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Summary. The theory of undulations of fluid membranes is reviewed
and in some parts extended, The functional dependences of the steric
interaction of undulating membranes are derived in a new way from
simple physical arguments. Discussing the competition between steric
repulsion and van der Waals attraction, one finds that membranes which
usually separate (e.g. giant egg lecithin vesicles) should cohere if under
lateral tension. The contours of two cohering vesicles observed when egg
lecithin was swelling are analysed to show that the net energy of cohesion
can be extremely small (<1075 erg cm™2).

PACS. 87.20. — Membrane biophysics.

1. — Introduction,

Fluid membranes such as lecithin bilayers in water undergo out-of-plane
fluctuations, also called undulations. These can be strong enough to be visible
in a microscope if little or no lateral tension acts on the membrane. A single
lecithin bilayer forming a giant vesicle is a good example.

Since membranes are two-dimensional structures, undulations give rise to
some interesting properties which are often linked with a divergence as the

(*) Paper presented at the « Meeting on Lyotropics and Related Fields», held in
Rende, Cosenza, September 13-18, 1982,
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membrane area becomes infinite. Equally interesting is the behaviour of a
pair of parallel membranes and of multilayer systems. The mutual collisions
of undulating membranes produce a repulsive steric interaction which may
overcome their van der Waals attraction.

In the present paper we first review the phenomenological theory of cur-
vature elasticity and list the very few experimental data available. Undulations
and their effeets are then discussed in detail, some of them new. A novel theory
of the steric interaction of fluid membranes is given next. It permits a very
direct derivation of all functional dependences, but is poor in predicting the
strength of interaction. Finally, we turn to the competition of steric repulsion
and van der Waals attraction. While lecithin vesicles in water usually do not
cohere, new experiments () have shown that cohesion can be «turned on»
by an osmotically induced lateral tension. Here we consider some theoretical
problems of vesicle cohesion and separation. In particular, it is argued that
lateral tension should always lead to the cohesion of infinite parallel membranes.
The contours of two cohering vesicles in a photograph are analysed to demon-
strate that the cohesion energy can be surprisingly small.

2. — Fluid membrane curvature elasticity.

The phenomenological formula (2) for the curvature elastic-energy density
per unit area of a fluid membrane may be written as

) g = tuley - 6 — 6,)% + %oy 0,

Here ¢, = 1/R, and ¢, = 1/R, are the principal curvatures, R, and R, being
the prinecipal radii of curvature. The spontaneous curvature ¢, is, in general,
nonzere whenever the two sides of the membrane are unequal. There may be
differences in lipid concentration and composition or in the aquecns media
facing an otherwise symmetric bilayer. (Monclayers are asymmetric by de-
finition.) The sum of curvatures, ¢, -} ¢,, and the Gaussian curvature ¢;c,
are associated with different elastic moduli, » and %, of dimension erg. Equa-
tion (1) is the usnal quadratic approximation. It is invariant with respect to
an interchange of ¢, and ¢,, as it must‘be, and contains all linear and quadratic
invariants of this type, which is another requirement. ,
Equation (1) was used to derive a second-order differential equation for the
shape of axisymmetfric vesicles by means of the usual Euler-Lagrange for-
malism (2). What makes the result special is the nonnegligible role of stresses
that are quadratic functions of the principal curvatures. The differential’

(*) R. M. Servuss and W. HELFRICH: in preparation.
(3) W. HevrricH: Phys. Lett. 4, 43, 409 (1973).
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equation was applied to calculate theoretical shapes of red blood cells () and
artificial vesicles (4).

For the following it is important to note that the z-term drops out of all
shape equations unless they involve membrane edges. This agrees with the
fact that the integral of Gaussian curvature over a closed surface is a topo-
logical quantity, depending solely on the genus of the surface (Gauss-Bonnet
theorem). Dealing only with closed vesicles or theoretically infinite membranes,
we can henceforth omit the nilpotent #-term. We remark that the modulus #
of Gaussian curvature influences the fusion of bilayers and monolayers, i.e.
the presence or absence of passages, pores and other connective «point de-
fects » (°). Some of the cubic lyotropic liguid ecrystals mentioned by
CHARVOLIN (°) and of the microemulsions analysed by TAUPIN (7} in their
papers at this meeting may be cases in which it cannot be disregarded.

Experimental data are still very scarce. They were mostly obtained with
egg lecithin which is probably a rather poor standard due to its variable com-
position (8). The elastic modulus of the sum of curvatures was found from the
bending fluctuations of tubular vesicles to be

(2) % =(2.3 4+0.3)-10 2 erg

for egg lecithin membranes at room temperature (). PETROV et al. () re-
ported an estimate of % for egg lecithin and a few other phospholipids, inter-
preting freeze-fracture photographs of aqueous multilayer systems of Kléman
et al. (**). Their rough value for all materials is

¥~ 1-10"12erg .

While PETROV ef al. surmise that % becomes negative at higher water content,

(®) H. J. DEvrLiNg and W. HeLrricH: Biophys. J., 16, 861 (1976).

(*) H. J. Drvring and W. HeLrricH: J. Phys. (Paris), 37, 1335 (1976).

(®) W. HerLrricH: Physics of Defects, Les Houches Summer School, Session XXXV,
edited by R. Barian, M. KLEMAN and J. P. PorriER (Amsterdam, 1981), p. 715.

(®) J. CmARvOLIN: Nuovo Cimento D, 3, 3 (1984).

(") C. Taupin: Nuovo Cimento D, 3, 62 (1984); P. G. pE GENxEs and C. TAUPIN:
J. Phys. Chem., 86, 2294 (1982).

(8) This was seen in studies of its diamagnetic susceptibility. F. Scmorz, E. BoroSKE
and W. HerrricH: Magnetic anisolropy of lecithin membranes, poster presented at the
« Meeting on Lyotropics and Related Fields » held in Rende, Cosenza, September 13-18,
1982, to be published elsewhere.

(®) R. M. SErvuss, W. HarBice and W. HELFRICH: Biochim. Bwphys Acta, 436,
900 (1976); R. M. Servuss and E. Boroske: Chem. Phys. Lipids, 27, 57 (1980).

(**) A. G. PrrrROV, M. O. MIitov and A. DERZHANSKI: Phys. Lett. A, 65, 374 (1978).
(1Y) M. Krtman, C. E. WiLLiams, M. J. CosTeELLO and T. GULIk-KrZYWICKI: Philos.
Mag., 35, 33 (1977).
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we feel that theoretical arguments ('2) and the observation of passages (%)
favour % > 0 for the single egg lecithin bilayer in excess water. The spontaneous
curvature ¢, was found to be small but variable in vegicles obtained by the
swelling of lecithin in water (14). It can be made very large if one induces by
osmosis (*%) a lipid imbalance between the monolayers of vesicle membranes.
The bilayer edge energy was also measured. TAUPIN ef al. (*¢) studied small
vesicles of dipalmitoyllecithin and of egg lecithin, finding y = 0.65-10-¢ erg em™.
HaArpicH and HELFRICH (V) determined p = 2-10~¢ from the shape of elec-
trically opened giant vesicles of egg lecithin.

3. — Undulations of a singie membrane,

Small enough undulations of a single fluid membrane can be completely
described by the displacements u(r) from a plane, say the (x, y)-plane, so that
r={(x,y) and v = z. Such « well-behaved » undulations have been studied
in earlier papers (18-2%), where most of the formulae of this section can be found.
All calculations further presuppose

(3) lgrad | = tg oK1,

@ being the tilt angle of the membrane with respect to the (2, y)-plane.

The undulations «#(r) can be decomposed into modes. For a quadratic
piece of membrane of area A we have, with periodic boundary conditions, in
terms of real waves,

(4a) u(r) = 3 (a, cos gr - b, sin gr),
q

or, in terms of complex waves,

(4b) Cu(r) = > u, exp [iqr] with u_, = u,
q

(*?) S. MARCELIA: unpublished.

(**) W. Harsica, R. M. Servuss and W. Herrricu: Z. Naturforsch. Teil 4, 33
1013 (1978).

(1%) W. HarsicH, H. J. DevLiNG and W. HerrricH: J. Phys. (Paris), 38, 727 (1977).
(**) E. Boroskr, M. ELwENSPOEK and W. HELFRICH: Biophys. J., 34, 95 (1982).

(1%) C. Tavrin, M. DvorairzrY and C. SAUTEREY: Biochemistry, 14, 4771 (1975).

(*") W. Harpica and W. HerrricH: Z. Naturforsch. Teil A, 34, 1063 (1979).

(%) W. HerrricH: Z. Naturforsch. Teil C, 30, 841 (1975).

(**) F. Brocuarp and J. F. LENNON: J. Phys. (Paris), 36, 1035 (1975).

(*) F. BrocuarD, P. G. DE GuNnEs, P. Preury: J. Phys. (Paris), 37, 1099 (1976).
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where g = (2n/A*)(m, n), m and n being natural numbers. The restricted
summation in (4a) denoted by >’ means that only one of two opposite wave
vectors q is taken into account. This may be achieved by summing only over a
half-plane of wave vectors. The contributions of opposite wave vectors in (4b)
add up to one real sinusocidal wave of variable phase.

The curvature elastic energy associated with such a pair of modes is given by

(5a) 1 Ang*(a; +b3),
or
(50) 1 Axg*(2u,|?.

We are dropping vector notation as a flat fluid membrane is isotropic in its
plane (if the molecules are parallel to the layer normal). In the following we
need, for the undulating membrane, the difference between the area projected
on the («, y)-plane and the true area. It is per unit area of the (x, y)-plane

(6) cos p — 1~ — @22 &~ — (18 p)?/2 for p <1,

where ¢ is the local angle which the membrane makes with the plane. This
yields for the decrease of effective or projected area per pair of modes

(7a) (Ad), = — tAg¥a} + b)),
or
(7b) (AA), = — } Ag?|2u,|®.

In the presence of lateral tension ¢, there is a free energy associated with A4,
which is, of course,

(8) o(A4),.
The mean square amplitudes of the modes can be obtained from the eyqui-

partition theorem. The mean energy of deformation per pair of modes being k7,
we find immediately '

(90) W = By = s
or ’

kT
(90) Jug|>> = m“ﬁ .

We are now ready to calculate some effects of fluid membrane undulations.
Let us start with the total decrease in effective membrane area. Replacing
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the sum by an integral,
A

and using (9) leads to the total decrease

A4 kT . A}
(11) (I’)d=0~ —_ m In —a’—

for the special case ¢ = 0. In deriving the approximate formula (11) we use
simplified cut-offs. The lower limit of integration is chosen to be m/4?¥, so that a
very small square or rather disk of this radius representing the point g = 0 is
left out in the g plane. The upper limit is taken to be z/a, where a is the
spacing of the amphiphilic molecules or of the hydrocarbon chains if there is
more than one in a molecule.

As an example, we compute AAJA for x=2-10"erg, a =5A and
A =150 pm?, the area of the red-blood-cell membrane. The result whose
amount represents the fraction of area «absorbed » by undulations, most of
them microscopieally unresolvable, is 0.015. The value is not impressive.
However, it would be ten times larger if » were ten times smaller, as certain
experiments (1?) suggest for the red-blood-cell membrane. In our numerical
example, AA/A could reach the «ecritical limit » of unity (*®) for » = 3-10-14 erg.
This value and its derivation are somewhat similar to an estimate concerning
the feasibility of microemulsions (7).

Permitting nonvanishing lateral tension, we obtain from standard tables
for the change in effective area the integral

MY KT et ol
4 )se 8ax nnz/A + o’

(12)

which, in the range

2 2
(13) % % <o <xn ZE ,
simplifies to
AA kT . xn®
(14) ("Z')a>o—- -—_ 8—:7;;5 In O? .

Taking the same numbers for %, .4 and & as in the last section, we may re-
place (13) by

(15) 10~ dyn em—! € ¢ <104 dyn em—1,
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Accordingly, eq. (14) seems to be a good approximation in most cases of prac-
tical interest (see below). Fluid membranes of lecithin and other lipids, usually
prepared as black lipid membranes, are known to rupture at tensions of the
order of a few dyn em-?* (22),

Equations (12) or (14) complement the ordinary elastic response governed
by the elastic modulus of membrane stretching, 4. The total elastic response
of a fluid membrane to stretching may be written as

AA ET . ca? 1
16 ) =" in— =
(16) (A),,>0 8m¢1 xnz_]—la
Forming the derivative of AA/A with respect to ¢ and using

dg, _ _d(A4/4),

do do

leads to the elastie energy of stretching per unit area:

kT

1
_ — g2
3 0‘—1—210 ~+ const .

(17) 9=

The range of validity of this simple equation consisting of ferms linear and
quadratic in ¢ and containing neither @ nor A4 is restricted by inequality (15) and
the obvious condition ¢ > 0.

The stretching elasticity of egg lecithin vesicle membranes was recently
measured by Kwok and EVANS (22) to be

(18) A= (140416) dyn cm™1

at room temperature. Lateral tensions were produced by the sucking action
of a pipette on the vesicle. The undulatory part of stretching elasticity has
not been considered and could explain some irregularities observed at low
tensions. Inserting moduli (2) and (18) into (17), we can compute the crossover
tension ¢, , where both terms of (17) contribute equally to dg,/do:

(19) ’ 0,, = 0.11 dyn em~1,

As Kwoxk and Evans measured up to the tension of rupture between 3 and
4 dyn em~1, their value of 1 is probably correct.

(?1) See, e.g., H. T. Tien: Bilayer Lipid Membranes (New York, N. Y., 1974), p. 40.
{2) R. Kwok and E. Evans: Biophys. J., 35, 637 (1981).
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The miecroscopic visibility of undulations depends on their strength. Their
mean square amplitude is given by

(20) <y =13 Kag> + ) = 3 |u,|™>
9 q

which, in the special case ¢ = 0, becomes

amax

ET dg

2\ _ -

(21) <u® Y~ ¢’
Imin

where use has been made of (9) and (10). The integral diverges rapidly at its
lower limit. With

7T T
Grmin = Z;7 Qrax = 5’?

the limits of integration adopted in deriving (11), we obtain

kT A
2y == —— —
(22) W ===,

provided that 4> a2 Ounly the longest wave-lengths contribute significantly
to (u?). Note that

(23) Cudt ~ A},

which means that the r.m.s. amplitude scales with the length of the edge of
the considered square piece of membrane. This implies that the undulations
of relaxed vesicles (¢ = 0) are essentially seale invariant.

We will also need {u?) for ¢ 7% 0. The general integral of (9) may be taken
from tables; it is, for A>> a?,

(24) (u%:%ln(l—l—%(:.).

If o/xq’,, <1, we return to (22). In the opposite case eq. (24) simplifies to

kT e
o\ o VY
(25) < = 470 In g2,

4. — Steric interaction of undulating membranes.

Undulations make parallel fluid membranes bump into each other, thus
causing a repulsive interaction. We call the inferaction steric as it is basically
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an excluded-volume effect. The statistical mechanics of steric interaction in
multilayer systems was treated in some detail in an earlier paper (2?). Here
we will only derive the functional dependence of the effect, using simple physical
arguments, but paying little attention to numerical factors.

For this purpose we consider a single fluid membrane under vanishing
lateral tension between parallel rigid plates. The mean square amplitude of
undulations of a free membrane diverges strongly with its area according to (22).
Let 4 d be the separations of the plates from the (x, y)-plane. We then have

(26) —d<u(r)<d.

Restricting u(r) to this interval at only one point r, in the («, y)-plane would
result in

(27) {u(ro)y = d*[3

and complicated expressions for other r. Restricting u«(r) everywhere to the
interval between the plates and exciting only one mode, of the type sin g, -
-sin ¢, y, would give (a;) = d*/3 for the amplitude and

(28) (ug(r)y = @[12,

if the average over all r is taken. As previously (%), we assume the mean square
displacement of a membrane between rigid plates, which can be excited in
all its modes but obeys (26), to be the geometric mean of the two limits (27)
and (28), i.e. we write as an approximation

(29) Cut(r)) == d2/6 .
Inserting (29) into (22) and solving for 4 leads to

273 nd?
(50) =g 3T

The area is called A4, because now we imagine the membrane to be divided
into squares of size 4, . It seems plausible to regard the motions of each square
as being practically independent of those of the other squares. We may then
treat each square as a particle of a one-dimensional ideal gas. Kinetic gas theory
tells us that the average force exerted by such a particle on the boundaries of
an interval 2d is kT/2d, regardless of the particle mass and other details. From
this simple argument we deduce for the pressure P caused by the undulating

(3) W. HevrricH: Z. Naturforsch. Teil A, 33, 305 (1978).

10 — Il Nuovo Cimenio D.
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membrane on either plate P =%kT/2dA, . Together with (30) this leads to

(kT)?
nd®

3
(31) P=

Integration over d yields the energy of interaction per unit area of membrane
with either plate

AG,, 3 (kT)?
32 A ol
The dependence of the steric interaction on d, » and kT is the same as was
found before (22).

However, the earlier extensive calculations yielded for the numerical factor
in (32) the value of 3/32 for a membrane between rigid plates, which is much
larger than 3/8x3. The discrepancy seems to be due mostly to the crudeness
of the above estimate of the area density of «independent » membrane pieces.
The more reliable result for a multilayer system of fluid mermbranes was (22)

AG,, _ 3a* (kT)*

(33) A T 128 xdr

It was argued that taking mode-mode correlation into account should increase
the theoretical strength of steric interaction by about a factor 2. In the fol-
lowing we are interested in the interaction between two fluid membranes be-
longing to different vesicles. The steric interaction of undulating membranes
may be stronger for a pair than for a multilayer system. This is because in
the system there are as many pairwise interactions as membranes, while with
a single pair the undulations of two membranes have to be restricted by one
pairwise interaction. The difference may be up to another factor of 2. There-
fore, we think
AG,, (kT)?

(34) AT

to be at present the best approximation for the case in question.

5. — Competition between steric repulsion and van der Waals attraction.

The most interesting feature of the steric interaction of nundulating mem-
branes is its long range. In this respect it surpasses all other repulsive interac-
tions between membranes. Hydration forces (24) are known to drop off ex-

(**) 8. Mawr¢ersa and N. Rapic: Chem. Phys. Leit., 42, 129 (1976).
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ponentially and so do electrostatic ones (2°) sufficiently far from the membrane.
The characteristic lengths are roughly 2 A in the first case and between a few A
and 1 pm in the second one. As was pointed out earlier (22), steric interaction
can compete in range and strength with van der Waals attraction. In dealing
-with the latter it is preferable to consider tensions, ¢.e. negative pressures,
rather than free energies per unit area because the power law of van der Waals
forces depends on separation d. The stress varies as 1/d® for small spacings
where adjacent membranes act on each other like half-spaces. As d becomes
much larger than the membrane thickness and finally reaches the region of re-
tardation, the power law changes to 1/ds. For a rigid multilayer system of alter-
nating lipid and water, NINHAM and PARSEGIAN (2¢) calculated the dependence
of tension on d, obtaining, for small d,

(35) (G)paw/A = —1.4-102%/d?,
or, more appropriately,
(36) — P, = 2.8-10-15/d3 .

van der Waals interaction has also been studied experimentally for many
phospholipid membranes (2?). The strength found for egg lecithin (28) at room
temperature is about half the theoretical value (36). This happens to be roughly
equal in magnitude to the theoretical strength of steric interaction as com-
puted from (34), » = 2-10-2erg and k7 = 4-10~- erg.

Let us now discuss some details of the competition between steric repulsion
and van der Waals attraction, in order to predict the behaviour of a pair of
fluid membranes in various circumstances. If the lateral tension is zero and
both interactive forces vary as 1/d? one of two states should be stable: either
complete cohesion with d = 0, or complete separation with d = co. Actually,
this case is unrealistic for a number of reasons. They are, among others,

i) the faster drop of van der Waals forces at larger distances,

ii) the usual predominance of hydration forces at small distances pre-
venting close contact, and

iii) especially for very small », a breakdown of our general assumption (3)
that the angle ¢ is small (7).

(%) A. C. Cowrey, N. FULLER, R. P. RaND and V. A. PARSEGIAN: Biochemistry, 17,
3163 (1978).

(26) B. W. NinuaM and V. A. PARSEGIAN: J. Ohem. Phys., 53, 3398 (1970).

(*) R. P. Ranp: Anu. Rev. Biophys. Bioeng., 10, 277 (1981). These results, including
those of ref, (38), are probably not in conflict with ours as they were obtained with
disordered dispersions.

(2®) D. M. Le NEvEU, R. P. RaAND and V. A. PARSEGIAN: Nature (London), 259, 601
(1976).
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For lecithin membranes only the first two corrections are important. (In
particular, the 1/d* dependence of steric interaction need not be questioned.)
Bound states may then be expected to permit slight fluectuations of loeal mem-
brane spacing. Moreover, at & certain ratio of the strengths of steric repulsion
and van der Waals attraction, there may be two stable states, one bound and the
other totally separated. We remark that it is helpful in the present context
to consider only the relative displacement u,(r) — u,(r) of the two membranes
rather than the individual displacements. In this way the problem of two
undulating membranes of modulus » is reduced to that of one membrane of
modulus /2 in front of a rigid wall.

Experiments (*) have shown that vesicles do not cohere unless their mem-
branes are under a lateral tension ¢. For the very small tensions which had
to be used in these studies the energy of cohesion appeared to drop with de-
creasing ¢. This raises the question whether lateral tension will always induce
cohesion, at least if the membrane areas involved are infinitely extended.
Arguments similar to those employed in deriving steric interaction for ¢ = 0
provide an answer. Putting ¢°, = n?/4, , we obtain from (25)

sq?

kT . c4d
37 2y = . In 2,
(37) s Amo n P Ad

The new equation shows that 1/4, is an exponentially decreasing function
of (u?>. From the derivation of (25) we know that it is valid only for
o4, [x7?>>1, which is easily seen to correspond to {u2)>>kT/4mo. As before,
we use now the proportionality (29) between (u?*> and d* and equate 1/4
to the particle density of a fictitions gas producing the repulsive pressure.
Both relations should still apply if we do not insist on exact values for the
numerical factors. Accordingly, an exponential drop of the repulsive force
with d2 may be expected above a certain mean spacing of the two undulating
membranes. Below this spacing ¢ is negligible. Since the negative pressure
of van der Waals interaction is larger in amount than some constant times
1/ds, attraction will always exceed repulsion beyond a certain spacing. In
other words, lateral tension should induce the cohesion of infinite membranes
repelling each other in its absence. It seems also clear that the net energy of
cohesion representing a balance of attraction and repulsion can be made
arbitrarily small by decreasing o.

Figure 1 serves to demonstrate a case of very weak cohesion. Onionlike
structures such as the one seen there in phase contrast microscopy are found
frequently when egg lecithin swells in water. We are interested in the (rarely
observed) attachment of a tubular vesicle to the outside of one of the onion
skins. Both membranes were most likely unilamellar, the tube was seen to
undulate, while the sphere appeared rather rigid. Let ns now compare a typical
elastic energy of a closed vesicle (the topological term can again be omitted)
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Pig. 1. — Onionlike vesicular structure of egg lecithin in water seen under a phase
contrast mieroscope. A tubular vesicle is attached to the outside of an onion skin,
The bar represents 10 pm.

to the maximum energy due to membrane contact. Using x = 2-107**erg,
we have for a spherical vesicle the elastic energy

8ax = 5-10"erg.

With ¢, = 2-10~2 erg cm~2, the value determined on multilayer systems of
egg lecithin (28) and the probable area of contact estimated from fig. 1, A, =
= 100 pm?, we have the contact energy

o, A,~2-10"% erg.
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The latter energy is much larger than the former. If this were true, we would
expect a much stronger deformation of the tubular vesicle producing a larger
area of contact than that seen in the figure. Therefore, we may conclude that
in this particular case o,<1-1072 erg cm—2,

A rough upper limit of the lateral tension ¢ can be obtained from the fact
that the unsual undulations of vesicle walls seemed hardly suppressed in the
tubular vesicle. According to (24) this suggests

g

<1,
%qz!in

With ¢, ~ 2n/L, I = 100 pm (= length of tube) and again » = 2-101% erg
we compute

0 <8105 dynem1,

Moreover, the lateral tension or at least a lower limit for it can also be deduced
from the contour of the tubular vesicle which merges smoothly with that of the
sphere. Imagining for the moment a membrane that is curved only near the
area of contact and practically flat elsewhere, we can write for the energy
density in the curved region

(38) g=3n (‘”’) ol — cos?) .

Here s measures the length of a path on the membrane which starts at and
is normal to the rim of the contact area, while ¥ is the local angle the path
makes with its asymptote. Applying the Huler-Lagrange formalism to (38)
gives the «shape» equation

@y o .
(39) a—sz— - ; sin ¥ 3

which, for small ¥, can be approximated by

¥ o
(40) F P v,

The quantity (x/¢)t is a new coherence length. An upper limit for it of eca.
1 pm may be read from fig. 1 if allowance is made for a superimposed constant
curvature. Thus we obtain the lower limit

022:10~* dyn ecm1.
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The agreement between upper and lower limit is satisfactory. However,
more photographs and a more extensive mathematical analysis would be needed
to arrive at a reliable value for o.

Our aim here is to show that ¢, can be much smaller than 2-10-* dyn em=.
The cohesion energy is related to the lateral tension through

g, = (1—cos ¥)a,

where ¥, is the contact angle or, with smooth merging, the angle the asymptote
makes with the contact area near the rim. From the estimated o~ 1-
-10~t dyn ecm~! and ¥, ~ 30° as taken from the photograph we thus obtain
o,<1-10%ergem—2 Figure 1 and similar observations also suggest that
stretching one of two egg:lecithin membranes may suffice to induce cohesion
between them. This seems to provide experimental evidence that the steric
repulsion of freely undulating membranes is only slightly stronger than their
van der Waals attraction.

® RIASSUNTO (*)

La teoria delle ondulazioni delle membrane dei fluidi & rivista ed estesa in alcune parti.
Si derivano le dipendenze funzionali dell’interazione sterica delle membrane ondulate
in un nuovo modo da semplici argomenti fisici. Discutendo la competizione tra repul-
sione sterica e attrazione di Van der Waals, si trova che membrane che di solito sepa-
rano (per esempio, grandi vescicole di lecitina dell’novo) dovrebbero aderire se sotto-
poste a tensione laterale. I contorni di due vescicole contigue osservate quando la leci-
tina dell’'uovo si sta rigonfiando mostrano che 1’energia netta di coesione pud essere
estremamente piccola (<10-5 erg cm=2).

(*) Traduzione a cura della Redazione.

HeposHocTH, CTepHYecKOe B3auMOEHCTBHEe H KOre3ds *KHAKHX MeMOpan.

Pestome (*). — AHamM3HUpyeTCHd TEOpHA HEPOBHOCTEH Xuukux MeMOpan. V3 mpocThix
(hm3smUecKuX apTyMEHTOB BHIBOASTCH (DYHKUMOHAJILHBIE 3aBACHMOCTH CTEPHYECKOrO B3au-
MOAEICTBUA BOJIHACTHIX MeMOpaH. PaccMaTpwBas KOHKYPCHIHIO MEXIY CTEPHYIECKHM
OTTAIKUBaHWEM U IPHTDKCHHEM Bax mep Baanbca, momydaetcs, ¥TO MeMOpaHBI, KOTOPEIC
OOBIMHO Pa3leliioT, HOJDKHBL CBA3EBATE IIPH MONEPETHOM HANPMIKEHAN. AHATHZHPYIOTCS
KOHTYPBL ABYX CBSI3aHHBIX IY3BIPEKOB U IIOKA3BIBAETCSA, YTO CyMMapHAas DHEPrus cIerie-
HHA MOXeT OBITHh 4pe3BOYaiiHo Maioi (<5 103 spr cm—3).

-(*) Ilepegedeno pedaryueii.



