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Abstract

In this paper, based on the step reduction method, a new method, the exact element
method for constructing finite element, is presented. Since the new method doesn’t need the
variational principle, it can be applied to solve non-positive and positive definite partial
differential equations with arbitrary variable coefficient. By this method, a triangle
noncompatible element with 6 degrees of freedom is derived to solve the bending of
nonhomogeneous plate. The convergence of displacements and stress resultants which have
satisfactory numerical precision is proved. Numerical examples are given at the end of this
paper, which indicate satisfactory results of stress resultants and displacements can be
obtained by the present method.
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1. Introduction

The traditional way of deriving finite element method is by way of the principle of minimum
potential energy or by use of the virtual work principle. It is only applied to solve positively defined
partial differential equations. It is well-known that it may be difficult to find shape functions that
satisfy the necessary compatibility requirement. In the bending of plate, the normal derivative of
deflectiqn must be continuous between elements. In 1 — 3], by the interpolation higher-degree
polynomial, the compatible element is derived. But since the element nodel parameters contain the
second partial derivatives of deflection, it is not convenient. Herrman!*-3 gave a mixed element by
mixed variational principle. The normal derivative continuity is not required. But element stiffness
matrix is non-positive definite. Morler!! gave a 6 degrees of freedom and Zienkiewicz!" gave 9
degrees of freedom noncomforming finite element. The elements in [6 — 7] satisfy the patch test!®
and converge to exact solution.

In this paper, based on the step reduction method and exact analytic methodl9 19 the exact
element method is presented. This method doesn’t need the variational principle. Element stiffness -
matrix may be derived directly from partial differential equation. Hence, it can be applied to solve
non-positive and positive definite partial differential equation with érbitrary variable coefficient. A
triangle pléte element with 6 degrees of freedom is derived for solving the bending of
nonhomogeneous plates and its convergence is proved. The element stiffness matrix obtained by the
present method is positive definite. Comparing the exact element method with the general finite
element method, deriving element stiffness matrix doesn’t need surtace integral and the nodal loads
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have obvious physical meaning and the displacement and stress resultants have satisfactory

numerical precision.
Numerical examples are given at the end of the paper which indicates satisfactory resultants of
stress resultants and displacements can be obtained by the present method.

II. Triangle Bending Element with 6 Degrees of Freedom
Consider a nonhomogeneous elastic thin plate. Its equilibrium equation can be written as

?*M, , *M M.,

) + 37 STEm =—g(x,y) inQ (2.1)

-2

and the relationship of stress resultants and displacements are expressed as

2 2 » 2 9w
M.=-D (x,y)@—xu:+v(x,y)g—yuf-); M= =D )G+ 5 )

oM. . oM. My, oM,
M.,=—D(x,y) (1—(x,y))22_ axay , Q.= agi ﬁ%fy_x_, Q'_a -+0 '
(2.2)

where w is the lateral deflection of plate; M,, M, and M., are x-direction, y-direction
moment and twisting moment respectively; g(x,y) and v(x,y) are the intensity of lateral load
and Poisson’s radio respectively; D(x, y) is flexual rigidity which equals E'A®/12(1—»?), where E
and h are elastic modulus and thickness of plate respectively; {2 is plane space of plate; Q, and Q,
are lateral shear forces.

The plate can be divided into N elements. Assuming that the space of the e-th element is £, , by
exact element method equation (2.1) can be converted into

49 . '
;j)=o in Q. (2.3)

d‘w
DS +2m ay
In (2.3), g(x, y ) has become discrete concentrated forces at three anguler nodal points of element.
They equal Aq./3 where 4 is area of element. Here, the function with subscript e(-+-), equals

o) | x=%,,y=0, where Z. and ¥. are centroid coordinates of element. Similarly (2.2) can
become

0w Fw 42
M _—D( %2 +V3_T) M,=—D Ty,—-l-v,a—:;-

(2.4)

Mu=-D,(1=v)-22, Q,=—D,-2_ (Aw), Qy=—D,-2~A
= e e %0y ] z r W)y = aFy-—( w) )

The interpolating function of deflection w can be a perfect quadratic polynomial which
satisfies equation (2.3). The nodal parameters of displacements and stress resultants are shown in
Fig. 1, where g,; arenormalrotation angle at i-th boundary of the element which equals g /an .

'Otherwise, the normal moment, twisting moment at element boundary and concentrated force at
element argular point can be written as

M,.=M,n.’. +2M.,n.n,+M,n}, M.a=(ﬂ:—ﬂ;)M"'l'"t”'(Ml_M:) } 2 5)

Ri=Mgusy—Mper i, j, kare cycle index
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whefe n, and n, are direction cosines of normal line at element boundary. If between elements we
have the continuity conditions that

Bncay=0ncbys Mn(a)—M,.(b)—-M at the middle point of (ab) (2‘, 6)

and w is continuous at angular nodal points of arbitrary element as well as total concentrated forces
Y R{® of all elements around an argular point equals concentrated force load R, at the angular
s

point (on the boundary of plate, B, also contains the discrete concentrated force by total shear
force), it can be proved w, 6,, M, and R, at nodal point of element can converge to exact
solution according to equation (3.8). In (2.6), subscripts (a) and (b) express two consecutive
elements respectively, and (ab) is their interface. Load M, is a normal moment at interface (ab) and
its direction is the same as M, q).

According to the continuity conditions, through

{F}=LK1{3} @.n
the element stiffness matrix [K] can be obtained, where
{F}=‘{R1 R, Rs Maily anlz Mnals}T

{0}={w; w; w3 On1 Ox: Ons}”

I; is the length of i-th boundary of element. The element
stiffness matrix [K] obtained from (2.7)—(2.8)isa positive Fig.1 Triangle plate element with
definite matrix. 6 degrees of freedom

Let us now give the deriving of element stiffness matrix in detail. The deflection w has the
following shape function

w= 2¢(wt+2 & Ot

$=1

} (2'8) (%143 R M ss

I
di=L} +(§: cos a,)LaLs +(;‘, cos (al:))L(Lj +(—%oos ay +7‘700s al:)LlLb (2.9)

¢i=(2A/1DLi—Ly i, j, k are cycle index

which is a perfect quadratic polynomial and satisfies equation (2.3), where L: is the area
coordinate of element and a; is the included angle of the j-th angular point of triangle element. By
equation (2.5), we have

M,=—D, g[(a S 40, ¢‘)w +aa ‘p,‘f),.; ]

o aqb« ‘ (2.10)
M., D.(1— ve)Ea 68

we may derive the derivatives in (2.10) as follows

Su_ 3.
2o 22:,[ T Gbataiad G bi+aman) | £ Lo~
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3 ] 1 5du
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nw=l

> (2.11)
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where n¢ and s¢ are unit vectors of normal line and tangent line (anticlockwise is positive) at the i-
th boundary of element respectively. The symbols

i, i, k are cycle index (2.12)

where x; and  y, are the coordinates of the i-th angular point of element. Substituting the
coordinates of the angular point and the middle point of element boundary into (2.5) in accordance
with (2.7), the element stiffness matrix {K] is obtained. The stiffness matrix and loads assemble,
dealing with boundary condition and solving linear system of algebraic equations are the same as in
the general finite element method. Itis noted that the terms about 4, and M ,; in element stiffness
matrix must be added according to (2.6) when stiffness matrix assembles.

III. The Convergence Proof
Equations (2.1) and (2.3) can be expressed as partial differential operator equations
Bw=Q(x9y)’ B.w=0 in Q, 3.0

where @ is the approximate solution obtained by the present method and w is the exact solution.
Since B and B, are linear operators, the inner product

lim (¢,Bw— Bﬂz)——hm (p,Bw— ZEew)

N—>00

8
=,}£2‘§(59,W<"’y"me ‘Z} R& qu) 0 3.2

where @, exi)resses the value of function @ at the i-th angular point of element and @€W{?»
(§), W ¥ is Soblev space. On integration by parts, noting @ is quadratic polynomial we have

hm (¢, Bw— Bw)=lim (B*p,w—)

N—>oo

lim S| [ (Qu+-2en) 4+ S opom B - pr1 00—

N—>co e

+(or+ C"’M“)(w w)]ds+hm2Z[qy,(R‘—Rs)+(w, BORYT

i=1

=lim ((B*, w=2)+ L, [0 Ua= B>~ b2 =T Jis)

N—»o0
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+1im 3 (o (Rt { Qu+2ees) b Qv o) ), |

+ (ws — B) [Rt (O' aﬂgs";’ 1_2.,_( Qi+ Mgs"." ) ])

l

=0 i, j, k are cycle indexes Q.3
where M%s M3:» Q% and RY are the values of Mny Mnes Qn and R; whenw = ¢
respectively, and M» and Q*49M*,/3s are assumed to be continuous between elements;
conjugate operator B*=5B; the symbol (Qn;+0Mnss/351)¢  expresses the value at the i-th
angular point of ( Qu+3Mne/ds ) on the j-th element boundary and 382, is the element
boundary. From (3.3), by continuity condition between elements as well as known boundary
condition, letting the conjugate boundary of unknown boundary conditions be equal to zero, we
have

lim (B%p, w—)=0 (3.4)

According to inverse Hilbert adjoint operator theorem, (B*)™' exists under the conjugate
boundary conditions and is equal to zero if B has inverse operator B~ under given boundary
conditions. Specially when

Bro=w— (3.5)

it can be got that unique solution @EW{P(2) and M* as well as QF+9M%s/9s are
continuous in £2. Hence we have

1imj (w—®)*dQ=0 (3.6)
o

N-—>oc,
In subspace Q— €, . by (3.6), continuous condition, known boundary conditions and zero
conjugate boundary conditions, we have

(o_g (9 Bu—EB2)d2+0(24)

f:(‘P«[Rf*%-( Q,,,+_‘2!_g_§;u)

i=1

“-l—;‘( Qi +aM"”) —B ] +(w;— 17)4)[ —( Q% aM"”)

Ik(Qq-k_i_aMnab) ]+Ol (Asm“)

=gao, [% (M"“Mn)—M‘:«(G,.—-é',.)]ds_

3

[(_g%')‘ (Mu{-Mni)lf—M:t(Bnt_gng)I‘] —¢,[R‘_l_é( Quy +0]gj\;‘:,, )‘

fw=l

aM,.u) ] +Cn—0) [Ri- L(q J+6M,.u)

——l—"—( Q*, +Q—Mi) ]+Oz(A s2ax)=0 i,77, k are cycle index (3.7
2 asg 1
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i i in2.B dp/dn) M'tand[R‘——I-’—( Qr +M)
where ¢ is an arbitrary element in 2. Because ¢ , (3p/dn)«, M~ = o o),

_.l_"( Q*; +6______M :”‘) ]are arbitrary, and from (3.7) we obtain
2 08,, k]

; - B R, 1 OMsss\ _b OMnst
b o=y [mBmRi—3{Qu +24e0) — (00 + 2t

at the i-th angular point of element (3.8)

},,iT Gui=0n:, ’%im Moy=Mnc  at the i-th boundary point of element

From (3.7—3.8) we prove that @, and B have the second order speed of convergence at angular
point of element and .+ and M. have the first order speed of convergence at the middle point of
element boundary.

Letting g=w—1 , as B is a positive definite operator, we can easily prove

Hm jw=],q =0

l.e. @ converges to exact solution in W ¥ (2)space.

IV. Numerical Examples

Numerical example 1 A simply suppor-
ted rectangular plate under uniform load ¢ is
shown in Fig. 2. Its side length is a. Symmetry
allows for modelling of only one quarter of the
plate. Two different meshes 2x2 and 6X6 x
are analyzed. Table 1 shows the deflection and r—'-’ T
Table 2 shows rotation angle, moment and |
¢oncentrated force of angular point. Numerical 1
results indicate that w and R, have the second ——d
speed of convergence and #, and Mn have the
first order speed of convergence. The correctness
of the theory in this paper is proved.

2X 2

—

Fig. 2 A rectangular plate under
uniform load

Numerical example 2 We consider a cantilever

plate with variable thickness under uniform load g =19 N/cm?

whichis-shown in Fig. 3. Its elastic modulus E=2_1 x 10’ Y r

N/cm?®  and Poisson’s radio »=0 3. The exact solution sem

of the plate can be written as [
w=2184 X 1072[ (100~ x1n100) +x(Inx—x) ] f— logem |

Owing to symmetry, we calculate only one part of plate width LI T TTITTI T e

of which equals b. Two different meshes 2 x 8(6==5) and //ﬂ ;'c-m
2X16(b==2_5)are analyzed. The deflection = and moment L L
M =of the plate are shown in Table 3. By equation (3.8), we '

may obtain shear force Q. along x direction which is also
shown in Table 3 and compared with exact solution. - variable thickness

Fig. 3 A cantilever plate with
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Table 1 The deflection of simply supported rectangular plate under uniform load

x/a=0.25
0.0833]0. 1667, 0.25 0.3333/0.4187] 0.5
*/a 0 y/a=0.25
2X2 0.5127 (36%) 0.3710 (26%) 0 l0.2779(30%)
100wD/qat exe 0.4175 (2.8%)0.40430.3655(0,3022 (2,9%){0.2188(0.1138| 0 |0.2205(3.4%)
Exact solution [11] jo.4062 0.3935/0.3556[0, 2938 0.2107j0.1104 0 Jo.2132

Table 2 The rotation angle, moment and angular concentrated force of simply supported

rectangular plate under uniform load

R/qa?
x/a 0,0417 | 0.12% | 0.2083 | 0,2917 | 0.375 0.4583
(x=a/2, y=a/2)
%2 0.4458 0.2224 0,04794
10My/qa? (0.51%) (8.29%) (26%)
0,4472 0.2102 0.06268
. . 9 .
6X86 0.4759 | oy gg) | 0.3926 | 0.3129 (2.379) | 0-09088 (3.5%)
(y/a=0) solu~
/ E’::\CE”] 0.4754 | 0.4481 | 0,3936 | 0.3124 { 0,2053 | 0,074086 0,085
0.7617 0.3593
10%.D /qat 2z (6.3%) (3.92%)
- “Un
0.8064 0.3490
6X6 0.8616 | gy0z)| 0-8990 | 0.5437 (0. 9559)| 01281
(y/a=0.25) Exact solu-
tion [11] 0.8690 | 0,8132 | 0.7037 | 0.5451 | 0.3457 | 0.1188

Table3 The deflection, moment and shear force of cantilever plate with variable thickness

x 0 12,5 25 37.5 50 62.5 5 87.5 100
2X8 (b=5) 2.38 1.4 0.91 0.58 0,347 0,185 0.0792 0.0198 0
w |2X16(b=2.5) | 2.29 1,36 0.89 0.567 0.339 0,180 0.0760 0.0184
Exact solution | 2.18 1.343 | 0,881 0.562 0.335 0,177 0.0748 0.0178 o
2X8 0 65.1 ]299 690 1237 1940 2799 3815 4987
M ,
* | Exact solution| o 78.1 312 703 1250 1953 2313 3828 5000
2X8 0 12.48 | 24.90 37.48 49,84 62.62 74,96 87.64 99.98
Q. .
Exact solution| o 12.5 25 37.5 50 62.5 75 87.5 100

Numerical example 3 A circular variable thickness plate under simple supported
boundary condition is shown in Fig. 4. Two cases of uniform distribution load q and concentrated
force Pacted onatthe center of plate are considered respectively.Owing to the symmetry of plate, we
only calculate an eighth part of plate. The mesh dividing for this problem is shown in Fig. 5. w and
radial moment resultant M, is given in Table 4. Herev(x,y)=0 .25and the radius of plate is a.

a1

LITT

J——

Fig. 4 A simply supported circular

plate with variable thickness

Fig. 5 The mesh dividing of
circular plate
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Table 4 The numerical results of variable thickness circular plate

1.00 1.50 2,33
ho/hy
Present Exact SolH pocent foact SolH precent Exact Solu-
tion [11] tion [11] tion [11]
wER /qat (r=0)| 0.752 | 0.738 | 1.287 | 1,280 | 2.12 2.04
i M,/qa? (r=0) | 0.203 0.203 0.248 0,257 0.292 0,304
Uniform load g M,/qe? (r=a/2) | 0.152 0.154 0.177 0,166 10,198 0,196
Concentrated force wEhS /Pa? (r=0)| 0,804 0.582 0.957 0.930 0.148 0.139
|
P M,/P (r=0/2) | 0.0701| o0.089 | 0088 | 0.088 | 0.104 | 0.102

The upper three numerical examples indicate that a satisfactory result can be obtained by the
present method and converges to exact solution. The correctness of the theory in this paper is
proved.
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