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ABSTRACT 

A pair (M,F) is defined as a Riemannian manifold M of 
normal hyperbolic type carrying a distinguished time-like 
congruence r. The spatial tensor algebra ~ associated 
with the pair (M,F) is discussed. A general definition 
of the concept of spatial tensor analysis over (M,r) is 
then proposed. Basically, this includes a spatial covar- 
iant differentiation ~ and a time-derivative 9 T, both 
acting on ~ and commuting with the process of raising and 
lowering the tensor indices. The torsion tensor fields 
of the pair (V,VT) are discussed, as well as the corres- 
ponding structural equations. The existence of a dis- 
tinguished spatial tensor analysis over (M,r) is finally 
established, and the resulting mathematical structure is 
examined in detail. 

w INTRODUCTION 

In s e v e r a l  a p p l i c a t i o n s  o f  General  R e l a t i v i t y ,  t he  b a s i c  math- 
e m a t i c a l  object is a space-time manifold V 4 carrying a disting- 
uished time-like congruence r. 

This happens e.g. in Relativistic Cosmology, where the congru- 
ence r of world lines of the so-called fundamental ob~ePveP8 plays 
a central r~le in the formulation of Weyl's Principle [2-3]. Sim- 
ilarly, in the study of the problem of motion for a material con- 
tinuum, the analysis of the pair (V~,r) obtained by identifying r 
with the congruence of stream lines of the continuum is essential 
in the construction of the so-called co-moving scheme [4,5]. As a 
further example, we recall that a pair (~g,r) is always involved 
in the discussion of the physical frame of reference associated to 
a co-ordinate system in V4, r being now identified with the congru- 
ence of co-ordinate lines x 0 = var. [6-8]. 
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It seems, therefore, worthwhile examining the properties of the 
pair (~4,F) on purely geometrical grounds. In this connection, 
however, the restriction to four dimensions is largely inessential, 
and no substantial change occurs if we replace ~4 by an (n + 1)-dim- 
ensional Riemannian manifold M of normal hyperbolic type. 

The basis for a systematic study of the pair (M,F) originates 
from the classical works of C. Cattaneo [8,8]. In s series of sub- 
sequent papers [10-27] the consequences of the definitions given in 
[8,8] were examined, and most of the geometrical quantities assoc- 
iated to the pair (M,F) were discovered. 

In the present work we propose a different approach to the study 
of the pair (M,F), based on the use of concepts and techniques aris- 
ing from modern differential geometry. Our plan is to construct 
a compact and self-contained mathematical apparatus, general enough 
to include possible applications in unified field theories of the 
Einstein-Cartan type [85]. 

In the course of our analysis we shall partly rephrase, partly 
complete, and partly modify the results given in references [8-17], 
in order to fit them into the newer scheme. 

The mathematical foundations of the method are dealt with in the 
present paper. Such topics as physical interpretation of the re- 
sults and kinematical applications will form the object of a forth- 
coming paper. 

In section 1 we define the spatial tensor algebra ~ over M in- 
duced by the congruence F. The projection techniques of C. Cattaneo 
[8,8] are reviewed and presented in a form especially suited to the 
subsequent applications. The basic idea is to express everything 
in a coordinate-independent way, through the introduction of the 
concept of natural buses. 

In section 2 we propose a general definition of a spatial tensor 
unulys{s over (M,F). This is achieved by showing that every affine 
connection V satisfying certain geometrical requirements induces in 
a natural way a s~atial covariant differentiation 9 and a time de- 
rivative ~T over $. The properties of the pair (9,$T) are further 
investigated by introducing the notion of spatial torsion tensor 
field and ~emporal torsion tensor field, and applying the structural 
equations of E. Cartan [18]. The existence of a distinguished spat- 
ial tensor analysis (Oe,~T *) over (M,F) is finally established. The 
relation between (V*,~T *) and the Riemannian connection of M is dis- 
cussed in detail. 

w THE SPATIAL TENSOR ALGEBRA OVER (M,r) 

l .  Z Pre2.ir~Lna~ir 

(i) Let M be an (n + l)=dimensional Riemannian manifold of normal 
hyperbolic type, with fundamental form% 

% Latin indices run from 0 to n. Greek indices run from 1 to n. 
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r = g i j d x i ~ j .  (1.1) 

We denote  b y ~  t he  c l a s s  Of d i f f e r e n t i a b l e  ~ m c t i o n s  de f ined  over 
M, and by~r~s t h e ~ - m o d u l e  o f  a l l  t e n s o r  f i e l d s  of  type  ( r , 8 )  on M. 

An element  W G l r ~  i s  s a id  to  be c o n t r a v a r i a n t  of degree r and 
c o v a r i a n t  of  degree  8. We s e t ~  0 = ~ r  ~0 s = ~ s ,  ~)00 = ~ ,  and de- 

no t e  by ~ = r ,~=O~S_ the  mixed t e n s o r  a l g e b r a  over M [18]. 
Also,  we i n d i c a t e  by g : ~ l  § D1 the  n a t u r a l  mapping induced by . 

t h e  fundamental  form ( 1 . 1 ) ,  i.e.-g(xiB/Bxi) = Xidxl  , with X i = g i jX3.  
Now, l e t  r be a t i m e - l i k e  congruence i n  M, i . e .  a congruence of  d i f -  
f e r e n t ~ a b l e  curves  whose u n i t  t a n g e n t  v e c t o r  f i e l d  yiB/Bx i s a t i s f i e s  
gijY~y3 = -1 everywhere on M. We se t  

~0 de____f y i  @ ~0 def  
@x i , ~ - g(~o) = - Yi ~zi, (1.2) 

and notice that the previous definitions imply 

(~0,~ O) = 1 .  (1.3) 

The fields (1.1,2) are the basic geometrical quantities associated 
with the pair (M,F). From these, by means of the standard differ- 
ential operators d (exterior differentiation) and ~ (Lie derivative), 
we may generate other 'first order' geometrical objects, namely 

d e f .  2d~O ; K d e ~ O ( r  ; C def  _ ~0 (~0 ) .  (1.4) 

The differential forms ~, K, C are called respectively the vort~ 
tensor, the Killing tensor, and the cumva~ul, e uector of the lines 
of the congruence F. 

(ii) The fields (1.2) identify a distinguished subalgebra ~ of the 
mixed tensor algebra ~. To see this point, we consider the submod- 
ules~iC~ I, ~IC~I defined respectively by the equations 

~l -_ {x:x e SI,xj~O = o}; ~I -- {n:n e ~1,~oJn : o}. (l.S) 

Equations (1.2,3,5) imply 

(l.6a) 

~)i = L(~0)e~)l _. ~e~l, ~)i = L('"O)~I -- ~e~l, (1.65) 

Einstein's summation convention is used throughout. The signature 
of the metric is (-++..+). 
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L(q) denoting the linear~-module generated by q. We make the iso- 
morphisms L(~ O) = L(~ O) = ~ explicit by identifying both ~0 and 
g(~o) = _~0 with the constant function f = I. Also, we denote by 
~r the tensor product of r copies of ~i and 8 copies of ~i, and set 
f o r m a l l y  ~0 = ~ r ,  ~0 s = ~s, ~O0 = ~O0 = ~. 

Def. i.I. The (weak) direct sum~ = r,~=O~vs is called the 

spatial tensor algebra over (M,r). An element W e~s is call- 
ed a spatial tensor field of t y p e  (r,s). 

In view of equation (l.6b), each t e n s o r  space~sC~ may be re- 
solved (up to isomorphisms) into a direct sum of subspaces os the 
spatial tenso r algebra ~. We call this process the spatial resol- 
ution of~ s. 

The spatial resolution process is most easily described in terms 
of t h e  projection operators [8,8] 

rex de~ <x,~0>~0 ' ~zx = x - P~X, (1.~a) 

Yen de_~ (~o,n>~o ' Pzn = n - Pen, (l.7b) 

sending the modules ~i, @l into the submodules L(~O) , ~I and L(~0), 
~i respectively. In fact, by taking tensor products of the oper- 
ators~8, ~Z in any order, we obtain a complete set of orthogonal 
projections on every module~ s. Moreover, in view of the identi- 
fications L(w 0) = L(~ 0) = ~ =~00, each image Space YZ~Pe| 

r (D s) is isomorphic to a subspace of the spatial tensor algebra ~. 

In local co-ordinates, equations (l.2,7a,b) imply 

F8 ~z i = ~zJ ' 

YZ ~ ~ d e f  �9 
- - =  (~iJ + v ivJ)  ~xJ ~ vl]  ~xJ 

C1.8a) 

28 dxi = - 7iTjchrJ, 

~zdxi = (6ij + -(iyj)dmJ = 7ijdrJ, 

(l.8b) 

as may be easily checked by direct computation. 

1.2 No~vu~/ Ba6 ~ 

We now introduce a distinguished class of local bases of the 
tensor algebra •. To this purpose we notice that the equation% 

% For all X = xi~/~z i e ~)i, f e ~, we set X(f) def <X,df) = xi~f/~z i. 
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So(f) = 0 (1.9) 

admits n independent solutions fu(~),zl,...,zn) (a = l,...,n) in a 
neighbourhood of each point p e M [I~,20]. The differential 1-forms 

d e f  
~ = d f  ~ (1.10) 

a r e  then  l i n e a r l y  i n d e p e n d e n t ,  and s a t i s f y  ~oJ~ a = O. T h e r e f o r e ,  in  
view o f  e q u a t i o n  ( 1 . 5 ) ,  t h e y  form a l o c a l  b a s i s  o f  t h e  module ~1" 
Let { ~ , ~  = 1 , . . . , n }  deno t e  t h e  c o r r e s p o n d i n g  dual  b a s i s  o f  ~1 .  

Def. 1.2  The v e c t o r  f i e l d s  ~a and t h e  1- forms u s a r e  s a i d  t o  
form a na tumal  ( l o c a l )  b a s i s  o f  t h e  s p a t i a l  t e n s o r  a l g e b r a  ~ .  

Now, l e t  ~ (s = 1 . . . .  ,n)  be a d i f f e r e n t  s e t  o f  independent  s o l -  
u t i o n s  of equation (1.9). We have then ~a = ]~(fl,.:.,fn), with 
~(~l...~n)/~(fl...fn) # 0. Therefore, if we define w and ~a as 
above, a straightforward calculation yields 

~c~ = d~ = B'/~'c~ ,,,8 ~o~ = <~,d-r167 = ~ ~8" (1.11) 
B.fs 

Equa t ions  (1 .11)  d e t e r m i n e  t h e  most g e n e r a l  t r a n s f o r m a t i o n  between 
n a t u r a l  b a s e s .  Given any n a t u r a l  b a s i s  { w  e q u a t i o n s  (1 .5 ,5 )  
imply 

( ~ i , ~ J )  = ~ iJ ,  ( i j  = o ,1 ,  . . . .  n) (1 .12)  

This  shows t h a t  t h e  v e c t o r  f i e l d s  ~ i  and t h e  1-forms ~i ( i  = 0 , . . . ,  
n) form dua l  l o c a l  b a s e s  o f  t h e  modules $1 and ~1 r e s p e c t i v e l y .  We 
c a l l  { w  i}  a na t -~ra l  b a s i s  o f  ~ ,  induced by t h e  congruence r .  

By e q u a t i o n  (1 .12 ) ,  e v e r y  t e n s o r  f i e l d  W e ~ may be exp re s sed  in  
t h e  form 

W = W i j : ' ' k ~ i | 1 7 4 1 7 4  k (1.13a) 

t h e  i n v a r i a n t s  ~ i j . . . k  b e i n g  de t e rmined  by t h e  e q u a t i o n s  

~ i j . . . k  = (W,~ie~jo.. .e~k) (1.13b) 

In p a r t i c u l a r ,  i f  we s e t  

d e f  (1.14) 

e q u a t i o n s  ( 1 . 1 , 2 , 1 2 )  imply  
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: (~i| = (~i,g(~j))~ie~J = 9 ~ e ~  - ~Oe~O. (l. lSa) 

Also, by equa t ions  (l.6a,13a,b,14) we o b t a i n  

g-l(~a) = #eBSB ' g(~a) = #afl~ fl, ~aX? ~8 = 6aB. (l. iSb) 

Equations (1.2,1Sb) de termine  the  process  of r a i s i n g  and lowering 
the  i n d i c e s  in  the  i n v a r i a n t  components (1 .13b) .  I f ,  fo r  s i m p l i c i t y ,  
we r e s t r i c t  our a t t e n t i o n  to  v e c t o r  f i e l d s ,  a s t r a i g h t f o r w a r d  c a l -  
c u l a t i o n  y i e l d s  g(xi~ i )  = 9eBXB~a - ;~0~0 i . e .  

Xa = %B2 B, 20 = - 20 �9 (1 .16)  

The use of natural bases provides a very simple description of 
the spatial resolution process indicated in (ii). In fact, if we 
represent every tensor field W 6 $ in the form (l.13a), equations 
(l. Ya,b,12) imply 

YzePr.e...e,?ew = b~:  "~174174 (i.iT) 

Therefore, recalling the identifications ~0 = - ~0 = I, the spatial 
resolution of W is simply obtained by dropping all factors ~O,m O in 
equation (I.17), and replacing them with the constant functions f = 
1 and -f = -I respectively. In particular, by equation (l.15a), the 
spatial resolution of the fundamental form (I.i) yields only one 
non-trivial spatial form, namely 

de___f ?aB,,,~| = r + ~0~0 = (gij + YiYj) &rimlzj. (1.18) 

Similarly, the differential forms (1.4) identify only three indepen- 
dent spatial forms, namely 

fi de f  2Ee, pZfl, K de--~---f~[~K, ~ de-.~---fPEC. (1.19) 

In fact, by equations (l.4,13a,b), one can easily verify the valid- 
ity of the equations 

= ~ + 2~OAC, K = K + 2~Ooc, C = C. (1.20) 

Equat ions (1 .4 ,18 ,20)  imply the f u r t h e r  r e l a t i o n s  

s = s162  + ~oe~o) = K - 2~0o~' = R, (i.2i) 

0 = dfl = d~ - ~^~ - 2~0^d~. (1.22) 
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Moreover, by equations (l.4,10,12,15a,b), recalling the identity 
~X(=) = XJd= + d(XJ~) [~1], we obtain 

dmi = 6iod~O = - �89 , (1 .23a )  

~i ,,,j = ~ildm j + d<~i,~J > = - �89 = - 6Jo~ik ~k, (1.23b) 

[3i,~j] = (Zw167 k = - (~j,Z~i(~k))~ k = ~ij~O. (1.23c) 

Comparison of equation (i.23c) with equation (1.20) yields 

[w = ~aS~O, (1.24a) 

[g0,aS] : ~os~o = 8e~o. (1.24b) 

Equations (l:18,21,23b,24a,b) determine the invariant components 
of fi, ~ and C in the natural basis {~a,~a}. A straightforward cal- 
culation gives 

n~t} = ([~s,~ils],~~176 -~B = ~io(%e}), CB = ( [ao,as] ,oJ~ (1.2s) 

The d i f f e r e n t i a l  fo rms  ~,  ~, K, C a r e  c a l l e d  r e s p e c t i v e l y  t h e  fun- 
damentul spatial form, t h e  spatial vortex tensor, the spatial de- 
formation tensor (or Born tensor), and the curvature vector of the 
l i n e s  of the c o n g r u e n c e  r. Their g e o m e t r i c a l  meaning is well known, 
and will not be discussed here. For further information see, e.g. 
[n,16]. 

An alternative approach to the concept of natural bases may be 
given in terms of adapted co-ordinates [7,8]. These are defined by 
the condition ~O(X a) = 0 (a = 1 ..... n). In view of equations (1.2, 
3) this is mathematically equivalent to 

_I 

7 i = (-gO0)-�89 7i = (-gO0) ~giO. (1.26) 

Equations (1.8a,26) imply 

~Z ~ " 8 + yuyO ~ ~z ~ = ~z ~ ~x 0 ; (P~.--~x ~ ,dze} -- 6~e (1.27) 

Comparison with definition 1.2 shows that the quantities 

~a d e f  dma; ~ct def" PI; ;) 
;)xct (1 .28 )  

form a natura l  b a s i s  o f  ~ .  
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Moreover, by equations (I.14,25,27,28) we obtain, by direct com- 
putation 

~,c~S = gCtB, YaB = gctB * YaYB, (1.29a) 

= ~ Y c t  

KaB = yO ~YaB ~..0 ' ( 1 . 2 9 c )  

- -~176 aYa] (1.29d) ca= " [~ ax0J 

The totality of local co-ordinates adapted to the congruence r will 
be denoted by [r]. It constitutes what is usually called the frame 
of reference associated to r [7,8]. A straightforward argument 
shows that [r] is closed under the group~" of interna~ teansfoz~ra- 
ations 

~0 = ~O(xO xl ...,xn), 1 

/~u ~a(xl ..... In), j 

and that the group~" acts transitively on [r]. 

w  SPATIAL TENSOR ANALVSIS 

2. l P t c ~ e . ~  

For the convenience of the reader, we list here a few basic re- 
sults from Differential Geometry that will be needed in the follow- 
ing Subsections. 

(i) An affine connection in M is defined as a rule V assigning to 
every X ~ ~i an R-linear mapping VX:~)I ~ ~)i satisfying the propert- 
ies 

Vx(fZ) = x(f)z + fVxZ, (2.  l a )  

VfX+gy(Z) = fVX z + gVyZ, (2.1b) 

for all X, Y, Z e~l f, g e~. If we define the action of V X on 

~ by VX(f) d=~=ef X(f), the operator VX may be extended uniquely to a 
derivation of the entire tensor algebra ~, commuting with contract- 
ions and preserving type of tensors [18]. 
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Moreover, for all W S~s, one can easily verify that the map- 
ping @l§ s given by X § VxW depends~-linearly on X, and there- 
fore identifies an element VW Q~A"s+I, ca~led the covuriant deriv- 
ative of W. 

(ii) In a natural basis {~i,~ i} of ~, every affine connection V is 
determined locally by a set of connection coefficients s or, equi- 
valently, by a set of connection 1-forms ~kj given respectively 
by the equations 

V~i(~j ) def = s (2.2) 

ekj ~e f #ijk~i. (2.3) 

Equations ( I . 12 ) , ( 2 . 2 )  imply 

V~i(~J) = (Sk,V~i(mJ))m k = - (?~i(~k),~J)~k = - FikJe k. (2.4) 

For all W g ~, the covariant derivative VW is expressed by 

VW = (V~rW)| (2.5) 

Comparison with equations (1 .13a) , (2 .1a ,2 ,4)  shows tha t  equation 
(2.5) may be wr i t t en  in the form 

VW = (vr#ij':k)~i~J|174 , (2.5') 

with 

~r#ij. :k def ~r(~ij:.k) § ~pj::k~rpl _ /jip:-kFrjP + . . . .  (2.6) 

(iii) For all X,Y a ~i, set 

TCX,Z) = VxZ - v y x  - [ x , z ] .  C2.7) 

The mapping (~,X,Y) § <T(X,Y),n) i s  then an ~ - m u l t i l i n e a r  mapping 
of ~i~i~i into~, and therefore is an element of ~i 2. This ele- 
ment is called the tors~n tensor fie~d, and is also denoted by T. 
The invariant components of T in the natural basis {~i,~ i) are given 
by 

,~ki j  def  { T ( ~ i , ~ j ) , m k  ) = ~ i j k  _ ~ j l k  _ 6ko~i j  ' (2.8) 

the l a s t  s tep in equation (2.8) depending on equations (1.23r 
(2 .2 ,7 ) .  



564 ENRICO MASSA 

The differential forms 

ok de f �89 (2.9) 

called the torsion 2-forms of V in the basis {~ i ,~ i } .  are They a r e  
r e l a t e d  t o  t he  connec t i on  1-forms ~kj by C a r t a n ' s  e q u a t i o n s  [18,22] 

9k = d~k + ~kjh~J.  (2.10)  

(iv) An affine connection V is said t o  be m e t r 4 e  [23] if and only 
if it satisfies VXg(Y) = g(VXY) for all X,Y �9 ~i. This condition 
is mathematically equivalent to 

Vr = O, (2.11) 

r be ing  t h e  fundamental  form ( 1 . 1 ) .  

On t h e  man i fo ld  M t h e r e  e x i s t s  one and on ly  one m e t r i c  c onne c t i on  
V (R) ( c a l l e d  the  Riemannian connec t i on  o f  M) s a t i s f y i n g  T = 0 [18].  
Given any o t h e r  connec t ion  V, s e t  

N(X,Y) = VxY - v(R)xY , (2 .12)  

The mapping (n,X,Y) § (N(X,Y),n) i s  t hen  a n ~ - m u l t i l i n e a r  mapping 
o f  @ l X ~ l ~  1 i n t e r ,  and t h e r e f o r e  d e f i n e s  an e lement  N s @l 2. The 
t e n s o r  f i e l d  N de t e rmines  t h e  c o n n e c t i o n  V u n i q u e l y  in  terms o f  
V (R).  In p a r t i c u l a r ,  i s  t h e  connec t ion  V i s  me~u~4e, equa t ion  (2 .7)  
and the definition of V (R) imply 

<N(X,Y),g(Z)> = �89 + <T(Z,X),g(X)> 

- (T(Y,Z),g(X))), (2.139 

T being the torsion tensor field of V. This shows that every metric 
connection is completely determinQd by the. corresponding torsion 
tensor field. In terms of natural bases, equations (2.8,15) imply 

Nkij = �89 * ~ikj + Tjk i) C2.14) 

~ k i j  d e f  ( N ( ~ i , w  be ing  t h e  i n v a r i a n t  components o f  t h e  t e n s o r  

f i e l d  N. 

De~. 2.1. An a f f i n e  connection V is  said to be ~ _z~_ ted to  the 
pa i r  (M,F) i f  and only  i f  i t  s a t i s f i e s  the f o l l o w i n g  cond i t ions :  
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(i) V is a metric connection; 

(ii) VxfzY = fzVxY, Y X,Y ~ fl; (2.15a) 

(iii) VX~ 0 = O, V X e ~i. (2.155) 

Notice that, in view of equations (1.5),(2.11,15b), condition (i) 
is mathematically equivalent to 

V$ = O, (2.15c) 

r being the fundamental s p a t i a l  form (1.18) .  

The t o t a l i t y  of  a f f i n e  connect ions  s a t i s f y i n g  equat ions  (2.15a, 
b , c )  w i l l  be denoted by ~. Every a f f i n e  connection V g ~ may be 
r e so lved  i n to  a p a i r  (~,gT),  where 

( i )  V i s  the  r u l e  a s s ign ing  to  every X 6 ~1 the R - l i n e a r  map 

VX def VX:~ 1 +~1%; 

(ii) VT def V~o:~l § ~i is an R-linear operator, satisfying 

~T(fY) : w + ~T y, V Y g ~i, f e Y. 

In fact, for all U,V g~l, equations (l.Ta),(2.1a,b,15a,b) imply 

VuV : ~&u(Yff) + <u,~~ + u(<v,~~ 

We c a l l  the  p a i r  (~,gT) the  s p a t i a l  r e s o l u t i o n  of  V. The r u l e  
has the same formal properties of an affine connection, the only 
difference being in the replacement of the module @i by the sub- 
module ~I. Therefore, arEuinE as in subsection 2.1, we see that 

induces a spatial covariant differentiation over the entire spat- 
ial tensor alEebra ~. Similarly, the operator 9 T may be extended 
to a derivation of ~, commuting with contractions and preserving 
type of tensors. 

Thus, ultimately, every affine connection V e ~ identifies a 
spatial tensor anulysis over (M,F), the operator VT playing the 
role of a time-derivative. Moreover, by equations (2.15c), we ob- 
tain the relations 

~r = O, ~Tr = O, (2 .16)  

which show that the spatial tensor analysis determined by V com- 

% It goes without saying that, for all Z e ~i, the notation 
VZ:~I +~i indicates the restriction of V Z to the submodule~l. 
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mutes with the process of raising and lowering the spatial tensor 
indices%. 

The previous results may be expressed in a simple form in terms 
of natural bases. In fact, by equations (2.2,5',6), equations 
(2.15a,b,c) are mathematically equivalent to 

rij 0 = rio j = o, (2.17a) 

@iYaB - YASria ~ - ?aAriB ~ = O, (2.17b) 

i.e. recalling equations (2.3) 

~Oj = ~Jo = O, (2.18a) 

(2.18b} 

Equations (2.2,17a) and the definition of ~ and ~T imply 

9~a(~ B) = V~a(@ B) = ~aBk~k; 9T(~a) = Vw = rOaA~. (2.19) 

We call the functions PaS X, POa ~ the spatial connection coeffic- 
ients and the temporal connection coefficients of the pair (~,~T'). 
In particular, equations (2.8,17a) imply the relation 

roar = ~kOa de_~f ~k a (2.20) 

which shows that the temporal connection coefficients rOa ~ form the 
components of a spatial tensor field ~ = ~Z~OePZT. We call the 
components ~a the t~Pa~ o~'meot~on O-~oPms of the pair (~,~T). 

We also introduce a set of spatial connection 1-forms ~a B by 

def 
~a 8 ~ rlSa~ l (2.21) 

We have then, by equations (2.3,20,21) 

$ Conversely, let a spatial tensor analysis over (M~F) be defined 
as a pair (~,~T) where: (i) ~ is a spatial covariant differentiation 
over ~I (ii) ~T is a time derivative over ~, i.e. a derivation of 

satisfying ~T(f) = ~O(f) V ~ e~; (iii) both derivations ~:~ § 
~T :~ + ~ commute with the pr~ess of raising and lowering the ten- 
sor indices. ~nen, following the previous arg~unents in reverse 
order, one can easily verify that every spatial tensor analysis 
over (M,r) results fr~ the spatial resolution of a suitable af- 
fine connection V e ~. 
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~a 8 = 6a 8 + ~a8~O. (2.22) 

Thus: the  s p a t i a l  connec t ion  1-forms and the  tempora l  connec t ion  
O-forms of the pair (~,~T) result from the spatial resolutign of 
the connection 1-forms ~8 of V. Moreover, recalling the relation 
~O(?a8) = ~8, equations (2.17b,20) yield the identity 

~a8 + "~8a = "~aB" (2.231 

Finally, given any spatial tensor field W = Was::w174174 ,we have 

~W= (~w W)e~v = (v~ y)| ~T W= V~oW , 

V&' denoting the spatial covariant derivative of W. Comparison with 
equation (2.5) yields 

~Y + (~TW)~ O = VW (2.24a) 

and thus  a l s o  

~Y = (gv~A: : )~=e~Se. . . |  (2.24b) 

~T W = (~O~'C~: : )w174 . . . .  (2.24c) 

the operators 9v, ~O being defined in terms of the coefficients 
Fij k by equations (2.6). 

2.3 Thg TokYo, TgvbSo~ FigZd& of s Pa//t (~,~T) 

Let V ~ ~ be an affine connection adapted to the pair (M,F). 
Then, in view of equations (2.8,17a,20,23), the invariant compon- 
ents of the torsion tensor field of V in the natural basis {~i,m i} 
satisfy the identities 

IK)ij = - ~ij, (2.25a) 

?aX~k08 + ?BX~XOa = ~a8 + ~a = ~aS. (2.25b) 

Setting for simplicity 

0*i = - �89 . �89 (2.26) 

~l = �89 (2.27a) 
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8 ~ de~f �89 = �89 - ~Ba)m8 (2.27b) 

and recalling the definition (2.9) for the torsion 2-forms of V, 
equations (2.25a,b) may be synthesized into 

O i = oei + ~ix(~l + mOASl). (2.28) 

The important point to be noticed is that, in the factorization 
(2.28), the differential forms %el are entirely determined by the 
pair (M,F), and do not involve the connection V at all. Thus, for 
fixed (M,F), the torsion 2-forms 8 i -- and, a fortlo~, the torsion 
tensor field T of V--depend uniquely on the differential forms 
(2.27a,b). 

Noting further that V is by definition a metric connection, and 
recalling the results established in subsection 2.1, we conclude 
that V is entirely determined by the knowledge of 0 h and ~. 

Now, let (~,~T) be the spatial resolution of V. The coefficients 
TlaB and SIB involved in the definition of 81 and ~l form the com- 
ponents of two spatial tensor fields T and S in the natural basis 
{~a,~a}. We call these the spatial torsion tensor field and the 
temporal torsion tensor field of the pair (~,gT). Also, we call ~X 
and Ol the 8pat~l t~rsion 2-forms and the temporal torsion 1-forms 
of  (~,~T). 

The previous r e su l t s  become more t ransparent  i f  we make use of  
Car tan 's  equation (2.10). In f ac t ,  in view of  equations (1.23a), 
(2.18a,26,28), equation (2.10) y ie lds ,  fo r  a l l  V ~ 

0 a = maBAm~ (2.29) 

while the equation 00 = dm 0 § mOBAm8 is  i d e n t i c a l l y  s a t i s f i e d .  Re- 
ca l l ing  equations (2.22,26,28),  equation (2.29) may be s p l i t  into 

~a = ~aBA~B ' (2.30a) 

Oa = (~a B - �89 (2.30b) 

Equations (2.30a,b) express the d i f f e r e n t i a l  forms ~a, ~a algeb- 
r a i c a l l y  in terms of  the spa t i a l  connection 1-forms and of  the tem- 
poral connection O-forms of  the pa i r  (V,VT). Conversely, taking 
the i d e n t i t i e s  (2.18b,22,23) into account, one can eas i ly  v e r i f y  
tha t  equations (2.30a,b) may be solved uniquely for  ~aB and ~aB as 
functions of  O~ and ~a respec t ive ly .  We ~ave thus proved: 

Prop. 2.1. Every pai r  (V,VT) a r i s ing  from the spa t i a l  r e so l -  
ut ion of  an a f f ine  connection V e ~ i d e n t i f i e s  a spa t ia l  t o r -  
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sion tensor field T and a temporal torsion tensor field 
whose components in the natural basis {~u,eu} are given by 
equations (2.27a,b,30a,b). Conversely, the knowledge of 
and ~ (and thus of eu and 0n) determines the pair (9,9 T) umi- 
quely. 

2.4 Thz Standand Spatial Tensor AnaI.gsis ovzr (M,F) 
Proposition 2.1 implies the following: 

CoP. 2.1. For fixed (M,F), there is one and only one pair 
(~,V~T) arising from the spatial resolution of an affine con- 
nection V ~ e ~, and satisfying T = 0, S = 0. 

The connection V W described in corollary 2.1 will be called the 
standard affine connection of the pair (M,s The tensor analysis 
determined by ($e~$~T) will be called the standard spatial tensor 
analysis over (M,s Using an asterisk to indicate all quantities 
pertaining to (~e,ge T) (connection coefficients, connection 1-forms, 
etc.), equations (2.50a,b), together with the conditions ~u = ~s = 0 
imply 

~=~6 = �89 (2.31a) 

~XBA~8 = 0, i.e. s x : F~8u ~ 
(2.31b) 

Comparison of equation (2.31b) with equation (2.17b) yields, by di- 
rect computation 

(2.32) 

with 

{~,~}~ de._~f~ �89 + ~8(?au) - w (2.33) 

Equations (2.31a,32,339 determine the temporal connection coef- 

t The spatial covariant differentiation determined by Se is essen- 
tially identical to Cattaneo's transverse covariant differentiation 
[8,8]. The time derivative SeT, however, is intrinsically differ- 
ent from the one adopted in references [8-12] add [14,15]. The lat- 
ter coincides with the Lie derivative ~0; therefore, it agrees with 
~eT only in the special case K = O. Otherwise, it is not even con- 
sistent with the requirement ~T~ = O, thus leading to a mathematical 
structure that does not commute with the process of raising and low- 
ering the spatial tensor indices. Similarly, one can easily verify 
that the standard affine connection V ~ does not coincide with the 
connection Vemployed in references [13,16]. 
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ficients and the spatial connection coefficients of the pair (7", 
9*T). Comparison of these equations with the results shown in sub- 
section 2.2 provides a complete description of the standard spatial 
tensor analysis in terms of natural bases. In particular, in view 
of equations (1.25), (2.31a,32,33), the connection coefficients of 
(V*,9* T) depend entirely upon the fundamental spatial form (1.18). 
This fact points out the distinguished rSle played by the standard 
spatial tensor analysis in the discussion of the geometrical prop- 
erties of the pair (M,F). 

As a final topic, we examine the relation between (V*,9* T) and 
the Riemannian connection V (R) of M. This is of importance if one 
is willing to express the ordinary Riemannian tensor calculus over 
M in terms of spatial operations only. To start our analysis, we 
make use of the fact that the pair ($*,~*T) arises from the spatial 
resolution of the standard affine connection V ~ e ~. Letting F ~q~ 
and r* .i denote respectively the connection coefficients of v(R) ~ 
and ofP~ e in the natural basis {~i,~ i} equations (2.2,12) imply 

Prji = F*rji _ ~irj ' (2.34) 

the components Nirj being defined in terms of the torsion tensor 
field T * of V e by equation (2.14). On the other hand, in view of 
the conditions ~k = ~X = 0, equations (2.9,26,28) show that the 
components ~*ijk satisfy 

~*ijkmJ~k = - 6i0 ~ * ~il~XBmO~mS. (2.3s) 

Equations (2.14,35) allow an explicit determination of ~i~ for the 
case in study. Taking equation (1.20) into account, a straightfor- 
ward but tedious calculation yields 

Nirj = �89 § 6i0(~jr - Kjr) + 60j(Qir - Kit)]- (2.36) 

Equat ions  (2 .34,36)  p r o v i d e  the  r e q u i r e d  r e l a t i o n  between the  con- 
n e c t i o n s  v(R) and V* in  terms o f  n a t u r a l  b a s e s .  By i n s e r t i n g  t h e s e  
e x p r e s s i o n s  i n t o  e q u a t i o n s  ( 2 . 5 ' , 6 )  we o b t a i n  t he  s p a t i a l  r e s o l u t i o n  
o f  t he  c o v a r i a n t  d e r i v a t i v e  v(R)w o f  eve ry  t e n s o r  f i e l d  W e ~ .  

In p a r t i c u l a r ,  l e t  ~i~ and ~* i j  denote  t h e  connec t ion  1-forms o f  
v (R) and V* r e s p e c t i v e l y ~  Then, r e c a l l i n g  the  i d e n t i t i e s  ~*aR = 
~a B § ~*a8~O, ~*0 i = m*i 0 = O, and making use of equations (i.20), 
(2.3,31a,34,36), we obtain the following spatial resolution for ~lj: 

m~B = m*a B - �89 : ~*a B + �89 B - .~aB)m0, (2 .37a)  

~mO = � 8 9  - ~ar)mr = �89 _ ~ a ~ ) ~  + ~a~O, (2.37b) 
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~08 = �89 - ~Sr) ~r = ~(]<SX - ~SX) ~' + ~8 ~0, (2.57c) 

~00 = O. (2.57d) 

Equations (2 .37a ,b ,c ,d )  express the Riemannian connection v(R) un- 
iquely  in terms of  (~a,~aT) and of  the d i f f e r e n t i a l  forms ~, ]~, and 
C a s soc i a t ed  with the congruence F. 

I t  i s  worth no t i c ing  t h a t ,  al though obtained in a co -o rd ina te  
independent way, a l l  previous  r e s u l t s  are  most convenient ly  express-  
ed in adapted oo-ordinates. In t h i s  case ,  in f a c t ,  equat ions (1.26- 
29a-d) determine the explicit form of the basic quantities w ,.i, 
Ys8, ~, K, ~ in terms of gij only. 

Mot,over, if we define the Christoffel symbols. ,~jik~ in the usual 

way, equations (1.27,28), (2.52,56) (or (2.57a)) imply 

= i j 7i97J8' 

the coefficients yim being given by yia = 6i s + yiym. 
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