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This paper is intended simply to review some tQpics concerning topology 
and cosmology (:he word 'topology' being interpreted rather loosely). It is 
divided into ',hree main sections: a discussion of  topological properties one 
might expect in any reasonable model of  the universe; a discussion of 
properties of  sor:~ exact solutions which might serve as reasonable simple 
cosmological m~r~els; and some comments on properties one might expect 
in more realistic universe models. 

The essence o f  the study of  cosmology is trying to determine not merely 
possible space-time structures, but ones that probably exist in the universe; 
this leads to the related problem of attempting to verify what structure the 
universe actualIx has. ! shall try to emphasize this viewpoint. 

I. Plausible Properties o f  Space-time 

We consider first properties one might expect any reasonable space-time 
to have. 

The usual model of  space-time is a C ~ 4-dimensional connected fR:usdorff 
manifoM M on ",~hich there is a pseudo-Riernannian metric g ~h[ch is at 
least C ~, piece;, i~ C 4. (i shall take the aormal formto  be ( -  + + + ).) The 
existence of the metric on M is implied by the local validity Of Special 
Relativity. One ~sumes  in addition field cquations determining the metric g 
on M (which ! .~hali assume are the Einstein field equations). ~,uitable 
equations deterr~.~Jning the behaviour of the matter content of space-time 
('e.g. M~,xwe|l's equations, the Weyl equation, etc.) and hence equat,ons of 
state relating the components of the energy-momentum tensor; these 
equations of state may often be represented by suitable 'energy conditions', 
representi:lg the positive definiteness of  energy rather than more detailed 
properties of  the matter, 

It is no res t r i~on  taking the manifold to be C ~ rather than, say. CS0 
since the atlas o~f any C ! manifold contains an analytic subatlas ('~Vhitney, 
[I]). One usualI', ~akes the metric to be C ":; this is not an essentia! restric- 
tion, siJlce (e~err disregarding quantunl dit~cultics) one cannot measure the 
differenliabilit~ ,:Lass of  the metric because of the finite accuracy of  any 

? 
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measurement. The metric determines a unique Christoffel connection on 
(M, g); this implies (Geroch, [2]) that M has a countable basis, and so 
(Kobayashi and Nomizu, [3] p. 271) that A! is paracompact. 

The existence o fa  Lorcntz metric g on M is equivalent to the existence of 
a line element field on M (Steenrod. [4], pp. 204-207); this always exists if M 
is non-compact, but if M is compact it admits a line element field if and 
only if the Euler-Poincar~ characteristic x( 'M)=0 (Markus [5]. Fierz and 
Jost [6]). In fact the space-times we consider will be non-compact. This is 
because if space-time is compact then (Bass and Witten [7], Geroch [8] 
Kronheimer and Penrose [9]) there exist closed timelike lines in M, 
violating the usual .concept of causality, in fact, one cannot regard the 
existence of closed timelike lines as necessarily disproved by experinaent; 
for example it would:be difficult to prove or disprove the existence in the 
universe of closed timelike lines whose proper length was Z I09 years. 
(Although there would then be closed timelike lines of arbitrarily small 
proper length, these would in general involve large integrated accelera- 
tions.) However, if they existed it would be impossible to maintain the 
simple concept of  the evolution of the universe (orof systems contained in 
the universe); the Cauchy problem would change to a complicated cigen- 
value problem in Which almost all 'initial data" ~as non-admissible. O~e 
will therefore usually assume that space-time satisfies one of the causality 
conditions (cf. e.g. Penrose [10]): perhaps the most plausible of these is that 
ors!able causality (tlawking [!1]) i.e. the condition that there exist no closed 
timelike curves in M even if g is slighily perturbed, it then follows that .It, 
must be non-compact. Two further consequences are (i) that the past light 
cone of  any point is part of  the boundary of its past (Kronhcimer and 
Penrose [9], Penrose [10]) except where the past light cone lies within the 
past of the point!, and (ii) that if space-time is time-orientable, then a 
cosmic time function exists, i.e. there exists a function t such that the 
surfaces {t=constant} are a family of closet~ imbedded spacelike 3-surfaces 
without boundary, and t increases along every future,directed timelike or 
null curve (Hawking, [!i]. 

In fact one would expect that space-time was thm'-orh'ntabh, since this 
follows if each ob.~erver can determine a unique forward arrow of time by 
thermodynamic and elcctrodynamic experiments (clearly such an assign- 
ment of a +direction of time would be continuous). One would further 
expect that spm'e-thne is orientable, since (Geroch [12], Zcldovich and 
Novikov [13]) arguments based on the CPT invariance of field theory, 
together ~vith the fact that interactions ~hich violate C, P and CP have been 
observed, imply that At' is either both space and time orientable or both 
space and time non-orientablr in either case, space-time is orientable, it 
follows on combining these arguments that space-time is space-0rientab',e. 
Thus one can safely conclude that the space-sections {t =constant} defined 

t The light<one lies inside the past after sdf-int~rscctions or conjugate points 
OCCUr, 



TOPOLOGY AND COSMOL(~Y 9 

by a cosmic time function t are orientable 3-surfaces, that ,t/admits a global 
system of oriented time lines, and that a non-zero totally skew tenst~r ~anca 
can be defined globally. Further, these arguments disallow the intriguing 
possibility (Markus, [14]) that a space-tr;t~eller might leave a right- 
hand glove at home and find on his return that the glo~e fits his left 
hand: 

A further property one would usually demand is that M shouhl u(h,it a 
spinor .~tructure, i.e. that one could deline t~vo-component spinor lields 
globally on M (Penrose [lOJ, Geroch [2J) since one might in principle deter- 
mine a spinor structure (see Aharonov and Susskind [16]) if the local pro- 
perties ofspin-I particles arc every~ here the same. The existence ofa spinor 
structure implies various conditions (Lichncrowicz [15]. PCnrose [/0]. 
Bichteler [17j. Gcroch [IS]) besides the r of a I.orentz metric: in 
particular it imp;ies (Penrosc [/0]) that ,.t! is space and time-oriented.'t and 
(Geroch [.~) that if M is non-compact it admits a global field of ortho- 
normal tetrads. 

Finally. we note that any non-compact space-time ,tl can be imbedded 
globally in a Euclidcan space R s~ with signature ( - .  - ,  + . . . . .  +)  (87 
plus signs!) (Clarke [/9]). Thus the original concept of  a n!'mifold as a 
subspace of  a fiat space extends to the space-time manifold (M, g) of every 
reasonable cosmological model. 

2. Tile Cliffbrd-Kh'hl Space-form Problem 

We now have a list of properties one might demand of any reasonable 
model o f  the universe. One way of  proceeding fltrther is to examine in 
detail simple solt'fions of Einstein's equations ~ hich are good models of the 
observed universe. 

in facl', it is kno~n (llawking and Ellis [20]. Ellis [21J) that** thi: spatially 
homogenecms, isotropic universe models are i.'cry good approximations to 
the ol'r, erved universe back until the time of last scattering ol" tile observed 
microaave background radiation. The argument is a purely local one, 
follo~ing from the isotropy of the radiation and from the Liou~ille 
equation gov,:rning the propagation of radiation in a cur~,cd space-time, 
and dt~"~ no t give any information regarding the connectivity of space-time 
(M, g~ in the large. ~ 

Given any space-time (M. g) there exists a universal covering manifold 
b'7 with metric ~ such that ,~'1 is simply connected :rod (M. g) is obtained 
from (.O, ~ ) b y  suitably identifying points in ?,/ (~ve shall always label 
quantitie~ in M with a ~ ,  and corresponding quantities in M by the same 
symbol ~ith n~o ~).  In t'act one recovers (M, g) from (.~1. ~) by identifying 
points equivalent under a group f" of  isometrics of M which acts frccl)' and 

"[* Spat'e-lime admit.,, a spinor structure i f  it admits a spin .',lrur162 (l.ichncros~icz [151) 
and is in : ,dJi l ion time and space oricntablr 

:~ Assuming our gala.~y is nol at Ihe centre o f  the uni~cr~,c. 
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properly di~ontinuousl) 1" (Wolf [22], Section I. 8 and Lemma 2.3.10), i.e. 
by forming the quotient space M - - ~ / / "  ~here _r' is a propcrl)discontinu- 
ous discrete group of isometrics without fixed points.~. Thus given any 
solution of the field equations v, hich is detei'mined by local properties only, 
one can fi'rst form the universal covering space (?,~, ~) and then determine 
the possible identifications/". 

Four of the spatially homogeneous isotropic un;verse models are 
homogeneous space-times: namely the space-times o f  constant  curvature  K 
( K = 0 :  Minko~ski  space F ~, diffeomorphic to R t; K =  + i : de  Sitter space 
D ~, diffeomorphic to S 3 • R t ; a n d K =  - I : ant i-de Sitter space A ~, whose 
universal covering space ~ t  is diffeomorphic to R ~) and the Einstein static 
universe (diffeomorphic to Rz). The ppssible identifications in the first three 
spaces, resulting in the relatiristic space-forms, have been studied in detail 
(see Auslander  and Markus  [23] for the case K = 0 ,  and Calabi and Markus 
[24] for the case K =  + I and K =  - i ; see also Schrodinger [25]. Markus 
[14], Wol f  [22]). Wol f  has constructed a large class o f  twisted Einstein 
worMs by sludying identifications possib!e in the Einstein static universe 
(private communicat ion) ,  l-lo~ever, we shall not pursue these cases fur ther ;  
the sysllematic Doppler  shift observed in the spectra o f  distant  galaxies 
implies (since ,xe assume General Relativity to be valid) that the density o f  
matter is decreasing and so t h a t  space-time is not Ioc:dly homogeneous .  
Tht, s a reasonable way to proceed is to consider the space-times (5,~, ~,) 
~hich are locally the e.~pamling Friedmama (or Robertson- II"alk ~.r ) Iolh'er.~e~ 
(Rober tson [27]. Bondi [28])with metric 

ds*- = - d t ~- + RZ(t) d a ~- 

and in which ti-,e 3-spaces {t :--: constant} with metric do"- are s imply conaected 
complete 3-spaces o f  constant  cu~ 'a ture  k--- + I, 0 or  - I ( r~pect ively a 
3-sphere S 3, Euclidean space R a or  hyperbolic space !!  ~ diffeomorphic to 
Ra), and then to consider possible identifications in these space-times. Th i s  
gives a list o f  those space-times which satisfy locally restrictions o f  spatial 
homogenei ty  and isotropy, and have complete space-sections with the 
v:~rious possible (global) topological structures. 

Because the~e uni~erscs are expanding, I" must map each 3-space 

t The group I" acts]reely i fy(x)=x for any zr=- M when y~ r implies y is the identity 
r and acts properly discontinuous/), if every point x ~ Af has a ncighb~urhL~J U such tha~ 
{y E 1': y(U) me, ets UJ is empty unless y is the identity, and further ~henc".'er x. y ~ ,~,! 
are ,~uch that there is no yt~ r with ),(.t)=y, there are ncighbourhood., U. U" of x ,y  
respt'ctively such that ~U)  r U" is empty for all y ~ r. 

If one is t() identify points in (,','/. I~)equivalent under a d iffcomorphism y : A[---, ,~f. ), 
must clearly be an isometry. Unless it is the identity it must ha~e no fi,~cd points, for 
otherwise suppo~.r p is left invariant but q is n,~t. Then a continuous cur~c )t between p 
and q will have ~on~e point r~. [p,q] on it such that ~ r ) = r  but distinct points of ~ in 
every open neighb~urhood of �9 are not left invariant by y and are identif~'xl with their 
images. "fhus there cant be no neighbourhood of r diffr to R 4. 
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{t=constant} into itself;l" in fact. one need consider onb  one  such surface. 
the identifications in all other surfaces being determined from those in one 
surface because I' eomnlutes with the congruence of surface normals. Now 
any isometry 3' ~ F-~hich maps the metric h of  each 3-space ~t---constant} 
into itself leaves the second fundamental form ,~ of  each surface inxariant 
(as Xab=~qt)ha~), so the problem reduces to the Clil.]'or,I-Kh'in space-fi~rm 
problem (Killing [29]. glein [30], Rinow [31J: for all aspects of  this 
problem, see Wolf's book [22], especially Theorems 2.4.9 and 2.4.10) of  
classifying all space-forms, that is all complete connected Riemanfiian 3- 
spaces (metric ( +  + + )) ofconstant  curvature. The restriction to connected 
3-spaces is made because if there were disconnected components there would 
be  no physical connection whatever bet~een the cot:responding dis- 
connected parts of  space-time. ] 'he restriction to complete 3-spaces is 
necessary because others~'ise t h a t  one can do is highly arbitrary; for 
example, Clarkeand Schmidt have given as an example the universal coxer- 
ing space of a fiat 3-space from ~ hich a line has been remoxed. This space is 
locally fiat and is diffeomorphic to R 3, but it is incomplete and inextendible. 

A word of ~arning is in order here: idcntification of  points in ,f! ~ia 1' to 
produce 3I usually lowers the dimension of  th,: group of isometrics of the 
space. Thus one might wish to know ~hich of the space-times ~e consider 

�9 admits the full 6-dimensional group of  isometrics, and ~hich of them are 
spatially homogeneous (i.e. admit any group of isometrics G transitive on the 
3-surfaces {t --~ constant}). We shall consider these special cases in our 
subsequent dL~ussion. The essential point here is that if 1" is used to identify 
points in ~ / t o  produce M, this identification must be invariant under any 
isometries of M, so G must be the centralizer of  F in the group d of  
isometries of ~ .  if for example a Killing vector field ~, generl, tes a I- 
parameter group of  isometrics of  ~'/which does not commute ~ ith a non- 
trivial element y ~ !', then !~ does not project into a vector field on M, and 
(as ~, can have no fixed points) the corresponding Ki.lling xectors on M 
generate local I-parameter groups of  isometrics but not complete isometrv 
groups.:~ it follows that the dimension of  G can be the same as that of('~ 
only if 1" commutes with the isotropy group tlu of  each point p. for other- 
wisep andp '  svould be identified wherep was in~ariant under llj, butp '  :vas 
not. It also follows that ,if is homogcneous if and only if the cc'ntralizer of 
F in C, (i.e. the Set ofal~g e: ~ such that g~, =~,~, for all y c~ 1") is tra,sitive on 

(Wolf [22j, Theorenls 2.4.  i 7 and I. 8.19). Incidentally, it follo~ s (Wolf 
[22], Theorem 2.7.5) that if M is homogeneous then every element ~, o f  I' 
is a Clifford translation o f ~ ,  i.e. is a transformation ~, : x -~.x) such that 
the distance between x and its image r'(x) is the same for all x c ,Q. 

t Some universe models collapse to a second singularity anti then there , / ,  exist lixcd- 
point  free isometrics y of  51 which map  different spaces {t :: constant} into each other;  
however the resulting space-times ;fl,'l' are not  time-oricntable. 

~: If ~, is a I-parameter group o f  isometrics of  ~,'l, identifying ~under ~, means that 
~ ( ~ p ) )  = ~ (p )=  y(~(p)) for all t. Thus either ~,t and ~, con|nlute,  or dl dtx's 11o1 projeql 
into a group g~ of  isometrics o f  31 (of. footnote p. 10). 
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We consider firs: the case k = ~ I. The 3-spaces {t -= constantl in M are 
coxered by S a. and so are necessarily compact ('closed' or 'finite'). The 
space-times M are invariant under ts~o simply transitive§ isometry grour.s 
of Bi,~nchi t)pe IX, and these groups commute s, ith each other (Ellis and 
MacCallum [-r Each of these is in fact a group SU(2) locally isomorphic 
to the group SO(3) and diffeomorphic to the 3-sphere S a (~hich doubly 
covers SO(3)). One can identi~ the representative surface {t=constant} 
gith one of these groups, and can represcat it by the unit sphere in R t; 
ho~ever the connection ~ith SO~3) is clearer if it is represented by t~so 
balls S~. S., of radius ~ in R a ~*ith antipodal points on their surfaces .... 
identified~ Then each point ( , .  O. ~,) of St represents a rotation through an 
angle a about the (0, 4') direction, an~ each point ( , ,  0. ,/,) in S: represents a 
rotation through an angle a + 2 ~  about the (0.4,) direction: rotations 
through 2~ are not identified ss ith the identity bttt rotations through 4~ are 
identified with the identity. As a body is rotated through 4n about the 
(O. 4,) direction, a point representing its position traverses a straight line 
through the origin of Sl. through the origin of  S: and back to the origin of 
Si. "lhus in this representa,tion of  the 3-surfaces [t=constant} the orbits 
through the origins of St and S._, of  I-parameter subgroups of the group of 
isometrics are the straight lines through these points (~hicf-, are geodesics 
in  these surfaces) and the metric at these points is the natural Euclidean 
metric (of. Schmidt [33]). One regains SO(3) as the real projecti,,e space p3 
obtained by identifying points on the straight lines through the centres of 
St and S.., ~shich are a distance 2-  apart. 

The particular usefulness of  this representation lies in the fact that the 
di~rete subgroups of the rotations SO(3) about any point in R a are well 
known: they are (Wolf [22]. Sex-tion 2.6), (i) the cyclic group Z,,, of rota- 
tions through an angle 2.-r/m about any gis'en axis, (ii) the dihedral group 
D,,,, i.e. the symmetry group of  an)' regular m.gon lying in a 2-plane (~ hich 
consists of Z,,, plus reflectio,as in certain planes perpendicular to the given 
pl:me); (iii) the polyhedral groups, namely the symmetry groups T of a 
regular tetrahedron. O of a regular octahedron and / of a regular icosa- 
hedron. + in R:L In an ob~'ious s~ay these finite rotation groups correspond 
to sets of points in the Bianchi IX group space which represent the 
action of the cyclic group Z,,,. the binary dihedral group D*,,,, and the 
bina~,y polyhedral groups T*. O* and i* on the origin in SU(2). Operating 
by the commuting simply transitix e group one obtains corresponding sets of 
points for the same groups acting on any point in the surface {t =constant} 
(the origin of the group ~as repre,.cnt~.xl b} an arbitrary point in this surface). 

if one identifies the points in the space {t ~ consta,lt] corresponding under 
any of  these groups, the resulting 3-space is homogeneous because the 
transformations used in the identilications (all from one of the Bianchi IX 

t From no w on. by 'transiti,.r ~ v,e unders tand "transiti,,e on the .~-spaccs ~t = con~,tant'}'. 
A regt.lar tetrahedron is'a regular l'~,lx hedron v.ith 4 vertices. 6 edges and 4 faces; an 

~x.'tahedron is that ~i th  6 ~ertices. 12 edges anti X faces; and an icosahedron that ~i th 12 
vertices. 30 edge., and 20 facts.  In each case the faces are equilateral triangk'.s. 
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groups) commute with all the transformations in the other Bianchi IX 
group, in fact, one obtains in this way a//the homogeneous space-forms with 
k =  +1 (Wolf  [221, Corollary 2.7.2);  thc~e are therefore (i) . t /3=S ,~, 

( i t )  M a = p  3, (i i i) Ma=Sa/Zn (n> 2), (is') Ma=S'~/D*,,(m>2), (v) 
~13=Sa/7"*, ~tfa=Sa/O * or J~f3=S3/l*. This therefore gives all the 
spatially homogeneous expanding Robcrtson-Walkcr ~universcs with 
k = + !. Clearly there arc an infinite number of  them (as n, m can take an)' 
value >2) ;  only in the cases M a t S  3, and M3=Sa/Z, with n odd, are 
antipodal points not identified. The only spaces in ~ hich the full group of 
isometrics is six dimensional are M a = S a and ?,f:~ = p3 (cf. Kobayashi and 
Nomizu [3]. Theorem I, p. 308); this follows because the isotropy group 
Hp o f  any point p leaves invariant precisely that point and its antipodal 
point, so the only identification not breaking this group is the identification 
of  these two points. t  

Further identifications are allowed if one drops the restriction that the 
resulting Space be homogeneous; effcx:tively what happens here is that one 
can combine elements of  the type mentioned above from the two commuting 
simply transitive groups to obtain new discrete isometry groups F without 
fixed points. ,  + One obtains (Wolf [22], Section 7.5, p. 224), besides S a and 
p a  spaces in which the group l" takes one of the forms Z,,(n > 2), Zu x D*,. 
(this can happen in two ways), Z= • T 'r ,  Zu x O*, anti Z= x 1", for certain 
values o f u  and r, where T**. are subgroups of  T*; all spherical space forms 
belong to one of  these types. 

Next we consider the case k = 0. The 3-spaces {t =~ constant} are invariant 
(Ellis and MacCallum [32]; but seew under a simply transitive group of  
Bianchi type ! (the translations) and, for each direction at a point, a I- 
parameter family of  simply transitive groups of  Bi:mchi-Bchr type VII0 
(generated by a ~crew motion, i.e. a translation in that direction accom- 
panied by a rotation with pitch angle ~, about the direction of  translation, 
plus translations in the perpendict,lar directions). One can choose a discrete 
subgroup of  any l-parameter subgroup of  any of  these groups, and 
identify pc~ints equivalent under this discrete subgroup. One can also 
identify point s equivalent under a "gli~h, r~Jlccthm', i.e. a rcllection in a 
plane through the origin followed by translation p:trallcl to the phme. Thus 
there are three simple types of  isomctry ~ithout fixed points (translation a 
givendistance, a screw motion througha given distance or a glide translation 
a given distance; again one has in effect combined a translation ~ith ele- 
ments of  the isotropy group of  a point to obtain new isometrics ~ithout 

l "lhere is a space of the type mentioned in the footnote on p. 10 in v, hich the full 
isometry group is six-dimensional; this is the one in v, hieh (regarding the space-time as 
imbedded in live dimensions) space-time points antipodal about the iml~dding centre are 
identdied, 

:~ In r one identifies points equivalent Under translations of a point combined with 
clen~flts of the ir.otropy group of that point. 

w Note that an error occurs in [321. p. 128. v, here the statements (under the headings 
R" = 0  and R ' -: O) 'a three-parameter family of groups ~ should read "a tworpalameter 
family of grotlp~,'. 
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fixed points). A l l  the f , .~ ,,,,,l-con!pact space-forms can be obtained by 
combining such isometrics. (Wolf [22]. l 'heorcm 3.5. l). The orientable 
space-forms of this kind are (a) type ~" ( ! '=  !, so 313= R ~ x R 1 = Ra); (b) 
type J l  # (F  is generated by a screw motion through an angle 0; 
J l o = ( c y l i n d e r ) x R t = S l x R " - ) ;  (c) t)pe J- t  (F is generated by two 
independent translations: 3 I  3 =(torus) x Rt); and (d) type :r (U generated 
by" a translation and by a screw motion through an anglc= in a dir~ction 
perpendicular to the translation). The 4 non-orientablc kinds of  flat non- 
compact space-form. ~,hich include manifolds Ma=(M6b ius  strip)x R l 
and 3I a = (Klein Bottle)x R t, can bc obtained similarly on including glide 
rctlections in !'. 

The iflat compact space-forms can also bc thought of as built up by 
identifications under th~.'se operations, but it is perhaps easier to think of 
them as obtained by identifying opposite faces in possiblc crystal lattlccs. 
The oricntablc cases arc (Wolf [22], Theorem 3.5.5) those obt:fincd from a 
translation lattice (i) by identifying opposite sides, obtaining a torus Ta; 
(ii) by identif)ing opposite sides, one pair being rotated by 7r; (iii) by 
identifying opposite s!du~, one pair being rotated by ~/2; (iv) by identil~ing 
opposite sides, ~ith all pairs rotated by ~ (in cases (ii), (iii) and (iv) some of 
the lattice angles arc n,.n.-essarily right angles), and those obtained from thc 
lattice made by translating a hexagonal plane lattice a certain distance 
perpendicular to the plane, by (v) idcntif.~ing opposite sides ~sith the top 
rotated by 2~/3 ~ith rc~pcct to the bottom, and (~i) by identifying opposite 
sides with the top rotated by Tr/3 ~ith respect to the bottom. The 4 non- 
orientablc cases can be obtained similarly (Wolf [22], Theorem 3.5.9). 
Clearly the precise identifications one gets depend on the sizes and angles 
assumed in the lattice used to determine the identifications. 

Of these space-forms, the only ones ~hich are homogeneous arc those 
~hich arc the direct pr,xtuct of a Euclidean space and a torus (Wolf [22]. 
Theorem 2.7. I). i.e. are of  one of the forms R ~, R'-' x S i, Rt • T" or T a in 
which identifications have been made using discrete subgroups of  the 
Bianchi i (abelian) group. The only flat space-form invariant under a full 
(;ti isomctry group is the original manif,,~ld R a (since the isotropy group of 
an)' poi,~t leases n o  other point fixed; of.. Kobayashi and Nomizu [3]. 
Theorem I, p. 308). All flat space.forms belong to one of the 18 t)pes 
mentioned aho.x e. 

The rcmai,ling ca~  is that of space-forms ~ith k = - I. The classilicatio~l 
of this case has not )ct. as far as [ am as~are, been completed.~ We shall 
consider just three possible kinds of identifications. The 3-space II "a c:m b~ 
globaUy imbedded in Minkossski space F I" fi~r each direction at a point, if 
is invariant under a simply transitive group of Bianchi type V (translations 
of II ~a) and a I-parameter IkLmily of simply transitixe groups of Bianchi- 
Behr t~pe VIIh (a scrc~ motion plus translation,, of. thecase k ==0). On~ 
can again identify points under any discrete subgroup of any I-parameter 

t in fact, e~en the cla.sifi,-ation of 2-dimensional space-forms of constant ncgativ~ 
cur,ature appears to br incomplete. 
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subgroup of  these isometry groups, or under a glide reflection ass~kqated 
with the tra:lslations. ~cond ly .  it is kno~vn ([!llis [34]) that the metric of  a 
3-space of  constant negative cursature can be s~ritten locally in the form 

d~, -~ = d r ' - +  c o s h  ~ �9 d r  ~- ( 2 .  I) 

where dr ~- is the metric of  a 2-space S of  constant negative curvature. Now 
there are infinitely many such complete connected 2-surfaces (or 2~dimen- 
sional space-forms); for example.Klein [30] sho~s how one can:obtain. 
compact complete 2-surfaces of  constant negative ct, rvature diffconiorphic 
to a 2-sphece with any number o f  handles attached. Taking any such 2- 
surface S. one obtains from (2. I )  a complete 3-surface of constant negative 
c u r v a t u r e  where 31a= R x S. Finally an elegant pap,:r by L6bcll [.i'5]~,ho~ss 
how one can ,qnd a set of  14-sided tigures {2 sides are regular rect:!n.,.z'ular 
hexagons and 12 are rectangular pentagons) ~,hich fit together to lill H-~just 
once.i" Thea one can prc~eed to construct compact 3-spaces of  ct?n_-,tant 
negative cu~'ature by suitably identifying sides (of. the procedure[ in the 
c a s e  k :: 0); L6bell shows how to construct iniinitely many dilG:rcnt compact 
(orientable or non-orientable) 3-spaces ira this way. 

Thus although one does not have a complete solution to the space-form 
problem with k --: - I, one knows there are very ninny such space-,forms. 
llowever the only homogeneous such space-form is !1 a itself (Wolf  [22], 
Theorem 2 .7 .1 ;  cf. Yano and B,~:hner [37]. theorem 2.10) and so a 
fortiori this is the only 3-space of  constant negative curvature :ldmi!tting a 
full  Ga group of isometrics. 

The complexity of  these topological structures contrasts strikirlglv ~ith 
the simplicity of the local metric properties of  these space-times. In tact the 
ways in ~hich points can be idcnlilied in space-times with rather more 
complic.'lted metrics are rather simpler. Thus tile next siluplcst reali,,tic 
cosmological models after tile spati:tlly isotropic ;.llld honlogeneoti~ uni- 
verses, are those which are .';patially honlogeo.cous but not isolropic, and 
the s!mplest of  these :ire those space-times filled with a perfect fluid irli ~ hich 
there is a group of  isometrics transitive on 3-surfaces orthogonal to  the 
fluid flow vector. With the excep'.ion of  the K:mto~vski Sachs space,,, [3.'~'] of  
class I, all such spaces have a subgroup of  isometrics simply transit!ixe on 
the honlogcncous 3-surf;ices. The covering luanifold ,~ :1 ill thc Kanto~ski.- 
Sachs sp:lccs is S z • R I ; for all tile other such spaces .Qa is R :~. except for 
those invariant under a group of Iiianchi t.~ pc IX ~ hen ~Q a is S :t (Schmidt 
[33]L Now if tile group is 4-dimensional then any point is invari:mt t,I;dcr a 
I-paranlclcr. i:~otropy group, but ill general tile group is 3-dimc,l,don;tl ::nd 
each point is invariant only under a discrete isotropy group (cf. Mac('allum 
and i!llis [.?:)], Schmidt [33]). Thus the space-I'ornt problem for the,~c ,,p,tccs 
is simpler than the corrc~,ponding problem in the Robcrtson Walkcr ,,pi,ccs 
for there ;ire .,,imilar discrete 'translations" bt;i I'csscr rcllcctions :llld rota- 
lions which carl bc combirlcd with these trarlxhttions. 

For example, in tlie Kantowski Sachs case. one can (a) identify points 
1' CL the recent palx:r by Garner [36 I. 
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under a translation in the R)-direction, or under a translation in this 
direction plus a rotation or reflection. (i.e. a screw motion or glide rellection 
in this direction), thus producing compact space-times. One can also (b) 
identify antipodal points in each 2-sphere S~; ho~ eser, this is the n,axinlunl 
*dentil*cation allos~ed in an)' ts~o-sphcre (of. Wolf [22]. l"heorem 2.5.  I). 
Thus the on l )  other identif ications allowed are (c) a combinat ion of (a)  and 
(b), If the group is of  Bi:mchi t )pe I, the group !' is that subgroup of  the 
group !' discussed abose in the Robertson-Walker (k =0) case which 
preserses the second fundamental form of  the surfaces {.)=constant}. In 
general the second fundamental form is invariant only under discrete 
isotropies through an angle ~ about its principal axes. Tllus the non- 
comp'lct orienl:ible manifi~lds can in general l" only be of  type g, .#i t), J t  ~, 
.',rt and. . f , ,  while the conipact orientable m:mifolds cat** in general only be 
of  types (i). (it) and (iv). Simikirly if the group is t)'pe IX, one ~:an make the 
same identilications as those listed abos'e for homogeneolssl space-forms 
ivith k = -t I, and in general can only supplement these identilieaiions ~iih 
cerl;fin additional identitications corresponding to glide reflecmms or screw 
motions through n. 

The global properties o, an o~ tnese spaces are easily iOt~lalnetl as 
M := M :) x R and M a_  A'~:)/I'. The identilications ~se are di.~iissing would 
have two particular effects-first ,  they ~ould affect the t~.tuH~:nce tit" 
purl)eli' hori:mts in the ,,nis erse. and this could be important (Misner [40]). 
Second. they would be oD.wrrul,keh, principle, ;is an obserier would it, 
general see each galaxy ( inchidhlg his o~l ii galaxy)siniul laneously in several 
dill~ir~nl posit ions in the sky. I l ion, ever observational ~r of  
v,'helher this had actually beeil obsersed or not ~ould  be rather di l l icult  to 
obtaii*, since it* gi.'tll.'i';ll e,ll.'h ill l;i~e Of the s:lnle galaxy ~.~ould be an ilitage 
o f  the l#;llaxy sl2etl frotn a di f ferent d i r r  and lit a dill'cr-,:l!t st;ige o f  its 
i. 'volulhln. ((T. al lc inpl~ I l l  ~crify i f  Ihe : in l ipodal  g;i laxy could II:llc- been 
l lh,~rved in uiiivcrses ~vilh ~, :-- t. I and % ;-O(Sol l ie i l i l  [4 /11. )Note lha l  i f  
idenl i l ica l io i is  are tilatle, oiir ~,;all in geff~ral see roinld the Utli~,erse e~'en i f  
.% :-~ 0, el; Ai idrelsch and I)ehi icn [4"11. 

It is clear fron, the :)bore tl iscussioil that (of. I lei : l i l l ia i l i ,  alid ,~:huckilig 
i,~(t]) a Rtlberts01i %Vatker Ilni~,erse model can h,ive r sp:ltial 
,~ctioil~ elel l  it'/~ =() or - i ; thus the question of ~vhr ttle Ulli~;erse is 
spalhi l ly i i i ihe (i;e. fhe 3-spaces It " con~ianl l  hart" a l inl ie tol~inie) or not, 
and lt heiher Ihere are a t i i l i le nllnibi.,r o f  particles hi the uniyerse or not, 
cai l i l l l l  n~:l.'e~,iarily hi: settled ,~inipl)' by delernl i i i ing k for fan idc:ilized 
uiliverse ii lodcl. While konle o f  Ihc topological siruclure,~ discti~scd here 
lit;i)' .%Celil rather unlikcl)', they c: ini i l l l  .~ii.lipl)' be disiiiissed o u l o f  hand : the 
oti ly way lt l  tlr162162 the topologic, i l  s l ruciure oiie ~hould gi~'e inodr o f  
the obser lc t l  linivet,~e is by direct ob.~cr~ )i l ion. 

I' '1 I1~ t~xr162 ~iri~ th~ ~:,i~c'y, ~ here th~ ~'M~ln~ioi) qli:idl'ir i~ rol,itionally .%)'illn~elric; 
I I l i : l l  *hi:  ~ip,iet: . ' id i l l i lk  ~l g rO l l i  I i l f  i ~ l l i l l r  (;r t l l ~ l l ~  r : .  ,'I, 

l:.~ir162 in the ca,i~,i .It a : R .~ alld .~I'* =~ pa, il'i~,ir .,ip.'i,,;e-linle,.i ~,ould not i~ Sl~,itlally 
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3. The Obsercabh, 65dt'erse 

While the idealb, cd uni~ er.~ models discussed in Section 2 are both useful 
and interesting in their t')~'rn right, they clearly do IlOt correspond exactly to 
the (macro~opic)  observed univer~. In particular, although the universe is 
very like a Robertson Walker universe at recent times, it was probably (or 
at least, conceivabl)) not like a Robcrtson Walker  universe at the early 
times for ~hich we have no direct observation:d evidence (Ellis [211). 
We can have no causal eonneclion with space-time points outside Our 
cau~al p;tstt, so any deductions one may ~ish to draw about the global 
structure of  the universe ha~e to be inferred from evidence from this rather 
limited regi~hi of  space-time. 

Since one has reason to believe that ;.!t early times in the universe's 
history it ~as filled ~ith a hot dense ionized gas. there is for every observer 
a surface .'r in space-time (say. the surface on which the optical depth 
reaches unity) which is a surf~tce, of  'last .~attering" of  light; he cannot 
obtain direct information about earlier times by optical or radio ,ahscrva- 
lions, since ligt-t cmitled at earlier tintes ~ill h:t,,e been multiply scattered or 
absorbed by the intervening pl:tsnta. We will write E for the past light 
Cone of  our present position I' in space-tintc. I for the (chronological) past 
ofF,  ,'" fiir that part of  E containing p and bounded by . ' / 'n  E ,  and . t -  
for that part of  I between p, I--  and 5,':.7 .</'n I The part of  the unb, erse 
we can observe directly is then ~ . The part of  the universe ~e can hope to 
determine ill considcr;:ble detail is . 7 .  

In the Robertson Walker tmivcrscs discussed in Section 2. ; -  is compact 
as it is covered by the unit ball in R :~. its actu:tl topology being determined 
by the idcntilications on ; -  under I'. -~ is dill'comorphic to ~-, ;tlld . t  " iS 
topologica!ly lO. I ],'-~, . In ntore rc;tlistic universe I l t o d e k ,  o n e  ntight still 
expect c /and  that part r of ~ which f~lrms the boulldary o f . /  to be 
compact. II further J -  is compact (one might expect this if the distribution 
of radiation is sullicicntly uuil'orm) then :t theorcnl of  Gcroch (Geroctl 
[,~]. theorem 2; of. ;.dso Kundt [43 i) can be ad:,ptcd to show tli;tt (since ,if is 
causal) ~ and "-/are honteonlorphic and th:tt .t is topologic:tlly (0, I) x r  
tle=lcc one could dctcrlnine the topological siructtlre o f . l  ;.it least, since 
one could (in principle, of. rein:irks in Section 2) detcrntilic the topological 
structure o f ,  by tlitect observations. I hl~vever, the prob;iblc existence of 
isolalcd sin~ularilies in the universe suggests th;tt !his picture ntight bc false 
in two dilrcrent w:t)s, if one exanlines the space-time stritcture on a fairly 
line (,t:tcro,~'opic) sC:ttc. 

First.++ if a 'black hole' crossed ~ , it would probably deform it into a 
cusp or even tc~,r a hole in it so that ~-- ~;is non-cottq~act; our present 
understanding Of the c'~'tlltllion of rll : lSSive objects illtlic:tlcs that sotuc of 

Although the con,dl. 'lint Ctluatitlns d o  (of. (;:lu,,,,' thcorell l  in New, toni,ill theory)  
COll~,ey ~o#ll+, illfOr II ilitl I ~.h~llll ~pilce-lillle Otll~,itlr Ollr i.'+ltl~,;ll I~;i,~1. 

()he I.';lll libt~lill  exact solutions, t'orll:S|~ondinl.; to bilth thc',r p,l,,,,ibililir nanl~ly tile 
'S~,i~,,~-( 'iler tlni~.r (el. Ree,, ;rod .Nr I.lhl, Kant , ,~ , ,k i  14711. "1 hc liit,.h i ' ,olropy of  
hi lckt~r l l l l l l i l  r . ldi l l t i i , ln l it, lees Ilmll.~ t in t i le ~ii lr l ind  llr t ' i ln l la~,t  i l l  sut,:ll l i l lCttiatiorl~,. 

2 
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these objects must evolve to a collapsed slate fa i r ly  rap id ly ,  so th.~! .~me 
s~qh collapsed objects arc likely to exist in the uniscrsc (llau, king .trod l-Ills 
[20]. i'cnrosc [101). Secondly1" fluctuations in a Robcrtson Walker utti~ crsc 
ate of  t,~,'o t)'pCs, the rclati,,'ely increasing and IIir relatively d,.'~.~casing 
(Sachs and Wolfe [441, Rees [451). There appears to be no a priori reason 
why one kiud should be more prevalent tl!an the other;  ho~ve~,er fol[oging a 
"relatively decreasing" perturbation back in time. 80/p (8~,, >O. is the 
fluctuation in the density p) increases anti so such a fluctuation v-.,uld fall 
inside its Schwarzschild radius and become singular before the rest o f  the 
universe had collapsed. Thus such fluctuations ss ould bc capable o fdKorm-  
ing or tearing .~. llowever, it is perhaps utdikdy thai singularitk.-s o f  this 
kind ~'ould have formed ~'ithin .l . 

It may be taken as ~ell established that a singularity must occur some- 
where in I -  in the sense that necessarily at least one timdike gcodc,,~.~c from 
p into the past is incomplete (I la~vking and Ellis [2o], Kundt [4A' I. t la~  king 

a n d  Pcnrosc [49]. Penrose [/0l). The nature of the singularity is not yet 
clear (Gcroch [40], Schmidt [5/]) nor how extensive it is (e.g. svhat p : o p o f  
tion of.the timclike geodesics through p are inc0mplctc). If some pasl lime- 
like geodesics through p csade the singularity (i.e. if they are con~plctc 
in the past time direction) then it is tmlikely that there ~ou[d be a 
Cauchy surface for I . If this x~cre so. there would be no ( 'auchy surface in 
M (eqtfivalently. M would not bc globally Ii)pcrbolic. of. Gcroch [52]) and 
one could think of the singularily as h;p.hlg a timclike character. 

We do 'no t  know at prc,~nt of :my kind of  obscrvatitm ~slli~ch could 
conclusively show ~ hcthcr this ssas so or not. A statement as to s~ hethcr the 
singularity is probably timelike or not has thcrelbre to rely on our  know- 
ledge ofgener:d features of the known solutions of  l'iiustein's cqu:ttions ;:ild 
of possible patho!ogic:d space-times. I Io~sc~er the exist,:ncr o f  higtdy 
path,logic:d space-time models canuot bc takc,I to i,ldicatc that there exist 
similar regio!ls in Ihc aclual universe; in the absence of  obscr.,zlional 
evidence, one can only attempt to evaluate what properties probab~) exist 
in the physical t, niverse by de~;iding ~'hat pr6perties arc generic ~cf. S. 
ila~king's papcr~,). 'l'hus ouc nccd not take all pathological spar as 
indicating prob;:hlr properties of the physical universe but only rcas,,r~ahly 
pathological space-timcst In I:~ct. one may argue (lla~vking :|lid I!1[~, 1201) 
on the basis of the probable inhomogcncity o1" the early uniscrsc aud ~*f the 
nature of the Kerr and Rcissncr Nordsltriim soltflious, that it is likely that 
the singularity in our past is timclike; then further i~robablt: col~scq-:t-nces 
are thM some poinls in the past I o f p  c:tnnot be joined to p by tin~clike 
geodesics (of. Scifert [531: for example there are pairs of  points ii~a the 
Rci.ssncr Nordstriini solution ,,~ hich can be joined by timclikc lines b ul nol 
by limctikr geodesics), and. that some p~i,ds in I ~hich Can be join,M to p 
by a iimclike geodesic c;mnot be joined to p t~y a maxim:d ti,uclikc ~-urve 

.~c f*~tnolc ~ o,~ p. 17. 
GR('~: ./,,,mat ( I*~71 ) l, 39.1. 
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(cf. Boyer [54]). Under these conditions it seems difficult to decide whether 
the boundary of  7-= is likely to consist simply of  E -  or not, and whether 
particle horizons are likely to exist in our past or not. 

in general it seems difficult to make any precise statements whatever that 
are in some sense verifiable about  the part of  M outside I - .  (Note here the 
warning contained in Misner's paper [5.~J which shows that even analytic 
continuation is not necessarily unique; in Fact, Geroch has shown that there 
are many incomplete inextendible analytic extensions o f  any space-time 
which has one analytic extension.) Thus in general one cannot hope to 
investigate the global structure o f  the univeFset but only its large scale 
structure. However there are exceptional cases: suppose the Robertson- 
Walker universe which gives the best representation of  the structure o f  the 
universe ~ince .~' has compact spatial sections. Then it might  be that , -  
intersects the world lin.L~ o f  all galaxies at present existing in the universe. 
i.e. the particle horizon c~ay have been removed at some (relatively late ) 
time becaus: of  the compactness of  the spatial sections. In this case (one 
could in principle observe wheti~er this occurs or not by seeing Whether the 
same galaxies are observed in different directions or not; but of. remarks in 
Section 2) one would have sufficient information on c- to determine the 
complete evolution of  the idealized Robertson Walker  univcrse and its 
con t en t s -by  a slight dcfi~rmation of e one would obtain a Cauchy 
surface and would be able to dete ,hine the initial values of  all physical 
fields on this Cauchy surface. I-yen ifa closer look revealed that space-time 
did not possess a Cauchy surface, one would still have sufficient information 
to determine the evolution of  a complete branch of  the universe for a finite 
time (unk.'ss , was 'torn" by collapsed objects, of. remarks above). 

Clearly it is an i,teresting question to ask whether the universe has any 
compact spatial s~ctions.** In the Robertson Walker case, k = + ! implies 
that such sections do exist, but as we have seen in Section 2 tllcy ,-a, exist 
even if k ==0 or - I .  The sufficient condition can be generalized to any 
space-tim':, since if there exists any complete spacelike 3-surface S in M 
such that fi~r every unit vector n tangent to S, Raat~ianb>~ ~ > 0 (R:lab is the 
Ricci tensor of  S) where r is some constant, then S is compact and has 
diameter less than or equal "to =x/(2/~) (see Milnor [58], l.emma 19.5). ] 'he 
Gauss Codacci  equations deternfine Ra,~b from /~ab and from the second 
fundamental form of S; r0u~.hly speakingl ehese equal/oils imply that if 

t One  might  want to ask.  5~r example ,  whether  M is diffeomorphic to R ~ (i.e. can  be 
covered by :me single coordina te  nc ighbourhood)  or  not .  One  feels reasonably sure  Ihis 
canuo l  br true. 

CF. Finstcin [56], Avez [57]. W h e n  such  suhmanifi~lds exist one can apply s t andard  
thcorr  valnd for coll)|~act mani fo lds ,  e.g. Ilass and  W i nch  [7]. The example  tff tie Sitter 
sp,'ice sho~,'s thilt faqlilics o f  comple te ,  s imply connected  imt~:ddcd 3-spaces o f  consl.znl 
curvature/~ '= F I, 0 and - I can all ~ : r  in the ~lmc space-time. Bardc,,,a ha~. given an  
cxas,lple o f  a c:msal, complete  and  connected  space-t ime in ~hich there i,~ a r l ime 
fl.lnCllon I 5~lch that some space-,~..clions (! tonal ; l i l t  } art? eonq}acl and dill'conlorph[,..; lo 
S a, and  some arc r lind consis t  ot" m disconnected  coniponetl ts  v, hcrr m is any  
positive i~nlcge~, 
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there is sufficient cncrgy-dcnsity present on S then this energy denser) 
causes this 3-surface to close up spatially. It has so far proved impossib!r to 
dctcrminc unambiguously by astronom;cal obscr~ations whether sufficient 
matter is present to close up spatially an c~act Robcrlson Walker model 0f 
the universe (cf..~iama [59}) or not. so the somc~:hat more delicat c argu- 
ment needed in the case of an almost Robcrtson-Walker univcrsc cannot at 
present bc pushed to a firth conclusion cilhcr. 

This section has di~usscd some of the qualitative questions about the 
"physical universe one migh', hope to sctllc by observation in conjunction 
with suitable thcorclical dcs'clopmcnts. Finally I should mention that all 
along [ have t?ccn concerned only with macroscopic scales; much more 
complex problems could arise when one considers space-time structure on a 
fine enough scale (of. Professor Whcclcr's discussion, foc example). 
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