ t.Azz +#,2or, t -- A~ t - 2A~tl.t~) +- o o _ A** t -  2Angn)  ~ 

- 4#,zA,, (Art + ~ t o ,) (#,= + cr ~~ ) ] "2} 

C',,=#,~ 
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,,,~ = [ (A,, + a~*,),,~- m,] (~/,, +m,) -' I (,~.I) 

I ~ : [  n } (A:~A, + Azzcr l~ t - A'I 1 - A l : t t n ) -  A:ltJl:] 

[ (Au+a*~t)n*~ + Atz]-~(n~)-~l~?~ ( j : l , 2 )  

where the values A~t, /z~: constant in the case of linearly'elastic body, are expressed by 

technical constant according to formulae 

A a l : E ( l - v t v ' ) A - ~ ;  A ~ : E ~ ( 1 - v ~ ) A - ~ ;  A ~ : E v ' ( I  + v ) A  -t  
(~.2). 

psz=G/==G~z; A =  1 --v=-- 2v/v ~ - -  2vv/v e 

where E, E t as Young moduli for tension-compression in the direction of the isotropy plane 
and in the direction perpendicular to this plane; v, v ~ as Poisson coefficients, characterizingthe 

transverse compression in the isotropy plane in compression, in this plane and that 
perpendicular to it; ~,~ as Poisson coefficient, characterizing the compression in the direction, 
perpendicular to the isotropy plane, in tension in the isotropy plane. 

For initial state by considering (2.1), with the use of the second variant of the small initial 
deformations theory 131 following relations were derived for the linear model of material 

aot : E  (2~ - 1) (1 -vZ) -~; R : : I + E ( E ' )  - tv / ( l  - ) . , )  (1 - ~ )  -a (,4.3) 

Since composite materials, as a rule, possess reduced shear stiffness, which leads to 

G t ( ( A , ,  critical compressive stress may be determined using the approximate formula pl 

(a~ ~, - G'[  1.-. [ ( G ' )  ~ /EE ' ]  (1 - v ' )  (1 - v ' v ' )  ] (4.4) 

V. P l a s t i c  Fa l lu re  of  Mater ia l s  

In the investigation of elastic-plastic materials in plastic failure, in accordance with [3], the 
process of failure is assumed, in which before failure in the whole material the deformation 
beyond the elasticity limit occur. In  the analysis of deformation process stability the 
generalized conception of continuing loading is assumed. The initial state is determined within 
the framework of:the geometrical linear theory. In the analysis the account is taken into the 
fact that in elastoplastic bodies the case is mainly realized of complex unequal roots Of 
characteristic equation (complex conjugated roots). The investigation is restricted to analysis of 

incompressible elastoplastic bodies. General solutions of linearized equations for the state (2.1) 

have the form 

(Rer( ~ : ' "  t . - -C " , ,  t L.C'~-~zh 

t, ,=C',,  ~" ReF( ~ " "  
I. L \  ~lz12 

OZl OZz .J 

I t ,a'v' + )t; a'q"ll +m~/ 'a--#~-~ (m.,, +-d 
0--~--~/j 

\ O2q ~ "ll \ a'~o, _1 m,,,, +,,,: Yw'ax-6~-~,]I 

(5.1) 

C~4~'~1215~ "~I[=W~X2~ Wt=(n$) - l /2  t Rew,>0, i = l ,  2 

Complex values m~, l~ ( i =  1,2) are determined by components of the tensor m with the use 
of  respective formulae for the case of real uneq.ual roots of  the characteristic equation tTI, if 
i-o0ts ate assumed to be complex. Components ~e~t,,p are determined by the choice of the 

plasti c theory. 
Formal coincidence of representations of functions q0~, q0z with representations (3.3) for 
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the case of real roots together with complex-valuedness of functions A ( 2 ) , . B ( 2 ) , C l ( 2 ) ,  
D~(2) ( i = 1 ,  2)', makes it possible to preserve the formalism of the derivation of resolving 
system of equations in form (3.4); in this representation the kernels o f  equations and the 

functions sought are complex-valued functions of real variables. 

VI, Numer i ca l  Ana lys i s  

The numerical analysis of the problem obtained (3.4) for eigen values relative to  

parameter 2t (or cr~~ 1----cr~~ 1 (21)) was made by the Bubnov-Galerkin method ~ The numerical 
integration was carried out with the use of.quadrature fo .rmulae of Gauss and of quadrature 
formulae of integration of function with logarithmic singularity. As coordinate functions the 
system of power functions 1, x, x z, "'" was used. 

In accodance with proposed approach the critical values of parameter kl (or o'~z ), 

obtained within the framework of the linearized stability theory, correspond to the beginning 
of fracture near cracks. 

6.1 B e h a v i o u r  of  h igh ly-e las t ic  m a t e r i a l s  
As examples of highly-elastic materials within the frame-work of the large initial 

deformations theory, two elastic potentials are analyzed for isotropic incompressible bodies 
(Bartenev-Khazanovich potential, the case of equal roots I6, 71, and Treloar potential is applied 

for neo-Hooke~n type of bodies, the case of unequal roots) and potential of the harmonic type 
(equal roots) t61 for isotropic compressible bodies. Relations for n~, m~9 1~ (i=1, 2) are 

determined in [6,7]. 
The Table I (Bartenev-Khazanovich potential) presents vaiues of the relative critical 

shortening e~----1--2a for various fl----ha-:-relative distances between cracks. The case 
fl_--oo corresponds to a single non-interacting crack in infinite material; in this case critical 
loads coincide with loads for surface instability of the half-space (in conditions of plane 
deformation) without cracks. In Fig. 2 and Fig. 3 the dependence of e~ on fl is presented for 
Treloar potential and of harmonic type, respectively. In Fig. 2 the curve 1 corresponds to the 

Table 1 Dependence  of  el on fl for potent ia l  of  B a r t e n e v - K h a s a n o v i c h  

(The number of coordinate functions N is equal to 4) 

es 0.012 0.0,13 O.l,Jl 0.304. 0.390 ! 0.~08 0.4.11 0.423 

,8 0.0625 0.126 0.25 0.6 1 1.6 2 oo 

0.5 
045, 
0.4 / 
0.3 

0.2/ 

0.I 

0 0.5 1.0 1.5 2.0 2.5 

0.5 

0.4 

0.3 

0.2 

O. 

/ 
! 

17.5- 1.0 .5 .0 2.5 

Fig. 2 Fig. 3 
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bending form of the stability loss, the curve 2 to the symmetric form. At fl.-->oo el goes to 

0.456 and 0.5 for Treloar potential and of harmonib type, respectively. In l~ig. 4 the dependence 

of ~2 on fl is presented for various values of the Poisson's coefficient v. 

6.2 B e h a v i o u r  o f  compos i te"  m a t e r i a l s  

1. Laminated composite, with isotropic layers 

In macrovolumes such composite may be 
1.5 

considered transversely-isotropic medium ~176 

In the case considered, cracks are located in 1.4 

planes x,=const ,  parallel to the interface 

boundary of layers. Dependence of critical 

dimensionless compressive stresses 

cr=cr, , / , (a,  t) and ~'----cr~ ~ dE on ratios of 

moduli of elasticity of isotropic layers with 

identical Poisson's coefficients EO)/E,  (2), is 

given in Figs. 5 and 6 (for v(1)=v(Z)~v = 

0.3 and concentration of layers with modulus Fig. 4 
E4) cL = 0.3). 

In accordance with the approximate approach, used in papers [11--13] in the analysis of 

the initial stage of fracture by loss of stability, the critical compression in this case corresponds 

to" the Eulerian critical force of stability loss of the strip, divided into parts, by delamination 

with fixation conditions from stiff fixation to free support. Dashed straight lines 1', 2' inFig. 6 

correspond to dimensionless Eulerian compressive stress 

1_-- 
1 3  / /  
1.2 / 

/ 
i.I: " f 

1.0 ~ ~ f ~ - ~  ...=0.,1 
0 0.25 -0.5 0.75 1.0 .25 

4 (~rh/l)~E(l _vz)- ,  (oo ),,=__~ 

at stiff fixatipn for values offl ,  equal to 0.0625 and 0.125 respectively. 

For specific laminated composite-aluminum/boron/silicate in epoxy-maleinic 
dependendes of cr and 5" on glass concentration ct were obtained (Figs. 7 and 8). 

resintl01 

~7 

0.7 t 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 
0 
1 

/ 
/ 
/ 

= 0.25 

/ 

/ 

I 

13 19 25 EO;/E (2) 

j 0 . 0 9 ~  

i 0.08 i l 
0.07~------~--- ' 

i 

= .25 
, 0 4  - - -  

0.03 ~ 

1 7 13 19 25 E(O/E(2J 

Fig. 5 Fig. 6 
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2. Composite with stochastic reinforcement in the plane x2=const  with short fibers Of 

ellipsoidal form 

In Fig. 9 relations e l = e l  ( f l ) a n d  8 = 8  ( ,8) 'are shown for carbon fibers reinforced plastic 

at fibers concentration Ct=0.7 and the fiber aspect ratio is 10. Macrocharacteristics of  the 

carbon-reinforced plastic are taken from the paper [16]. Critical values of er and 6". at /5'~oo 

go asymptotically to values 0.095 and 0.097, which are equal to respective critical values at 

surface instability of  the half-space (in plane deformation condition). An interesting 

observation is the dependence of the critical stress d" on cracks length L=2a at.fixed value of  

the distance between them H=2h (Fig. 10). In this case the parameter L may be considered 

characteristic of material defectiveness. It should be pointed out that within the framework 

used here at /_,~0 (defectless material) the finite value of the critical stress d is obtained, 

equal to the critical value for surface instability. 

0.7 j 

o.s ! /  
/ 

0.4 / / I  

0.3 f 

0"21/  

f 

f 

I I 
/~ = 0.25 

, \ 
i ' 

l h ,  
/3 = 0.0625 \ 

0.7 0.9 
Fig. 7 

6.3 

0.11 

o.Io 

0.09 

0.08 

0.07 

0.06 

0.05 

0.04 

0.03 

0.02 

0.01 

0 

/ 
~ - - ~  251 / 

\ " 

- - _ _  p!0 
0 . 1  O.3 

/ 

~' -r -a ! ~, 

L 
0.5 0.7 0.9 

-.~ 0.095 0.10 0.097 Fig. 8 

0.10 - - ~ ~  J 0.08! I I J ~ ! 

! I 
o.04~- ~ - i  J - t ~  

r - - ~ i  --.i __.L._--I 

' 2 I 0 1 2 2It  4H 6H 8H I O H  1211 141t 16t l  

Fig. 9 Fig. 10 

B e h a v i o u r  o f  elast i~-~plastic  b o d i e s  

As an example of fracture of elastic-plastic material the case is anal~r the material 

deforms according to the theory of  small elastic-plastic deformations with power law of  

relations between stresses and deformations intensity, 

~,0 =A(~,*) ~ (6.1) 

In Fig. 1 1 for various values of/3 dependence of  e~ and cr~cr~ on the value of k is 
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presented (E,-secant modulus on the diagram tr~-~e~ ). It should be remarked that for small  

precritical deformations e~------ezOt. In Fig. 12 the graph presents ea and o on/3 for pure 
aluminium tt;~ (k~0.23; trsi = -0.136; e]i =0.102). 

VII .  C o n c l u s i o n s  

Results, obtained by numerical analysis, lead to following conclusions. 

At sufficiently small distance between cracks (f l=0.0625~0.125)the values of critical 

loads are significantly (by one order) lower than values obtained for infinite plane with one 

crack. Consequently taking into account the mutual influence of cracks leads to significant 

reduction of the theoretical strength limit. At great distances oetween cracks, values of  critical 

loads coincide with values obtained in problems of one crack in the plane. These values of 

loads are equal to loads of surface instability of the half-plane without cracks. 

In case of compressible bodies the compressibility, characterized by Poisson's coefficient 
v ,  has a considerable influence on values of certain critical parameters (for highly-elastic 

materials with harmonic potential--to 35%). 

Determination and computation of  critical loads with the use of  approximate 

computational schemes as  compared with exact value, obtained in this paper with the use of 
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strict linearized theory for initial stage of fracture, lead to significant errors (to 57% for ~ =  

0.0625 and to 167% forp=O.125) .  
In case of composite materials the concentration of  components and relations between 

their elastic characteristics have an essential influence on fracture loads. 
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