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Summary. — We report a study of the entropy jump across a shock
wave in relativistic one-dimensional flows. The so-called « shock-generating
function » (SGF) is numerically studied for several values of the temper-
ature and the ambient flow velocity and comparisons between classical
and relativistic models are presented. Unlike a nonrelativistic flow, where
the SGF exists for any however large value of the shock Mach number,
in the relativistic case this function becomes agymptotically infinite
as the shock speed attains the light velocity.

PACS. 47.35. — Hydrodynamic waves.

1. — Introduction.

Recent papers (%) concerning wave propagation have much discussed the

mathematical structure of all those physical systems governed by quasi-linear
hyperbolic systems of the first order in conservative form, endowed with a
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convex density function. For such systems it is possible, in fact, to construct
a particular function, the so-called «shock generating function » (SGF), which
allows us to describe in a straightforward way the global behaviour of a shock.
In (*) the SGF has been successfully analysed in mixtures of ideal gases.
To extend the panorama, we present in this work a study of the SGF in
a relativistic one-dimensional flow. The analytical investigation of this function
shall be followed by a numerical approach with the main goal of evaluating
a set of numerical models as a function of the absolute temperature 7, and
velocity v, of the ambient fluid. In such a way, the straight comparison between
relativistic and nonrelativistic models will emphasize the relativistic effects.
A, qualitative analysis of the SGF in relativistic fluids within a co-moving
framework has been made by STRUMIA (7).
The main results we have obtained emphasize that

i) For sufficiently low values of v,, the relativistic effects on the shock
are as much evident as much 7, and the shock velocity are higher (viz.
temperatures of the order of 10¢ K or higher and shock velocity s of the
order of the light velocity ¢).

ii) As v, increases (up to the order of ¢), the profile of the SGF in both
relativistic and nonrelativistic models become distinguishable even for the
lowest temperatures and shock velocity. (Notice, since now, the use of the
geometrical visualization of the SGF as a convenient way to follow the
phenomenology.)

iii) Unlike a nonrelativistic model where the SGF exists for any however
high value of the s and physical shocks are supersonic, in the relativistic
case the SGF becomes agymptotically infinite as [s| —¢. We found, in fact,
that for 1 <y < 2 (y being the specific-heat ratio) the two branches which
for any given couple of values T, and v, constitute the SGF profile are con-
fined each one between two asymptotes related, respectively, to the limiting
gituations [s] = ¢ and the temperature behind the shock T, = 0.

iv) In the whole, under the same value of s, the absolute value of the
strength of the relativistic physical shock turns out to be higher than that of
the nonrelativistic one.

After the preliminaries in sect. 2, we derive the SGF in sect. 3 where we
also give the procedure to make easy numerical calculations. Section 4 is devoted
to compare relativistic and nonrelativistic models. Brief concluding remarks
in thig section shall close the paper.

(¥) N. Vireoria and F. FERraIoLI: Nuovo Cimento B, 81, 197 (1984).
(") A. StrUMIA: private communication.
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2. — Preliminaries and governing flow equations.

According to the usual notations (%), in a bidimensional Minkowskian
space-time, the system of differential equations governing the one-dimensional
relativistic motion of a perfect fluid subject to nonexternal forces writes

o(rue .
(ru) =0  (mass conservation),
ow
(2.1)
0T a8 .
o 0 (energy-momentum conservation),

where #* are pseudo-Cartesian co-ordinates (¢« = 0,1), 7 is the rest matter
density, T%8 = rfusub— pg~f is the energy-momentum tensor, g># are the
components of the metric tensor which, assuming the signature (4, —), reduce
to g% =1, g'' = — 1, ¢** = ¢g* = 0; u= are the velocity components of a parti-
cle in the proper frame, so that ()

c? v

L — )
Y \/02—7)2’ " \/02—@2’

U Uy = CF,

and v denotes the ordinary relative velocity; the other symbols are as follows:
p is the pressure and f = 1 4- i/¢? is the index of the fluid, ¢ = ¢ + p/r is the
classical enthalpy, e¢ the specific internal energy and ¢ the velocity of light in
vacuum.

By introducing the proper energy density o = r(¢® + ), it turns out that
rf = (o -+ p)/e* and, therefore,

TOO:_Q—I_p(uO)Z_p’ Tu:@“"p

-+
= e, ro=ro— 2 L ug,

Using « instead of #%, since 0/dx® = (0/dt)/e, the explicit form of the conserva-

(®) A. Licanerowicz: Relativistic Fluid Dynamics, I CIME Session (Bressanone, 1970).
(*) L.D. Lavpoauv and E. M. Lirsuirz: Fluid Mechanics (Addison-Wesley Publ. Co.,
Pergamon Press, London, 1959).

(1) C. CartaNE0: Introduzione alla teoria einsteintana della gravitazione (Ed. Veschi,
Roma, 1961).
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tive system (2.1) writes

0 r 0 )
e+ = 0
ot (\/02_@2)_{_ oz (\/02__1)2) ’
a 2 2
(2.2) pr (092 tf; ”) + ai (@{%) 0,
0c® 4 pv* Q—I—P
6t( P )+am( o’ )—0

or, by adhering to the usual compact form,

N U aF
(2.27) S5 =0
with
_ r e+p 00® + poi\~¥
U_(\/cz—fvz’ o —o " "2_”2)

being the field vector (¥ means transposition) and

2 2 v
F:( " v + pe e+op czv) _

Ve — v er—v2 ' et —p?

A. more suitable form of egs. (2.2) (see appendix A) allows us to find in a
simple manner the eigenvalues of the system (viz., the velocities of the weak
disturbances along the characteristic lines). They are

(2.3) M=wv, E=v4at
with
02__/02

oL oVERE 1)y —1)

at =

Here v? = yp/r = yRT|m, B is the universal gas constant and m the molec-
ular weight of the matter. By using the Gibbs law, elementary calculations
allow us to write the relationship between the relativistic sound velocity ¢,
and »,. We obtain

2 2
8

: a_p) %
=4 ﬂ*(agn‘f T+ 03y =1

where § = p/c* and 7 is the specific entropy of the fluid.




ON THE BEHAVIOUR OF THE « SHOCK-GENERATING FUNCTION » ETC. 155

One sees readly that

i) For low temperatures and small velocities (v« ¢), the eigenvalues (2.3),
reduce to their usual expression in classical flows, 7* = v 4 o, (the ordinary
sonic waves) and ¢ =wv,, viz. the classical situation is then restored.

ii) For very high temperatures, the ratio »?/¢* becomes large compared
to unity, then ¢! — ¢*(y — 1) from which it follows that one must have y < 2
in order for ¢, to be less than ¢. This inequality for y is a well-known result first
proved by TAUB (11).

3. — The SGF.

As well known from the theory, a physical hyperbolic system in conservative
form, such as (2.1), endowed with a convex function, say h°(U) (defined in a
convex domain of the field vector), admits a supplementary scalar conserva-
tion law of the type (°)

oha(U)

(3.1) py

:O,

where h4(U) = rqu> and the specific entropy 5 = ¢, log (pr~?) - const. Expli-
citly (3.1) writes

o [h° okt
D) — s =
(3.2) E)t(c)+ or 0,
where now
Ej o (*) = — oron
¢ Ve—_p ' T Ve—o

(It is worthwhile observing that, since we do not take ¢ = 1, as generally made,
we must take care of the factor ¢ in all our expressions.)

Consider now a shock front with normal velocity s. It is then known that
across this front the Rankine-Hugoniot conditions, which are but the compati-
bility conditions in order for the shock to be a weak golutions to system (2.2),
are, in general, not satisfied when applied to the supplementary law (3.1).

(1) A.H. Taus: Phys. Rev., 74, 328 (1948).
(*) The convexity of h*(U) can be proved by following the procedure used in (),
namely by showing that the quadratic form SU-38U’ is positive definite. We recall

that U’'= Vyh? is the so-called « main field ». Lengthy calculations yield
U'=— (3/T)(gT — ye — ¢, —v[y/68 — 03, 1[a/c2 —w2)> .

11 — Il Nuove Cimenlo D.
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By using the formal substitutions

) 0
so—sl1, Il

crn ervy -
Sl——— — | =N,
l\/cz — '02] [ 2 — fvz} e

where [X] = X, — X, denotes the jump across the front of the function involved,
so that subseripts 0 and 1 indicate, respectively, values in front and behind
of the shock.

The quantity 7, named usually «shock-generating function », generalizes
the well-known eclassieal result of the « growth of the enfropy across a shock
wave». As remarked in (®5), the knowledge of this function provides an
important tool to draw conclusions on the behaviour of the physical shocks:
its growth with s provides, in fact, a «measure » of the shock strength ampli-
tude. In (#) the explicit knowledge of the SGF profile allowed us to discriminate,
in a simple manner, the intervals of the shoch Mach number in which [5] > 0
(i.e. in which the shocks satisfy the entropy principle).

The explicit form of #, writes

from (3.2) we obtain

- ory(s — o) ory(8 — )
3.3 = o —_———
( ) N \/02 — ’U: T \/02 _ ’U% o

The Rankine-Hugoniot conditions, applied to the mass conservation law,
yield

(3.4) Wo(s — 1y) = wy (8 — 1),

where we have put, in general, o = r/\/ 62 — o2,
By defining (*)

v—8
(3.5) M= ﬁﬁ ,
then (3.4) becomes
(3.4") roMy=nM,

(*) This parameter, suggested straightforwardly by (3.3), plays an important role
in the whole discussion of this paper and drastically simyplifies the calculations. The
introduction of the relativistic shock Mach number, say M = (v— 8)/[le(1 — v8/e?)],
would, in fact, seriously complicate the whole procedure. When the fleld velocities
g, v, and s can be neglected compared to ¢, then I becomes the ordinary shock Mach
number, viz. 4= (v — 8)fv,.
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and (3.3) takes the form

(3.3") fp = — oro My[n] = — ¢, 0 My 7, log [(rl)l v (e_)]’

To o

where the relation p = (y— 1) re with y <<2 has been used (*%!2).

Even whether we shall use, for convenience, all over this section the quantity
M,, when talking about the profile of 7, we discuss this in terms of M, = — M,.
This is made because 7, is an increasing function of s and so also of M,. From
(3.3') it follows, therefore, that the jump [5] turns out to be positive for M, > 0
(s > v,) and 7, > 0, or for M, <0 (s <9,) and 7, < 0.

In other words, the shocks physically acceptable are those related to the
profile of the SGF which, in the (M, — #,) framework, crosses the first or the
third quadrant.

The main goal of this work is to build up a procedure to numerically
evaluate #,.

In spite of the apparent simplicity exhibited by (3.3’), the evaluation of
7, is not a simple task in that a mechanism must be first found to evaluate
r, and e, (viz. the rest mass density and the specific internal energy in the per-
turbed medium). As we shall see later on, this goal will be attained by appro-
priate manipulations of the Rankine-Hugoniot shock conditions and by using
as free parameter the velocity of the flow behind the shock.

a) A procedure to determine the ratios ryfr, and e,/e,. By appliyng the jump
conditions to eqs. (2.2), and (2.2),, affer simple algebra we get, respectively,

VgV ~— 8)
o — b

R e L s |- outts— 51t — v = o

and

B0 g1+ 5250 w2

Uo

] PPy [1+ ]—czwo(vo—s}(Eo—El) =0

where we have set for brevity E = (¢? - e)/\/02 — o2,
By subtracting eq. (3.7) from (3.6) multiplied once for v, and then for v,
we obtain, respectively, the following equations:

P1(vy — 0y) [1 + ”‘O(TJ] F- o (vo— 8) [¢2( B, — By) 0o (Ey v, — By v,)]=0,
(3.8) ,00(%

Po(¥1— Vp) [1 + )] +o(vy — s)[€2(E, — Ey) v, (Eyv, — B v,)]=0

(1) G. BorLraT: Relativistic Fluid Dynamics, I CIME Session (Bressanone, 1970).
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Let us define the gquantity

Ve —opt
so that we may write

N .
¢ and Ver—ot= ¢

3.9 = —,
(3.9) V1+ N® V14 N:

In view of (3.5) and (3.9) the following identities hold:

¢N, . N,
V14N V14N

=N,V —0:— N,V — 2= M,Ve* — ot — M,Ver— 2,

(83.10) v, — v, =

from which one finds that

M,=N,+ (M, —N,)V(1+ N3/(1+ N?).
Substituting this quantity into (3.4’) yields

(3.11) (L o,
' Yo Ny (My— NV + NDJQL+ N5

This ratio, as one sees, strietly depends on N,, a quantity behind the shock
front.
Again, by (3.9) and (3.10), we obtain

c—{—el

(3.12) E—E,= V1 N:— W1+N3,,

(3.13) Eyv, — E,v, = Ey(vy— v;) + 0,(Bo— E,) = No(e? 4 6) — Ni(c? 4 &),

which, combined with (3.8),, give

(3.14) [(y——l)c( Y M )
V1+ N V1L N

1 _
AN, T \/1 Ni_' oNl] 1=
( NN F M —NVAE VAT N3>) FoviE T ndige

= (¢% +- eo)(c\/l + Ng—0,Ng) — [cz(c\/l—i— Ni—voNl)] .

This equation, like (3.11), shows the dependence of ¢, on N,.
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A different manner to express e, is obtained, however, by combining eq. (3.8),
with (3.12) and (3.13). This leads to the result

N, 14 N} N,
(3.15) er=(y —1)e [ﬁ(l—[—MNo) V&F:_E]Jr

+ (62 4 )V (1 + No)(1 4 N2 — (62 -+ yeo) No N, —¢2.

By eliminating e,/e, between the two equations (3.14) and (3.15), one finds

(14 k) dje—AJe 3

(r— 1) Vs + [N, + (M — F)V I+ N0+ ¥)Tdy + Afe
= (7 —1) K[(No/ o)1+ M, N)V (T N1+ ¥3) — Mo/ U] +
+ 1+ BVA+ N1+ N —(1+ yk) N, N, —1,

(3.16)

where we have set, for convenience,
e, = ke,
= e¢V1+ Ni—o,N,=o/V1+ N2,
(3.17)
A= cViFNienN _c[\/l—[—lW (1+ N%)—N,N,|V1+ N,
y=NMNi+ Ni—NV1+ N,

Each member of (3.16) represents, therefore, a different expression of the
ratio e,/e,.

b) Numerical treatment of eg. (3.16). It is a simple matter to rearrange
eq. (3.16) into a second-order algebraic equation for M,. By setting, in fact,

A+k)/V14 A/c

11?=(y—1)wN1+A/0,
B=V{IT N1+ Ny,
B=N,—N,B,

4

= (y — kN, B—N,) = (1—)%B,

5

B=(y—V)kNB + (1+ VA F N1 F ) — (yh+ 1) No N, —1,

eq. (3.16) becomes

(3.18) N B —=—-+B.
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From this, putting for brevity

e
I
b
e
l
b
e

)

o

b:}u

2

—BBB L (y—1)yl},

—BBE
(BB -+ (y— 1)yl

Tne

i
o=
~—

ne
||
b;j:-

we finally have
0 1 2
(3.19) SM:+28M, +8=0.

In such a way, for any fixed couple of values k>0 and N, (*) (i.e. for fixed
values of the absolute temperature T, and flow velocity v,), we take N, as
a free parameter and let it vary in (— oo, 4+ o0). In correspondence to each
value of Ny, the real roots of (3.19), say M@ and M, allow us to evaluate the
ratios r,/r, and e,/e, and then the corresponding values 71 and 7 of the SGF.

(As we shall see soon after, the profile of 7, consists of two branches,
loci of points of type (M@, 7) and (MY, /), respectively.)

Some general properties of these roots, for finite values of |N,|, may be
summarized as follows.

b,) In view of the constraint |s|<e, the roots M, are confined in the
interval (**)

(3.20) F=N—VIi+ Ni<cM, <N, +V1+ Ni=2,

hence, for Ny 1 (i.e. 1,< ¢), one has |My|<1.

b,) For N, N, (i.e. v, v,), since g’;é{), M, = 0 cannot be a root
of (3.19). This result can be also inferred by observing that for M, = 0 the
Lh.s. of (3.18) would assume a finite value, whereas, on the contrary, the r.h.s.
would become infinite.

b;) For N, —N, (i.e. v, —>,), one quickly verifies that all the field
functions tend to their unperturbed values (so that r, -7, Py — Py, ete.),
thus the shock itself vanishes (7, —0) and s — A7. This result confirms, as

was to be expected that our shock is a K-shock. Besides it results that B —
SEWVITN, B~1V1IF N, B 1, (ﬁ B) 50, B>k and p —>0; as
a consequence the coefficients of (3.19) (S S S) — 0. Lengthy calculations

(*) Notice that N, may be assumed as positive by taking as positive the unperturbed
fluid velocity.

(**) Since —ec<—s<c, it follows that (v,— ¢)/ver — v <(vy— 8)[ver —v3 < (vg + ¢/
[v/&@—v2; by (3.9), this chain of inequalities coincides with (3.20).
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showed, however, that these coefficients are infinitesimal of second order with
respect to |N; —N,| and this allowed us to find out the following limiting
roots (*):

{yk + 1)(1 + Ng)
yiy—1k

One finds also that (yk 4 1)/y(y — 1)k>1, so that m} <0 and m; > 0;
both these roots satisfy constraint (3.20).

In view of the outlined results and the fact that M, = 0 cannot be a root
of (3.19) except when N, = N,, we conclude by saying that each one of the
roots of any couple (M, M), obtained for a given N, in (— oo, - o), keeps
its own sign. In other words, these roots distribute into two classes, {M}
and {MP} with M@, MP having opposite sign.

0

my = — [No & @k, No)I™, with @k, No) =

¢) The behaviour of 7, for high values of |N,|. Although, according to
the methodology outlined above, eq. (3.19) may be easily solved numerieally,
the search of the asymptotes of the SGF requires particular care. These straight
lines are, in fact, related to the behaviour of r/r, and e/e, for |N,|— co. A
first approach for this analysis is to derive the roots of (3.19) for |N,|>1.

Neglecting higher-order terms, elementary calculations allowed us to use for
B the following approximations (**):
2
0
B ( 1/) —I_ :F Nz) ’

)

2 N, 1
i\/1+N§( +2Nf)’

o
i

(3.21)
B

N

0
. @
:‘:Nl(y)'_-g—lv:zl)’
0
4 - a
B:’:l:(l——y)kNl(y)—-ﬁ—ﬁ),
1

5
B

R

LN [mp+a$ +2N2(2—23v)],

(*) By using (3.5) and (3.9) it is immediate to verify that mi= M,(1¥) = (v,— A%)/
/+v/e?— 2. This result can be also regarded as a good check for our calculations.
(**) In doing these approximations, we assumed V1 1+ Ni~ + N,(1 + 1/2N%); as
a consequence, v ~ - (1 — 1/2N%) — Ny/V'1 + Ni= (+ 1— N,V1 + N2) F 1)2N =
$ F 1/2N? (see above). Analogously, Aje ~ N,[+ (1 + 1/2N2) — NyV1 £ N3 =
Ny(§ + 1/2N7).
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where
0 S — 1
a=NNI+ N}, a=—@k+1)N,,

o—(k+)WVIFN, f=_L1—a

with the eonvention of taking the upper or the lower sign according to whether
N, is positive, or negative, respectively, and on the understanding that ¢, =
=1—dand §_ =—1—d.

Making use of (3.21), the coefficients of eq. (3.19) take the following ap-
proximated form:

Iz 0 Yo 0 L (‘y—l)ao:
2“(:‘:1 V“) + /‘/j ("IJ a,):l2Ni$ 2'(7)'N:1’ }7

(3.22) 5

— NI —1
«—(il—ya)—ya(w—a)]i—m & y—2Na }’
1

§ =y — 1) NS 1+1’~’—_—“)
—'}"7 1 2¢'N§ b2

which allow us to obtain the roots for |N,|>1.

By introducing (3.22) into eq. (3.19), removing the common factor $N3,
the limiting roots for |N,| — oo, say M, are then solutions of the following
equation:

(3.23) $M3, + 208 My, + 925 = 0,

where this time

o _ygatd)

Vit N’
s 1fyly—=Dk 1 s
8_2[——*\/1_; = V(wa+u)],
gzy('y——l)k.

The solutions of (3.23) are

—HaV1+ Ni+ @) + o|@(dV1+ Ns—a))|
24

(3.24) -D[lll -

with 0 = +1 and & = — y(@d + &), & = y(y — 1)k
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By using self-explicative symbols, the explicit form of these limiting roots
writes (%)

L ‘3~ _ y=1ks
Hode ==t = L g+ N, ™
(3.25)
(y —1) kS

<0,

k14 k1) NS
(M) =N,—V1+ Ne=s<0,

where the sign used as «exponent » is associated with the sign of o and that
used as «index » is related to ¢ (i.e. to the sign of N, as stated above).

We are able now to give, within the assumed approximations, the solutions
of eq. (3.19) for |N,{>1. After tedious ealculations, these solutions write

(M )_—9’+Nz+o( 8)>0,

1
(Mz)s = (Mz)s + L +o( )>0,
(3.26)
(M) = (M- +o(—1§)

(M) = 5 + 2+ 0 ( ) 0,
where

__—2VIE N

« 2y y &=,
—1)2kgp —1)2kp_

_ =1 Py, ﬂ’Z—L“) -0,
(@ + d) y(ap--- a)?

In (3.26) we have evidenced only the terms which turned out to be essential
to express, in terms of N,, the ratios r/r, and e,/e,. For these last, in view of

(*) One easily verifies that the denominator of (3.25), is positive. It is also immediate
to see that, being y < 2, both roots (3.25), and (3.25), satisfy the constraint (3.20).
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(3.11) and (3.15), we found it satisfactory to use the following approximations:

rlN 1 M\/l—l—N?,
NMiVIF N L (My—DNy)(1+1/283)°

(3.27) 6—‘:1\71[ ( 5 )
2 =% a1 £ ) £

LSS P |

K kN,

where M, stands for anyone of the roots (3.26).
Let us now examine the behaviour of 7, at each of (3.26).

¢,) For M, = (M;)_> 0, within negligible terms, one finds that

ﬁ:——fN >0, ﬁ:——yk;_lsfl\71>0.

To y— €y

Making use of these expressions, the principal part of #, may be then

written as
)1 V?’k+1 | PN, |2—]

(3.28) T, = — €, 019 F log [(y Zl

One sees at once that this function diverges negatively with N, and con-
temporarily (M;)_ —&. In other words, by using as abscissa M(', =—M,, the

straight line M (', =—F =N, +V1I+N 2) is an asymptote for the SGF in
the half-plane M ", < 0.
Needless to say that this asymptote corresponds to s = —e¢. In fact, by

using (3.5) and (3.9) one finds that, for such a value of s, M,= No+v1+ Ng,
ie. My =—%.

¢) For M, = (M,), > 0, it turns out that r,/ro >0, whereas e,/e, < 0.
As a consequence, 7, becomes immaginary. The nonacceptable physical condi-
tion ¢, < 0 suggests, as can be inferred from the foregoing discussion in b),
that the profile of 7, cannot enter a certain neighbourhood of M, = 0. Never-
theless, since 7, when espressed in terms of M, is an increasing function of
the shock velocity, a finite positive value of N,, say N, must exist and in
correspondence to it aroot of (3.19), say M¥> (M), , must be found, at which
e, = 0,viz. T, = 0 (*). In words, in the (M (', — 7,)-plane 7, diverges positively
at M, = — M¥.

(*) Tt is worthwhile recalling that, in the case of nonrelativistic fluid mixtures, the
existence of asymptotes separating the neighbourhood of M, = O0—where the SGF
is not admitted—from the half-plane where it extends indefinitely was already plonted
out in (8) in connection with the limiting situation T = O.
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Summarizing the results of ¢,) and ¢,), we conclude by saying that a branch
of the SGF (obtained by taking ¢ = —1 and letting N, vary in (— oo,
N¥) is confined between the two asymptotes M, =— § and M, =— M}
in the half-plane M, < 0 (see fig. 1).

Fig. 1. — Schematic representation (on unrealistic linear scales) of the two branches
of the SGF 7, vs. M (see the text).

¢;) For M, = (M7)_< 0, one finds, as in case a,), 7,/7, > 0 and e/e, < 0.
Again, the nonacceptable physical condition e, <0 suggests the existence
of a value of Ny, say N, and in correspondence to it a root of (3.19), say
M¥* < (M])_, at which ¢, = 0, viz. T, = 0. It then results that, at M, =
= My* or better, according to the previous geometrical representation, at
My, =— M, 7, must diverge negatively. Thus M, — — M** is an asymptote

for the SGF in the half-plane M, > 0 (see fig. 1).

¢,) For M, = (M), <0 once again, within negligible terms, one finds (%)

P y_1JN1>0, o= ? JN, >0,
The main part of the function %, thus writes
1
(3.29) fi, = — c,ereF log [(y 4 1) V”k;jl |JN1|2—1'].

(*) Notice that, in computing the approximation for r,/r, the second-order term in the
denominator of (3.27); was essential. The straight substitution of .# in place of (M,
would, in fact, cause this denominator to become zero.
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By following the same procedure as in ease ¢;), one sees that 7, diverges
positively with Ny, so that the straight line M, = — 4 = — N, + V1 | N2
is an asymptote for the SGF in the half-plane M;> 0 and corresponds to
8§ =e.

In the whole, the results of ¢;) and ¢,) indicate that a second branch of the
SGF (obtained by taking ¢ = -+ 1 and making N, vary in the interval
(N** 4 o0)) is located within the two asymptotes M, = — M}* and M, =
— — £ in the half-plane M, > 0 (see fig. 1).

In concluding this section, we want to remark that once a couple of para-
meters k¥ and N, (or, respectively, T, and v,) has been fixed, the whole profile
of the SGTF results composed of two branches, each of them being confined in
a vertical strip of plane bounded by two asymptotes, as roughly sketched in
fig. 1. At the flex points A’ and 4, whose abseissae are, respectively, M(', =
= — My(4) < 0 and M", =— M (1}) >0, the shock, as already mentioned
in b,), vanishes.

Finally, whilst in relativistic flows the shock veloeity must satisfy the cons-
traint |[s|<e¢, in nonrelativistic flows the shock velocity {or the shock Mach
number) can, in principle, assume any however large real value. In this case,
in fact, each branch of the SGF is bounded by solely the asymptote in the
neighbourhood of M, = 0.

4. — Comparison of classical and relativistic numerical models.

We proceed now to illustrate, through a set of numerical models, the beha-
viour of the SGF in both classical and relativistic flows. To make the comparison
easy, let us indiecate by

the ordinary shock Mach number. Then we have .#, = M,V ¢* — vi/v,, or

(4.1) My = FM,
where

Cen_ L
w = DkI+ N

Denoting by 7, the SGF in the classical case, we have (%)

(42) r;iczc”’"ﬂ“‘”a"olog{[ s ]v vi1 }7

(y—1) M5+ 2] 2y M5+ 1—y



ON THE BEHAVIOUR OF THE ¢ SHOCK-GENERATING FUNCTION » ETC. 167

which, expressed in terms of M, through (4.1), reads

e, M,r,

T Vir N
log [(V—H) M3 ]V (y* —1)k(14- Ny) }
“\W\y —1) M2 2ph(1 - N} 2ME — (y —1)2k(1 -+ NY)

From (3.3') and (4.2") one is able to compute, respectively, 7, and 7, for any
fixed couple (k, N,), in correspondence to the roots M, of eq. (3.19). One has,
in such a way, a method for a direct comparison of both profiles of 7, and 4,
which, in terms of M,, can thus be plotted under the same figure.

It is worthwhile remarking that (4.2) would have been straightforwardly
derived from (3.3’) by considering the light velocity as infinite. The procedure
to achieve this result, which is not at all immediate, will be given in appendix B.

The following illustrations show the plots of a set of purely mathematical
models and give interesting indieations on the general aspect of the problem.
We have taken y = § and m = 1. All the plots may, however, be scaled for
any value of the molecular weight m.

4.2y 7,
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Fig. 2. — Profiles of #, (solid) and 7, (dashed) for N, = 0, 4.e. v, = 0. Here | M| =
= 1075[|**1% and m|fj|/r,= 10%5|L{1-%8¢ (m = 1, a = log, 10,  and L are linear geales).
Curves are labelled with the exponent of the parameter % (see the text).
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Sinee it was quite impossible, by using linear scales, to include several orders
of magnitude in the same figure, wehave been compelled to construct some ad hoc
nonlinear scales. Obviously, in doing this the real shape of the profiles, as
roughly shown in fig. 1, has been lost.

In fig. 2 are exhibited the profiles of 7, (solid lines) and 7, (dashed lines)
vs. M,, for N, = 0 (i.e. v, = 0) and for ¥ taking the values 1012, 10-°, 10-,
10-3, 102, 10~! and 1 (that is, respectively, from few degrees kelvin, up to
orders of thousand billions degrees). As shown, the relativistic effects start
to be evident only for the highest shock velocities (|s|~ ¢, 4.e. |M,|~1) and
the highest temperatures.

The symbols I and L denote both linear scales and are econnected to M;
and 7 by the laws as given in captions, with the convention that 7 denotes
7], or 7, according to whether it is related to solid or dashed curves, respectively.

Obviously, the convention has also been made of taking M, < 0 for I < 0
and <0 for L<O.

Figures 3, 4, 5 and 6 exhibit the same profiles as in fig. 2 but for different
velocities v,.

From the sequence of the illustrations it comes out—in connection with

i + + 1 I i " o4 1 + " " 1 1
T T M 1 M M T M T
LO
N -~
e
£
| 1019-—1
10" 1
N
- O:
/]
10"
0™
i
L
. A L L 1 n 1 " 1 1 + 1 + 1 it n i : L " n i : :
) -5 0 5 0
| ] \ ,l N I T | | |
-10° 107 ~107 =07 0 gt g™ 107" M!

Fig. 3. - The same as in fig. 2: Ny= 0.25 (v,~ 72760 km/s), | M4 = 10-505|7]2-33a
and mlﬁl/”b: 1015.17|Ll1.58a'
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Fig. 4. — The same as in fig. 2: Ny= 0.55 (vy~ 144600 km/s), | M| = 10-50|fj1.34c
and m|f|fry= 101527|F|1-58s,

the increasing of v,—the narrowing of the abscissa interval in the half-plane
M, >0 and, on the contrary, its widening for M, < 0. This is because, as v,
increases, the interval [v,, ¢] decreases, whereas [— ¢, v,] increases!

We remark again, as done in sect. 3, that the shocks physieally aceeptable
are those related to the part of the branches of the SGF which extends in the
third or in the first quadrant where, just so, [y] = 7j/ery M, results positive.

We also emphasize that the shoeks related to the models of fig. 2 are all
supersonic. In such 2 case, in fact, since vy = 0, the classical results must
hold. This may be checked at once by noting that now the abscissa reads
M, = s/ and that

at = t_ﬂ::vl?—_sio,, so that & = 4-¢,.
Vi @)y —1)7

At the crossing points s = AT so that M ;(lf) = = ¢,fe. In correspondence to

the branches of 7, where, as stated above, [5] > 0, one has, therefore, |s| > .

Exeept in this case, it turns out that |¢*|4¢c,: At the crossing points M ;(Af):

= ¢*[A/¢*—+2, for the points belonging to the mentioned branches one
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Fig. 5. — The same as in fig. 2: Ny= 1 (v,~ 212100 km/s), |M,| = 10-485i|1-2% gpgd
m|f|fro= 101541|F|1.580,

has M,(s) < M(17) (i.e. 8 <, + @~) in the third quadrant, and M,(s) > M (4})
(t.6. 8> v, + at) in the first gquadrant.

This time, however, the term «supersonic» is meaningless in that la*]
does not coincide with the relativistic sound velocity as before.

We cannot close this section without mentioning, once again, how the use
of the parameter M, (or M, »)in place of the relativistic SMN M, (defined in a foot-
note in seet. 3) has very providentially simplified the calculations. This is
clear by observing that the extreme asymptotes M, = — § and M,=— 7,
which appear in each of the illustrations, are independent of temperature
and depend only upon the unperturbed flow velocity. For this reason they are
common to all the profiles in each figure.

On the contrary, since the relationship between M, and M, was found
to be

(4.3) = with M, = — M,,

the proportionality between them varies from point to point (because of s
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Fig. 6. — The same as in fig. 2: Ny= 10 (v~ 298500 km/s), | M| = 10-%|]|1662 and
m]”ﬂ/”oz 1016.40)L|1.58a_

which enters into M,), unless N, M, becomes negligible against unity, in which
case the factor of proportionality would depend only on k, i.e. on the temperature.
Needless to say that 1 + Ny M, == 0: this can be soon proved by using the
Lh.s. of constraint (3.20).

Finally, drawn in the (M;— 7,)-plane, the mentioned asymptotes would
be represented by the following equations:

A4

Mo=—1 17,77

(k, Ny) (extreme lLh.s. asymptote),
M”——‘L (k, Ny) (extreme r.h.s. asymptote)
o — 1—(—N0J(p’° eme r.h.s. ymp H

which, as shown, depend on k.

4 %k %k
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APPENDIX A

The eigenvalues of system (2.2) may be found by first transforming
this system in a more suitable form. Simple rearrangements allow us to write

or . o(rv) 7o o vy
a‘l‘ + —02(§+®8_90)_0’

ox c?

, OV N oe\
(A1) +1D0 —H’( ’0)(§t+va—5€)~0,

[ree? + ¢) +ch]( +o ax)*"(““””(”%?“z%%):"'

Hence, as is usually made in treating weak-discontinuity propagation,
the eigenvalues of (A.1) are those values of 2 which are related to the non-
trivial solutions of the following algebraic system:

(—l+v)87‘+[* 0271)1)2 (—/l—}—fu)]szo,

(A.2) plez— Av) 8v 4+ r(c2 —v2)(— A + v)de =0,
[rex(e® + ) + pe*](— A + v) dv + (¢* —v?)(e* —Av) 3p = 0,

obtained from (A.1) through the formal substitutions

a%» A9, 8%—)6'

Since 3p = (y —1)(r 3¢ - ¢ 8r), system (A.2) results to be homogeneous in
dv, dr and Se.

By introducing the quantity a* as defined in sect. 2, simple algebra allows
to find the values in (2.3).

APPENDIX B

Aim of this appendix is to deduce the expression of the classical SGF 4,
from that of 7, when the light speed is assumed extremely large compared
to the other field velocities.

We suppose thus (v,, v, §)< ¢ and, as a consequence, (Ny, Ny, My, M )<<]
50 also k< 1. Under these constramts, we solely need to find the approm-
mated form of the arguments r,/r, and e, /e, which enter into the expression
of 7, as given by (3.3').
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From (3.11), neglecting terms of higher order, we have

7 M,

re N,—N,+4 M,

on the understanding that now Ny, N, and M, should be substituted by their
approximated valuves, i.e., respectively, by v /e, v,/c and (v, — s)/c. When this
is done, leaving 3¢, indicated, we may write

(B.1) L e M,
) v U — U+ ¢ My’

Analogously, from (3.14) and (3.15) one finds, respectively,

[eg — (Bg — 0,1)%/2](v, — vy + ¢ M)

(B.2) € =

?)(”1 - ’l)o) + CAMO !
(B.3) o — ¢, VT D@—v) A oMy |y — )t
cM, 9

Equalizing these expressions, the following equation for v, — v, holds:

{y —1)(vy —v,)3 n iy —1)e,— > M}

Vo —0)2 =0
2 Cﬂ[o (0 1) ?

whose solutions are (v, —v,)? = 0, 4.6. v, = v, (trivial solution), and

yy —1)e— e’ Mg
B.4 — 0y =2
(B.4) U — Y (y L 1)eM,

Substituting (B.4) into (B.1), we get

o (y + 1) M3

(B.1') fo (y—1)(2pk+ M3

Similarly, combining (B.4) with (B.2), the required expression for e /e,
turns out to be
o _ [2Mi— (y —1)°k](2yk + M)

(B.5) —
e (y + 1)k M2

Introducing (B.1') and (B.5) into (3.3'), we finally obtain
(B.6)  (fr)wpage =

= —e¢,cM,r,log {[

(v +1) M5 ]1‘” (2yk + M3)[2M5— (y —1)°k]
(y —1)(2yk + M) (v + 1)k M3

B (y + 1) M} v k(y*—1)
= o cdhomy log{[(y—l)(2yk+M§)] 2M§—(9/—1)2k}
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and one sees at once that (B.6) coincides exactly with (4.2’) when, in this
last, N,<(1, namely when it is allowed to suppose v,< ¢. In other words,
substituting in (B.6) M, in terms of .#, through the relation M; = #;/z* =
= Msyly —1)k (so also ¢M, = v,.4,), one finds exactly the classical expres-
sion (4.2).

@ RIASSUNTO

Si fa uno studio del salto dell’entropia attraverso un’onda d’urto in fluidi relativistici
unidimensionali. 8i studia numericamente la cosiddetta « funzione generatrice detl’urto »
(SGF) per diversi valori della temperatura e della velocitd del mezzo imperturbato
e si confrontano i risultati di entrambi i modelli relativistici e non. Diversamente da
quanto accade nel caso non relativistico, la dove la SGF esiste, in principio, per qual-
siasi valore comunque grande del numero di Mach, nel caso relativistico tale funzione
diventa asintoticamente infinita al tendere della velocitd dell’urto a quella della luce.

O noBexenud nponm3soasUieil GYHKIAN YIAPHO BOJHBLI B OJHOMEPHBIX PEJISITHBHCTCKHX
TNOTOKAX M YMCJICHHLIE IKCICPHMEHTBIL.

Pestome (*). — MBI AccieayeM CKa4OK DHTPONWM IONEPEK YOAapHOR BOJNHEL B DENSATH-
BHCTCKHX OXHOMEPHBIX MOTOKaX. UHWCIEHHO M3yyaeTcd TAaK HasblBacMas NPOW3BOAAIIAS
(yHKIHA YAaPHOM BOJHEL JUISl HECKOIBKAX 3HAUYCHUI TeMIEepaTyphl B CKOPOCTH OKPYXKaro-
IIEr0 MOTOKAa. IIpOBOASATCS CpaBHEHHS DPE3YJIbTATOB KIACCHYECCKUX M PEIATHBHCTCKUX
Monenei. B oTimY#He OT HEpEeIATHBHCTCKOIO NOTOKA, KOIAa NPOW3BOAAIIAs (yHKIMS
yHOApHOM BOJHBI CYIIECTBYET /IS IIPOM3BOJIBHO OOJBINOH BeNMYWHBI 4ucla Maxa, B
PEISTUBACTCKOM CNy4ae 5Ta (QYHKUMS CTaHOBHUTCS aCHMITOTHYECKH GECKOHEYHOM, Koraa
CKOPOCTBb YIApHO# BOJIHBL CTPEMHTCHA K CKOPOCTH CBETA.

(*) IIepesedeno pedaxyueit,



