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Abstract  
In this paper, Lagrangian method is applied to discuss the problem of  the 

hydrodynamic pressure on a suddenly starting vessel. The free surface profile and the 

coefficients of  the hydrodynamic pressure on the vessel wall are obtained. And it is 

verified that the singularity of  the pressure near the free surface is only' logarithmic. 
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I. In troduc t ion  

During earthquakes the fluid in a reservoir exerts an impulsive force on the dam, and in 

an accelerating spacecraft the liquid propellant also engenders an impulsive force on the tank. 

These rocking problems of fluid due to an accelerating rigid wall may sum up the problem of 

the hydrodynamic, pressure on a suddenly starting vessel. 

The study of this "problem originated in the 1920s. At that time, because the dam was 

designed in the earthquake regions of America, the hydrodynamic pressure exerted on a dam 

during earthquake must be estimated. In 1933Westergaard E~1 first got an analytic solution by a 

linearized theory neglecting effect of the free surface of the fluid. In the same year a 

remarkably simple momentum-balance method was applied to solve this problem by Von 

Kfirmfin t-'l. His solution was "very close to Westergaard's result. A nonlinearized me thod  

considering the effect of free surface was not developed to treat the problem until 1983 by 

Chwang TM. By the same method Chwang and Wang (1984) TM solved the problem ot ~ the 

dynamic fluid pressure on a saddenly starting vessel. However, the coefficient of the 

hydrodynamic pressure becomes rather great adjecent to the free surface; also, the character of 

singularity was not clarified. 

In the above literature referred to it should be mentioned that these problems are solved 

adopting the Eulerian method which uses Eulerian coordinates. Up to 1988 Tao Ming-de and 

Cen Yun ~sl treated a problem of an accelerating vertical plate towards fluid by the Lagrangian 

method, however, they have not explained the charater of singularity. In this paper, the 

Lagrangian method is applied to study the problem of suddenly starting vessel. The 

distribution of the dynamic fluid pressure exerted on the wall is determined. It is verified that 

the singularity in pressure adjecent to the free surface is only logarithmic.Due to the use of the 

Lagrangian method, we are able to calculate the coefficient of the hydrodynamic pressure on 

the wall from the bottom to the free surface of the fluid "at any time, which is only calculated 
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up to the intial position of the free surface of the fluid by the Eulerian method. And the 

former result is greater than the latter one. But the free surface profiles obtained by the 

Lagrangian method is the same as that given by the Eulerian method. 

The great advantage of the use of Lagrangian method in the problem of transient water 

wave is that the nonlinear boundary condition on the free surface is exactly satisfied, for the 

equation of the free surface in the conventional Eulerian method, which is an unknown 

function of the space and time coordinates, is now a fixed curve in the space of the 

independent Lagrangian variables. This simplification is achieved at the expense of increased 

complexity of the governing equations but the difficulty of having to solve equations in an 

unknown domain, whose precise definition is implicitly wrapped up in the problem, is avoided. 

II. Governing Equations and Boundary Conditions 

Let us consider a rigid vessel of two dimensions with vertical side walls and horizontal 

bottom that is symmetrical with respect to y axis (see Fig. 1). The undisturbed fluid depth is 

h and L is the length of the rectangular vessel. The walls of the vessel are assumed to be given 

an impulsive acceleration in the x direction, and the fluid is assumed to be incompressible and 

ideal. Let (a, b) represent the Cartesian coordinates (X,Y) of a particle at t = 0  and these 

Lagrangian coordinates label the particle in the subsequent motion. Then its displacement X 

(a,b, t), Y(a, b. t) at time t>O satisfies the 

X , , X a + ( Y , , + g ) Y , =  1 ap 
p da 

Lagrangian momentum equations 

(2.1a)  

X , , X b + ( Y , + g ) Y b  = 1 O'p - ~  a---b- ' (2 .1b)  

and the continuous equation 

Xa Ya 

Xb Y~ 
(2.2) 

l~ 
Fig. 1 

where p is the pressure, ,q is the gravitational constant, p is the densityand subscripts denote 

partial derivatives. I fp  is eliminated from (2.1a, b) we obtain 

(XoXb ,  + YaYb,) -- ( X b X a , +  YbYa,) = 0 (2.3)  

where it is assumed that the motion is irrotational. 

Based on Pohle's t6J theory, for small values of the time we may expand X,Y and p by 
power series in t. Then we have 

X=aq-X(Z~(a ,b ) t2+X(S~(a ,b ) t~+X(*>(a ,b) t*+. . .  , (2 .4a)  

Y=b+y<Z)(a,b)t~-ky~3)(a,b)t3q-y(*~(a,b)t4 +. . .  , (2.4b)  

p=p(O~ (a, b) .[_pr (a,b)t+pcz~ ( a , b ) f  +p<a., (a, b) ta+. . .  , (2 .4c)  

where Xc~, yr and p"~ related to a and b are undetermined coefficients. It is assumed 

that the vessel is initially at rest for (2.4a,b). Substituting (2.4a,b) into (2.3), we have 

X ~ " + Y ~ 2 ~ = 0 ,  X ~ z ) - Y ~ 2 ~ = O ,  X ~ s ' + Y ~ S ' = O ,  X~s ' -Y~.a~=0 , ( 2 . S a - - d )  

X ~ + ~ + Y ~ * ~ = X ~ z ~ Y ~ ) - X ~ z J Y ~ ,  X~4 ' -Y( .*~=O , ( 2 . S e , f )  



153 Tao Ming-de and Shi Xiao-ming 

Substituting (2.4) into (2.1) we have 

2X(~) +lp!o)=0,  2 Y C ~ ) + g + l P ( ~  ~ = 0 ,  
P 

6 X ( s ) + l p ( l ) = O ,  6]'( s' . a . l , , ( l ~  __p~,~ -~0 , 

P 

2X(z;X,,Z"( q. 12X(*)q-(2y(z;q-g)y(:;q-lp(~2~=O 

2X(z)X~Z)+]2Y(*)+(2Y(2)+g')Yr 2 ~ .  ~-~b-t- 1 ,.(2) = 0  , 

On the free surface since the pressure p------0 , for b=h, we have from (2.4c) 

p(~'(a,h)=O ( i = 0 , 1 , 2 ) .  

Thus we obtain by (2.6a) and (2.5a) 

X(~O(a,h) = 0  

and 

At the bottom b----O, Y=O 

And we have from (2.5b) 

Y~Z)(a,h)--o . 

�9 Therefore we have by (2.4b) 

Y(O(a ,0)  = 0  ( i = 2 , 3 , 4 ) .  

( 2 . 6 a , b )  

( 2 . 6 c , d )  

(2 .6e )  

( 2 . 6 f )  

(2 .7)  

(2 .8)  

' 2 9 )  

(2.1.0) 

and the boundary 

III. Solut ion o f  Displacement  

Eliminating ycz) from (2.5a ,b), we obtain the Laplace equation 

v~X <z~ = 0 .  

Then the solution of  coefficient X a) ,  satisfying the above equation 

X ~ z> ( a ,0 )  = 0 .  ,,2 .].1) 

In this paper, we only consider the case of a constant acceleration al. On the side walls, 
the normal velocity of  the fluid must be the same as that of the vessel: Thus 

X,( + L[2, b,t)=ad, 

by which we have 

2X<.~(_q=L/2,b)=a~, 3X(3)(~L/2,b)=O, 4X~4)(q-L/2,b)=O. (2 .12a- -  c) 

Substituting (2.12a, b, c) into (2.6a, c, e), respectively, we have 

a~+p-~p~O,(• p~'( +_L/2,b)=O, ( 2 . 1 3 a , b )  

a,XC,~-~( +_L/2,b) -b(1/p)p! ~' ( + L/2,b) = 0  �9 t 2 .13c)  

And substituting (2.10) and (2.1 l) into (2.6b, d, f), we have 

p~~ p ~ ' ) ( a , 0 ) = 0 ,  p~Z:(a,O)=-pgY~Z)(a,O). ( 2 . 1 4 a , b , c )  
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conditions (2.8), (2.11) and (2.12a), is obtained by the Fourier-series method as 

k chllL'~COSpkb 
Xa ' ; (a ,b)=a,  ~ ( - - 1 )  --#kchO 5/~,.-E-- ' 

k - O  

where 

l) , L 
~r(2k+li~ , ~ = h "  6='77., t = - h - "  /t.~. = 2 -- 

Substituting Eq. (3.1) into Eq (2.5a), we have the coefficient 

yc:>(a,b)=at ~ ( _ l ) k  sh/zkosin~eb 
.k-o t t ,ehO. 5p~.E 

(3.1) 

( ] .2 )  

X~S)(a,O)=O. (3 .3)  

XO)(a,h)  = 0 .  

Thus we obtain from (3.3), (3.4) and (2.12b) 

X ~ (a,b) ==_yo) (a,b) =--0. 

Therefore the Lagrangian equations of the disturbed free surface are 

X / h = a / h + O ( ~  ~) = ~ + O t ~ 4 )  

and 

--A-=l-2~"- ~ # , c h o . 5 # , / ;  k - O  

where ~ isdef inedby ~=t ~/ a /2h .  

IV.  S o l u t i o n  o f  P r e s s u r e  

bO(~4), ( 3 .6b )  

where the first and second terms represent the hydrostatic and hydrodynamic pressure, 

respectively. From (2.6d) and (3.5) we can easily have 

p~l'(a,b)=_O. (4 .2)  

Eliminating X~*;and I/'~4~ from (2.5e) and (2.6e, f), we obtain the Poisson equation 

a a  - -  J - ' b b  ~ -  ~ . 

subject to the boundary conditions (2.7) ,  (2.13c) and (2.14c). We may solve this 

inhomogeneous boundary value problem by means of Green's function method. Green's 

function corresponding to the equation may be given by eigenfunction expansion method as 
(see Appendix A) 

(;;. ,! ) 

(3.5) 

(3 .6a)  

The coefficient pC0~ of the pressure expansion can be obtained by integrating (2.6b), 

p(O)(a ,b )=pg(h_b)+2pa ,  h y~ ( _ l ) k +  t shlzea,/hcos#kb/h 
~-o #~chl~kL/2h ' (4 .1)  

From (2.7) and (2.6c) we have 

It is deduced from (2.5c, d)that.Y'3~is aconjugate harmonic function with respect to]/~3, 

And we have by (2.10) and (2.5d) 
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where v~=l~L./h . By (4.4)/2'(a,b)may be represented 

--.c Ii p(:~(a,b) ~-L,z K(a'b;~'rl)[16p(X~:~(-~'rl?Y}~-)(~'rl) 

' b ; - - f , r l ) [ -  pa,X~ ~' 

I "r't2 K(a  b:~ ,O)[ - -pgY[Z)(~ ,O)]d~ 
- -  J - L i t  ~ 

The hydrodynamic pressure coefficient on the left-hand side wall is defined by 

C,= P o ( - L / 2 ,  b) 
palh 

where p~ is the hydrodynamic pressure. By sorting out the above expression we have 

= 1 ) ~ ~hO.  5 ~ k / ~ c o  s / ~  5 
C,(5) 2 ~ (-- ~,~ 

k-O 

- ) 
"l-ez t ~-~,/z . . 

c~o.~..~ +(~ ~-~)' c~o.~.~ , j .  

a J _ [ n  . C~b/~ . 

where a is defined by a=a, /g .  

V .  N u m e r i c a l  R e s u l t s  a n d  C o n c l u s i o n  

a,ksh~'kL \ 2 ] \ 2 !  ' Z ' 

COSv~tr ( ~ + L ) c h v ,  (x---~-) ,  for ~ < x < L ,  
vkshvkL chvk 

(4.4) 

For ]~ =1,  a=0.2 ,  the free surface profile given by (3.6)is plotted in Fig. 2 for several 

values of the dimensionless time parameter ~ , and the hydrodynamic pressure coefficientC,on 
the left-hand side wall is plotted in Fig. 3 for several values of the non-dimensional time 

param6ter f . The expression (3.6) and (4.5) is given the main conclusion of this paper. 

cos~5 
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As shown in Fig. 2, for non-vanishing values of  e , equation (3.6b) has logarithmic 

singularities at a = - - E / 2  �9 From Fig. 3 we note that Cp has also logarithmic singularies (see 

Appendix B) as a result of  the fact that the boundary values is discontinuous at ~----• E/2  

and /; = I. We note from (2.8) that X (z~ vanishes on the free surface. However, from (2.12a) 

X "(2~ is a nonzero value a~/2. Hence X (z~ is discontinuous at the point between the free sur/'ace 

and the side wall. The physical mechanism 

complicated. 

, r / h  

1.50 
k f.gh,,,,l 

1.2~ 

1.0ff 
--0.5 --0.4 --0.3 --0.2 --0.I 

Fig. 2 

Appendix A 

Let Green's function K ( x , y ; ~ , ~ )  satisfy 

and 

X / h  

0 

of the flow adjecent to a singular point is rather 

2.0 

0.8 

OJ 

0.' 

0.2 

b/h a s=  0 . 2 . L / h  = l 

~=0 ' ' = 0 . 1 ~  0 . :  ] 

c, 
0 1 ~ 

v : . K = - - b ( x -  e_,.)b(U--5), 

OK/Ox=O, ( x = + L / 2 ) ,  

OK/Ou=O, (V=0),  

K ~ 0 ,  (y---h). 

The operator  L is defined by L=-O2/Ov  z . Then by (A.1 a )  we get 

v ~ K = O 2 K / O x 2 - L K =  - 5 ( x -  ~)5(y--r /)  

Let Mi(y)  be the eigenfunction of  the operator  L, thus Ms(y) satisfies 

L~r , 

From (A.lc, d) we can obtain 

Fig. 3 

( A . l a )  

(A . ]b )  

( A . l c )  

( A . l d )  

(A.2) 

(A.3)  

(Mi ,Mj) - -S i j  . (A.4)  

M~(h)=M', (O)--o. (A .5 )  

Thus the eigenfunction Ms , satisfying the equation (A.3) subject to (A.5), is obtained as 

M,=~/2~/ cos.,/'U~ v,  (A.6)  

where 

~'-~-7=(i+ll2)zr/h, (i=~0,1,2,-..).  (A.7)  

Let K be expanded the series of  the eigenfunction 
e o  

K(x,v . .  ~ , ,D=~~,N;(x)M~(v) .  (A .8 )  
l - O  
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Multiplying equation (A.2) byM~, integrating it, and considering the self-adjoint operator  L 

and the orthogonal  function M~ , we have 

N'~ - ~ ,  N, = - M ~ ( o ) b ( x - ~ ) .  ( A. g) 

By (A.Ib)  we get 

Thus we have 

,V' ( - L/z~ = h'~ ( L / z )  =o. 

f A c h v l ( x + L / 2 )  f o r - L ~ x . C ~  
ch0.5v~L ' 

.\r~( x ) = 
chv~(x-  L/2)  

/3 c-~o: ~ , ;E for ~ < x ~  L 

Since N~ iscontinuous at x=.~ and N', is discontinuous, we can obtain 

3l~(q) c l o . 5v iLch , , l (~ -L /2~  
.'I -- hvi shvfL ' 

"Ml(??) chO .5v~Lcha'~(/i + L/2 ] , . 
B =  hv~ shvtL 

Substituting A and B into (A.10), then we get (4.4). 

A p p e n d i x  B 

Let t; approach to one, thus we could make a semicircle R., 

( - L/e ,  5-) and the radius 5=  (1 - - / ; ) /2K1 

(A.]O) 

with the center at 

in the domain. A transform is defined by 

~=rcosO--T,/2,  T/=/ ;+rs in0,  (0-~r-/~5 and J 0 [ ~ / 2 ) .  

Let us estimate the double integral in (4.5). In the semicircle domain R, the third summation 

term of  (4.5) is much smaller than the second one therefore, we only estimate the former two 

summation terms Z,  and Z2 

The principal part  of  E~ is 

~ / t - ~  ' (I].1) 
t '=d  

W.hen k approaches to sufficiently great, the summation (B.I) could be rewritten as 

k - o  

exp[p,(E,--  rcosO) ] 
#,exp[ #k~, ] 

Let u~-rcosO , thus we have 

- ~ - -~exp[  -.u~rcosO]= F ( rcosO) . 

hence 

d F  _ ~ exp[- -  ;ru/2] 
"du ~ exp[--#~u]--  l _ e x p [ _ n u l -  , 

F , ~ -  In ( 1 - e x p [  -- ~ru/2] ) ~.,-- In (rcos0) �9 

The principal part  of  Z 2 is 

~ (  - -  1 ) ~cos/l~ = ~--~( -- 1 ) ~eospb( l~+ rs i n6) 
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C++-+-! +i. 
/C'II ' ~+d 

If +o denotes (2b-rsine)~ , expression (B.2) is rewritten as 

o o  o o  

k - I ~  A'-O k - 0  

Since 

(B.2) 

~ j  c " sin(n-t-1/2)~P I 1 1 
O s K c p . - ~ -  ^ . i  

zsinC<P/2) l,  --,.~ + T  "~''~ 
k - 0  

c o  

cos< /2)-cos<.q + 12) [ 1 
2si n C~/2) ..-,~ "" 3- ' 

the principal part of  the double integral in /?~ is given 

1 I +  ~'/2 bz rdr dO(ln(rcosO)) 
o J -  .',/: 

"= -- ~ ~u :-.p- ( rlnr + rlncosO)drd8 

Thus we can obtain its principal part from the above expression 

- In b~,~- I n ( I - ~ ) .  
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