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Summary .  - -  The theory  of undulat ions of fluid membranes is reviewed 
and in some par ts  extended. The functional  dependences of the  steric 
interact ion of undulat ing membranes are derived in a new way from 
simple physical  arguments.  Discussing the competi t ion between steric 
repulsion and van der Waals  a t t rac t ion,  one finds tha t  membranes which 
usual ly separate  (e.g. giant  egg lecithin vesicles) should cohere if under  
la teral  tension. The contours of two cohering vesicles observed when egg 
lecithin was swelling are analysed to show tha t  the net  energy of cohesion 
can be extremely small  (~  10 -5 erg cm-2), 

PACS. 87.20. - Membrane biophysics. 

1 .  - I n t r o d u c t i o n .  

F l u i d  m e m b r a n e s  such  as  l e c i t h i n  b i l a y e r s  in  w a t e r  u n d e r g o  o u t - o f - p l a n e  

f l uc tua t i ons ,  a lso  ca l l ed  u n d u l a t i o n s .  T h e s e  can  b e  s t r o n g  e n o u g h  to  b e  v i s ib le  

in  a m i c r o s c o p e  i f  l i t t l e  or  no l a t e r a l  t e n s i o n  ac t s  on  t h e  m e m b r a n e .  A s ingle  

l e c i t h i n  b i l a y e r  f o r m i n g  a g i a n t  ves ic le  is a good  e x a m p l e .  

S ince  m e m b r a n e s  a r e  t w o - d i m e n s i o n a l  s t r u c t u r e s ,  u n d u l a t i o n s  g ive  r i se  to  

some  i n t e r e s t i n g  p r o p e r t i e s  w h i c h  a r e  o f t e n  l i n k e d  w i t h  a d i v e r g e n c e  as  t h e  

(*) Paper  presented at  the  <~ee t ing  on Lyotropics  and Related Fields ~>, held in 
Reade,  Cosenza, September 13-18, 1982. 
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m e m b r a n e  area  becomes infinite. Equa l ly  in teres t ing is the  behaviour  of a 
pair  of paral le l  m e m b r a n e s  and  of mul t i layer  systems.  The  m u t u a l  collisions 
of undula t ing  m e m b r a n e s  produce  a repulsive steric in teract ion which m a y  
overcome the i r  v a n  der Wools a t t rac t ion .  

I n  the  p resen t  pape r  we first review the  phenomenological  theory  of cur- 
va tu r e  elast ici ty and  list the  ve ry  few exper imen ta l  da ta  available.  Undulat ions  
and  their  effects are t hen  discussed in detail,  some of t h e m  new. A novel  theory  
of the  steric in terac t ion  of fluid m e m b r a n e s  is g iven next .  I t  pe rmi t s  a ve ry  
direct  der ivat ion of all funct ional  dependences,  bu t  is poor  in predic t ing the  
s t r eng th  of interact ion.  Finally,  we tu rn  to the  compet i t ion  of steric repulsion 
and  van  der Wools a t t rac t ion .  While  lecithin vesicles in wa te r  usual ly  do not  
cohere, new exper imen t s  (1) have  shown t h a t  cohesion can  be (( t u rned  on >> 
b y  an  osmotical ly induced la tera l  tension.  He re  we consider some theoret ica l  
problems of vesicle cohesion and  separat ion.  I n  par t icular ,  i t  is a rgued t h a t  
la tera l  tension should always lead to the  cohesion of infinite paral le l  membranes .  
The contours  of two cohering vesicles in a pho tog raph  are analysed  to demon- 
s t ra te  t h a t  the  cohesion energy can be surpris ingly small. 

2.  - F l u i d  m e m b r a n e  c u r v a t u r e  e la s t i c i ty .  

The phenomenologica l  formula  (2) for the  cu rva tu re  elast ic-energy densi ty  
per  uni t  area  of a fluid m e m b r a n e  m a y  be wr i t t en  as 

(1) g : �89 - / c a  - -  Co) ~ + ~ele2 �9 

He re  el = 1//~1 and  ca = 1/R2 are  the  pr incipal  curva tures ,  R1 and R~ being 
the  pr incipal  radii  of curva ture .  The  spontaneous cu rva tu re  Co is, in general ,  
nonzero whenever  the  two sides of the  m e m b r a n e  are unequal .  There  m a y  be 
differences in lipid concent ra t ion  and  composi t ion or in the  aqueous media  
facing an  otherwise symmet r i c  bilayer.  (lV[onolayers are a symmet r i c  b y  de- 
finition.) The  sum of curva tures ,  cl @ ca, and  the  Gaussian curva tu re  elc2 
are associated with  different elastic moduli ,  s and  ~, of dimension erg. Equa-  
t ion (1) is the  usual  quadrat ic  approx imat ion .  I t  is invar ian t  wi th  respect  to 
an  in te rchange  of cl and  e~, as it  mus t  be, and  contains all l inear and  quadrat ic  
invar ian ts  of this type ,  which is ano the r  requi rement .  

Equa t ion  (1) was used to derive a second-order  differential  equat ion for the  
shape of ax i symmet r io  vesicles b y  means  of the  usual  Eule r -Lagrange  for- 
realism (~). W h a t  makes  the  resul t  special is the  nonnegligible role of stresses 
t h a t  are quadrat ic  funct ions of t he  pr incipal  curvatures .  The  di f ferent ia l  

(1) 1~. M, SERVUSS and W. IIELFRICH: in preparation. 
(2) W.  HELFRICI~: .Phys..Lett. A, 43, 409 (1973). 
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equation was applied to calculate theoret ical  shapes of red blood cells (a) and 
artificial vesicles (4). 

For  the following it is impor tan t  to note t ha t  the g-term drops out of all 

sh~pe equations unless they  involve membrune edges. This agrees with the 
fact  ~hat the  integral  of Gaussian curvature  over a closed surface is a topo- 

logical quanti ty,  depending solely on the genus of the  surface (Gauss-Bonnet 
theorem). Dealing only with closed vesicles or theoretically infinite membranes,  

we can henceforth omit the ni lpotent  ~-term. We remark  tha t  the modulus 
of Gaus~ian curvature  influences the fusion of bilayers and monolaycrs,  i.e. 
the presence or absence of passages, pores and other  connective ((point de- 
fects )) (5). Some of the  cubic lyotropic liquid crystals ment ioned by 
C~A~VOLI~ (~) and of the  microemulsions analysed by  TAUPIN (7) in their 

papers at  this meet ing m ay  be cases in which it cannot  be disregarded. 

Exper imenta l  dat~ are still ve ry  scarce. They were most ly obtained with 
egg lecithin which is probably  a ra ther  poor s~andard due to its variable com- 

position (8). The elastic modulus of the sum of curvatures  was found from the 
bending fluctuations of tubular  vesicles to be 

(2) --~ (2.3 • 0.3). 10 -1~ erg 

for egg lecithin membranes at  room temperature  (9). PETI~OV et al. (lo) re- 

por ted  an estimate of ~ for egg lecithin and a few other ph6sphelipids, inter- 
pret ing freeze-fracture photographs  of aqueous multi layer systems of K16man 
et al. (~1). Their rough value for all materials is 

~ 1.10 -12 e rg .  

While P E ~ 0 V  et al. surmise tha t  ~ becomes negative at higher water content,  

(3) H. J. DEULING and W. ItEL~RICH: Biophys. J., 16, 861 (1976). 
(4) I-L J. D]~ULING and W. HELFRIC~: J. Phys. (Paris), 37, 1335 (1976). 
(5) W. HELFRICH: Physics el Defects, Les Houches Summer School, Session XXXV, 
edited by R. BALIAN, M. ' KL]~MAN and J. P. POI~IER (Amsterdam, 1981), p. 715. 
(e) J. CHAlCVOLIN: 2VUOVO Cimento D, 3, 3 (1984). 
(7) C. TAUeIN: Nuovo Cimento D, 3, 62 (1984); P. G. DE GEN~ES and C. TAU~IN: 
J. Phys. Chem., 86, 2294 (1982). 
(s) This was seen in studies of its diamagnetic susceptibility. F. SeHOLZ, E. BO~OSKE 
and W. HELl'RICH: Magnetic anisotropy el lecithi~ membranes, poster presented at the 
(~ Meeting on Lyotropics and Related Fields ~) held in Rende, Cosenza, September 13-18, 
1982, to be published elsewhere. 
(9) R . M .  SERVUSS, W. HARBIC~ and W. HELFRICH~ Biochim, Biophys. Acta, 436, 
900 (1976); R. M. SERVUSS and E. BOROSKE: Chem. Phys. Lipids, 27, 57 (1980). 
(lo) A. G. PETROV, M. 0. MITOV and A. DERZRA~SKI: Phys. Lett. A, 65, 374 (1978). 
(11) M. KLI~MAN, C, E .  WILLIAMS, M. J .  COSTELLO and T. GULIK-KRzYWICKI: Philos. 
Mag., 35, 33 (1977). 
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we feel t ha t  theoretical  arguments  (12) and the observation of passages (13) 

favour ~ ~ 0 for the  single egg lecithin bilayer in excess water. The spontaneous 
curvature  Co was found to be small bu t  variable in vesicles obtained by  the 
swelling of lecithin in water (14). I t  can be made very  large if one induces by  
osmosis (15) a lipid imbalance between the monolayers of vesicle membranes.  

The bilayer edge energy was also measured. TAUPI:N et al. (16) studied small 

vesicles of dipalmitoyl lecithin and of egg lecithin, finding ? ~ 0.65 �9 10 - ~ erg cm -~. 

HA~mC-~ and H]~LF~C~ (17) determined ? ~ 2 - 1 0  -6 from the shape of elec- 

trically opened giant  vesicles of egg lecithin. 

3.  - U n d u l a t i o n s  o f  a s i n g l e  m e m b r a n e .  

Small enough undulations of a single fluid membrane  can be completely 
described by  the displacements u(r) from a plane, say the (x, y)-plane, so tha t  

r ~ (x, y) and u ~ z. Such (( well-behaYed ~> undulations have been ~tudied 
in earlier papers (12.2o), where most  of the formulae of this section can be found. 

All calculations fur ther  presuppose 

(3) Igradu] : t g ~ < < l ,  

being the tilt angle of the membrane  with respect to the (x, y)-plane. 
The undulations u(r) can be decomposed into modes. For  a quadratic 

piece of membrane  of area A we have, with periodic boundury  conditions, in 
terms of real waves, 

(4a) u(r) : ~'  (aq cos  qr ~- bq s i n  qr) ,  
q 

or, in terms of complex waves, 

(db) u(r) = ~ uq exp [iqr] with u q - -  uq , 
q 

(x2) S. MXR6EL~X: unpublished. 
(13) W. It~a~sicrr, R. M. S~RVUSS and W. H~LFRIC~: Z. Naturforseh. Tell A, 33 
1013 (1978). 
(la) W. HARBICH, H. J. D]~ULING and W. H]~LF~ICrf: J. Phys. (Paris), 38, 727 (1977). 
(15) E. BOROSKE, M. ELWn~SPOEK and W. HnLFRICE: Biophys. J.,  34, 95 (1982). 
(16) C. TAUPIN, M. DVOLAITZKY and C. SAUTEREY: Biochemistry, 14, 4771 (1975). 
(1~) W. HARBICH and W. HELPRICU: Z. Natur]orsch. Tell A, 34, 1063 (1979). 
(is) W. HELFRICH: Z. Naturforseh. Tell C, 30, 841 (1975). 
(19) F. BROCHARD and J. F. L E ~ o ~ :  J. Phys. (Paris), 36, 1035 (1975). 
(20) •. BROC~D, P. G. DE GE~N~S, 1 ). PPEU~Y: J. Phys. (Paris), 37, 1099 (1976). 
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where q = (2g/A�89 n), m and  n being na tu ra l  numbers .  The restr ic ted 
s u m m a t i o n  in (4a) denoted  b y  ~ '  means  t h a t  only one of two opposite wave  
vectors  q is t a k e n  into account .  Th i s  m a y  be achieved b y  summing  only over  a 
half-plane of wave  vectors .  The  contr ibut ions  of opposi te  wave  vectors  in (4b) 
add  up to one real  sinusoidal wave  of var iab le  phase.  

The  curva tu re  elastic energy associated wi th  such a pa i r  of modes is given b y  

o r  

(5b) ~ A~q4[2u q[ 2 . 

We are dropping vec tor  no ta t ion  as a flat fluid m e m b r a n e  is isotropic in its 
p lane  (if the  molecules are paral le l  to the  layer  normal) .  I n  the  following we 
need, for the  undula t ing  m e m b r a n e ,  the  difference be tween  the  area  pro jec ted  
on the  (x, y)-plane and  the  t rue  area.  I t  is pe r  uni t  area  of the  (x, y)-plane 

(6) cos ~o - -  1 ~ - -  ~o~/2 ~-. - -  (tg ~)2/2 for  ~0 << 1, 

where  ~0 is the  local angle which the  m e m b r a n e  makes  wi th  the  plane.  This 
yields for the  decrease of effective or pro jec ted  area  per  pa i r  of modes  

(7a) 

o r  

(7b) 

(AA),  = --glA"2/"2u t~q -~- b2q), 

I n  the  presence  of la tera l  tension a, there  is a free energy associated with AA~ 
which is, of course, 

(8) a(AA)~. 

The mean  square  ampl i tudes  of the  modes can be ob ta ined  f rom the  equi- 
par t i t ion  theorem.  The  mean  energy  of deformat ion  per  pair  of modes being kT,  
we find immedia t e ly  

(9a) 

o r  

(95) 

(a~) = (b~) = 
2 k T  

A ( q ' z  + q~(~) ' 

k T  

We are now r e a d y  to calculate some effects of fluid m e m b r a n e  undulat ions.  
Le t  us s t a r t  wi th  the  to t a l  decrease in effective m e m b r a n e  area.  Replacing 
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the  sum by  an integral, 

(lO) f2.q dq 

and using (9) leads to the  tota l  decrease 

(11) ( AA~ ~ kT l n A J  

-~-]~=o - ~ -;- 

for the  special case a = 0. I n  deriving the approximate  formula (11) we use 
simplified cut-offs. The lower limit of integrat ion is chosen to be z /A  �89 so tha t  a 

very  small square or ra ther  disk of this radius representing the point  q = 0 is 
left out  in the q plane. The upper  limit is taken to be g/a, where a is the 
spacing of the amphiphilic molecules or of the  hydrocarbon  chains if t h e r e  is 
more than  one in a molecule. 

As an example, we compute  AA/A for ~ = 2.10 -l~erg, a = 5_~ and 

A = 150 [xm 2, the area of the  red-blood-cell membrane.  The result whose 
amount  represents the  fraction of area (( absorbed ~> by  undulations,  most  of 

them microscopically unresolvable, is 0.015. The value is not  impressive. 
However,  i t  would be ten  times larger if ~ were ten times smaller, as certain 
experiments (19) suggest for the red-blood-cell membrane.  I n  our numerical 
example, AA/A could reach the (( critical limit ~> of uni ty  (18) for ~ = 3.10 -~4 erg. 

This value and its derivation are somewhat  similar to an est imate concerning 
the feasibility of microemulsions (7). 

Permi t t ing  nonvanishing lateral  tension, we obtain from s tandard  tables 
for the  change in effective area the  integral  

AA) kT 1 :~/a~ -t- (r/z 
(12) - ~ -  ~>o = ~ aTtilA -J- a/z '  

which, in the range 

(13) 

simplifies to 

(1,1) 

2"t; ~ 2~ 2 

AA) kY_  xz  ~ 

Taking the same numbers  for ~, A and a as in the  last section, we may  re- 
place (13) by  

(15) 10 .5 dyn em -1 << a << 10 4 dyn em -1 . 
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Accordingly, eq. (14) seems to be a good approximat ion  in most  cases of prac- 
tical in teres t  (see below). Fluid  membranes  of lecithin and other  lipids, usually 
prepared  as black lipid membranes,  are known to rup tu re  a t  tensions of the  
order  of a few dyn em -~ (2~). 

Equat ions  (12) or (14) complement  the  ordinary  elastic response governed 
by  the  elastic modulus of membrane  stretching,  2. The to ta l  elastic response 
of a fluid membrane  to s t re tching may  be wr i t ten  as 

AA) k T  ~ aa 2 1 
(16) - ~  ">o= ~ m ~ + i ~ .  

1%truing the  derivat ive of A A / A  with respect  to a and  using 

dg. d ( A A / A ) 6  
- -  ( y  

dcr da 

leads to the  elastic energy of s t re tching per  uni t  area:  

(17) 
k T  1 a s 

g~ = ~ (~ + 2-~ + cons t .  

The range of val id i ty  of this simple equat ion consisting of terms linear and 
quadrat ic  in ~ and containing nei ther  a nor A is res t r ic ted  by  inequal i ty  (15) and 
the  obvious condit ion ~ > 0. 

The s t re tching elast ici ty of egg lecithin vesicle membranes  was recent ly  
measured by  KwoK and  EvAns (22) to be 

(18) 2 ~-~ (140 =j=16) dyn  cm -1 

at  room tempera ture .  La tera l  tensions were produced by  the  sucking action 
of a p ipe t te  on the  vesicle. The undula to ry  pa r t  of s t re tching elast ici ty has 
not  been considered and could explain some irregularities observed at  low 
tensions. Inser t ing  moduli  (2) and (18) into (17), we can compute  the  crossover 
tension aeq , where bo th  terms of (17) contr ibute  equally to dgs/da: 

(19) ~eq = 0.11 dyn  cm -1 . 

As KWOI~ and  EVANS measured up to the  tension of rup tu re  between 3 and 
4 dyn cm -1, their  value of 2 is probably  correct.  

(21) See, e.g., H. T. TIE~: Bilayer Lip id  Membranes (New York, N. Y., 1974), p. 40. 
(32) R. Kwol~ and E. ]~vA~s: Biophys. J.,  35, 637 (1981). 
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The microscopic visibility of undulat ions depends on their  s t rength.  Their  
mean  square ~mplitude is given by  

(20) 
q q 

which, in the  special case a = 0, becomes 

(21) 

qmax 

( u ~ ) _  kT f d_qq 
2~t~ q3 ' 

qmil~ 

where use has been made  of (9) and  (10). The integral  diverges rapidly at its 

lower limit. Wi th  

7~ 7C 

the  limits of integrat ion adopted  in deriving (11), we obtain 

kT A 
(22) <u~) = 4nn ~* ' 

provided t ha t  A>> a s. Only the  longest wave-lengths contr ibute  significantly 
to <uS). l~ote . that 

(23) <u~> ~ A ~ N 

which means tha t  the  r.m.s, ampli tude scales with the  length of the  edge of 
the  considered square piece of membrane .  This implies t h a t  the  undulat ions 
of re laxed vesicles (a ~ 0) are essentially scale invariant .  

We will also need <u ~) for a # 0. The general  integral  of (9) m ay  be t aken  
f rom tables i i t  is, for A>>a s, 

(24) ~ �9 <us> 4-~ln l§  

I f  a / s q ~  <<i, we r e tu rn  to (22). I n  the  opposite case eq. (24) simplifies to 

(25) 
k T ,  (r < u s > = - - m - ~  . 

4 ~ ( ~  ~qmin 

4.  - Sterie in teract ion  o f  undula t ing  m e m b r a n e s .  

Undulations make  parallel  fluid membranes  bump into each other,  thus 
causing a repulsive interaction.  We call the  in teract ion steric as it is basically 
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an excluded-volume effect. T h e  s ta t is t ical  mechanics  of steric in teract ion in 
mul t i layer  sys tems was t r ea t ed  in some detai l  in an earlier pape r  (~3). Here  
we will only derive the  funct ional  dependence of the  effect, using simple physical  
a rguments ,  bu t  pay ing  li t t le a t t en t ion  to numer ica l  factors.  

For  th is  purpose  we consider a single fluid m e m b r a n e  under  vanishing 
la tera l  tension be tween  paral le l  r igid plates.  The  m e a n  square  ampl i tude  of 
undulat ions  of a / t e e  m e m b r a n e  diverges s t rongly wi th  its area  according to (22). 
Le t  ~= d be  the  separat ions of the  p la tes  f rom the  (x, y)-plane.  ~Ve then  have  

(26) - -  d ~ u(r) < d.  

Res t r ic t ing  u(r) to this in te rva l  a t  only one poin t  ro in the  (x, y)-plane would 

resul t  in 

(27) <u2(ro)> = d2/3 

and compl ica ted expressions for o ther  r. Res t r ic t ing  u(r) everywhere  to the  
in te rva l  be tween  the  plates  and  excit ing only one mode,  of the  t ype  sin q, x. 
�9 sin q~y, would give (aq> = d2/3 for the  ampl i tude  and  

(28) <Uq(r)> = d2/12 , 

if the  average  over  all r is taken.  As previous ly  (33), we assume the  mean  square 
d isplacement  of a m e m b r a n e  be tween  rigid plates,  which can be exci ted in 
all its modes  bu t  obeys (26), to be  the  geometr ic  mean  of the  two limits (27) 
and  (28), i.e. we wri te  as an  approx ima t ion  

(29) <u2(r)> --: d2/6. 

Inse r t ing  (29) into (22) and  solving for A leads to 

27~ 3 ~ 
(30) As~ = -5 -  1~-~" 

Tlle a rea  is called A because  now we imagine  the  m e m b r a n e  to be  divided 

into squares  of size As~. I t  seems plausible to regard  the  mot ions  of each square 
as being pract ica l ly  independent  of those  of the  o ther  squares.  We m a y  then  
t r ea t  each square as a par t ic le  of a one-dimensional  ideal gas. Kinet ic  gas theory 
tells us t h a t  the  average  force exer ted  b y  such a par t ic le  on the  boundar ies  of 
an in t e rva l  2d is kT/2d ,  regardless of the  par t ic le  mass  and  o ther  details. F r o m  
this s imple a rgum en t  we deduce for the  p r e s s u r e / )  caused b y  the  undula t ing  

(23) W. ~-~ELFRICH: Z. Natur/orsch. Tell A,  33, 305 (1978). 

10 - I I  N u o v o  Cimento D. 
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m e m b r a n e  on e i ther  p la te  P = k T / 2 d A , ~ .  Together  wi th  (30) this leads to 

3 (kT)~ 
(31) P - - -  

47~ a ~d a �9 

In t eg ra t ion  over  d yields the  energy  of in te rac t ion  pe r  uni t  area  of m e m b r a n e  
with  ei ther  p la te  

(32) A G , t  3 (kT) ~ 
A 8~ ~ ~d ~ 

The  dependence  of the  steric in te rac t ion  on d, ~ and  k T  is the  same as was 
found before  (~2). 

However ,  the  earlier extens ive  calculat ions yielded for the  numer ica l  factor  
in (32) t he  va lue  of 3/32 for a m e m b r a n e  be tween  rigid plates ,  which is much  
larger t h a n  3/8~ 3. The  discrepancy seems to be  due mos t ly  to the  crudeness 
of the  above  es t ima te  of the  area  densi ty  of (( independent  ~) m e m b r a n e  pieces. 
The  more  reliable resul t  for a mul t i l ayer  sys t em of fluid m e m b r a n e s  was (22) 

(33) 
AG. t  __ 3~  ~ ( k T )  ~ 

A 128 ud ~ " 

I t  was a rgued  t h a t  t ak ing  mode-mode  correlat ion into account  should increase 
the  theore t ica l  s t r eng th  of steric in te rac t ion  b y  abou t  a fac tor  2. I n  the  fol- 
lowing we are in te res ted  in the  in te rac t ion  be tween  two fluid m e m b r a n e s  be- 
longing to different vesicles. The  steric  in te rac t ion  of undula t ing  membranes  
m a y  be s t ronger  for a pa i r  t h a n  for a mul t i l ayer  system.  This is because in 
the  sys tem the re  are  as m a n y  pairwise in teract ions  as membranes ,  while with 
a single pa i r  the  undula t ions  of two: m e m b r a n e s  have  to be  res t r ic ted  b y  one 
pairwise interact ion.  The  difference m a y  be up  to ano the r  fac tor  of 2. There-  
fore, we t h ink  

(34) A(~.~_ (kT) ~ 
A ud ~ 

~o be a t  p resen t  t he  bes t  app rox ima t ion  for the  case in question. 

5. - Competition between steric repulsion and van der Waals attraction. 

The mos t  in teres t ing fea ture  of t he  steric in te rac t ion  of undula t ing  mem-  
branes  is its long range.  I n  this  respect  i t  surpasses all o ther  repulsive interac- 
tions be tween  membranes .  H y d r a t i o n  forces (34) are known to drop  off ex- 

(~4) S. M~6]~T.JA and N. RADIC: Chem. _Phys, ~ett. ,  42, 129 (1976). 
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ponential ly and so do electrostatic ones (25) sufficiently far f rom the  membrane.  

The characterist ic  lengths are roughly 2 A in the  first case and between a f e w ~  
nnd I ~m in the  second one. As was pointed out earlier (23), steric interaction 

can compete in r~nge and s t rength  with van  der Waals at t ract ion.  I n  dealing 

�9 with the  lat ter  it is preferable to consider tensions~ i.e. negative pressures~ 
ra ther  t h a n  free energies per unit  area because the  power law of van  der Waals 

forces depends on separation d. The stress varies as l i d  3 for small spacings 
where adjacent  membranes  ~ct on each other like half-spaces. As d becomes 

much larger t han  the membrane  thickness and finally reaches the  region of re- 
tardat ion,  the  power law changes to ] / d  6. For  a rigid mult i layer system of alter- 
nat ing lipid and water,  ~ I ~ A ~  and  PAI~SEGIA~ (26) calculated the dependence 

of tension on d, obtaining, for small d, 

(35) 

or, more appropriately,  

(36) 

(G),dw/A ~ - -  i.4" 10-15/d 2 , 

- -  Pvdw ~ 2.8" 10-15/d ~ . 

van  der Wnals interact ion has also been studied experimentally for m a n y  
phospholipid membralles (27). The s t rength  found for egg lecithin (28) at  room 

tempera ture  is about  half  the theoret ical  value (36). This happens to be roughly 
equal in magni tude  to the  theoret ical  s t rength of steric interaction as com- 
puted  f rom (3~), u ~ 2.10 -12 erg and  k T  ~-- 4-10 -14 erg. 

Let  us now discuss some details of the  competi t ion between steric repulsion 

and van  der Waals at t ract ion,  in order to predict  the bchaviour of a pair  of 
fluid membranes  in various circumstances.  I f  the  lateral  tension is zero and 
both  interactive forces va ry  ~s ] / d  a, one of two states should be stable:  either 
complete cohesion with d ~-- 0, or complete separation with d ---- c~. Actually, 
this case is unrealistic for a number  of reasons. They  are, among others, 

i) the  faster drop of van  der Waals forces at  larger distances, 

ii) the  usual predominance of hydra t ion  forces at  small distances pre- 

vent ing close contact ,  and 

iii) especially for very  small ~, a breakdown of our general assumption (3) 
tha t  the  angle ~ is small (7). 

(25) A. C. COWL]~Y, N. FULLEIL R. P. RAND and V.A.  PARSEGIAN: Biochemistry, 17, 
3163 (1978). 
(2s) B. W. NIN~_~ and V. A. P~a~SEGIAN: J.  Chem. Phys. ,  53, 3398 (1970). 
(27) R . P .  RAND: A n n .  ~ev.  Biophys. Bioeng., 10, 277 (1981). These results, including 
those of ref. (2s), arc probably not in conflict with ours as they were obtained with 
disordered dispersions. 
(2s) D. M. LE NEVEU, R. 1 ). RAND and V. A. PAI~SEGIAN: Nature (London), 259, 601 
(1976). 
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For  leci thin m e m b r a n e s  only the  first  two corrections are impor tan t .  ( In  
par t icular ,  the  1/d s dependence of steric in terac t ion  need not  be  questioned.) 
Bound  s tates  m a y  t h e n  be  expec ted  to pe rmi t  slight f luctuat ions of local mem-  
b rane  spacing. ~o reove r ,  a t  a cer ta in  rat io  of the  s t rengths  of steric repulsion 
aud  v a n  der Waals  a t t rac t ion ,  there  m a y  be two s table  s tates ,  one bound  and  the  
o ther  to ta l ly  separa ted .  We r e m a r k  t h a t  i t  is helpful  in the  p resen t  con tex t  
to consider only t he  re la t ive  d isp lacement  us(r) - -  u~(r) of the  two m e m b r a n e s  
r a the r  t h a n  the  individual  displacements .  I n  this  way  the  p rob lem of two 
undula t ing  m e m b r a n e s  of modulus  u is reduced to t h a t  of one m e m b r a n e  of 
modulus  ~/2 in f ron t  of a rigid wall. 

Expe r imen t s  (~) have  shown t h a t  vesicles do not  cohere unless the i r  mem-  
branes  are under  a la tera l  tension a. For  the  ve ry  small  tensions which had  
to be  used in these  studies the  energy  of cohesion appea red  to drop wi th  de- 
creasing a. This raises the  question whe the r  la tera l  tens ion will a lways induce 
cohesion, a t  least  if t he  m e m b r a n e  areas  involved are infinitely extended.  
Arguments  similar to those  employed  in der iving sterie in te rac t ion  for a ~ 0 
provide  an answer.  P u t t i n g  qm~S ~ ~rs/A~, we obta in  f rom (25) 

kT In aA~ 
(37) <uS} ---- 4~(1 ~7~ s " 

The new equat ion  shows t h a t  1/Aq is an  exponent ia l ly  decreasing funct ion 
of (uS~. F r o m  the  der iva t ion  of (25) we know t h a t  i t  is val id only for 
a A / ~ > >  1, which is easily seen to correspond to  (uS}>> kT/47~a. As before,  
we use now the  p ropor t iona l i ty  (29) be tween  (u  s) and  d ~ and  equate  1/Asq 
to the  par t ic le  dens i ty  of a fictitious gas producing  the  repulsive pressure.  
Bo th  relat ions should still app ly  if we do not  insist  on exac t  values for the  
numer ica l  factors.  Accordingly,  an  exponent ia l  drop of the  repulsive force 
wi th  d s m a y  be expected  above  a cer ta in  mean  spacing of t he  two undula t ing  
membranes .  Below this spacing a is negligible. Since thc  negat ive  pressure 
of v a n  der YVaMs in terac t ion  is larger  in a m o u n t  t h a n  some cons tan t  t imes 
1/d6~ a t t r ac t ion  will a lways exceed repulsion beyond  a cer ta in  spacing. I n  
other  words, la tera l  tension should induce the  cohesion of infinite m e m b r a n e s  
repell ing each o ther  in its absence. I t  seems also clear t h a t  the  ne t  energy of 
cohesion represent ing  a balance  of a t t r ac t ion  and  repulsion can be made  
a rb i t ra r i ly  small  b y  decreasing a. 

F igure  1 serves to  demons t r a t e  a case of v e r y  weak  cohesion. Onionlike 
s t ruc tures  such ~s the  one seen the re  in phase  con t ra s t  microscopy are found  
f requen t ly  when  egg lecithin swells in water .  We are in te res ted  in the  (rarely 
observed) a t t a c h m e n t  of a t ubu la r  vesicle to the  outside of one of the  onion 
skins. Bo th  m e m b r a n e s  were mos t  l ikely unil~mellar,  the  tube  w~s seen to 
undula te  , whi le  the  sphere appea red  r a the r  rigid. Le t  us now compare  a typica l  
elastic energy  of a closed vesicle ( the topological  t e r m  can again  be  omit ted)  



UNDULATIONS~ STERIC INTERACTION AND COHESION OF FLUID :~IEMBRANES 149 

Fig. 1. - Onionlike vesicular s tructure of egg lecithin in water  seen under  a phase 
contras t  microscope. A tubular  vesicle is aCtaehed r the  outside of an onion skin. 
The bar  represents 10 ~tm. 

to  t h e  m a x i m u m  e n e r g y  due  to  m e m b r a n e  c o n t a c t .  U s i n g  ~ - - - - 2 . 1 0  - ~  erg,  

we  h a v e  for  a s p h e r i c a l  ves ic le  t h e  e l a s t i c  e n e r g y  

8 ~  = 5" 10 - ~  e r g .  

W i t h  ~ = 2"1073 e rg  c m  -2, t h e  v a l u e  d e t e r m i n e d  on  m u l t i l a y e r  s y s t e m s  of  

egg l e c i t h i n  (~8) a n d  t h e  p r o b a b l e  a r e a  of c o n t a c t  e s t i m a t e d  f r o m  fig. 1, Ar 

= 100 ~ m  ~, we  h a v e  t h e  c o n t a c t  e n e r g y  

~ A o ~ 2 " 1 0  -s e r g ,  
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The lat ter  energy is much larger t han  the  former. I f  this were true, we would 

expect a much stronger deformation of the  tubular  vesicle producing a larger 
area of contact  t h a n  tha t  seen in the  figure. Therefore, we may  conclude tha t  

in this part icular  case oo <<1.10 -2 erg cm -~. 

A rough upper  limit of the  lateral  tension ~ can be obtained f rom the  fact  
t ha t  the  usual  undulat ions of vesicle walls seemed hard ly  suppressed in the 

tubular  vesicle. According to (24) this suggests 

ff 
2 :gqmin 

With  qmin ~ 2 u / L ,  I1 -=- 100 ~m (=- length of tube) and again ~ = 2.10 -12 erg 
we compute  

a ~ 8.10 .5 dyn cm -1 . 

Moreover, the  lateral  tension or at  least a lower limit for it can also be deduced 

from the  contour  of the  tubular  vesicle which merges smoothly with tha t  of the 
sphere. Imagining  for the  momen t  a membrane  t h a t  is curved only near the 
area of contact  and practical ly fiat elsewhere, we can write for the  energy 
densi ty in the  curved region 

(38) 
1 [ d T \  ~ 

g = ~  ~ ( - ~ )  -]- o ' (1--  cos~ )  . 

Here s measures the  length of a pa th  on the  membrane  which s tar ts  at  and 
is normal  to the  r im of the  contac t  area, while ~ is the  local angle the  pa th  
makes with its asymptote .  Applying the  Euler-Lagrange formMism to (38) 
gives the  <~ shape >> equat ion 

(39) d2T - -  (~ s i n T ,  
ds 2 

which, for small ~ ,  can be approximated  by  

(40) d~T __ a T .  
ds ~ 

The quant i ty  (~/~)~ is a new coherence length. An upper  limit for it of ca,. 
1 ~m may  be read f rom fig. 1 if allowance is made for a superimposed constant  
curvature.  Thus we obtain the  lower limit 

a~> 2" 10 ~4 dyn  cm -~ . 
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T h e  a g r e e m e n t  b e t w e e n  u p p e r  a n d  lower  l i m i t  is s a t i s f a c t o r y .  H o w e v e r ,  

m o r e  p h o t o g r a p h s  a n d  a m o r e  e x t e n s i v e  m a t h e m a t i c a l  a n a l y s i s  w o u l d  b e  n e e d e d  

to  a r r i v e  a t  a r e l i a b l e  v a l u e  for  a.  

Our  a i m  h e r e  is to  s h o w  t h a t  ac c a n  be  m u c h  s m a l l e r  t h a n  2 . 1 0  -z d y n  c m - L  

T h e  cohes ion  e n e r g y  is r e l a t e d  to  t h e  l a t e r a l  t e n s i o n  t h r o u g h  

ao = ( I  - -  cos ~o) o ,  

w h e r e  }~o is t h e  c o n t a c t  ang le  or,  w i t h  s m o o t h  m e r g i n g ,  t h e  ang le  t h e  a s y m p t o t e  

m a k e s  w i t h  t h e  c o n t a c t  a r e a  n e a r  t h e  r im .  F r o m  t h e  e s t i m a t e d  a ~ 1.  

�9 10 -4 d y n  c m  -1 a n d  ~o ~ 30~ as  t a k e n  f r o m  t h e  p h o t o g r a p h  we t h u s  o b t a i n  

oo ~ 1 . 1 0  -5 e r g  c m  -~. F i g u r e  2 a n d  s im i l a r  o b s e r v a t i o n s  a lso  sugges t  t h a t  

s t r e t c h i n g  one  of two  e g g i l e c i t h i n  m e m b r a n e s  m a y  suffice to  i n d u c e  cohes ion  

b e t w e e n  t h e m .  Th i s  s e e m s  t o  p r o v i d e  e x p e r i m e n t a l  e v i d e n c e  t h a t  t h e  s t e r i c  

r e p u l s i o n  of f r e e l y  u n d u l a t i n g  m e m b r a n e s  is on ly  s l i g h t l y  s t r o n g e r  t h a n  t h e i r  

v a n  d e r  W a a l s  a t t r a c t i o n .  

�9 R I 2 r S S U N T 0  (*) 

L a  ~eoria delle ondulazioni delle membrane dei fluidi b rivis~a ed estesa in alcune par t i .  
Si derivano le dipendenze funzionali  dell ' interazione steriea delle membrane ondulate 
in un nuovo modo da sempliei argomenti  fisiei. Diseutendo la competizione i r a  repul- 
sione s~eriea e at~razione di Van der Waals ,  si t rova  ehe membrane the  di  solito sepa- 
rano (per esempio, grandi  veseieole di  leci t ina dell 'uovo) dovrebbero aderire se so t to -  
poste a ~ensione laterale.  I eontorni di due veseieole eon~igue osservate quando la leei- 
t ina dell 'uovo si s~a rigonfiando mostrano ehe l 'energia netSa di eoesione pub essere 
es t remamente  pieeola (~10 -5 erg em-~). 

(*) Traduzione a eura della •edazione. 

HepOBHOCTH, eTepllqecKoe B3aHMo~[efiCTBHO H KoFe31m ~H,nt~HX MeM6paH. 

Pe3IoMe (*). - -  AHa.rn~3HpyeTc~ Teoprm HepOBHOCTe~ ~ MeM6paH. H3 IIpOCTr~IX 
~H3HqeCXHX apFyMeHTOB BI~IBO~RTC~I qbyHKtmOHanBHBIe 3aBHCHM0CTH cTepnaecxoro  B3a~- 
Mo~e~CTBI/~ Bonm~CTBIX MeM6paH. PaccMaTprmaa XonKypeHanm Me~)Iy cTepn~ecrd~M 
OTTanr.HBaHHeM H npnT~IcermeM BaH ~ep Baanbca, Hony~aeTcg, qTO MeM6paHBI, KOTOpbre 
OSb~aO pa3~enrnOT, ~onmm~ CB~3BmaTI, npri nonepe~moM Hanpamertma. AHan~3i~pyToTca 
XOHTypBr ~ByX CB~3aHHBIX Ily3blpbKOB H noxa3~maerc~, ~TO eyMMapna~ 3HeprrL~ cLIen~e- 
rm~ MO~er 6~IT~ ape3Bo~a~mo Mano~ ( ~ 10 -5 apr CM-2). 

(*) IIepeseOeno peOamtue~. 


