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Summary .  - -  We report  a s tudy of the entropy jump across a shock 
wave in relativistic one-dimensional flows. The so-called (~ shock-generating 
function ,~ (SGF) is numerically studied for several values of the temper- 
ature and the ambient  flow velocity and comparisons between classical 
and relativistic models are presented. Unlike a nonrelativistic flow, where 
the SGF exists for any however large value of the shock Much number, 
in the relativistic case this function becomes asymptotically infinite 
as the shock speed at tains the light velocity. 

PACS. 47.35. - Hydrodynamic waves. 

1 .  - I n t r o d u c t i o n .  

R e c e n t  p a p e r s  (1.5) c o n c e r n i n g  wave  p r o p a g a t i o n  h a v e  m u c h  d i scussed  t h e  

m a t h e m a t i c a l  s t r u c t u r e  of a l l  t hose  p h y s i c a l  s y s t e m s  g o v e r n e d  b y  quas i - l i nea r  

h y p e r b o l i c  s y s t e m s  of t h e  f i rs t  o r d e r  in  c o n s e r v a t i v e  fo rm,  e n d o w e d  w i t h  a 

(1) G. BOI~,LAT: C. 1L Acad. Sci. Paris A, 283, 409 (1976). 
(3) G. BOILLAT: in Wave Propagation, Corso CIi~IE (Bressanone, 1980). 
(3) T. RvGoE~I and A. STa~VMIA: Ann. Inst. Henri Poincar~ A, 34, 65 (1981). 
(4) T. RV~GERI and A. STRUMIA: J. Math. Phys. (N. Y.), 22, 1824 (1981). 
(5) T. RVGG]~RI: in Propagazione Ondosa, lectures given at  the VI  Scuola Estiva di 
.Fisiea Matematica (Ravello, 1981). 
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convex densi ty  function.  For  such sys tems  it  is possible,  in fact ,  to  cons t ruc t  
a par t icu lar  funct ion,  the  so-called (~ shock genera t ing  funct ion )) (SGF), which 

allows us to describe in a s t ra igh t forward  way  the  global  behav iour  of a shock. 
I n  (6) the  SGF has been  successfully ana lysed  in mix tu res  of ideal gases. 

To ex tend  the  p a n o r a m a ,  we presen t  in this  work  a s tudy  of the  SGF in 

a relat ivis t ic  one-dimensional  flow. The ana ly t ica l  invest igat ion of this funct ion 
shall  be followed b y  a numer ica l  approach  with  the  ma in  goal of eva lua t ing  

a set of numer ica l  models  as a funct ion of the  absolute  t e m p e r a t u r e  To and 

veloci ty  vo of the  a m b i e n t  fluid. I n  such a way ,  the  s t ra igh t  compar ison  be tween 
relat ivist ic  and  nonrela t iv is t ic  models  will emphas ize  the  relat ivis t ic  effects. 

~k qual i ta t ive  analysis  of the  SGF in re la t iv is t ic  fluids within a co-moving 
f r a m e w o r k  has been made  b y  S T ~ A  (7). 

The ma in  resul ts  we have  ob ta ined  emphas ize  t h a t  

i) For  sufficiently low values of v0, the  re la t iv is t ic  effects on the  shock 

are as much  evident  as much  To and the  shock veloci ty  are higher  (viz. 
t empe ra tu r e s  of the  order  of 10 s K or higher  and  shock ve loc i ty  s of the  

order  of the  l ight  ve loc i ty  c). 

ii) As vo increases (up to  the  order  of c), the  profile of the  SGF in bo th  

relat ivist ic  and  nonrela t iv is t ic  models  become dis t inguishable  even for the  

lowest  t e m p e r a t u r e s  and  shock veloci ty.  (Notice, since now, the  use of the  
geometr ica l  v isual izat ion of the  SGF as a convenient  way  to follow the  

phenomenology.)  

iii) Unlike a nonre la t iv is t ic  model  where the  SGF exists for any  however  

high value of the  s and  phys ica l  shocks are supersonic,  in the  re la t ivis t ic  
case the  SGF becomes a sympto t i ca l l y  infinite as Is]-+ e. We found,  in fact ,  
t h a t  for 1 ~ ~ ~ 2 (~ be ing the  specific-heat ra t io)  the  two branches  which 

for a n y  g iven couple of values To and  vo cons t i tu te  the  SGF profile are con- 
fined each one be tween  two a s y m p t o t e s  related,  respect ively,  to the  l imit ing 

s i tuat ions Is] ---- v and  the  t e m p e r a t u r e  behind  the  shock T1 ~ 0. 

iv) I n  the  whole, under  the  same value of s, the  absolute  value of the  
s t rength  of the  re la t iv is t ic  physica l  shock turns  out  to  be  higher  t h a n  t h a t  of 

the  nonrela t iv is t ic  one. 

A~ter the  pre l iminar ies  in sect. 2, we derive the  SGF in sect. 3 where we 
also give the  procedure  to m a k e  easy numer ica l  calculations. Section 4 is devoted  

to compare  relat ivis t ic  and  nonrela t iv is t ic  models.  Brief  concluding r emarks  
in th is  section shall  close the  paper .  

(6) N. VIRGOPIA and F. F]~RRAIOLI: Nuovo Cimento B, 81, 197 (1984). 
(7) A. STRUMIA: private eommunioation. 
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2. - Preliminaries and governing flow equations. 

According to the  usual  nota t ions  (s,9), in a bidimensional  Minkowskian 

space-tim% the sys tem of differential equations governing the  one-dimensional 

relat ivist ic  mot ion  of a perfect  fluid subject to nonexterna l  forces writes 

(2.1) 

~(ru~) 
- - 0  

@T~ 
- - 0  

@x ~ 

(mass conservat ion),  

(energy-momentum conservation),  

where x~ are pseudo-Cartesian co-ordinates (a = 0, 1), r is the  rest  ma t t e r  

densi ty,  T ~ =  t r i t ium--pg~  is the  ene rgy -momen tum tensor,  g ~  are the  

components  of the  metr ic  tensor  which, assuming the  signature ( + , - - ) ,  reduce 
to g0O = 1, gll = _ 1, gO1 = g~O = 0; u ~ are the  veloci ty  components  of a par t i -  

cle in the  proper  f rame,  so t ha t  (lo) 

' _ , 

and v denotes the  ordinary  relat ive velocity;  the  other  symbols are as follows: 

p is the  pressure and  / = 1 + i/e ~ is the  index of the  fluid, i = e + p i t  is the  

classical cn tha lpy ,  e the  specific internal  energy and e the  veloci ty  of light in 
vacuum.  

B y  introducing the  proper  energy densi ty  ~ = r(c~+ e), it turns  out t ha t  

r / =  (0 -4- P)/c ~ and,  therefore,  

T o o - - Q + P ( u o ) ~ _ p ,  T l l - - ~ - P ( u l ) 2 + p ,  T o ~ = T l O = Q + ~ P u o u x  
C~ C2 ~2 " 

Using x ins tead of x 1, since ~/~x ~ = (~/at)[e, the  explicit  fo rm of the conserva- 

(8) A. Lm~ROWlCZ: Belativistic ~luid Dynamics, I CIME Session (Bressanone, 1970). 
(9) L.D.  LANDAU and E. lYI. LIFSHI!rZ: -Fluid Mechanics (Addison-Wesley Publ. Co., 
Pergamon Press, London, 1959). 
(10) C. CATTANEO: Int~oduzione alla teoria einsteiniana della gravitazione (Ed. Veschi, 
Roma, 1961). 
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r ive system (2.1) writes 

(2.2) 

+~ =o,  

~c~-%-v v + ~ . ~  I : O ,  

) ~ \  c~_v~ /+~x~c-~_v ~ =0,  

or, by  adher ing to  the  usual compuct  form, 

(2 .2 ' )  

with  

~ U  ~ F  1 
~ +  a-T =o 

r ~ @ p 9c 2 @ pv~" 
V=-- Vc~- -v~ '  ~ - - v  ~v' ~ - - ~  I 

being the  field vector  (~ means transposit ion) and 

rv ~v2 § pc~ ~ § P c 2 v 
F ~ ~ C2 _ _  V2 ~ C2 _ _  V2  �9 

A more suitable form of eqs. (2.2) (see appendix  A) allows us to find in a 
simple manner  the  eigenvalues of the  sys tem (viz. ,  the  velocities of the  weak 

disturbances along the  character is t ic  lines). They  are 

(2.3) ~* = v ,  I I  = v + a• 

with 

C2 _ _  V ~ 

v • cV~/v~ + 1/(~ -1)  

2 Here  v~ = ~,p/r = ? R T / m ,  R is the  universal  gas constant  and m the  molec- 
ular weight of the  mat te r .  By  using the Gibbs law, e lementary  calculations 
allow us to  write the relat ionship between the relativist ic sound velocity c, 

and v 8. We obtain 

~p v. v~ 
(2 .4)  c'~ = , = 7 = 1 + (~ /e~) (~  - - 1 1 - 1 '  

where ~ ~ ~/c ~ and ~ is the  specific en t ropy  of the  fluid. 
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One sees readly  t ha t  

i) For  low t empera tu res  and small  velocities (v<< c), the  eigenvalues (2.3)2 
reduce to thei r  usual  expression in classical flows, ~ = v :[: v (the ordinary  
sonic waves) and  c ~  v ,  viz. the  classical s i tuat ion is then  restored.  

ii) For  very  high tempera tures ,  the  rat io  v~/e ~ becomes large compared  
to uni ty ,  then  c~ --> e~(~, --  1) f rom which it follows tha t  one mus t  have  ~ < 2 

in order for c to be less than  e. This inequal i ty  for ? is a well-known result  first 

p roved  by  Thlm (n). 

3. - The SGF. 

As well known f rom the theory,  a physical  hyperbol ic  sys tem in conservat ive  
form, such as (2.1), endowed with  a convex function,  say hO(U) (defined in a 

convex domain  of the  field vector),  admi ts  ~ supplementa ry  scalar conserva- 

t ion law of the  type  (s) 

~h~(U) 
(3.1) ~x ~ = 0 ,  

where h~(U) =- rqu~ and the  specific en t ropy  ~ ----- e, log (pr-v) -~ const. Expli-  

c i t ly  (3.1) writes 

(3.2) ~t \ c / -~x = o ,  

where now 

h ~ crv (*), - -  , - -  h ~ - -  crv~l 

( I t  is worthwhile observing tha t ,  since we do not  t ake  e ~-- 1, as generally made,  
we mus t  t ake  care of the  fac tor  e in all our expressions.) 

Consider now a shock f ront  with normal  veloci ty  s. I t  is then  known tha t  
across this f ront  the  l~ankine-Hugoniot  conditions, which are but  the  compat i -  

bi l i ty conditions in order for the  shock to  be a weak solutions to sys tem (2.2), 
are,  in general, not  satisfied when applied to  the  supplementa ry  law (3.1). 

(11) A.H. TAUB: Phys.  l~ev., 74, 328 (1948). 
(*) The convexity of h~ can be proved by following the procedure used in (6), 
namely by showing that the quadratic form ~U-$U' is positive definite. We recall 
that U ' =  V u h  o is the so-called ~( main field ~>. Lengthy calculations yield 

U ' = -  - ( ~ / T ) ( ~ - -  ~ , e -  c~, - - v / ~ / ~ - - v ~ ,  1 / v / e ~ - - v ~ )  " . 

11 - I l  Nuovo Cim~n~o D. 
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By  using the  fo rmal  subs t i tu t ions  

f rom (3.2) we ob ta in  

8 

where I X ]  = X1 - Xo denotes  the  j u m p  across the  f ron t  of the  funct ion involved,  

so t h a t  subscr ipts  0 and  1 indicate ,  respect ively,  values  in f ront  and  behind 
of the  shock. 

The quan t i t y  ~r n a m e d  usual ly  ~< shock-generat ing funct ion ~), generalizes 

the  well-known classical resul t  of the  (( g rowth  of the  en t ropy  across a shock 
wave~). As r e m a r k e d  in (3,5), the  knowledge of th is  funct ion  provides  an 

i m p o r t a n t  tool  to  draw conclusions on the  behav iour  of the  phys ica l  shocks: 

its g rowth  wi th  s provides ,  in fact ,  a (( measure  ~> of the  shock s t reng th  ampli-  
tude.  I n  (e) the  explici t  knowledge of the  SGF profile allowed us to  discr iminate ,  

in a s imple manner ,  the  in tervals  of the  shoch Much n u m b e r  in which W~/~ > 0 

(i.e. in which the  shocks sat isfy the  en t ropy  principle).  
The  explici t  f o r m  of ~r wri tes  

vr:(s - -  'Vl) (~ro('~ - -  ~)o) 
(3.3) n~- V ~  n, Vc~-_4 Vo. 

The Rank ine -Hugon io t  condit ions,  appl ied to  the  mass  conserva t ion  law, 

yie ld  

(3.4) Wo(S - -  Vo) = w:(s - -  %) , 

where we have  pu t ,  in general,  r = r [ V ' ~ -  v 2. 

B y  defining (*) 

(3.5) 

t hen  (3.4) becomes 

C3.4') 

V - - 8  
M ~  

V ~ -  v~' 

ro Mo ~ fl M: 

(*) This parameter, suggested straightforwardly by (3.3), plays an important role 
in the whole discussion of this paper and drastically simplifies the calculations. The 
introduction of the relativistic shock 1Vfach number, say ~ = ( v -  s)//[r vs/c2)], 
would, in ~aet, seriously complicate the whole ~proeedure. When the field velocities 
%, v 1 and s can be neglected compared to c, then 1~ becomes the ordinary shock Mach 
number, viz. . ~ =  ( v -  s)/%. 
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and (3.3) takes the form 

t\ro/ ~o ' 

where the relation p ~ (7-- 1) re with 7 < 2 has been used (~.~2). 
Even whether we shall use, for convenience, all over this section the quantity 

Mo, when talking about the profile of ~ r  W e  discuss this in terms of M~ ~ -- Mo. 
! 

This is made because ~, is an increasing function of s and so also of Mo. From 
(3.3') it follows, therefore, that  the jump ~ turns out to be positive for M~ > 0 
(s>vo) a n d S , > 0 ,  or for M ~ < 0  (s<vo) a n d ~ < 0 .  

In other words, the shocks physically acceptable are those related to the 
profile of the SGF which, in the (M~-  ~) framework, crosses the first or the 
third quadrant. 

The main goal of this work is to build up a procedure to numerically 
evaluate ~ .  

In spite of the apparent simplicity exhibited by (3.3'), the evaluation of 
~ is not a simple task in that  a mechanism must be first found to evaluate 
fl and e~ (viz. the rest mass density and the specific internal energy in the per- 
turbed medium). As we shall see later on, this goal will be attained by appro- 
priate manipulations of the l~ankine-ttugoniot shock conditions and by using 
as free parameter the velocity of the flow behind the shock. 

a) A procedure to determine the ratios fl/ro and e~/eo, By ~ppliyng the jump 
conditions to eqs. (2.2)2 and (2.2)a~ after simple algebra we get, respectively, 

(a.6) 

and 

(3.7) 

[ [ vo(vo-s)l 
Pl 1 +  c~ v ~ j-po 1+ c~_-~ j - - ~ o o ( V o - - s ) ( E o v o - - E l v l ) = 0  

vl (v~-s) l  [ %~---8)] c2O, o(Vo--S)(~o--E,) = 0 

where we have set for brevity E ~ (c2§ e)/V/~--v 2. 
By subtracting eq. (3.7) from (3.6) multiplied once for vo and then for Vl! 

we obtain, respectively, the following equations: 

(3.S) 
vl(vl--s!] +COo(Vo_s)[c2(E~_Eo)+Vo(~oVo_E~vl)]=O, p,(Vl--Vo) l"J 7 C2__V~ ] 

po(V~ -- Vo) [1 § Vo(VoC2 __ V~-- S)]j § -- S)[C2(/~1 --/~o) § -- ~,I V~)]=O. 

(12) G. BOILLAT: Rvlativistiv .Fluid Dynamivs, I CIME Session (Bressanone, 1970). 
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L e t  us define the  q u a n t i t y  

v 
N - -  

so t h a t  we m a y  wri te  

cN e 
(3.9) v - -  - -  and  V ' ~ - -  v ~ - -  

V] + N~ Vi + N~ 

I n  view of (3.5) and  (3.9) the  following ident i t ies  hold: 

eN~ CNo 
(3 .1o)  v~ - ~o = ~ / 1 +  :~]  V ~ v ~  - 

f r o m  which one finds t h a t  

Subs t i tu t ing  this  quan t i t y  into (3.4') yields 

( 3 . ] 1 )  - = 

This rat io,  as one sees, s t r ic t ly  depends on ~V~, a quan t i t y  behind  the  shock 

f ront .  
Again,  b y  (3.9) and  (3.10), we ob ta in  

(3 .12)  E~--~,o - e* + e~ V 1 + N[ c* + eov]  + N~, 

( 3 . 1 3 )  E o v o -  .Ely1 = ~Eo(v,- vl) + v~(Eo-  .El) -~ ~o(c 2 + c o ) -  N~(c ~ + el) ,  

which, combined  wi th  (3.8)19 give 

(3 .14)  

( ) ] �9 N~+N~+ (M~--3ro)Vil+~V~)/(l+~V~) + o r ' l +  5"~--~o~ e~= 

This equat ion,  l ike (3.11), shows the  dependence  of e~ on ~Y1- 
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A different manner to express e~ is obtained, however, by combining eq. (3.8)3 
with (3.12) and (3.13). This leads to the result 

(.'-1.15) e l =  ('7 -- 1) eo (1 + MoNo) + N ~  Moo + 

+ (e, + e o ) V ( ~ ) ( ~  + N~)-- (03 + 7Co)NoN1-- e~. 

By eliminating el/Co between the two equations (3.14) and (3.15), one finds 

0 1 

(3.16) (1 + k)A/e - -Ale  
1 - -  

(}, --1){N, + IN, @ (Mo --  No) %/(1 @ ~,g~)/(1 -]- N~)]-'} y, + A./c 

= (7 --  1) k [(NoIMo)(1 + Mo No) V'(1 + 3r~)/(1 + NI)  - -  ~rdMo ] + 

+ (1 + k) V(a + N~)(1 + N~) - (1 + rk)NoN,--1, 

where we have set, for convenience, 

(3.17) 

eo = k e  2 , 

Jt = ~ ~/1 + N~.-- ~,o ~o = ely5 + _,v-~, 

= c V l ~ -  N~-- vo--'Y, = c [%/(i~ N])(1 @ _ART)- NoN1]IA/1 + NI ,  

v = ;~1tV1 + N~--  NoIlVY-~. 
Each member of (3.16) represents, therefore, a different expression of the 

ratio el/eo. 

b) Numerical treatment o] eq. (3.16). I t  is a simple matter  to rearrange 
eq. (3.16) into a second-order algebraic equation for 3/,. By setting, in fact, 

5 

B =  

0 �9 

B = (1 + k)]V'i---}- N~ - - A l e ,  
1 1 

B = (7--1)~N~ + A / e ,  
2 

B = Vi i  + N})/(~ + N~), 
3 2 

B = N 1 -  No B ,  
4 2 :8 

B---- (7--1)k(NoB--N,) -= (1-- 7)kB , 
2 

(), --  1) kNgB + (1 + k ) ~ / ~ +  N~)(1 + N~)--(Tk+ 1)NoN~--I ,  

eq. (3.16) 

(3.18) 

becomes 
0 4 

B B 5 
I 2 3 ~ - - - ~ B  

B +  (~--I)y~[(BMo+B) Mo " 
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F r o m  this,  pu t t ing  for b rev i ty  

0 2 0 1 5 

S = B ( B - - B B ) ,  

1 0 3 1 2 4 5 1 8 

S : � 8 9  + ( y - - l i f o ] } ,  

2 4 1 3 

S = ~ B [ B B  -b- ( y - - l ) Y ~ ] ,  

we finally have  

0 1 2 

(3.19) SM~) + 2SMo + S : O . 

In  such a way,  for  any  fixed couple of values k >  0 and 5V 0 (*) (i.e. for fixed 

values of the  absolute t empera tu re  To and flow veloci ty  vo), we take  2V~ as 
a free pa ramete r  and let it  v a ry  in ( - - c %  + c~). In  correspondence to  each 
value of lye, the  real  roots of (3.19), say M ("~ and ~(b) allow us to  evaluate  the  ~ 0  ~ ' ~ 0  ' 

ratios rl/ro and ex/eo and then  the  corresponding values ~r and ~(b) of the  SGF. qr 
(As we shall see soon after ,  the  profile of ~ consists of two branches,  

loci of points of t ype  ~ ( ~  ---~)~ and ~(b)  ~(b)~ respectively.)  
Some general  propert ies  of these roots,  for  finite values of [N~l, m a y  be 

summarized as follows. 

bl) In  view of the  cons t ra in t  ]sI<e, the  roots  3/o are confined in the  

in te rva l  (**) 

(3.20) J - -  No - -  V'I + N~ < 3/0 <No + V'I -+ N~ = 5P, 

hence,  for /Vo<< 1 (i.e. vo<< c), one has [Mo]<l .  
2 

b~) For  ~VI# No (i.e. v l #  vo), since S r  0, Mo = 0 cannot  be a root  
of (3.19). This resul t  can be also inferred b y  observing t h a t  for Mo = 0 the  
1.h.s. of (3.18) would assume a finite value,  whereas, on the  cont rary ,  the  r.h.s. 

would become infinite. 

b3) For  hrl-+ZTo (i.e. vt-->Vo), one quickly verifies t h a t  all the  field 

functions t end  to the i r  unper tu rbed  values (so t h a t  rl-->to,  p~-+Po,  etc.), 
thus  the  shock itself vanishes (~r -~ 0) and s -+ ~ .  This resul t  confirms, as 

0 

was to  be expected,  t ha t  our shock is a K-shock. Besides it  results t h a t  B -+ 

and V- 0; as 
0 1 

a consequence the  coefficients of (3.19) (S, S, S) -+ 0. Leng thy  calculations 

(*) Notice that N 0 may be assumed as positive by taking as positive the unperturbed 
fluid velocity. 
(**) Since -- c ~<-- s < c, it follows that (%-- c)/~/c~--v~ < (v o -  s)/V/c~V~o < (% -4- c)/ 
[ ~ / ~ ;  by (3.9), this chain of inequalities coincides with (3.20). 
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showed, however, tha t  these coefficients are infinitesimal of second order with 
respect to IN~--No[ and this allowed us to find out the following limiting 
roots (*): 

~o ~ ~-- --  [No • ~(k, N0)]-' with q~(k, No) = ]/(~k 
+ ])(] § 

One finds also that (?k ~- 1)/?(?-- 1)k>1,  so that ~ + < 0  and too> 0; 
both these roots satisfy constraint (3.20). 

In  view of the outlined results and the fact tha t  Mo = 0 cannot be a root 
of (3.19) except when ~T~ = No, we conclude by saying tha t  each one of the 
roots of any  couple (M~ ~, M~o~)), obtained for a given ~V~ in (-- 0% + cr keeps 
its own sign. In other word% these roots distribute into two classes~ {M~ ")} 
and {M~ ~'} with M~ ~', M~ ~) having" opposite sign. 

o) The behaviour o/ ~, /or high values o/ ]_hrxl. Although, according to 
the methodology outlined above, eq. (3.19) may  be easily solved numerically~ 
the search of the asymptotes of the SGF requires particular care. These straight 
lines are, in fact, related to the behaviour of r~/ro and e~/eo for IN~I--> ~o. A 
first approach for this analysis is to derive the roots of (3.19) for IN~I>>I. 

Neglecting higher-order terms, elementary calculations allowed us to use for 

B l~he following approximations ("): 

(3.2]) 

2 ( o 
, 

0 

___ •  - -  , 

0 

(') By using (3.5) and (3.9) it is immediate to verify that m~ = M0(25)= (vo--~o~)/ 
/~e~vv~. This result can be also regarded as a good check for our calculations. 
(**) In doing these approximations, we assumed %/1 + _~_~ =h ~rl(1 + 1/2N~); as 

-=- ~ T 1/2N ~, (see above). Analogously, ) /c  ~ Nx[=h (1 + 1/2N[) -- NolO/1 + N2o] = 
= ~\(r �9 ~12~). 
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where 
0 1 

a = ~vo/Vi + ~v~, a = - (,y~ + 1 ) N o ,  
2 -- 0 

a = ( ~ + l l / V l + ~ V ~ ,  ~ = •  

with the convention of taking the upper or the lower sign according to whether 
hr~ is positive, or negative, respectively, and on the understanding that  ~+ 
----1--~ a n d r  

1V[aking use of (3.21), the coefficients of eq. (3.19) take the following ap- 
proximated form : 

(3.22) - 

ft o [1 ~ ~  +1)or 

, r(f,a + a) • + 

2 

-4- 2~(-}-l--yv~)~ L ~ ( ~ - l - y a ) - y a ( r  ~ :[: 

0 
~ - - a  

which allow us to obtain the roots for 12V~] >>1. 
By introducing (5.22) into eq. (3.19), removing the common factor ~V~, 

the limiting roots for IIY~[-+ 0% say Mm~ are then solutions of the following 
equation: 

~M~, + 2 r  + r = o ,  

t ime 

(3.23) 

where this 

8 =  

1 [ r ( r - ] )k  

$ 

s = 7 ( y - - 1 ) k .  

,] 
�9 r ( ~  + a) , 

The solutions of (3.23) are 

(3.24) ~t., = --  r  + ~) + a l r  + N ~ -  ~)1 
2~ 

with a = -4-1 and ~ -~ --y(v~ -~ ~), t~ = 7 ( 7 -  1)k. 
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By  using self-explicative symbols, the  explicit  form of these limiting roots 

writes (*) 

(3.25) 

(Mo,)- = No § V ~ +  2r = j > o ,  

4 
a (y - -  1) k J  

(Mo~)+ = - - ~ + =  
a k § 1 §  (yk § 1 ) N o J  > ~  

4 

(Mo+) - a ( } ' - l ) k ~  
= - ~  a ~ -  = - - k  § 1 § (yk § 1 ) 2 7 o ~  

< 0 ,  

(lUo+,)+ = 2 7 o -  V1  + No ~ - J <  o ,  

where the  sign used as (~ exponent  ~ is associated with the sign of ~ and tha t  
used as (( index ~) is re la ted to v~ (i.e. to the  sign of N~ as stated above). 

We are able now to give, within the assumed approximations,  the solutions 
of eq. (3.19) for ]2711>>1. After  tedious calculations, these solutions write 

(3.26) 

where 

(M;)_ = 5~ + - ~  + o > o ,  
N1 

( i ~ ) +  = (Mo~)+ + + o > 0,  

(M.+)_ = (Mo+,)_ § ~ + o < 0 ,  

( M g ) + = J +  ~ + o < o ,  
N1 

(}' - 2 ) V i 7  27~ 
6r 1 g - - ~  < 0 ,  = - - ~ ,  

2}, 

fl _ ( r - 1 ) 2 k ~ +  fi, ( 7 - 1 ) 2 k v ~ _  
r(h~+ + ~)~ > 0,  - }'(h~_ § ~)~ > 0.  

In  (3.26) we have evidenced only the terms which tu rned  out to be essential 
to express, in terms of 271, the ratios rl/ro and el/eo. For  these last, in view of 

(*) One easily verifies that the denominator of (3.25)2 is positive. It  is also immediate 
r see that, being ~, < 2, both roots (3.25)2 and (3.25)~ satisfy the constraint (3.20). 
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(3.11) and (3.15), we found it sat isfactory to use the following approximat ions:  

(3.27) 

r~ 1 Mo 1/1-+ N~ 
ro - V 1  + ( M o - - G ) ( I  + I/2N ,) ' 

k + i v ,  l +  • 1] 
where M o stands for anyone of the  roots (3.26). 

Let  us now examine the  behaviour  of ~ at  each of (3.26). 

el) For  M o ----(Mo)_ > 0, within negligible terms,  one finds tha t  

el yk + 1 r~ ~ SfN1 > 0 , ~ SfN1 > 0 
ro y - -  1 eo k 

l~Iaking use of these expressions, the  principal pa r t  of ~ may  be then 

wri t ten  as 

(3.28) ~]~ ---- --  GcreSf log [(}TY-T)~-v Yk-+k l [~9~2Yl[2-v ] �9 

One sees at  once tha t  this funct ion diverges negatively with ~Y1 and con- 

temporar i ly  (M~)_-+5  p. I n  other  words, by  using as abscissa M~-----  Mo~ the 

s traight  line M' o : - -  5 ~ ~ -- (No + ~/1 + N~) is an asympto te  for the SGF in 

the  half-plane M '  o < 0. 
Needless to say tha t  this a sympto te  corresponds to s - - - - -  e. I n  fact,  by  

using (3.5) and (3.9) one finds tha t ,  for such a value of s, Mo---- No + %/1 § N~, 
I 

i.e. M e = - - s  

e~) For  M e = (M:)+ > 0, it tu rns  out  t ha t  rdro > 0, whereas erie o < 0. 

&s a consequence, ~ becomes immaginary.  The nonacceptable physical  condi- 

t ion el < 0 suggests, as can be inferred from the  foregoing discussion in b), 
t ha t  the profile of ~ cannot  enter a certain neighbourhood of Mo = 0. Never- 

theless, since ~r when espresscd in terms of M~ is ~n increasing funct ion of 

the  shock velocity,  ~ finite posit ive value of N~, say N*,  must  exist and in 

correspondence to it a root of (3.19), say M * >  (Mo)+, must  be found, at  which 
el ~ O~ viz. T~ ---- 0 (*). In  words, in the (M~ -- ~)-plane  ~ diverges positively 

t . 
at  M e ~ -- M o . 

(*) It  is worthwhile recalling that, in the case of nonrelativistic fluid mixtures, the 
existence of asymptotes separating the neighbourhood of M o ~ 0--where the BGF 
is not admitted--~om the half-plane where it extends indefinitely was already plonted 
out in (e) in connection with the limiting situation T 1 = 0. 
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Summar iz ing  the  resul ts  of e,) and  e,), we conclude b y  saying t ha t  a branch 

of the  SGF (obtained b y  t ak ing  a = -  1 and le t t ing N1 v a r y  in ( - -0% 
? ! , 

N*)) is confined between the  two a sympto t e s  M 0 = -  S and M 0 = -  M 0 
in the  half-plane M~ < 0 (see fig. ] ). 

- s  

\ 

0 

/ - I  
/ 

M" 

Fig. 1. - Schematic representation (on unrealistic linear scales) of the two branches 
of the SGF ~ vs. M o (see the text). 

Ca) For  Mo ---- (M+)_ < 0, one finds, as in case e2), rl/ro > 0 and el/eo < 0. 
&gain, the  nonacceptable  physical  condit ion e l < 0  suggests the  existence 

** 
of a value of N~, say N~ , and in correspondence to it  a root of (3.19), say 

M * * <  (M+)_, at  which el : 0, viz. T~ : 0. I t  then  results tha t ,  at  Mo : 
: M** or be t ter ,  according to the  previous geometr ical  representat ion,  at 

t * *  I 
Mo ---- - -  Mo , 4, mus t  diverge negatively. Thus M o : -  M** is an a sympto t e  
for the  SGF in the  huH-plane M~ > 0 (see fig. 1). 

e4) For  Mo ~-- (M+)+ < 0 once again, within negligible terms,  one finds (*) 

rl ~ el yk + 1 J N 1  
- -  ----_ J N ~  > 0 ,  - _~ > 0 .  
r0 7 - -  1 eo k 

The main  pa r t  of the  funct ion ~, thus writes 

(3.29) 
+ 1  

(?~: --e~Crodlog [ (y - -~ ) l - v  Yk k - [~r 

(*) Notice that, in computing the approximation for rl/r o the second-order term in the 
denominator of (3.27)1 was essential. The straight substitution of ~r in place of (M+)+ 
would, in fact, cause this denominator to become zero. 
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B y  following the  same procedure  as in case Cl), one sees t h a t  ~ diverges 
/ 

positively with  N1, so t ha t  the  s traight  line M 0 = -  ~ r  N o + ~/1 + N~ 
is an a sympto te  for the  SGF in the  half-plane M~ > 0 and corresponds to  
8 ~ 0 .  

In  the whole, the  results of c3) and o4) indicate tha t  a second branch of the  
SGI~ (obtained by  taking a ~ + 1 and making  N1 v a ry  in the  in terval  
(N**, + c~)) is located within the  two asympto tes  M:---- -- M** and M~ = 
= _ j r  in the  half-plane M'  o > 0 (see fig. 1). 

In  concluding this  section, we want  to  r em ark  t h a t  once a couple of para- 
meters  k and No (or, respectively,  To and vo) has been fixed, the  whole profile 
of the SGF results composed of two branches,  each of t h em  being confined in 
a ver t ica l  strip of plane bounded  by  two asymptotes ,  as roughly sketched in 
fig. 1. At  the  flex points A'  and A, whose abscissae are, respectively,  M: = 

! 

= -  M o ( ~ ) <  0 and M o ~ -  Mo(k +) > 0 ,  the shock, as a l ready ment ioned  
in bs), vanishes.  

Finally,  whilst in relat ivist ic flows the  shock veloci ty  must  satisfy the cons- 
t r a in t  Is[<o, in nonrelat ivis t ic  flows the  shock veloci ty (or the  shock Mach 
number)  can, in principle, assume any  however  large real  value. In  this case, 
in fact ,  each branch of the  SGI~ is bounded by  solely the  asympto te  in the  

! 

neighbourhood of M 0 ---- 0. 

4. - Comparison o f  classical  and relativistic numerical  models .  

We proceed now to i l lustrate,  th rough  a set of numerical  models, the  beha- 
viour  of the  SGF in bo th  classical and relat ivist ic flows. To make  the  comparison 
easy, let  us indicate by  

,/f/o -- v ~  - -  '~' 
Vs 

the  ordinary shock Maeh number .  Then we have Jgo = Mo v/e2 2 - -  V o / V ~  o r  

( 4 . 1 )  ~ ' g  = z 2 M  o , 

where 

C~ z 1 
-- V 0 

Denot ing by  ~c the  SGF in the  classical case, we have (~) 

(4.2) ~/~ = e ' v '~ '~  r~ l~ [ [ ( y -  1),~r + 2 2yJ/g + 1 - -  y 
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which, expressed in te rms of M~ through (4.1), reads 

e v e M e r o 

(4 .~ ' )  ~~ - V i - +  ~v~ 

+ 2 ~ T ( ~ +  _,v~)] ~Mo ~ - -  ( > , - - ] ) ~ ( ]  + ~o~)J" 

F r om (3.3') and (4.2') one is able to compute,  respectively, ~, and ~c for any 

fixed couple (k, ~Vo) , in correspondence to the  roots Mo of eq. (3.]9). One has, 
in such a way, a method  for a direct comparison of bo th  profiles of ~, and 4o 
whieh~ in terms of M~, can thus be p lo t ted  under  the  same figure. 

I t  is worthwhile remarking tha t  (4.2) would have been straightforwardly 
derived from (3.3') by  considering the light velocity ~s infinite. The procedure 
to achieve this result,  which is not  at  ~ll immediate,  will be given in appendix B. 

The following illustrations show the plots of a set of purely mathemat ical  
models and give interesting indications on the  general aspect of the problem. 
We h~ve taken  7, = -~ and m = 1. All the plots may,  however, be sealed for 
any  value of the molecular weight m. 
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Fig. 2. - Profiles of ~, (solid) and ~o (dashed) for N o = O, i.e. % = O. Here~[M~l~, = 
= lO-Sl/i T M  and m l ~ l l r o =  10zs[LI t.Ssa (m = 1, a = log S 10, l and /5 are linear:scales). 
Curves are labelled with the exponent of the parameter k (see the text). 
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Since it  was quite  impossible, by  using l inear scales, to  include several  orders 
of magni tude  in the  same figure, wehave  been compelled to construct  some ad hoc 
nonlinear scales. Obviously, in doing this the  real  shape of the  profiles, as 
roughly  shown in fig. 1, has been lost. 

In  fig. 2 are exhibi ted the  profiles of ~r (solid lines) and ~c (dashed lines) 
vs. M'o, for  ~0 = 0 (i.e. vo ~ 0) and for k tak ing  the  values 10 -1~, 10- ' ,  10 -6, 
10 -8, 10 -~, 10 -1 and 1 ( that  is, respectively,  f rom few degrees kelvin, up to 
orders of thousand billions degrees). As shown, the relativist ic effects s tar t  
to  be evident  only for the  highest  shock velocities (Isi,-~e, i.e. ] M ~ ] ~ I )  and 
the  highest  tempera tures .  

The symbols l and Z denote  bo th  l inear scales and are connected to  M~ 
and ~ by  the  laws as given in captious,  with the  convent ion t h a t  ~ denotes 
~r or ~o according to  whether  i t  is related to solid or dashed curves, respectively.  

Obviously, the  convent ion has also been made  of tak ing  M~ < 0 for 1 < 0 
and  ~] < 0 for  L < 0. 

Figures 3, 4, 5 and 6 exhibi t  the  same profiles as in fig. 2 bu t  for different 

velocities vo. 
F r o m  the  sequence of the  il lustrations it  comes o u t - - i n  connect ion wi th  

o 

- - 5  

I I I t i t t I I t t i I I I 

t t t i I t i I 

-10 

' ' ' ' I ' 1 

I I ' I I I I I t I f I 
- 5  0 5 

, I , , l i T , ,  I , 

-I0-3r -sT 0 ~"'I0-6~'I0 -3 

I I 
--10 0 --I0/I 10 "-I HI 

l l l l t t t  

IO ! 

I 

I 

? 

1019._~ 

1 0 1 3  - 

0-- 

+1019___ 

L 

Fig. 3. - The same as in fig. 2: hro = 0.25 (Vo~ 72760 km/s), IM~]---- 10-5"~ 
and ~l~l/ro= lO15":71~[1"5sa.  



ON THE BEHAVIO~I~ OF THE (< SHOCK-GENERATING FUNCTION ~) ETC. 169 

0 

- 5  

I i ; < I i i 

I 1 I I 

I 1 I I 

I 1 I I 

t t I t 

I I I I 

I I I / 

i ! I 
I ;1 ] ] 
I , ' l  / I  ,t 
I / /  !J l  , / I  / I  

~ , ' , '  ? c/ 
i /' / A' 

I / / I ,21 I I 

',.." .,. 

-10  0 

I I l II I ]_ It I I l I 

I I I II I ~ II I I I I 

I I I II I ~" II I I I I 

i I I I I I  I + I I  I I I I 

I I I I II I l l i  I I I I 

I l I I  11 I T II 11 I I 

i 1 .  

~ , ~  , _  i / (" i_ (,6 ( / ~ , '  t 

II I_,i! 
II I i l l  
II I [ I  

I1 I ' T  I 
II I ",i- I 

II I [11 

- 5  0 

. . . .  I l l . L  " , ,. 
- I 0  -~ - I 0  - ~ /  0 I0 -6 

i , 

J 

10' 

-11 

I i 
I0 r 

10 -I  /V/o~ 

Fig. 4. - The same as in fig. 2: N~----- 0.55 (vo~ 144600kin/s), IMol = 10-5"~~ 

the increasing of vo--the narrowing of the abscissa interval in the half-plane 
M~ > 0 and, on the contrary, its widening for M: < 0. This is because, as % 
increases, the interval  [vo, e] decreases, whereas [--v, %] increases! 

We remark again, as done in sect. 3, tha t  the shocks physically acceptable 
are those related to the part  of the branches of the SGF which extends in the 
third or in the first quadrant  where, just so, ~ = - ~7/vroMo results positive. 

We also emphasize t ha t  the  shocks related to the  models of fig. 2 are all 
supersonic. In  such a case, in fact,  since v0 = 0, the classical results must  
hold. This may  be checked at  once by noting tha t  now the abscissa reads 

! 
M o ~ s ic  and tha t  

a ~  - ~ - t -  V~ 
_ _ = ~ = o , ,  so that s 

v ' i  + (v~,/o2)(y - -  I )  - I  

# 4- At the crossing points s = ~ so tha t  Mo().  o ) = :J= o./v. In  correspondence to 
the branches of ~, where, as s tated above, W~ > 0, one has, therefore, Is I > c.. 

i :h Except  in this case, i t  turns  out  t ha t  la• r c.. At  the crossing points Mo(~ o ) :  
: a:e[V/v~v--v~, for the  points belonging to the mentioned branches one 
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I i i 1 1 1  I 1 1 1 1 1 1 1 , I  

-15 - l o  --5 o 

' ~ [ : ' ~ I  

~ 1 1 1 , 1 1  
IO i 

I I ~'"  1.0 - e  t 
I I 1 , i l l , ,  I , 1 

- 1 0  0 - - 1 0  -1 - 1 0  - 6  0 10  -1 M 0 

i I 

�9 1 0 1 9 4  

. 10 '~_ 

0 - -  

- 1 0 - _  

I-lO~t 

Fig. 5. - The same as in fig. 2: N0= 1 (v0~212100km/s), [M~]---- 10-4.851/11.'9~ and 
~I~IPs= lo1~"1~I ~'~'". 

I - -  ; 4- has M'o(s) < Mo(k o ) (i.e. s < vo q- a-) in the th i rd  quadrant ,  and M'o(s ) :> Mo(k o ) 
(i.e. s > vo 4 - a  +) in the  first quadrant .  

This t ime,  however,  the  t e rm <( supersonic ~) is meaningless in t h a t  ]a~l 
does not  coincide with the  relativistic sound veloci ty ~s before. 

We cannot  close this section wi thout  mentioning,  once ~g~in, how the  use 
of the  p~rameter  Mo (or ]l/t0) in place of the relativist ic SM~ -]~o (defined in a foot- 
no te  in sect. 3) has ve ry  provident ia l ly  simplified the  calculations. This is 
clear by  observing t h a t  the  ex t reme  asymptotes  M~ = -- S and M~ = -- j r ,  
which Ulopear in each of the  il lustrations, are independent  of t empera tu re  
and depend only upon the  unper tu rbed  flow velocity.  Por  this reason t h ey  are 
common to all the  profiles in each figure. 

On the  contrary ,  since the  relat ionship between Mo and 21~ro was found 

to  be 

~o i ~' 
(4.3) 3Io I + N o M o ~ ( k ' N ~  with ~ o  - -  ]~ro, 

the  propor t ional i ty  between t h e m  varies f rom point  to  point  (because of s 
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Fig. 6. - The same as in fig. 2: No= 10 (VoW 298500 kin/s), IMo] = 10-6Ill 1.6~ and 
~l~llro= IO'6A~ a's''. 

which enters ii~to Mo), nnless NoMo becomes imgligible ~g~inst uni ty ,  in which 
case the f~ctor of proport ional i ty  would depend only on k, i.e. on the temperatl tre.  

Needless to say tha t  I + NoMo=/= 0: this c~n be soon proved by  using the 
1.h.s. of constraint  (3.20). 

Finally, drawal in the (J]~:-  ~,)-pl~ne, the mentioned ~symptotes would 
be represented by  the  following equations: 

3 1 o -  5P 

~ = _  ,4" 
1 + No Y q~(k, No) 

(extreme 1.h.s.a.symptote),  

(extreme r.h.s, asymptote) ,  

which, as shown, depend on k. 
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A P P E N D I X  A 

The eigenvalues of system (2.2) may  be found by  first t ransforming 
this sys tem in a more suitable form. Simple rearrangements  allow us to write 

(A.~) 

~r ~(rv) rv (~v ~v) 
~ + ~ - + c ~ _ + ~  ~ + + ~  =o,  

~v ev (~e ~e) 
pv ~ + pC~ ~x + r(c~ - v~) -~ + v ~ = o ,  

+) [rc~(c~ + e) + pc~] Tt + v ~x + (c~ -- +~) v ~ + c~ --~ --~0. 

Hence,  as is usually made in t rea t ing weak-discont inui ty  propagation,  
the eigenvalues of (A.J_) are those values of 2 which are related to the non- 
t r iv ia l  solutions of the  following algebraic system: 

(A.2) 

rv (--2+v)]~v=0 (--~ + v)~r + r+c~_v----- ~ 

p(c ~ - -  ,iv) ~v + r(c ~ - -  v~)( - ;L + v) ~e = 0 ,  

[rc2(c~ + e) + pc 2]( -~  + v)~v + (c 2 -vz ) (c  2 - 2 v ) ~ p  = 0 , 

obtained from (A.1) through the  formal  subst i tut ions 

~-~ -~ -  2 6 ,  ~ x  " 

Since ~p ---- ( ~ - - 1 ) ( r ~ e  + e ~r), system (A.2) results to be homogeneous in 
~v, ~r and 3e. 

B y  introducing the quan t i ty  a + as defined in sect. 2, simple algebra allows 
to find the values in (2.3). 

APPENDIX ]3 

Aim of this appendix  is to deduce the expression of the classical SGF 4o 
f rom tha t  of ~r when the  light speed is assigned ext remely  large compared 
to the other  field velocities. 

We suppose thus (v0, vl, s)<~ c and, as a consequence, (No, NI, Mo, M1)<<], 
so also k<<l.  Under  these constraints ,  we solely need to find the  approxi- 
ma ted  form of the  arguments  rl/ro and el/eo which enter  into the  expression 
of ~r as given by  (3.3'). 
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From (3.11), neglecting terms of higher order, we have 

r l  M0 
r 0 /1]- 1 _ _  2V 0 § M o  

on the understanding that  now No, /V  1 and Mo should be subst i tuted by their 
approximated values, i.e., respectively, by vole, Vl/C and (%--s) /c .  When this 
is done, leaving 3:0 indicated, we may write 

r 1 c M  0 
(B.1) -- = 

r o v~ - -  Vo § c21/o " 

Analogously, from (3.14) and (3.15) one finds, respectively, 

(B.2) 

(B.3) 

[ e o - - ( V o - - V l ) ~ / 2 ] ( V l - - v o §  cMo) 
e I ~- 

7 ( V I - - V 0 )  § C-~/0 

(y + ~)(Vo--V,) + c3[o + 
C 1 ~ e 0 

( V 0 - - V l )  2 

c M o '2 

Equalizing these expressions, the following equation for Vo--v~ holds: 

(7  - -  1)(V0 - -  Vl)3 § 7 ( 7  - -  ] ) e0 - -  c2M02 (V 0 - -  Vl)2 = 0 , 

2 CMo 

whose solutions are (Vo--Vl) 2 - -  0, i.e. V 1 ~ -  V 0 (trivial solution), and 

( B . 4 )  v, - - V o  = 2 7 ( 7  - -  1 )  eo - -  c~M~ 
(7 § !) eMo 

Substi tut ing (B.4) into (B.I), we get 

(B.I')  r 2 : (7 § 1)M~ 
ro ( 7 - - 1 ) ( 2 r k  + MX)" 

Similarly, combining (B.4) with (B.2), the required expression for e~/eo 
turns out  to be 

(]3.5) el = [2 ~/g - -  (7 - 1) ~k] (27k + M~) 
eo (7 § 1)2kM~ 

Introducing (B.I') and (B.5) into (3.3'), we finally obtain 

(B.6) 

= _ c ~ e M o r o l o g [ [  ( y §  ] l - v ( 2 7 k +  , * o ) [ 2 M ~ : ( ? - - l ) k ]  / 
/L(r-a)(zTk + / ~ ) ]  (7 § 1 ) ' k i g  ] = 

2M~.-- (7-- 1)~k] 
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a n d  one  sees a t  once t h a t  (B.6) coincides exac t ly  w i t h  (4.2') when ,  i n  th is  
las t ,  iV0<<], n a m e l y  w h e n  i t  is a l lowed to suppose  v0<< c. I n  o ther  words,  
s u b s t i t u t i n g  in  (]3.6) M0 in  t e rms  of ~4o t h r o u g h  the  r e l a t ion  M~ = .Yl~/zS= 
= / Z o ~ y ( 7 - - 1 ) k  (so also e M o =  v~.~r one finds exac t ly  t he  classical  expres-  
s ion (4.2). 

�9 R I A S S U N T O  

Si fa uno studio del s~lto dell 'entropia attraverso un 'ond~ d'urto in fluidi relativistiei 
unidimensionali. Si studi~ numericamente 1~ cosiddettn <~ funzione generatrice dell 'urto ~> 
(SGF) per diversi vnlori della temperatur~ e della veloeits del mezzo imperturbato 
e si confrontano i risultati  di entrambi i modelli relativistici e non. Divers~mente da 
quanto aceade nel caso non rel~tivistico, 1s dove la SGF esiste, in principio, per qual- 
siasi valore comunque grande del numero di 1Kaeh, nel caso relativistieo tale funzione 
divent~ &sintotieamente infinita al tendere della veloeith dell 'urto ~ quella della luce. 

0 noae~emm npon3no~atuefi tbymctlnn y~apnofi  Bosmbt B O~tnoMepnhrx pe,~qTtmHeTCKllX 

noTo~cax n qnc.aermbte 3xcnepnMenTbL 

Pe3IoMe (*). - -  MbI rICC.rIe,ayeM cKaqor 3aTpormrI l~OIIepeK y~apHo~ BOJIHbI B peJI~TH- 
BFICTCKHX O~HoMepHI, tX r~oTorax, qi4cnenno n3yqaeTc~l Tar Ha3biaaeMa~ ilpoi,i3BO,~ma~ 
dpyaI~i~a y~apao~ BOaabt ~JL~ IleCKOnbKrlX 3FIa'leHrI~ TeMnepaTyp~,t i~ cKopocT~I oKpy~aro- 
ii~ero IIOTOKa. I-IpoBo)I~TC~[ cpaBHeI~l~ pe3yYIbTaTOB KJIaccHtleCKHX H pe~THBHCTCKHX 
MO~eIIe~. B OTYIIItIIIe OT HepeYI~[THBIICTCKOFO IIOTOKa, Korea  npoH3BO:l~llla~I ~)yHIflpA~ 
y~apaofi BOYmb~ CyII~eCTByeT ~II~[ IIpOH3BOJIbHO 6OJIbIIIO~ BeYIHr-IHHbI nacaa Maxa, B 
peYDITHBI/ICTCKOM cnyqae 3Ta (~yIIKI_[HI[ CTaHOBHTCll aCHMIITOTHtIeCKH ~eCKOHe~IHOH, xor~a 
CKOpOCTb y~(apHO~ BOYII-I~I cTpeMIITC~[ K CKOpOCTH CBeTa. 

(*) Ilepeaec)eno pee)aK~ue~. 


