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Abstract 
In this paper, based on the step reduction method, a new method, the exact element 

method for constructing finite element, is presented. Since the new method doesn't need the 

variational principle, it can be applied to solve non-positive and positive definite partial 

differential equations with arbitrary variable coefficient. By this method, a triangle 

noncompatible element with 6 degrees of  freedom is derived to solve the bending of  

nonhomogeneous plate. The convergence of  displacements and stress resultants which have 

satisfactory numerical precision is proved. Numerical examples are given at the end of  this 

paper, which indicate satisfactory results o f  stress resultants and displacements can be 

obtained by the present method. 

Key words algorithm, nonhomogeneous thin plate, trending, exact element 
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I. Introduction 

The traditional way of deriving finite element method is by way of the principle of minimum 
potential energy or by use of the virtual work principle. It is only applied to solve positively defined 
partial differential equations. It is well-known that it may be difficult to find shape functions that 
satisfy the necessary compatibility requirement. In the bending of plate, the normal derivative of 
deflectiQn must be continuous between elements. In [1 -  3], by the interpolation higher-degree 
polynomial, the compatible element is derived. But since the element nodel parameters contain the 
second partial derivatives of deflection, it is not convenient. He,,mant4- 5j gave a mixed element by 
mixed variational principle. The normal derivative continuity is not required. But element stiffness 
matrix is non-positive definite. Morlc# 1 gave a 6 degrees of freedom and ZienkiewicztTl gave 9 
degrees of freedom noncomforming finite element. The elements in [6-7]  satisfy the patch testtSJ 
and converge to exact solution. 

In this paper, ba/sed on the step reduction method and exact analytic methodtg-10], the exact 
e~crncnt method is.presented. This method doesn't need the variational pri.nciple. Element stiffness 
matrix may be derived directly from partial differential equation. Hence, it can be applied to solve 
non-positive and positive definite partial differential equation with arbitrary variable coefficient. A 
triangle plate element with 6 degrees of freedom is derived for sblving the bending of 
nonhomogeneous plates and its convergence is proved. The element stiffness matrix obtained by the 
present method is positive definite. Comparing the exact element method with the general finite 
element method, deriving element stiffness matrix doesn't need surface integral and the nodal loads 
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have obvious physical meaning and the displacement and stress resultants have satisfactory 
numerical precision. 

Numerical examples are given at the end of the paper which indicates satisfactory resultants of 
stress resultants and displacements can be obtained by the present method. 

II.  T r i a n g l e  B e n d i n g  E l e m e n t  w i t h  6 D e g r e e s  o f  F r e e d o m  

Consider a nonhomogcneous elastic thin plate. Its equilibrium equation can be written as 

02M, + O~M, + 2 0 ~ M , ,  ~ ax6y ~ - - q ( x , y )  in g3 ( 2 . 1 )  

and the relationship of stress resultants and displacements are expressed as 

c 'w o'w O'w O'u, ) I M , f  - D ( x , y  )(--.~.~.-+,( x , y  ).-~.l--), M ,---- - D ( x , y  )(..-~.-~.-+l,( x , y  )-~-t.- 

v ( x  "" 02w - . O M , .  OM. r - OM,. OM, ,  I 
M . , f - D ( x , u )  ( 1 -  , y ) ) - - ~ - ~ - ,  Q.--- . - ~ - t "  Oy. ' Q ' - - - - - ' ~ ' + ~ )  

(2 .2 )  

where w is the lateral deflection of plate; M.~ M ,  and M.~ are x-direction, y-direction 
moment and twisting moment respectively; q(x ,y )  and v (x , y )  are the intensity of lateral load 
and Poisson's radio respectively; D ( x ,  y) is flexual rigidity which equals EhS/12( 1 -- v a ) ,  where E 
and h are elastic modulus and thickness of plate respectively; f2 is plane space of plate; Q, and Q~ 
are lateral shear forces. 

The plate can be divided into Nelements. Assuming that the space of the e-th element is f2o, by 
exact element method equation (2.1) can be converted into 

D l O'w .2  O"w O'w'~ 0 o~--~x4 + 0 - - ~ ,  + 0---~-1---- i n a ,  ( 2 . 3 )  

In (2.3), q(x, y ) has become discrete concentrated forces at three anguler nodal points of element. 
They equal Aq,/3 where A is area of element. Here, the function with subscript e(. .-)~ equals 
( '") lx=~,.y=~,,  where g', and g, are centroid coordinates of element. Similarly (2.2) can 
become 

n t' O zw - 02w\  ,,, n / OZw _ 82w\  ) ],  ,v, ) 

- -  aZw l (2 .4 )  M,v---D~(1-v~)o'-~'~ff-.v, Q,--- - -D,  ~0--~-(Aw), Q , - - - - - - D ~  
dX 

The in[erpolating function of defection w can be a perfect quadratic polynomial which 
satisfies equation (2.3). The nodal parameters of displacements and stress resultants are shown in 
Fig. 1, where 0,, are normal rotation angle at i-th boundary of the element which equals Ova~On �9 

Otherwise, the normal moment, twisting moment at element boundary and concentrated force at 
element argular point can be written as 

M , ~ M , n l  +2M,,n ,nr+Mrn~,  M,,----(nl--n~)M,~+n,nr(M~--M,)  l 
( 2 . 5 )  

J R , ~ M , ~  i t j ,  k are cycle index 
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whei:e n, and n, are direction cosines of normal line at element boundary. If between elements we 
have the continuity conditions that 

O.(.)----O.(b), M , , ~ . ~ - - M . o ~ = M .  at the middle point of (ab) ( 2 . 6 )  

and w is continuous at angular nodal points of arbitrary element as well as total concentrated forces 

R~ ~ of all elements around an argular point equals concentrated force load R, at the angular 
o 

point (on the boundary of plate, R, also contains the discrete concentrated force by total shear 
force), it can be proved w~ 0., M.  and R, at nodal point of element can converge to exact 
solution according to equation (3.8). In (2.6), subseripts (a) and (b) express two consecutive 
elements respectively, and (ab) istheir interface. Load M.  is a normal moment at interface (ab) and 
its direction is the same asM.r176 

According to the continuity conditions, through 

{F}=EK]{3~ (2.7) 
the element stiffness matrix [K] can be obtained, where 

~F}----tR, R1 Rs M,,lli  M.z lz  M.813} r .[ 
(2.8)  

J {~}={'#i wl 9, 0.~ 0.z O.s} "~ 

l, is the length of i-th boundary of element. The element 

Y 

. .  /g.., / \ o . ,  
_ . > < , ,  M , , I t .  . _ ) ' e ,  

I ~ (~,,,,,, I 
~ , ~  o., / I ~ . i i  M., 
(x, ,u,) R, \M.. ,  

stiffness matrix [K] obtainedfrom(2.7)-(2.8)is a positive Fig. 1 Triangle plate element with 
definite matrix. 6 degrees of freedom 

Let us now give the deriving of element stiffness matrix in detail. The deflection w has the 

following shape function 
$ $ 

9 =  

~ - 1  # - 1  

l' +~-j cos a~)L,L~ } (2.9) 

# , = ( 2 A / I , ) ( L I - L , )  i ,j ,  k are cycle index 

which is a perfect quadratic polynomial and satisfies equation (2.3), where L~ is the area 
coordinate of element and aj  is the included angle of thej-th angular point of triangle element. By 

equation (2.5), we have 

8 2 a~ , a 2 -  

i -*  L~' a n  o s  / o n  

M .  ---- - D . (  1 - v .  ) 3 - - ] ~ , , , ,  
,.~ anas 

we may derive the derivatives in (2.10) as follows 

_ 8 i b a24~"  

an:  , . t  . �9 

(2.10) 
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I ='+" 
asl ~ (b.a,-a.b,) (b,,a,+a,,,b,) aL.OL. 

"a-I 

(2.11) 

='~" I ~  ] ~ ( b ' ' ' ] = ' b ' ) ( b ' b ' + = ' ' ' ) ] ' =  " 
dn~Os~ ,.l - 4"/'11 

=1,2 o 
where n ,  and s, are unit vectors of normal line and tangent line (anticlockwise is positive) at the i- 
th boundary of element respectively. The symbols 

b~=yk 
]. i, j, k are cycle index (2.12) 
, J  

where x~ and y~ are the coordinates of the i-th angular point of element. Substituting the 
coordinates of the angular point and the middle point of element boundary into (2.5) in accordance 
with (2.7), the element stiffness matrix [K] is obtained. The stiffness matrix and loads assemble, 
dealing with boundary condition and solving linear system of algebraic equations are the same as in 
the general finite element method. It is noted that the terms about O,~ and M,~ in element stiffness 
matrix must be added according to (2.6) when stiffness matrix assembles, 

III. The Convergence Proof 

Equations (2.1) and (2.3) can be expressed as partial differential operator equations 

Bw=q(x,y) ,  B,a~=0 in ~e (3.1) 

where fi9 is the approximate solution obtained by the present method and w is the exact solution. 
Since B and Be are linear operators, the inner product 

l i ra  (cp,Bw-B~)----lim (q~,Bw- ~ B~fo) 
N-~ c~ N--~ o= e 

8 

= l i m ~ ( J  ~ l  TIo ,  q . A ) = o  (3.2)  N --'~~ 13fpq(x,y)df2e_ 1 

where q~ expresses the value of function q9 at the i-th angular point of  element and .~6H/'2 c2) 
(f2), H,q n is Soblev space. On integration by parts, noting ~ is quadratic polynomial we have 

l i m  (cp,Bw- Bw) = l i m  (B*q~,w-fv ) 
N . - - ~ o o  M'---~ o o  

§ L . [  -*  ( o. § = . , -  

$ 

+(Q: + OM:, ~ ( w - $ ) ] d s + l i m  ~ ~--] [q~,(R,-R,) +(w,--~,)RT] 
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8 +lim '}~ ~.~(qo,[(R,--l~---( 0.,+~),--I~---( Q.,+ OM.., ),),/~,] 

N - ' ~  e ask 

o~:., o,,... ),]) +~.,-o,, [ ~T -~ (o - ,+~ ) , -~ - (o ' .~  o,, 
----0 i.j. k are cycle indexes (3 .3 )  

where M. ' ,  * Q~ '  M . , ,  andR~ are the values of M ~  M , , ,  Q, and R~ when w = ~p 
respectively, and M.* and Q*. + OM~,/Os are assumed to be continuous between dements; 
conjugate operator B*=B~ the symbol (Q, j+OM, a/OsD~ expresses the value at the i-th 
angular point of ( Q, +8M, , / S s  ) on the j-th element boundary and dO,  is the element 
boundary. From (3.3), by continuity condition between elements as well as known boundary 
condition, letting the conjugate boundary of unknown boundary conditions be equal to zero, we 
have 

l i ra  (B*~o~ w - - ~ ) = 0  ( 3 . 4 )  
N--~oo 

According to inverse Hilbert adjoint operator tbeorem, (B*)  -t exists under the conjugate 
boundary conditions and is equal to zero if B has inverse operator B -t undergiven boundary 
conditions. Specially when 

it can be got that unique solution 

continuous in D. Hence we have 

B*cp----'w- t~ ( 3 . 5 )  

q0EW~2)(12) and M ~, as well as Q,+aM.a /as  are 

l i m  ~ (w-~)adO-- - -0  (3 .6 )  
N-.-~oej Q 

In subspace ~ - - ~  , by (3.6), continuous condition, known boundary conditions ~fnd zero 
conjugate boundary conditions, we have 

( cp,Bto-- B~ )d~  +O(  AA)  

~.: L 2 \  

a @ 

_ ~  o . . o~ . ,  * ~-z-,. J,~ - <  + ' ~ ' - ~  ~  o,, ,, 

- z ' ~ ' T ' - - N 7 - , / ,  

s aqo . 

ass I~ 

OM:., /x s~,~)=0 - ~  ~ +--~,  ), ]+0: i;'], k are cycle index (3 .7)  
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where e is an arbitrary element in O. Because ~p (Oep/dn)~, M ~ a n d  R ~ -  Q,*~ ds~ /~ 

- -~ - (  ~e~* + 0"44"l'k~], ~ ] are arbitrary, and from (3.7)we obtain 

~v-**lim e,=w,,  lirn~,--R~-~(Q.jN.~ + 8 0 ~  )~ --/~-~Q.k + ~ )  

at the i-th angular point of element 

l im  ~.~----0.~, l i m  M.~---M.f at the i-th boundary point of element 

(3.8)  

From (3.7- 3.8) we prove that t~t and R~ have the second order speed of convergence at angular 
point of element and 0",~ and )f/,~ have the firstorder speed of convergence at the middle point of 
element boundary. 

i. e,  

Letting ~o=w-- ~ , as B is a positive definite operator, we can easily prove 

l i m  tJw--W tr I lwT(o)= 0 

t~ converges to exact solution in Wc~)(#2)space. 

IV. Numerica l  Examples  

Numerica l  example  I A simply suppor- 
ted rectangular plate under uniform load q is 
shown in Fig. 2. Its side length is a. Symmetry 
allows for modelling of only one quarter of the 
plate. Two different meshes 2 x 2 and 6 • 6 

are analyzed. T~tble 1 shows the deflection and 
Table 2 shows rotation angle, moment and 
Concentrated force of angular point. Numerical 
results indicate that w and R, have the second 
speed of convergence and 0, and M,  have the 
first order speed of convergence. The correctness 
of the theory in this paper is proved. 

Numerica l  example  2 We consider a cantilever 
plate with variable thickness under uniform load q =10N/cm 2 
whichis.shown in Fig. 3. Its elastic modulusE=2 .1  • 10 ? 
N / e r a  2 and Poisson's radio v = 0 . 3 .  The exact solution 
of the plate can be written as 

w = 2.'184 x 10-2E (100 -- x ln l00  ) + x ( l n x  -- x) -1 

Owing to symmetry, we calculate only one part of plate width 
of which equals b. Two different meshes 2 • 8 (b=  5) and 
2 • 16 (b = 2.5)are analyzed. The deflection w and moment 
M,  of the plate are shown in Table 3. By equation (3.8), we 

may obtain shear force Q, along x direction which is also 
shown in Table 3 and compared with exact solution.. 

T 
i 

Y 

7 / 

Fig. 2 

(3 .9)  

A rectangular plate under 
uniform load 

[ 

H I  J j I J I t I I l ~ q  

Fig. 3 A cantilever plate with 

variable thickness 
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T a b l e  1 

J oowD/qa 4 

The deflection of simply supported rectangular plate under uniform load 

I 
X/a . 0 0.08330.1667 0.25 0.33330.4167 0.5 

2X2 3.5127 ( 2 8 ~ )  0.3710 ( 2 6 ~ )  

8X8 D.4175 (2.8~t~)0.40430.365510.3022 ( 2 . 9 ~ ) 0 . 2 1 6 9 0 . 1 1 3 8  

Exact solution [11] ~. 4062 o. 3935 o. 3556 o. 2938 o. 2107 o. 1104 

x / a = O .  25 

y / a = 0 . 2 5  

0 0.2770(30~) 
0 0 . 2 2 0 5 ( 3 . 4 ~  

0 0.2132 

Table 2 The rotation angle, n~oment and angular concentrated force of simply supported 
rectangular plate under uniform load 

loMy/qa~ 

(ula=o) 

-- to~OnD/qa 4 

(u/a=o.25) 

0.0417 O.12D 0.2083 0.2917 

0.4458 
C0.51~) '  

x/a 

2X2 

0.4472 
6X6 0.4759 [ 0 , 2 ~ )  0.3926 0.3129 

Exact solu- 
tion [11]  0.4754 0.4481 0.3936 0.3124 

0.375 

0.2224 
( 8 . 2 9 ~ )  

0.2102 
( 2 . 3 7 ~ )  

0.2053 

0.3593 
( 3 . 9 2 ~ )  

0.3490 
( 0 . 9 5 5 ~ )  

0.3457 

0.4583 

0.09086 

0.0740f 

0.1281 

0.1186 

R/qa '  

(x----a/2, y = a / 2 )  

0.04794 
( 2 8 ~ )  

0. 06268 
( 3 . 5 ~ ; )  

0.085 

0.7617 
2X2 ( 6 . 3 ~ )  

0,8064 
6X6 0.8616 (0,82~;)  0.6990 0.5437 

Exact solu- 
tion [ll] 0.8690 0.8132 0.7037 0.5451 

Table 3 The deflection moment  and shear force of cantilever plate with variable thickness 

25 37.5 50 62.5 75 87.5 I00 0 12.5 

2.38 1.4 

2.29 1.36 

2.18 1.343 

0 65.1 

0 78.1 

0 12.48 

0 12.5 

2X8 ( b = 5 )  

w 2X 16 ( b = 2 . 5 )  

Exact solution 

2X8 
M. 

Exact solution 

2X8 

0. Exact solution l 

N u m e r i c a l  e x a m p l e  3 

0.91 

0.89 

0.881 

299 

312 

24.99 

25 

0.58 0,347 

0.567 0,339 

0.562 0,335 

690 1237 

703 1250 

37.48 49,84 

37.5 50 

A circular variable 

0.185 

0.180 

0.177 

1940 

1953 

62.62 

62.5 

0.0792 0,0198 

0.0760 0.0184 

0.0748 0.0178 

2799 3815 

2813 3828 

74.96 87.64 

75 87.5 

4987 

5000 

99.98 

100 

thickness plate under simple supported 
boundary condition is shown in Fig. 4. Two cases of uniform distribution load q and concentrated 

force p acted on at the center of plate are considered respectively.Owing to the symmetry of plate, we 

only calculate an eighth part of plate. The mesh dividing for this problem is shown in Fig. 5. w and 

radial moment resultant M,  is given in Table 4. Here v(x,  y ) =  0.25 and the radius of plate is a. 

q 

Fig. 4 A simply supported circular 

plate with variable thickness 

Fig. 5 The mesh dividing of 

circular plate 



690 Ji Zhen-yi and Yeh Kai-yuan 

Table  4 The  n u m e r i c a l  resu l t s  o f  variable  t h i c k n e s s  c ircular  p late  

Uniform load q 

Concentrated force 

P 

T 

ho/ha 1 

wEh]/qa'  ( r =  0 ) 

Mr/qa z ( r = 0 )  

Mr/qa 2 (r=a/2)  : 

wEh] /Pa 2 ( r = 0 )  

MrlPCrfa/2) 

1.00 

Exact Solu- 
Present tion [11] 

0.752 0.738 

0.203 0.203 

O. 152 O. 154 
i lJ 

0.604 0.582 

0.0701 0.089 

1.50 

Present Exact Solu- 
tion [11] 

1.287 1.280 

0. 248 0. 257 

O. 177 O, 186 

0.957 0.930 

0.088 0.088 

2.33 

Present Exact Solu- 
tion [11] 

2.12 2.04 

O. 292 O. 304 

O. 198 O. 196 

O. 146 O. 139 

O. 104 O. 102 
m 

The upper three numerical examples indicate that a satisfactory result can be obtained by the 
present method and converges to exact solution. The correctness of the theory in this paper is 

proved. 
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