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This paper is intended simply to review some topics concerning topology
and cosmology fthe word ‘topology’ being interpreted rather looscly). It is
divided into three main sections: a discussion of topological properties one
might expect in any reasonable model of the universe; a discussion of
properties of some cxact solutions which might serve as reasonable simple
cosmological madels; and some comments on propertics one might expect
in morc realistic universe models.

The essence of the study of cosmology is trying to determine not merely
possible space-titne structures, but ones that probably exist in the universe;
this leads to the related problem of attempting to verify what structure the
universe actually has. I shall try to emphasize this viewpoint.

1. Plausible Propertics of Space-time

We consider first properties one might expect any reasonable space-time
to have.

The usual model of space-time is a C = d-dimensional connected Hzusdorff
manifold M on which there is a pseudo-Riemannian metric g which is ar
least C<, piecewise C3. (I shall take the iormal formto be (— + + +).) The
existence of the metric on A is implied by the local validity of Special
Relativity. One zssumes in addition field equations determining the metric g
on M (which I shall assume are the Einstein ficld equations). suitable
equations deterrmining the behaviour of the matter content of space-time
(e.g. Muxweil's equations, the Weyl equation, etc.) and hence equations of
state relating the components of the energy-momentum tensor; these
equations of stare may often be represented by suitable ‘cnergy conditions”,
representing the positive definitencss of energy rather th.m more detailed

propertics of the matter,

It is no restriction taking the manifold to be C= rather than say, C85,
since the atlas of any C! manifold contains an analytic subatias (Whitney,
[7]). Onc usually takes the metric to be C <; this is not an essential restric-
tion, sinnce (even disregarding quantum difficulties) one cannot measure the
differentiability <lass of the metric because of the finite accuracy of any
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measurement. The metric determines a unique Christoffel connection on
(M, g); this implies (Geroch, {2]) that 3/ has a countable basis, and so
(Kobayashi and Nomizu, [3] p. 271) that M is paracompact.

The existence of a Lorentz metric g on M is equivalent to the existence of
aline element ficld on M (Steentod, (4], pp. 204-207); this always existsif M
is non-compact, but if M is compact it admits a line element field if and
only if the Euler-Poincaré characteristic x(A)=0 (Markus [5]. Fierz and
Jost [6]). In fact the space-times we consider will be non-compact. This is
because if space-time is compact then (Bass and Witten [7), Geroch [8]
Kronheimer and Penrose [9]) there exist closed timelike lines in A,
violating the usual concept of causality. In fact, one cannot regard the
existence of closed timelike lincs as necessarily disproved by experiment;
for example it would: be difficult to prove or disprove the existence in the
universe of closed timelike lines whose proper length was 2 10° years.
(Although there would then be closed timelike lines-of arbitrarily small
proper length, these would in general involve large integrated accelera-
tions.) However, if they existed it would be impossible to maintain the
simple concept of the evolution of the universe (orof systems contained in
the universe); the Cauchy problem would change to a complicated cigen-
value problem in which almost all *initial data’ was non-admissible. One
will therefore usually assume that space-time satisfies one of the causality
conditions (cf. e.g. Penrose [/0]): perhaps the most plausible of these is that
of stable causality (Hawking [/1]) i.e. the condition that there exist no closed
timelike curves in Af even if g is slightly perturbed. 1t then follows that A
must be non-compact. Two further consequences are (i) that the past light
cone of any point is part of the boundary of its past (Kronheimer and
Penrose [9], Penrose [10]) except where the past light cone lics within the
past of the pointt, and (ii) that if space-time is time-orientable, then a
cosmic time function exists, i.e. there exists a function ¢ such that the
surfaces {r=constant} arc a family of closed imbedded spacelike 3-surfaces
without boundary, and ¢ increases along every future-directed timelike or
null curve (Hawking, [//]. '

In fact one would expect that space-time was time-orientable since this
follows if each observer can determine o unique forward arrow of time by
thermodynamic and electrodynamic experiments (clearly such an assign-
ment of a -+ dircction of time would be continuous). One would further
expect that space-time is oricntable, since (Geroch [12], Zeldovich and
Novikov [/3]) arguments based on the CPT invariance of fickl theory,
together with the fact that interactions which violate €, £ and CP have been
observed, imply that A is either both space and time orientable or both
space and time non-orientable; in either case, space-time is orientable. 1t
follows on combining these arguments that space-time is space-orientable.
Thus one can safely conclude that the space-sections {r =constant} defined

t The light-cone lies inside the past after self-intersections or conjugate points
oceur,
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by a cosmic time function 7 are orientable 3-surfaces. that 3/ admits a global
system of oriented time lines, and that a non-zero totally skew tensor eqgped
can be defined globally. Further, these arguments disaflow the intriguing
possibility (Markus, [/4]) that a space-traveller might leave a right-
hand glove at home and find on his return that the glove fits his left
hand! _ »

A Turther property onc would usually demand is that M should admit a
~spinor structure, i.c. that one could define two-component spinor ficlds

globaliy on M (Penrose [19]. Geroch [2]) since one might in principle deter-
minc a spinor structure (sce Aharonov and Susskind {/6]) if the focal pro-
perties of spin-1 particles are everywhere the sanie. The existence of a spinor
structure implies various conditions (Lichnerowicz [13]. Penrose [10].
Bichtcler [/7), Geroch [/8]) besides the existence of a Lorentz metric: in
particular it impfics (Pznrose [/0]) that M is space and time-oriented,  and
(Geroch [2]) that if 3/ is non-compact it admits a global ficld of ortho-
normal tetrads.

Fm.ﬂl) we note that any non-compact space-time M can h(. imbedded
globally in a Euclidcan space R®® with signature (—. —, +,..., +) (87
plus signs!) (Clarke [/9]). Thus the original concept of a manifold as a
subspace of a flat space extends to the space-time manifold (31, g) of every
reasonable cosmological medel.

2. The Clifford-Klein Space-form Problem

We now have a list of properties one might demand of any reasonable
modet of the universe. One way of proceeding further is to examine in
detail s:mpk solutions of Linstein’s equations which are good models of the
observed universe,

In fact. it is known (Hawking and Ellis {20], Elis [27]) that? the spatially
homogencous, isotropic universe models are very good approximations to
the obscrved universe back until the time of last scattering of the obscrved
microwave background radiation. The argument is a purely local one,
following from the isotropy of the radiation and from the Liowille
equation gov 'rning the propagation of radiation in a curved space-time,
and docs not give any information regarding the connectivity of space-time
(M, g) in the large. ,

Given any spice- -time (M, g.,) there exists a universal um.rmg manifold
M with metric g such that M is simiply connected and (M, g) is obtained
from (7, 1,,) by suitably identifying points in AT (we shall always label
quantities in M with a ~, and corresponding quantitics in M by the same
symbol with no ~). In fact onc recovers (A, g) from (31, §) by identifying
points equivalent under a group I' of isometries of A7 which acts freely and

t Space-time admits a spinor structure if it admits a spin structure (Lichnerow icz [15])
and is in zddition time ard space orientable,
3 Assuming our galaxy is not at the centre of the uniserse,



10 : G. F. R.ELLIS

properly discontinuously § (Woll [22]. Section 1.8 and Lemma 2.3.10). i.c.
by forming the quoticnt space M = A/l where I' is a properly discontinu-
ous discrete group of isometries without fixed points.} Thus given any
solution of the ficld equations which is determined by local propertics only,
one can first form the universal covering space (M. §) and then determince
the possible identifications I,

Four of the spatially homogeneous isotropic universe models are
homogeneous space-times: namely the space-times of constant curvature K
(K =0: Minkowski space F4, diffeomorphic to RY; K= + 1 : de Sitter space
DA, diffcomorphic to $3 x R!; and K= —|: anti-de Sitter space A3, whose
universal covering space A1 is diffecomorphic to R*) and the Einstein static
-universe (diffcomorphic to RY). The possible identifications in the first three
spaces, resulting in the relativistic space-forms, have been studied in detail
(sce Auslander and Markus [23] for the casec K=0, and Calabi and Markus
[24] for the case K= +1 and K= —1; see also Schrodinger {25). Markus
[14]. Wolf [22]). Wolf has constructed a large cluss of twisted Einstein
worlds by studying identifications possible in the Einstein static universe
(private communication). However, we shall not pursue these cases further;
the systematic Doppler shift obsceved in the spectra of distant galaxies
implics (since we assume Genceral Relativity to be valid) that the density of
matter is decreasing and so that space-time is not locally homogeneous.
Thus a reasonable way to proceed is to consider the space-times (87, §)
which are locally the expanding Friedmann (or Robertson-Walker) universes
(Robertson {27]. Bondi [28]) with metric

ds?= —de*+ R¥¢t) do*

and in which the 3-spaces {1 = constant} with metric do® are simply connected
complete 3-spaces of constant curvature k= +1, 0 or — 1 (respectively a
3-sphere S3, Euclidean space R3 or hyperbolic space #H3 diffcomorphic to
R?), and then to consider possible identifications in these space-times. This
gives a list of those space-times which satisfy locally restrictions of spatial
homogeneity and isotropy, and have complete space-sections with the
vorious possible (global) topological structures.

Because these universes are expanding, I' must map each 3-space

¥ The group T acts freely if y(x)=x for any x = M when y € I implies y is the identity
e, and acts properly discontinuously if every point x € M has a neighbourhood U/ such that
{y € I': f(UU) meets U} is empty unless y is the identity, and further whenever x, y € M
are such that there is no y € I' with »(i)=y, there are neighbourhoods U, U’ of x, ¥
respectively such that Uy N U is empty forall ye I,

$ foncista ldgn!lry points in (A7, £) L(]IIIV.Ilc. nt under a dlﬂ'mmorphnsm y: MM,y
must clearly be an isometry. Unless it is the identity it must have no fixed points, for
otherwisc suppose p is left invariant but ¢ is not. Then a continuous curve A between p
and ¢ will have some point r€ [p, q] on it such that y(r)=r but distinct points of A in
every open neighbourhood of r are not left invariant by y and are identified with their
images. Thus there can be no neighbourhood of r diffeomorphic to R*,
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{t=constant} into itself;} in fact, one need consider only one such surface,
the identifications in all other surfaces being determined from those in one
surface because I' commutes with the congruence of surface normals. Now
any isometry y € I which maps the metric 4 of cach 3-space (2= constant}
into itsclf leaves the second fundamental form y of each surface invariant
(as xas =f(#)has). so the problem reduces to the Clifford -Klein space-form
problemi (Killing [29]. Klein [30], Rinow [31]: for all aspects of this
problem, sec Wolf's book [22], especially Theorems 2.4.9 and 2.4.10) of
classifying all space-forms, that is all complete connected Riemangian 3-
spaces (metric (+ + +)) of constant curvature. The restriction to connected
3-spaces is made because if there were disconnected components there would
‘be no physical connection whatever between the corresponding dis-
connected - parts of space-time. The restriction to complete 3-spaces is
necessary because otherwise what one can do is highly arbitrary; for
example, Clarke and Schmidt have given as an example the universal cover-
ing space of a flat 3-space from which a line has been removed.  Thisspaceis
locally flat and is diffcomorphic to R3, butitis incomplete and inextendible.

A word of warning is in order here: identification of points in M via I' to
produce M usually lowers the dimension of the group of isometrics of the
space. Thus one might wish to know which of the space-times we consider

- admits the full 6-dimensional group of isometrics, and which of them are
spatially homogencous (i.e. admit any group of isometries G transitive on the
3-surfaces {r=-constant}). We shall consider these special cases in our
subsequent discussion. The essential point here is that if I is used to identify
points in A7 to produce M, this identification must be invariant under any
isometries of A, so G must be the centralizer of I' in the group G of
isometries of A7. If for example a Killing vector field K generates a 1-
parameter group of isometries of AT which does not commute with a non-
trivial element y € I, then K does not project into a vector field on M, and
(as y can have no fixed points) the corresponding Killing vectors on M
generate local l-parameter groups of isometries but not complete isometry
groups.$ It follows that the dimension of G can be the same as that of G
only if I' commutes with the isotropy group #/, of each point p. for other-
wise p and p” would be identified where p was invariant under 77, but p’ was
not. It also follows that Af is homogeneous if and only if the centralizer of
[in G (i.e. the set of alk g & G such that gy =g for all y ¢ I') is transitive on
M (Wolf [22;, Theorems 2.4 17 and 1.8.19). Incidentally, it follows (Wolf
{22}, Theorem 2.7.5) that if A/ is homogeneous then every element y of
is a Clifford translation of M. i.e. is a transformation y : v -3(x) such that
the distance between x and its image $(x) is the same for all x ¢ ¥,

t Some universe models collapse to a second singularity and then there Jo exist fixed-
point frec isometries y of Af which map different spaces {#=:constant} into each other;
however the resulting space-times M, 1" are not time-oricntable,

$ I & is a l-parameter group of isometries of A, wdentifying under y means that
() = 2 p) = A& p)) for all 2. Thus cither g and y commute, or g dovs not project
into a group &« of isometrics of A (cf. footnote p. 10).
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We consider first the case &k = +- 1. The 3-spaces {t=constant} in M are
covered by $3, and so are necessarily compact (‘closed’ or “finite’). The
space-times M are invariant under two simply transitivet isometry groups
of Bianchi type IX. and these groups commute with cach other (Eflis and
MacCallum [32]). Each of these is in fact a group SU(2) locally isomorphic
to the group SO(3) and diffcomorphic to the 3-sphere $3 (which Jdoubly
covers SO(3)). One can identify the representative surface {r=constant}
with one of these groups, and can represent it by the unit sphere in RY;

. however the connection with SO(3) is clearer if it is represented by two
balls S). S of radius = in R® with antipodal points on their surfaces -
identified. Then cach point (. #. &) of S| represents a rotation through an
angle x about the (0, ) direction. and each point (x, 8, 4) in S: represents a
rotation through an angle a+ 2= about the (€, 4) direction: rotations
through 2= are not identificd with the identity but rotations through 3= are
identified with the identity. As a body is rotated through 4= about the
(0, ¢) direction, a point representing its position traverses a straight line
through the origin of S). through the origin of S: and back to the origin of
S1. Thus in this representation of the 3-surfuces {£=constant} the orbits
through the origins of Sy and S of I-parameter subgroups of the group of
isometries arc the straight lines through these points (whick are geodesics
Ain these surfaces) and the mietric at these points is the natural Euclidean
metric (¢f. Schmidt {33]). One rezains SO(3) as the real projective space P3
obtained by identifying points on the straight lines thmug.‘l the centres of
S1 and £ which are a distance 2= apart.

The particular usefulness of this representation lies in thc fact that the
discrete subgroups of the rotations SO(3) about any point in R3 are well
known: they are (Woll {22]. Section 2.6), (i) the cyclic group Z,, of rota-
tions through an angle 2=/m about any given axis, (ii) the dihedral group
D, 1.c. the symmetry group of any regulur m-gon lying in a 2-plane (Which
consists of Z,, plus reflections in certain planes perpendicular to the given
plane); (iii) the polyhedral groups. namely the symmetry groups T of a
regular tetrahedron, O of a regular octahedron and f of a regular icosa-
hedron? in R%, In an obvious way these finite rotation groups correspond
to sets of points in the Bianchi X group space which represent the
action of the cyclic group Z,,. the binary dihedral group D*,,, and the
binavy polvhedral groups 7%, O* and [* on the origin in SU(2). Operating
by the commuting simply transitive group onc obtains corresponding sets off
points for the same groups acting on any point in the surface {f = constant}
(the-origin of the group was represented by an arbitrary pointin this surface).

if one identifies the points in the space {r= constant! corresponding under
any of these groups, the resulting 3-space is homogencous because the
transfornmations used in the identifications (all from one of the Bianchi IX

t From now on, by ‘transitive’ we understand “transitive on the 3-spaces (£ = constant}’,

$ A repular tetrahedron is'a regular polyhedron with 4 vertices, 6 edges and $ faces; an
octahedron s that with 6 vertices, 12 edpes and 8 faces; and an icosahedron that with 12
vertices, 30 edges and 20 faces. In each case the faces are equilateral triangles.
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groups) commute with all the transformations in the other Bianchi X
group. In fact, one obtains in this way all the homogeneous space-forms with
k=+1 (Wolf [22], Corollary 2.7.2); these are therefore (i) M3-S3,
(i) M3=P3, (iii) M3=S83Z,(n>2), (iv) M3I=83D*, (m>2), (v)
M3=S83T* AM3=S53%0* or M3=S3I* This therefore gives all the
spatially homogcncous expanding Robertson-Walker _universes  with
k= +1. Clearly there are an infinite number of them (as 2, m can take any
value >2); only in the cases AM3=383, and M3=S83%Z, with n odd, are
antipodal points not identificd. The only spaces in which the full group of
isometries is six dimensional are A/3=S3 and M3=P3 (cf. Kobayashi and
Nomizu {3]. Theorem I, p. 308); this follows because the isotropy group
Hj of any point p leaves invariant precisely that point and its antipodal
point, so the only identification not breaking this group is the identification
of thesc two points.}

Further identifications arc allowed if one drops the restriction that the
resulting space be homogencous; effectively what happens here is that one
can combinc elements of the type mentioned above from the two commuting
simply transitive groups to obtain new discrete isometry groups I without
fixed points.} One obtains (Wolf [22], Section 7.5, p. 224), besides $3 and
P3, spaces in which the group I’ takes one of the forms Z,(n>2), Zy, x D*,
(this can happen in two ways), Zy x T*,, Zy x O*, and Z, x I*, for certain
values of v and r, where T*, are subgroups of T*; all spherical space forms
belong to one of these types.

Next we consider the case A =0. The 3-spaces {¢ = constant} arc invariant
(Eltis and MacCallum [32]; but sce§) under a simply transitive group of
Bianchi type 1 (the translations) and, for ecach direction at a point, a I-
parameter family of simply transitive groups of Bianchi-Behr type Vg
(generated by a screw motion, i.e. a translation in that direction accom-
panied by a rotation with pitch angle ¢ about the direction of translation,
plus translations in the perpendicular directions). One can choose a discrete
subgroup of any l-parameter subgroup of any of these groups, and
identify pcints equivalent under this discrete subgroup. One can also
identify points equivatent under a ‘glide reflection’, i.e. a reflection in a
plane through the origin followed by translation parallel to the planc. Thus
there are three simple types of isometry without fixed points (translation a
givendistance, a screw motion througha given distance or a glide translation
a given distance; again one has in effect combined a translation with cle-
ments of the isotropy group of a point to obtain new isometries without

¥ There is a space of the type mentioned in the footnote on p. 10 in which the full
isomeltry group is six-dimensional; this is the one in which (regarding the space-time as
imbedded in five duncnsions) space-time points antipodal about the imbedding centre are
identiticd.,

3 In effect one identifics points equivalent under translations of a point comb:md with
elements of the isotropy group of that point.

§ Note that an crror occurs in [32], p. 128, where the statements (under the headings
Re=0and R*<0) ‘a three-parameter family of groups® should read *a two-patamieter
family of groups'.
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fixed points). All the fiaw non-compact space-forms can be obtained by
combining such isometrics. (Wolf [22]. Theorem 3.5.1). The orientable
space-forms of this Kind are (a) type € (I'=1, so M3=R?*x R'=R3); (b)
type 1? (I is generated by a screw motion through an angle 6;
J19=(cylinder) x Rt =S1x R?); (¢) type F1 (T is generated by two
independent translations ; M3 =(torus) x R?); and (d) type X"y ([ generated
by a translation and by a screw motion through an angle = in a direction
perpendicular 1o the translation). The 4 non-orientable kinds of flat non-
compact space-form, which include manifolds M3 =(Mobius strip) x R?
and M3 =(Klein Bottle) x RY, can be obtained similarly on including glide
reflections in 1.

The flat compact space-forms can also be thought of as built up by
identifications under these operations, but it is perhaps casier to think of
them as obtained by identifyving opposite faces in possible crystal Lattices.
The orientable cases are (Wolf [22)], Theorem 3.5.5) those obtained from a
translation lattice (i) by identitying opposite sides, obtaining 4 torus 73;
(i1) by identifying opposite sides, onc pair being rotated by =, (iii) by
identifying opposite sides, one pair being rotated by #/2; (iv) by identifving
opposite sides, with all pairs rotated by = (in cases (i), (iit) and (iv) some of
the lattice angles are necessarily right angles), and those obtained from the
lattice made by translating a hexagonal plane lattice a certain distance
perpendicular to the plane, by (v) identifying opposite sides with the top
rotated by 2#/3 with respect to the bottom, and (vi) by identifying opposite
sides with the top rotated by #/3 with respect to the bottom. The 4 non-
oricntable cases can be obtained similarly (Wolf {22], Theorem 3.5.9).
Clearly the precise identifications one gets depend on the sizes and angles
assumed in the lattice used to determine the identifications,

Of these space-forms. the only ones which are homogencous arc those
which are the direct product of a Euclidean space and a torus (Wolf [22).
Theorem 2.7.1), i.c. arec of one of the forms R3, R2x S, R'< T2 or T3 in
which identifications have been made using discrete subgroups of the
Bianchi 1 (abelian) group. The only flat space-form invariant under a full
G isometry group is the original manifold R3 (since the isotropy group of
any point leaves no other point fixed; cf.. Kobayashi and Nomizu [3].
Theorem 1, p. 308). All flat space-forms belong to one of the I8 types
mentioned abose.
~ The remaining case is that of space-forms with k = — 1, The classification
of this case has not yet, as far as [ am aware, been completed.t We shall
consider just three possible kinds of identifications. The 3-space H3 can be
globally imbedded in Minkowski space F': for each direction at a point, it
is invariant under a simply transitive group of Bianchi type V (translations
of M%) .and a l-parameter family of simply transitive groups of Bianchi-
Behr type Vil (a screw motion plus translations, cf. the case & = 0). Ong
can again identify points under any discrete subgroup of any |-parametes

1 In fact, even the clissitwation of 2-dimensional space-forms of constant negative
curviture appears to be incomplete.
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subgroup of these isometry groups, or under a ghide reflection assoviated
with the traaslations. Secondly, it is known (Ellis [34]) that the metric of a
3-space of constant negative curvature can be written locally in the forin

do?=dr®4cosh?rds? 2.n

where dr? is the metric of a 2-space S of constant negative curvature. Now
there are infinitely many such complete connected 2-surfaces (or 2<dimen-
sional space-forms); for example.Klein [30] shows how onc can. obtain.
compact complete 2-surfaces of constant negative curvature ditffeomorphic
to a 2-sphere with any number of handles attached. Taking any such 2-
surface S, one obtains from (2. 1) a complete 3-surface of constant negative
curvature where A/3= R x S. Finally an clegant paper by Lobelt [35]shows
how onc can Jind a set of 14-sided figures (2 sides are regular rectangular
hexagons and 12 are rectangular pentagons) which fit together to fill #73 just
once.t Thea one can proceed to construct compact 3-spaces of aqmunl
negative curvature by suitably identifying sides (¢f. the procedure! in the

casc k = 0); Lobell shows how to construct infinitely many different compact
(oricntable or non-oricntable) 3-spaces in this way.

Thus atthough onc does not have a complete solution to the space-form
problem with k== — 1, one knows there are very many such spaceiforms.
However the only homogeneous such space-form is 213 itself (Woll' [22
Theorem 2.7.1; ¢f. Yano and Bochner [37). theorem 2.10) and so «
Jortiori this is the only 3-space of constant negative curvature .ldmmmg a
full Gs group of isometrics.

The complexity of these topological structures contrasts smkmg- with
the simplicity of the local metric propertics of these space-times. In tact the

ways in which points can be identificd in space-times with rather more
complicated metrics are rather simpler. Thus the next simplest realistic
cosmological modcls after the spatially isotropic and homogencous uni-
verses, are those which are spatially homogencous but not isotropic. and
the simplesi ol these are those space-times tilled with a perfect fuid inwhich
there is a group of isometries transitive on 3-surfaces orthogonal to the
fluid flow vector. With the exception of the Kantowski Sachs spaces (28] of
class 1, all such spaces have a subgroup of isometries simply transitive on
the homogencous 3-surfices. The covering manifold 8% in the Kantowski--
Sachs spaces is $% x RY; for all the other such spaces 53 is B3, except for
thosc invariant under a group of Bianchi tvpe IX when A7 s 8% (Schmidt
[33D. Now if the group is 4-dimensional then any pointis invariant under a
f-parameter-isotropy group, but in general the group is 3-dimensional and
each point is invariant only under a discrete isotropy group (ef. MacCallum
and Ellis [49], Schmidt [$3]). Thus the space-form problem for these spaces
is simpler than the corresponding problem in the Robertson Walker spaces
for there are similac diserete “translations’ but fewer reflections and rota-
tions whicli can be combined with these transtations.

For example, in the Kantowski Sachs case, one can (a) identify points

1 CF. the recent paper by Garner [46).
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under a translation in the R'-direction, or under a transtation in this
direction plus a rotation or reflection, (i.e. a screw motion or glide reflection
in this direction), thus producing compact space-times. One can also (b)
identify antipodal points in cach 2-sphere §2; however, this is the maximum
identificiion allowed in any two-sphere (¢f. Wolf {22). Theorem 2.5.1).
Thus the only other identifications allowed are (¢) & combination of (a) and
(b). If the group is of Bianchi type 1, the group U is that subgroup of the
group I’ discussed above in the Robertson-Walker (& =0) casc which
prescrves the second fundamental form of the surfaces {#=c¢onstant}. In
general the sccond fuadamental form is invariant only uader “discrete
isotropies through an angle = about its principal axes. Thus the non-
compict orientable manifolds can in gencralt only be of type &, /0, #y7,
Ty andXy, while the compact orientable manifolds can in general only be
of types (i), (i) and (iv). Simitarly if the group is type IX, one can make the
same identifications as those listed above for homogencous! space-forms
with k= + I, and in general can only supplement these identifications with
certain additionalidentifications corresponding to glide reflections or screw
motions through =,

The giobal properues 01 an o1 ese $Pices Arc casiy ovtaned as
M= M3x R and M= M3/, The identifications we are dm(mmg would
have two p.\rmul.\r cffects —first, they would affect the occurrence of
particle horizons in the universe, and this could be important (Misner [m])
Sceond, they would be observable in principle, as an obsérver would in
general see cach gak 1y (including his own galaxy) simultancously in several
different positions in the sky.} However observational vdritication of
whether this had actually been observed or not would be rather difficult to
obtain, since in general cach image of the same galany would be an lm.\z.u
of the pataxy seen from a different direction and at a differsnt stage of its
evolution. (CF. attempts to verify if the antipodal galaxy could have been
observed in universes with A= ¢ 1 and A0 (Sotheim [JI]\X Note that if
identifications are made, one can in geacral see round the universe even if
A=0, cf. Audretsch and Dehnen [42). ‘

It is clear from the above discussion that (¢f. Heckimann agd Schucking
[26)) a Robertson \\m}kcr universe model can have conpact spatial
sections even it & =0 or — 15 thus the question of whether the universe is
spatially fiiite (i.c. the 3- \p.lu:\ - constant] have a linite mlmm) or not,
and whether there are a finite number of particles in the universe or not,
canpot necessanly be settted simply by determining & foran idealized
universe model, While some of the topotogical structures discussed here
may scenm rather undikely, they cannot simply be dismissed out of hand ; the
only way to determine the topological structure one should give models of
the ebserved universe is by direct observation.

tUhe exceptions are the cases where the expansion quadric is rotationally synunetric;
then the space admits a group of isometries G, where ros 3,

$ Exceptin the cases M = R aad M= 29, these space-times would not be spatially
NOrpIc,
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3. The Observable Universe

While the idealized universe models discussed 1in Section 2 are both useful
and interesting in their own right, they clearly do not correspond exactly to
the (macroscopic) observed universe. In particular, although the universe is
very like a Robertson -Walker universe at recent times, it was probably (or
at lcast, conccivably) not like a Robertson-Walker universe at the carly
times for which we have no direct observationad evidence (Ellis [21)).
We can have no causal connection with space-time points outside our
causal pastt, so any deductions one may wish to draw about the global
structure of the universe have to be inferred from evidence from this rather
limited region of space-time.

Since one has reason to believe that at carly times in the universe's
history it was filled with a hot dense ionized gas, there is for every observer
a surface ¥ in space-time (say, the surface on which the optical depth
rcaches unity) which is a surface of ‘last scattering” of light; he cannot
obtain direct information about carlier times by optical or radio observa-
tions, since light emitted atearlier times will have been multiply scattered or
absorbed by the intervening plasma. We will write £ for the past light
cone of our present position p in space-time, /- for the (chfonological) past
of p, ¢ for that part of £ containing p and bounded by YN E - and 7~
for that partof I between p, - and 7 x.70 ] -, The part of the universe
we can observe directly is then « . The part of the universe we can hope to
determing in considerable detail is 7.

" In the Robertson Walker universes discussed in Section 2,¢7 is compact

as it is covered by the unit ball in B3, its actual topology being determined
by the identifications on « under 1. & is diffcomorphic to &, and # - is
topologically {0, 1] « . In more realistic universe models, one might still
expect 7 and that part ¢ of € which forms the boundary of #  to be
compact. If further 77 is compact (one might expeet this if the distribution
of radiation is sufliciently uniform) then a theorem of Geroch (Geroch
{8]. theorem 2; of. also Kundt [43)) can be adapted to show that (since M is
causal) ¢ and 7 are homeomorphic and that .7 is topologically (0, 1) x e .
Hence one could determine the topological structurse of .2 at least, since
one could (in principle, ef. remarks in Section 2) deternine the topological
structure of « by direet observations. However, the probable existence of
isolated singularities in the universe suggests that this picture might be false
in two different ways, if one examines the space-time steucture on a fairly
fine (macroscopic) scale.

First,} if a *black hole’ crossed ¢ |, it would probably deform it into a
cusp or even tear a hole in it so that & was non-compact: our present
understanding of the evolution of massive objects indicates that some of

1 Although the constraint cquations do (cf. Gauss” theorem in Newtonian theory)
comvey some information Lhout space-tisne outside our causal past,

$ One can obtain exact solutions corresponding to both these possibilities, namgly the
‘Swisv-Cheese” universes (of, Rees and Sciania [46], Kantowski [47). The high isotropy of
background raduition places innts on the size and Jdensity contrast of such fuctuations.

2
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these objects must evolve to a collapsed state fairly rapidly, so that some
spch collapsed objects are likely to exist in the universe (Hawking and Ellis
[20), Penrose [10]). Sceondiyt fluctuations in a Robertson Walker wriverse
arc of two types, the relatively increasing and the relatively decreasing
(Sachs and Wolfe [44}. Rees {45)). There appears to be no @ priori reason
why once kind should be more prevalent than the other; however following a
‘relatively decreasing’ perturbation back in time, 8p/p (8p, >0, is the
fluctuation in the density p} increases and so such a fluctuation would fall
inside its Schwarzschild radius and become singular before the rest of the
universe had cnll.lpsud Thus such fluctuations would be capable of Eeform-
ing or tearing 7. However, it is perhaps unlikely that singularitics of thls
kind would h.\\c formed within 7 -

It may be taken as well Lsuhhslud that a singularity must occur some-
where in 7 - in the sense that necessarily at least one timelike geodesic from
p into the past is incomplete (Hawking and Ellis {20], Kundt (48], Hawking

“and Penrose [49), Pearose {10]). The nature of the singularity is not yet
clear (Geroch [40), Schimidt [$1]) nor how extensive it is (e.g. what propor-
tion of the timelike geodesics through p are incomplete). H some pust time-
like geodesics through p evade the singubarity (e, if they are complete
in the past time direction) then it is unlikely that there would be a
Cauchy surface for 7 . I this were so, there would be no Cauchy susface in
M (cquivalently, M would not be globally hy perbolic, ¢f. Geroch [32]) and
one could think of the singularity as having a timelike character.

We do not know at present of any Kind of observation which could
conclusively show whether this was so or not. A statement as to whether the
singularity is probably timclike or not has theecfore to rely on our Anow-
fedge of general features of the known solutions of Linstein’s equations and
of possible pathological space-times. However the existence of highly
pathological space-time models cannot be taken to indicate that there exist
simifar regions in the actual universe; in the absence of observational
evidence, one can only attempt to eviluate what properties probabiy cxist
in the physical universe by deciding what properties are generic 4f. S,
Hawking's paperd). Thus one need not take all pathological spage-times as
indicating probable propertics of the physical universe but only reasonably
pathalogical space-times! In fact, one may argue (Hawking and Elles {20))
on the basis of the probable inhomogencity of the carly universe and of the
nature of the Kerr and Retssner Nordstrom solutions, that it is fikely that
the singularity in our past is timelike; then further probable conseyguences
are thit some points in the past 7 of p cannot be joined to p by timelike
geodesics (¢f. Seifert [S3]: for example there are pairs of points in the
Reissner Nordstrom solution which can be jnim d by timelike lines but not
by timclike geodesics), and that some points in [ which can be joinad to p
by a timelike Lwdwu cannot be joined to p by a maximal timelike curve

1t See foutnote § onp. 17,
3 GRG Journal (1971) 1, 393,
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(cf. Boyer [54]). Under these conditions it seems difficult to decide whether
the boundary of 7- is likely to consist simply of £~ or not, and whether
particle horizons are likcly to exist in our past or not.

In gencrai it scems diflicult to make any precisc statements whatever that
are in some sense verifiable about the part of Af outside -, (Note here the
warning contained in Misner’s paper [55] which shows that cven analytic
continuation is not necessarily unique; in fact, Geroch has shown that there
are many incomplete inextendible analytic extensions of any space-time
which kas one analytic extension.) Thus in gcncml onc cannot hope to
investigate the global structure of the universet but only its large scale
structure. However there are exceptional cases: suppose the Robertson-
Walker universe which gives the best representation of the structure of the
universe since ¥ has compact spatial sections. Then it might be that <=
intersects the world lines of all galaxics at present existing in the universe,
i.e. the particle horizon may have been removed at some (relatively late)
time becaus: of the compactness of the spatial sections. In this case (one
could in principle observe whether this occurs or not by sceing whether the
same galaxics arc observed in different directions or not; but cf, remarks in
Section 2) onc would have suflicient information on ¢~ to determine the
complete evolution of the idealized Robertson-Walker universe and its
contents—-by a slight deformation of ¢ one would obtain a Cauchy
surface and would be able to determine the initiaf values of all physical
ficlds on this Cauchy surface. Even if a closer look revealed that space-time
did not possess a Cauchy surface, one would still have sufficient information
to determiine the evolution of a complete branch of the universe for a finite
time (unless € was ‘torn” by collapsed objects, ¢f. remirks above).

Clearly it is an ilncro.s(in;, question (o ask whether the universe has any
compact spatial sgctions.} In the Robertson ‘Walker case, k= + 1 implics
that such seztions do exist, but as we have seen in Section 2 they can exist
even if A:=0 or —1. The suflicient condition can be genceralized to any
space-tim=2, since if there exists any complete spacelike 3-surface S in M
such that for every unit vector m tangent to S, R¥%qua®nt 2 € >0 (R3%s is the
Ricei tensor of S) where ¢ is some constant, then S is compact and has
diameter jess than or equal to 74/(2/¢) (sce Milnor [$58), Lemma 19, 5). The
Gauss -Codacci equations determine Ry from Rgp and from the second
fundamental form of §; roughly speaking, these cquations imply that if

t One might want to ask, for example, whether A is diffeomorphic to R4 (i.¢. can be
covered by oane single coordinate neighbourhood) or not. One feels reasonably sure this
cannot be true.

$ CI. Finstein [56], Avez [57]. When such submanifolds exist one can apply standard
theorems vahd for compact manifolds, e.g. Bass and Witten [7]. The example of de Sitter
space shows that familics of complete, simply connected imbedded 3-spaces of constant
curvature & = + 1, 0 and - 1 can all occur in the same space-time. Hardeen has given an
example of a (.lll\..l' complete and connccted space-time in which there is a cosmic time
function ¢ such that some space-sections {¢ - constant} are compact and ditfecomorphic to
32, and some are compact and consist of m disconnected components where m s any
positive integer.
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there is sufficient energy-density present on § then this encrgy densiy
causes this 3-surface to close up spatially. It has so far proved impossible to
determine unambiguously by astronomical observations whether sufficient
matter is present to close up spatially an exact Robertson -Walker model of
the universe (cf. Sciama [59)) or not, so the somewhat more delicate argu-
ment needed in the case of an almost Robertson -Walker universe cannot at
present be pushed to a firmy conclusion cither.

~ This section has discussed some of the qualitative questions about the
physical universe one might hope to settfe by observation in conjunction
with suitable theorcetical developments. Finally | should mention that all
along | have been concerned only with macroscopic scales; much more
complex problems could arise when one considers space-time structure ona
fine enough scale (¢f. Professor Wheeler’s discussion, for example).
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