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ABSTRACT

A pair (M,T) is defined as a Riemannian manifold M of
normal hyperbolic type carrying a distinguished time-like
congruence I'. The spatial tensor algebra 0 associated
with the pair (M,I') is discussed. A general definition
of the concept of spatial tensor analysis over (M,T) is
then proposed. Basically, this includes a spatial covar-
iant differentiation ¥ and a time-detivative Vr, both
acting on D and commuting with the process of raising and
lowering the tensor indices. The torsion tensor fields
of the pair (5,\7'1') are discussed, as well as the corres-
ponding structural equations. The existence of a dis-
tinguished spatial tensor analysis over (M,T) is finally
established, and the resulting mathematical structure is
examined in detail.

§(0): INTRODUCTION

In several applications of General Relativity, the basic math-
ematical object is a space-time manifold ¥, carrying a disting-
uished time-like congruence T.

This happens e.g. in Relativistic Cosmology, where the congru-
ence T of world lines of the so-called fundamental obgervers plays
a central rdéle in the formulation of Weyl's Principle [7-3]. Sim-
ilarly, in the study of the problem of motion for a material con-
tinuum, the analysis of the pair (V,,l) obtained by identifying T
with the congruence of stream lines of the continuum is essential
in the construction of the so-called co-moving scheme [4,5]. As a
further example, we recall that a pair (V4,l) is always involved
in the discussion of the physical frame of reference associated to
a co-ordinate system in ¥y, I'being now identified with the congru-
ence of co-ordinate lines z0 = var. [6-8].
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It seems, therefore, worthwhile examining the properties of the
pair (Vy,I') on purely geometrical grounds. In this connection,
however, the restriction to four dimensions is largely inessential,
and no substantial change occurs if we replace ¥, by an (n+ 1)-dim-
ensional Riemannian manifold M of normal hyperbolic type.

The basis for a systematic study of the pair (M,I) originates
from the classical works of C. Cattaneo [6,9]. In a series of sub-
sequent papers [10-17] the consequences of the definitions given in
[8,9] were examined, and most of the geometrical quantities assoc-
iated to the pair (M,T) were discovered.

In the present work we propose a different approach to the study
of the pair (M,T), based on the use of concepts and techniques aris-
ing from modern differential geometry. Our plan is to construct
a compact and self-contained mathematical apparatus, general enough
to include possible applications in unified field theories of the
Einstein-Cartan type [23].

In the course of our analysis we shall partly rephrase, partly
complete, and partly modify the results given in references [8-17],
in order to fit them into the newer scheme,

The mathematical foundations of the method are dealt with in the
present paper. Such topics as physical interpretation of the re-
sults and kinematical applications will form the object of a forth-
coming paper.

In section 1 we define the spatial tensor algebra ¥ over M in-
duced by the congruence I'. The projection techniques of C. Cattaneo
[8,9] are reviewed and presented in a form especially suited to the
subsequent applications. The basic idea is to express everything
in a coordinate-independent way, through the introduction of the
concept of natural basges.

In section 2 we propose a general definition of a spatial tensor
analysis over (M,I'). This is achieved by showing that every affine
connection V satisfying certain geometrical requirements induces in
a natural way a spatial covariant differentiation V and a time de-
rivative ¥y over . The properties of the pair (¥,7r) are further
investigated by introducing the notion of spatial torsion tensor
field and temporal torsion tensor field, and applying the structural
equations of E. Cartan [18]. The existence of a distinguished spat-
ial tensor analysis (V%,97*) over (M,T) is finally established. The
relation between (7*,VT*) and the Riemannian connection of M is dis-
cussed in detail.

§(1): THE SPATTIAL TENSOR ALGEBRA OVER (M,T)

1.1 Preliminarnies

(i) Let M be an (n + 1)-dimensional Riemannian manifold of normal
hyperbolic type, with fundamental formt

t Latin indices run from O to n. Greek indices run from 1 to n.
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¢ = gjjdziedzd. (1.1)

We denote by & the class of differentiable functions defined over
M, and by 9r5 the F-module of all tensor fields of type (r,8) on M.

An element W ¢ P is said to be contravariant of degree r and
covariant of degree s. We set I¥5 =97, 90, =9, 90, = F, and de-

note by d = » §-0 Ir; the mixed tensor algebra over M [18].
,8=

Also, we indicate by g:01 + Dy the natural mapping induced by
the fundamental form (1.1}, i.e. g(Xxia/axi) = Xidxi, with X; = gi5X7.
Now, let T be a time-like congruence in M, i.e. a congruence of dif-
ferentiable curves whose unit tangent vector field yid/3xi satisfies
gijylyl = -1 everywhere on M. We set
def ;

2 w0 28 (50 = - yjdoi, 1.2)

and notice that the previous definitions imply
(30,w0) = 1. (1.3

The fields (1.1,2) are the basic geometrical quantities associated
with the pair (M,I'). From these, by means of the standard differ-
ential operators d (exterior differentiation) and & (Lie derivative),
we may generate other 'first order' geometrical objects, namely

q 48 - 2440; X ga%“” cdef - £3(. .4

The differential forms @, K, C are called respectively the vortex
tensor, the Killing temsor, and the curvature vector of the lines
of the congruence T.

(ii) The fields (1.2) identify a distinguished subalgebra & of the
mixed tensor algebra &. To see this point, we consider the submod-
ules 91c 91, 9, C 9, defined respectively by the equations

Il = {(X:Xx e D1,X1u0 = 0}; 9 = {nin e 1,300 = 0}. (1.5)
Equations (1.2,3,5) imply

9, = g@) = @L)x, (1.6a)

O = L(5p)ed! = Fedl, 9y = L(O)ed; =~Fedy,  (1.6b)

Einstein's summation convention is used throughout. The signature
of the metric is (-++..+).
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L(q) denoting the lmear ¥-module generated by q. We make the iso-
morphisms L(SO) L(w0) = F explicit by identifying both 3o and

(30) = -uwO with the constant function f = 1. Also, we denote by
5" the tensor roduct of r copies of §1 and & copies of §;, and set
formally Ho =0r, P = Dg, P =900 =F.

Def. 1.1. The (weak) direct sum D= §_ g is called the

apatial tengor algebra over (M,T). An element W ¢ r_ is call-
a spatial tensor field of type (r,s).

In view of equation (1.6b), each tensor space I'sC D may be re-
solved (up to isomorphisms) into a direct sum of subspaces of the
spatial tensor algebra &. We call this process the spatial resol-
ution of Iry.

The spatial resolution process is most easily described in terms
of the projection operators [8,9]

Pox 88 (x,00)3y,  Pox = X - Por, (1.7a)

FPon def (3g,m)ud Prn = n - Pygn, (1.7b)

sending the modules ¥1, 9, into the submodules L(3q), 91 and L(u0),
91 respectlvely In fact by taking tensor products of the oper-
ators g, Pr in any order, we obtain a complete set of orthogonal
projections on every module Jry. Moreover, in view of the 1dent1-
fications L(3g) = L(uQ) = F = 90, each image space P;&Py8...8Pg0..
(¥Fs) is isomorphic to a subspace of the spatial tensor algebra%

In local co-ordinates, equat1ons (1.2,7a,b) imply

— - J L.
8 l YlY am] »
(1.8a)
3 def )
P—--(6]+Y"YJ) '—_—-..’YJ
E Py i i 1 az3 ’
1z - i ]
Py dx ylyjde
(1.8b)

Prdzl = (615 + ylygdzd = yijaed,

as may be easily checked by direct computation.

1.2 Natuwal Bases

We now introduce a distinguished class of local bases of the
tensor algebra ¥. To this purpose we notice that the equationt

def

t For all X = xis/azi e 91, f e F, we set X(Ff) == (Xx,df) = xiaf/ozxi.
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5o(f) = 0 (1.9)

admits n independent solutions f®(zC,x1,...,20) (a=1,...,n) in a
neighbourhood of each point p € M [19,20]. The differential 1-forms

w® == dfe (1.10)

are then linearly independent, and satisfy SpJw® = 0. Therefore, in
view of equation (1.5), they form a local basis of the module 91.
Let {3,4,2 = 1,...,n} denote the corresponding dual basis of oL,

Def. 1.2 The vector fields 3, and the 1-forms «w* are said to
form a natural (local) basis of the spatial tensor algebra D.

Now, let f (a = 1,...,n) be a different set of independent sol-
utions of equation (1.9). We have then o = fo(fl,...,fm), with
aFL.../my/8(fL... M) 4 0. Therefore, if we define 3, and B% as
above, a straightforward calculation yields

2= ape = 2 8, 5, = (3,.4r8)3 - ia’-g Sg.  (1.11)

Equations (1.11) determine the most general transformation between
natural bases. Given any natural basis {3,,w®}, equations (1.3,5)
imply

(31,w3) = 853, (£2d = 0y1500usm) (1.12)

This shows that the vector fields J; and the l-forms wi (< = 0,...,
n) form dual local bases of the modules §1 and 9; respectively. We
call {3;,w!} a natural basis of ¥, induced by the congruence T.

By equation (1.12), every tensor field W e ¥ may be expressed in
the form
.j::'ksi@wjﬂ...05k (1.13a)
the invariants Vij::'k being determined by the equatioms
Wiyiok = (W,uiedse. . . euk) (1.13b)

In particular, if we set

(=9
o]

def , - <
398 =2 (gL, 0B),  Tap = (Baeg(3p)),  (1.14)

equations (1.1,2,12) imply
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¢ = (518§j,¢)wi®wj = (51,9(5j)>wi®wj = Yapu®®wB - wO08u0. (1.15a)
Also, by equations (1.6a,13a,b,14) we obtain

g L(w®) = %B3g, g(3g) = Fogub, Jar¥*B = 848, (1.15b)

Equations (1.2,15b) determine the process of raising and lowering
the indices in the invariant components (1.13b). If, for simplicity,
we restrict our attention to vector fields, a straightforward cal-
culation yields g(X13;) = ¥4p%Bu® - ¥0u0, i.e.

T = ¥og0B, o = - 1O (1.16)

The use of natural bases provides a very simple description of
the spatial resolution process indicated in (ii). In fact, if we
represent every tensor field ¥ ¢ £ in the form (1.13a), equations
(1.7a,b,12) imply

PraPre...6PgW = ﬁnﬁz:0§a@w68...®§o. (1.17)

Therefore, recalling the identifications §y = - w0 = 1, the spatial
resolution of W is simply obtained by dropping all factors §y,u0 in
equation (1.17}, and replacing them with the constant functions f =
1 and -f = -1 respectively. In particular, by equation (1.15a), the
spatial resolution of the fundamental form (1.1) yields only one
non-trivial spatial form, namely

[=9

§ &£ Japu®8uB = ¢ + wO8u0 = (g335 + viyvj)drleded. (1.18)

Similarly, the differential forms (1.4) identify only three indepen-
dent spatial forms, namely

a2 pepe, xEpepix, cLfpe. a9

In fact, by equations (1.4,13a,b), one can easily verify the valid-
ity of the equations

9 = + 20000, K =k + 2u0el, c=27. (1.20)

Equations (1.4,18,20) imply the further relations

Lgo(q'b) = L3 (0 + wO8uw0) = K - 200060 = R, (1.21)

0 =da = df - A0 - 2u0Ad0. (1.22)
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Moreover, by equations (1.4,10,12,13a,b), recalling the identity
Sx(w) = Xfdw + d(XJw) [21], we obtain

dol = 8igdu® = - 3sipq, (1.23a)
&5;0 = 511dud + d(35,ud) = - 16903500 = - sdofikuk, (1.23b)

[ai,aj] = (Lﬁi(ﬁj)!wk)sk = - (5j,$§i(wk))5k = ﬁijso. (1.23¢)
Comparison of equation (1.23c) with equation (1.20) yields

[53’581 = ﬁusso, (1.24a)
[30,3g] = fipgdp = 5350. (1.24b)

Equations (1,18,21,23b,24a,b) determine the invariant components
of i, X and C in the natural basis {34,w%}. A straightforward cal-
culation gives

fag = ([34,381,60), Xup = 30(¥ag), Cp = ([20,3p),w0). (1.25)

The differential forms §, {i, X, C are called respectively the fun-
damental spatial form, the spatial vortex tensor, the spatial de-
formation tensor (or Born tensor), and the curvature vector of the
lines of the congruence I'. Their geometrical meaning is well known,
and will not be discussed here. For further information see, e.g.
[11,15].

An alternative approach to the concept of natural bases may be
given in terms of adapted co-ordinates [7,8]. These are defined by
the condition Jp(x®) = 0 (¢ = 1,...,n). In view of equations (1.2,
3) this is mathematically equivalent to

. -1 . ]
¥t = (-goo) %610. vi = (~goo) 2*gio. (1.26)

Equations (1.8a,26) imply

3 9 9
P2 -2, 0_2_. P ,dxB 5.8 1.27
Loz oz | YoYU 50 ¢ (Pg axd ) = & ( )

Comparison with definition 1.2 shows that the quantities

o def 4. 5, f'p. 2 a (1.28)

form a natural basis of 9.
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Moreover, by equations (1.14,25,27,28) we obtain, by direct com-
putation

P8 = g%, Fag = gag + Yaves (1.292)
Gap = Yo[%[%] - Ss[z—g” , (1.29b)
Eqg = ¥0 a:;‘oﬁ , (1.29¢)
Ca = - YOEZ-% - Z%g] . (1.29d)

The totality of local co-ordinates adapted to the congruence I will
be denoted by [I]. It constitutes what is usually called the frame
of reference associated to I' [7,8]. A straightforward argument
shows that [I] is closed under the group J of intermal transform-
ations

20 = 29(29,21,...,20),
o = 58(zl,...,zD),
and that the group ¥ acts transitively on [I].

§(2): SPATIAL TENSOR ANALYSIS
2.1 Preliminanies

For the convenience of the reader, we list here a few basic re-
sults from Differential Geometry that will be needed in the follow-
ing Subsections.

(1) An affine connection in M is defined as a rule V assigning to
every X ¢ 91 an R-linear mapping Vy:01 + Ol satisfying the propert-
ies

vx{fZ) = X(f)Z + fVx2Z, (2.1a)

Vex+gy(2) = %2 + gvyZ, (2.1b)

for all X, ¥, 2 e 9L, f, g eF. If we define the action of Vy on

F by () def X(f), the operator Vy may be extended uniquely to a

derivation of the entire tensor algebra ¥, commuting with contract-
ions and preserving type of tensors [18].
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Moreover, for all W e 9g, one can easily verify that the map-
ping 91 +9r, given by X + VxW depends F-linearly on X, and there-
fore identifies an element VW e Iryy, called the covariant deriv-
ative of W. :

(ii) In a natural basis {Si,wi} of §, every affine connection V is
determined locally by a set of connection coefficients I‘ijk or, equi-
valently, by a set of connection 1-forms mkj given respectively
by the equations

vy, (35) 9 £y5k5,, (2.2)
- 4 Fiskul. (2.3)

Equations (1.12),(2.2) imply
vy, () = (o, V5, D))k = - (5, (Bp),ud)uk = - Fpdek. (2.4)

For all ¥ e §, the covariant derivative VW is expressed by

W = (V3 W)eur. (2.5)

Comparison with equations (1.13a),(2.1a,2,4) shows that equation
(2.5) may be written in the form

W = (ﬁrﬁij;;k)siewje...oskemr, (2.5")
with
Ttk G8E 5, By k) 4 yliKEnpd - WipIiKFngP 4 ... . (2.6)
(iii) For all X,Y ¢ 91, set
T(X,Y) = VxY - WyX - [X,Y]. (2.7)

The mapging (nsX,¥) + (T(X,Y),n) is then an F-multilinear mapping
of 9)01xPLl into&F, and therefore is an element of P1,. This ele-
ment is called the torsion temsor field, and is also denoted by T.
The invariant components of T in the natural basis {§i,w1} are given
by

N def S - o -
Tkij ces (T(ai,aj),wk) = I'ijk - I‘jik - 6konij, (2.8)

the last step in equation (2.8) depending on equations (1.23c),
(2.2,7).
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The differential forms

o
h

gk SE2 %Tkijwiij (2.9)

are called the torsion 2-forms of V in the basis {3;,wl}. They are
related to the connection 1-forms wkj by Cartan's equations [18,22]

ok = duk + whjawd. (2.10)

(iv) An affine connection V is said to be metric [23] if and only
if it satisfies Vyg(¥) = g(VxY) for all X,Y e 91. This condition
is mathematically equivalent to

V¢ =0, (2.11)

¢ being the fundamental form (1.1).

On the manifold M there exists one and only one metric connection
v(R) (called the Riemannian connection of M) satisfying T = 0 [18].
Given any other connection V, set

N(X,7) = vg¥ - v(R)yy, (2.12)

The mapgin§ (n,X,¥) + (N(X,¥),n) is then anF-multilinear mapping
of 91x0L@L into F, and therefore defines an element N ¢ 91,. The
tensor field N determines the connection V uniquely in terms of
viR)| 1n particular, if the connection V is metric, equation (2.7)
and the definition of v(R) imply

(N(X,Y),9(2)) = 3({T(X,Y),g(2)) + (T(Z,X),g(2))

T being the torsion tensor field of V. This shows that every metric
connection is completely determined by the.corresponding torsion
tensor field. In terms of natural bases, equations (2.8,13) imply

ﬁkij = %(Tkij + Tikj + Tjki) (2.14)

ﬁkij def (N(éi,§j),wk> being the invariant components of the tensor
field A.

2.2 Spatial Covariant Differentiation

Def. 2.1. An affine connection V is said to be adapted to the
pair (M,T) if and only if it satisfies the following conditions:
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(i) Vv is a metric connection;

(ii) VxPzY = PrVx¥, vV X, Y ¢ 91, (2.15a)

(iii) vg8p = 0, V X e 9L, (2.15b)

Notice that, in view of equations (1.3),(2.11,15b), condition (i)
is mathematically equivalent to

v$ =0, (2.15¢)

¢ being the fundamental spatial form (1.18).

The totality of affine connections satisfying equations (2.15a,
b,c) will be denoted by 8. Every affine connection V ¢ & may be
resolved into a pair (V,¥7), where

(i) ¥ is the rule assigning to every X e 91 the R-linear map

ﬁx ‘gg Vx:ﬁl + 91 +3

(ii) ¥p == Vgozbl + D1 is an R-linear operator, satisfying
Vr(fY) = 3o()Y + FirY, vYeDl, Fe¥F.

In fact, for all U,V ¢ 91, equations (1.7a),(2.1a,b,15a,b) imply

VoV = Ipuu@PsV) + (U,u0)ipPev + U((V,u0))3p.

We call the pair (V,Vr) the spatial resolution of V. The rule ¢
has the same formal properties of an affine connection, the only
difference being in the replacement of the module 91 by the sub-
module 1. Therefore, arguing as in subsection 2.1, we see that

¥ induces a spatial_covariant differentiation over the entire spat-
ial tensor algebra 12 Similarly, the operator Yr may be extended
to a derivation of J, commuting with contractions and preserving
type of tensors.

Thus, ultimately, every affine connection V ¢ & identifies a
spatial tensor analysis over (M,T'), the operator Vr playing the
role of a time-derivative. Moreover, by equations (2.15¢c), we ob-
tain the relations

¥¢ = 0, ré = 0, (2.16)

which show that the spatial tensor analysis determined by v com-

t It goes without saying that, for all Z e §1, the notation
V7:91 > 91 indicates the restriction of Yy to the submodule 91.
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mutes with the process of raising and lowering the spatial tensor
indicest.

The previous results may be expressed in a simple form in terms
of natural bases. In fact, by equations (2.2,5',6), equations
(2.15a,b,c) are mathematically equivalent to

£33 = Fiod = 0, (2.17a)

3i%ag - Vrafia* - YarFigh = 0, (2.17b)
i.e. recalling equations (2.3)

W05 = wlg = o, (2.18a)

- . . def
dYag = TAB G + Varuts =25 wgg + wgp. (2.18b)
Equations (2.2,17a) and the definition of ¥ and V7 imply
\?55(53) = 5,(3p) = Faprda;  ¥1(3q) = V5,(3a) = Foatdr. (2.19)

We call the functions TQBA, TOQA the spatial connection coeffic-
ients and the temporal connection coefficients of the pair (V¥,%r).
In particular, equations (2.8,17a) imply the relation

= 5 def .
fog® = FAoa S5 12, (2.20)

which shows that the temporal connection coefficients [p4* form the
components of a spatial tensor field * = Py8Pg8PyT. We call the
components 1A, the temporal commection O-forme of the pair (¥,¥p).

We also introduce a set of spatial comnection l-forms &%g by

[=N
o
[

C\as

|

g% (2.21)

We have then, by equations (2.3,20,21)

t Conversely, let a spatial tensor analysis over (M,I') be defined
as a pair (V,V1) where: (i) ¥ is a spatial covariant differentiation
over 9; (ii) VT is a time derivative over ¥, i.e. a derivation of

satisfying ¥7(f) = §o(f) v f ¢ F; (iii) both derivations ¥:D + D
VT:9 + D commute with the process of raising and lowering the ten-
sor indices. Then, following the previous arguments in reverse
order, one can easily verify that every spatial tensor analysis
over (M,I') results from the spatial resolution of a suitable af-
fine connection V ¢ 8.
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wg = @5 + ¥%u0, (2.22)

Thus: the spatial connection l-forms and the temporal connection
0-forms of the pair (V,Vr) result from the spatial resolution of
the connection 1-forms w®g of V. Moreover, recalling the relation
30(¥ap) = Kyg, equations (2.17b,20) yield the identity

T(!.B + TBO. = KGB‘ (2.23)
Finally, given any spatial tensor field ¥ = W“B;;ﬁa@wﬁe.. ,we have

W = (V5 W8 = (V5 W)ewY; VoW = V3o

V¥ denoting the spatial covariant derivative of ¥. Comparison with
equation (2.5) yields

W + (9pW)ewd = wW (2.24a)

and thus also
W = (V,/03:0)5,80b8. . .80V, (2.24Db)
VoW = (VoWpii)iqeube... (2.24c)

the operators ¥,, Vo being defined in terms of the coefficients
Fijk by equations (2.6).

2.3 The Tornsdion Tenson Fields of the Pain (¥,9¢)

Let V ¢ 8 be an affine connection adapted to the pair (M,T).
Then, in view of equations (2.8,17a,20,23), the invariant compon-
ents of the torsion tensor field of V in the natural basis {J;,wi}
satisfy the identities

035 = - 835, (2.25a)
FarTrog + ¥8al%0a = tag + T = Kag- (2.25b)
Setting for simplicity
oxi = - 35150 + 361,k gu0nub, (2.26)
62 = 37X guAuB, (2.27a)
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52 == J5hguB = J3%M (748 - Tpelub, (2.27b)

and recalling the definition (2.9) for the torsion 2-forms of V,
equations (2.25a,b) may be synthesized into

8l = ol + &1, (6% + wOAG)). (2.28)

The important point to be noticed is that, in the factorization
(2.28), the differential forms 8*1 are entirely determined by the
pair (M,T), and do not involve the connection V at all. Thus, for
fixed (M,l'), the torsion 2-forms 61 — and, a fortiori, the torsion
tensor field T of V — depend uniquely on the differential forms
(2.27a,b).

Noting further that V is by definition a metric connection, and
recalling the results established in subsection 2.1, we conclude
that V is entirely determined by the knowledge of 8A and 3A.

.. Now, let (¥,¥7) be the spatial resolution of V. The coefficients
Thyg and 3*g involved in the definition of §A and & form the com-
ponents of two spatial tensor fields T and S in the natural basis
{34,w*}. We call these the spatial torsion tensor field and the
temporal torsion tensor field of the pair (¥,%7). Also, we call &*
and 3* the spatial torsion 2-forms and the temporal torsion 1-forms
of (V,VT) .

The previous results become more transparent if we make use of
Cartan'’s equation (2.10). In fact, in view of equations (1.23a),
(2.18a,26,28), equation (2.10) yields, for all V ¢ &

8% = wgAwb (2.29)

while the equation 60 = duC + wOgAwP is identically satisfied. Re-
calling equations (2.22,26,28), equation (2.29) may be split into

8% = @%gnuf, (2.30a)
3% = (195 - 3K%g)ub, (2.30b)

Equations (2.30a,b) express the differential forms 8a, 3* algeb-
raically in terms of the spatial connection 1-forms and of the tem-
poral connection 0-forms of the pair (V,Vr). Conversely, taking
the identities (2.18b,22,23) into account, one can easily verify
that equations (2.30a,b) may be solved uniquely for @%g and ¥ag as
functions of 6% and 3% respectively. We have thus proved:

Prop. 2.1. Every pair (V,¥p) arising from the spatial resol-
ution of an affine connection Vv e 8 identifies a spatial tor-
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sion tensor field 7 and a temporal torsion tensor field §
whose components in the natural basis {3,,w®} are given by
equations (2.27a,b,30a,b). Conversely, the knowledge of T
and 5 (and thus of 8% and 3%®) determines the pair (¥,%r) uni-
quely.

2.4 The Standard Spatial Tensor Analysis overn (M,T)
Proposition 2.1 implies the following:

Cor. 2.1. For fixed (M,T), there is one and only one pair
(V#,9%p) arising from the spatial resolution of an affine con-
nection V* e 8§, and satisfying T = 0, S = 0.

The connection v* described in corollary 2.1 will be called the
standard affine comnection of the pair (M,T). The tensor analysis
determined by (¥%,7%7) will be called the standard spatial tensor
analysts over (M,T)t. Using an asterisk to indicate all quantities
pertaining to (V#,¥%r) (connection coefficients, connection 1-forms,
etc.), equations (2.30a,b), together with the conditions 8% = g% = Q
imply

T*QB = %kas, (2.31a)

) . (2.31b)
a A grwf = 0, i.e. Thogh = Fg ?

Comparison of equation (2.31b) with equation (2.17b) yields, by di-
rect computation

T gh = {axs}* def yhufag uix (2.32)
with
{agoit* 955 3050 (va) + 3a(Fan) - Fu(Toas)]. (2.33)

Equations (2.31a,32,33) determine the temporal connection coef-

+ The spatial covariant differentiation determined by V* is essen-
tially identical to Cattaneo's transverse covariant differentiation
[8,9]. The time derivative V¥y, however, is intrinsically differ-
ent from the one adopted in references [§-12] and [I4,15]. The lat-
ter coincides with the Lie derivative &5.; therefore, it agrees with
V#r only in the special case XK = 0. Othérwise, it is not even con-
sistent with the requirement ¥T§ = 0, thus leading to a mathematical
structure that does not commute with the process of raising and low-
ering the spatial tensor indices. Similarly, one can easily verify
that the st@ndard affine connection V#* does not coincide with the
connection V employed in references [13,16].
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ficients and the spatial connection coefficients of the pair (7%,
¥#r). Comparison of these equations with the results shown in sub-
section 2.2 provides a complete description of the standard spatial
tensor analysis in terms of natural bases. In particular, in view
of equations (1.25), (2.31a,32,33), the connection coefficients of
(V%,7%7) depend entirely upon the fundamental spatial form (1.18).
This fact points out the distinguished rdle played by the standard
spatial tensor analysis in the discussion of the geometrical prop-
erties of the pair (¥,T).

As a final topic, we examine the relation between (V*,V%r) and
the Riemannian connection V(R) of M. This is of importance if one
is willing to express the ordinary Riemannian tensor calculus over
M in terms of spatial operations only. To start our analysis, we
make use of the fact that the pair (V#,¥*1) arises from the spatial
resolution of the standard affine connection V* ¢ 8. Letting T it
and T*.51 denote respectively the connection coefficients of V(R)
and of V* in the natural basis {Si,wl} equations (2.2,12) imply

Ppyl = Tapgd - Wiy, (2.34)

the components ﬁirj being defined in terms of the torsion tensor
field T* of V* by equation (2.14). On the other hand, in view of
the condition§ g2 = 32 = 0, equations (2.9,26,28) show that the
components T*ljk satisfy

T*ijkwjﬂwk = - 6ioQ + diAK*BwOAmB. (2.35)

Equations (2.14,35) allow an explicit determination of Nir- for the
case in study. Taking equation (1.20) into account, a straightfor-
ward but tedious calculation yields

Flpg = 3[6006148850% + 630y - Kyp) + 69581, - ki), (2.36)

Equations (2.34,36) provide the required relation between the con-
nections V(R) and V* in terms of natural bases. By inserting these
expressions into equations (2.5',6) we obtain the spatial resolution
of the covariant derivative V(R)W of every tensor field W ¢ 9.

In particular, let wij and w*ij denote the connection l-forms of
v(R) and v= respectively, Then, recalling the identities m*“g =
o*eg + thagu0, w#0; = w*ly = 0, and making use of equations (1.20),

(2.3,31a,34,36), we obtain the following spatial resolution for wlj:

wtg = @¥dg - %ﬁ“swo = @*ag + %(ka'g —-ﬁas)wo, (2.37a)

Wy = (K%, - Q% )wl = (K% - (%)wr + (00, (2.37b)
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“OB = 3(Kgp - fpplu® = %(RBA - ﬁax)wx + agwo, (2.37¢)
WO = 0. (2.37d)

Equations (2.37a,b,c,d) express the Riemannian connection V(R) un-
iquely in terms of (9% ,¥%r) and of the differential forms {, X, and
C associated with the congruence T.

It is worth noticing that, although obtained in a co-ordinate
independent way, all previous results are most conveniently express-
ed in adapted co-ordinates. In this case, in fact, equations (1.26-
29a-d) determine the explicit form of the basic quantities 3;, wi,
Yo, &, K, C in terms of gij only.

Moreover, if we define the Christoffel symbols {jlk} in the usual
way, equations (1.27,28), (2.32,36) (or (2.37a)) imply

s

Ade o F A 2 (p(R 3 2
{a B}* G )[L 10 = ][axs ver’ 0} rdat)

dxet 30

A j
’LJ YuYB’

the coefficients yi, being given by yiy = 61, + yiy,.
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