
1 Introduct ion 
STUDIES ON THE initiation and growth of stenosis (or vascu- 
lar lesions or artherosclerotic plaques) in the human 
system have been carried out from several viewpoints. The 
chief factors that have been extensively analysed in this 
regard include lipid metabolism, hypertension, diet, hor- 
mones, age and sex. It has also been argued that flow 
mechanism is also an important factor as the velocity gra- 
dients and the resulting shear stress between the moving 
blood and the depositing atherosclerotic plaques must 
exercise some controlling and inhibiting effect on the 
developing stenosis. Additionally, the arterial impedance is 
also affected. Some experimental studies on flow patterns 
in partially occluded pipes have been reported (YOUNG, 
1968; FORRESTER and YOUNG, 1970a, b; LEE and FUNG, 
1970; YOUNG and TSAI, 1973a, b; BACK et al., 1977). A 
mathematical solution on the pulsatile flow in such a con- 
stricted artery has been worked out (PADMANABHAN, 1980). 
However, no analysis appears to have so far been made on 
blood flow in a stenosed artery in the presence of body 
accelerations, which are caused when a human being is 
subjected to whole-body acceleration or vibration. For  
example, while riding in a vehicle such as a car, tractor or 
train, or while flying in an aircraft or spacecraft, man may 
unintentionally be subjected to body acceleration. It has 
also been suggested that certain circulatory disorders can 
be corrected by strapping human beings on to vibrating 
tables. In this paper, we present a model of blood flow in a 
partially occluded tube subject to both the pulsatile pres- 
sure gradient due to the normal heart action and periodic 
body acceleration. Closed-form solutions have been 
obtained for the instantaneous rate of flow and for the 
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distributions of flow velocity, acceleration and shear rate 
throughout the stenotic length. 

The different parameters typical of a stenosed artery 
have been incorporated. Computational results corre- 
sponding to a stenosed carotid artery for flow velocities, 
pressure drop, flow rate and impedance are presented and 
discussed. 

2 M a t h e m a t i c a l  model  
Consider the flow of an incompressible viscous fluid 

(blood) through a partially occluded rigid tube of normal 
radius a. Following YOUNG (1968), the stenotic protuber- 
ance is assumed to be an axisymmetric surface generated 
by a cosine curve. The effective radius R of the tube at any 
distance z from the centre of the stenosed portion (Fig. 1) 
can accordingly be represented as 

R 1 = a - 6 1 + cos for z lying between 

z = - 2 z  o to z = 2 z  o 

l r / RI= ~ (1+c~ ~rz ) 

\i ................ 0 
// 

rigid 
rigid stenosis artery 

Fig. 1 Assumed geometry of the stenosis 
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otherwise 

= a  

where 4z o is the length of the stenotic region and 26 is the 
maximum protuberance of the stenotic form of the artery 
wall. 

At t > 0, the system is subjected to a periodic body 
acceleration F(t) given by 

F(t) = a o cos (~ot + ~) 

where co b = 2nfb is circular frequencyfb is the frequency in 
Hz. ~b is the lead angle of F(t) with respect to the heart 
action. 

The pressure gradient at any z may be represented as 
follows: 

Op 
-- 8z = Ao + A1 cos nt 

where A o is the steady component of the pressure gradient, 
A1 is the amplitude of the fluctuating component and n = 
2rcfp, where fv is the pulse frequency. Both A o and A 1 are 
functions of z. We assume that at t < 0 only the pumping 
action of the heart is present. At t = 0, let the instantan- 
eous flow rate at the inlet to the stenotic artery correspond 
to the theoretical flow rate in a straight rigid tube subject 
to a pressure gradient - d p / d z  = A o + A~. As a result the 
flow velocity at t = 0 is given by (MCDONALD, 1974) 

(R 2 -- r2XAo + A1) 
u=(r, o) = 

4q 

where r/is the function of z given by i~r R~/a ~. We assume: 

(i) the flow is laminar 
(ii) there is rotational symmetry of flow 

(iii) the frequency of body acceleration fb is so small that 
the wave effects can be neglected. 

FLING et al. (1971) and PADMANABHAN (1980) argued that, 
as Womersley's parameter ct = a(p?l/l~f) 1/2 lies between 1 
and 4 for segments of the human arterial system, the con- 
vective terms in the Navier-Stoke's equation are small 
compared with the corresponding viscous terms. There- 
fore, except for cases of acute senosis, the convective terms 
can be omitted. The Navier-Stokes equation of motion in 
a stenosed artery can therefore be expressed in cylindrical 
polar co-ordinates (r, 0, z) as follows: 

~uz 
p --~ = pao cos (cot + q~) + Ao + Am cos nt 

/d2Uz 10Uz~ 
--~-#ft--~--r2 "1- 7 "-~-~/] (1) 

where p a n d / t f  are the density and viscosity, respectively, 
of liquid flowing through the tube and u~ is the velocity of 
flow in the axial direction. 

Eqn. 1 has to be solved subject to the following initial 
and boundary conditions: 

(R 2 - r2)(Ao + AI) 
O) u,(r, 0) = (2a) 

4py 

(ii) uz(r, t) = 0 at r = R for all t (2b) 

(iii) u=(0, 0 ~ finite as r ~ 0 (2c) 

By applying Laplace transformation to eqn. 1, we trans- 

form it to the Laplacian plane and obtain 

d2tlz 1 dfiz i2ps 
dr 2 +---~rr q--~f fiz 

p(Ao + AOm 
- 4#~ (~  - R~') 

pao(s cos ~b - co sin ~b)A o 
uf(s  2 + co 2) 

A o 1 Ats  
--/~f s # f ( s  2 + n2 ) (3) 

where m = a*/R~. 
The boundary conditions of eqns. 2b and 2c are also 

transformed to 

fi~(r, s) = 0 at r = R 1 (4a) 

and 

fiz(0, s) ~ finite value as r ~ 0 (4b) 

where the Laplace transform of u~(r, t) is given as 

fi~(r, s) = e 7~tu,(r, t) dt 

The Laplace-transformed equations 3, 4a, and 4b have 
been solved in terms of Bessel functions with complex 
arguments. Following CARSLAW and JAEGER (1963) and 
omitting details, we finally invert the obtained solution 
back into the physical plane. 

Thus the required solution of the velocity profile is 
obtained as 

u~(r, t) = ~ (R 2 -- r 2) + ao sin (rot + ~) + /11  sin nt 
f m pn 

ao Jo I ~  ? r )  { s in (og t+dp)+icos(mt+q~)}  

Jo ~ r 
a~ {sin (cot + ~b) - i cos (cot + ~b)} 

, ,  
A, ~  v 

- {sin nt - i cos nt} 
2pn ( i~_~ ) 

Jo R1 

a l  Jo r {sin nt + i cos nt} - 2ut(n ) (5) 

where for simplicity we write the unsteady term ut(n) as 

exp ( - 2 2  xt)J o 2. (b. - c.) & 
ut(n) ~-~ 3 2 4- (D2XK2~n4. + n 2) ,=i  Jl(2.)PX2.( x 2. + 

2 4 2 b,, = ao px2~(n 2 + x 2.)(x2. cos ~ + co sin ~b) 
2 4  c. = Ao(m - 1)[x42~ 8 + w 2. + o)2n 2"] 

+Al[ (m -- 1)x'*2~ 8 + x22~m(n 2 + 092) 

2 2 - co  2. x 2 + to2n2m] 

Medical & Biological Engineering & Computing November 1987 639 



X = Itj./pR 2 and Ji(2.) is a Bessel function of the first 
order. 2, is the zero of the Bessel function of order 0 such 
that Jo(2.) = 0. 

Also, the expression for the flow rate Q can be written as 

~0 R1 Q = 27r ruz(r, t) dr (6) 

Substituting the expression for Uz(r, t) from eqn. 5 in the 
integral of eqn. 6, we arrive at the following expression for 
the flow rate: 

= nR2 nR 2 
Q 7zR----~x4 Ao + a 0 sin (tot + (b) + pn At sin nt 

8/a s to 

1tRI ao{COS (tot + ~b) + i sin (tot + q~)} 
ito 

C-- ",) Jt  v 

Jo v 

+ 
itR 
- -  ao{COS (cot + q~) - i sin (cot + ~b)} 
lco 

4 

+ 

X 

gR1 AI{COS nt + i sin nt} 
inp 

nRx Al{cos nt - -  i sin nt} 
inp 

'kx/V 
jo (~nv  R1) ~ nv + 2nRzl ut(n) 

steps reduces to: 

The analytical solution for the velocity Uz(r, t) and flow 
rate Q(t) contain Bessel functions with complex arguments. 
From the point of view of the human arterial system, 
values of (pnR2)/gs and (ptoR2)/#i > 2 are significant. 

For finding the solution valid under the above condi- 
tions, we use the asymptotic expansion of the Bessel func- 
tions. The asymptotic expansion of Bessel functions of 
argument x and order N can be written as 

( 2 ~  '/2 / ( x  2 

Following MCLACHLAN (1955) and using the above asymp- 
totic expression of a Bessel function with the appropriate 
arguments and order as required in eqn. 5, the equation 
for velocity profile after performing some mathematical 

640  

u=(r, t) = ~1^~ ( R2 _ r2) + a o, sin (cot + ~b) 
or f (.0 

A1 ao 
+ - -  sin nt - - -  d 2 sin (~t 2 + cot + q~) 

pn to 

- A---Z1 d 3 Sin (ct 3 + nt) + 2u,(n) (8) 
pn 

where 

d 2 = R~r~ exp (e2) 

d3 = Rx/-R ~ exp (0%) 

~2 = (r - R1) 

e3 = (r - R 0 

In the steady state, the above equation of velocity profile 
can be put into a more suitable form for computation 
purposes as 

Uz(r, t) = va + vb sin (tot + q~ + 01) 

+ vp sin (nt - 02) (9) 

where va, vb and vp are the velocity components due to 
steady heart action, external body acceleration and pulsa- 
ting heart action, respectively. These components are 

Ao v, = (R~ - r 2) (10) 
4#y 

a0 vb = - -  (1 -- 2d2 cos ~2 + d~) 1/2 (11) 
69 

At 
vp = - -  (1 -- 2d3 cos ~3 + d~) 1/2 (12) 

pn 

( d2 sin ~z ) 
01 = arc tan 1 - -  d E c o s  ~2 

( d sin  ] 
(7) 02 = arc tan 1 - d2 cos ~ 3 /  

The expression for the shear stress ~ is found to be 

Ao ao ,= cos(   
z ',,,z.v./to 

[1 + s i n ( ~ 2 + t o t + q ~ )  - \2 - -~r2  / ] 

A, ( .  y/2 
- p-n \2--v] #Ida cos (e3 + nt) 

[ + sin (ca + nt) i - \~---nr2j _] 

- 2#I ut(n)2= (13) 
R 

Similarly in the steady state the shear stress can be r e p -  
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resented as three main components: 

T = "C a -~- ~b COS (~3 "F COt "F (~ --  03) 

+ZpCOS(~3 + n t - - 0 4 )  (14) 

where %, z b and zv are stress components due to steady 
heart action, external body acceleration and pulsating 
heart action, respectively. The expressions for z a, Zb and z c 
are given below. 

Ao 
z~ = ~ r (15) 

/ 1 "~x/z [- v 1/ '2v'~t/2-P/z 

= t ) L t"~)  J (16) % -- #xy a 0 ~ v  d 2 2 + 2rzc ~ r 

A l f  l \ l l 2 [ -  t ) 3L v 1 ( ~ ) 1 / 2 ]  1/2 (17) 
Zc= --I~y p ~nv d 2 + 2rZn r 

where 

03 = arc tan (') 
~t v /  

0 4 = a r c t a n (  1 r k )  

Finally, the instantaneous rate of flow Q is obtained from 
eqn. 7 as follows: 

Q = nR----~14 Ao + ao sin (cot + ~b) 
8#s 09 

2nR~ A 1 
+ - -  sin nt 

pn 

- ~ / 2 ~ - - - - ~ ( v ) l / 2 a o { C O S ( c o t + c / ) ) - - s i n ( c o t + 4 9 ) }  

( ~ )  1/2 
- -w/2  nR1 A1 {cos nt - sin nt} (18) 

np 

Likewise the expression of the flow rate Q in steady state 
can be written as 

Q = Qa + Qb sin (cot + ~b - 05) + Qp sin (nt + 06) (19) 

where Qa is the average component of flow rate, Qb the 
fluctuating part of flow rate due to external acceleration 
and Qp is the fluctuating part of flow rate due to heart 
action. These are given as 

nR14 A0 
Qa - - -  (20) 

8/Xy 

= (4nZA~R~l~i 4nZR~A~ o~'w21~3AZ"l/Z\l/21~l/~f / 

Qv ~ p3n3 p2n2 x//2pS/2nS/Z /I 

where 

0s = arc tan (P~-~3~) 

06 = arc tan (P~42) 

2rcR1 ( # f  ~ 1/2 
co ao 

nR~ 2nR 1 / " \1/2 
= ao + t - f f - ~ )  ao P3 09 o9 

2nR~ 
P4 = A1 -- P2 

pn 

2rcRl(I.t__.Lf~l/Z 
P 2 -  2pn \ p n /  

At any partially occluded section, the flow rate due to 
body acceleration tends to be diminished. Because flow 
through the partially occluded portion must equal that 
through the nonoccluded portion, pressure drop per unit 
length in the former must be greater than that in the latter. 
In other words, pressure drop across the stenosed artery 
must increase. This additional pressure drop APa may be 
found quite accurately with the help of eqns. 20 and 21 : 

f 2~o (Qb Q,) Ao a4 
AP. = ~- dz (22) 

R~ J -2z0  ~3a 

3 Computational results 
To obtain a quantitative idea of the effects of stenosis 

and body acceleration on blood flow in human beings, 
eqns. 15, 21 and 26 were evaluated, specifically for the 
carotid artery. The relevant data on the size of artery, the 
properties of blood and the action of the heart were com- 
piled from published literature (McDoNALD, 1974; 
MILNOR, 1982). Let A~ be the value of the steady com- 
ponent of the pressure gradient at inlet to the stenotic 
artery (i.e. at z = -2Zo). Ab may be calculated from known 
value of the average flow rate Qa through the artery with 
the help of the following equation 

A, ~ = 8~f Qa 
~a 2 

M //20  /00 
/ /  

40 

20 

v b 

Fig. 2 

L 
2z o z o 0 

Z 

/Vp 

z o 2z  o 

Variation of peak components along the length of the sten- 
osis, (Carotid artery a o = 0.2 g, ~ = 0"2a, a = 0.4 cm, 
fb = 0.6 n z )  

v a = component due to steady heart action 
v b = component due to body acceleration 
vv = component due to pulsating heart action 
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A'x (the fluctuating component of pressure gradient at z = 
-2Zo) was taken to be 20 per cent of A~. The values of #y 
and p for blood were taken as 0.004 kg m -1 s -1 and 
1.05 • 103 kg m-3,  respectively. Pulse frequency fp was 
taken as 1.2Hz. The expression for velocity, shear stress 
and rate of flow (eqns. 9, 14 and 19) can be split up into 
three por t ions--one non-fluctuating or constant, and the 
remaining two fluctuating or periodic. One periodic com- 
ponent has frequency corresponding to the heartbeat and 
the other has frequency corresponding to the body acceler- 
ation. The fluctuating component corresponding to the 
externally applied body acceleration so varies with time 
.that its amplitude tends to a constant value after a suffi- 
ciently large interval of time. 

In the following paragraphs, we present typical results. 

3.1 Variation o f  f l ow  velocity along the stenosis 

Fig. 2 shows the variation of the peak velocity com- 
ponents Va, Vb and Vp along the length of the stenosis. They 
occur at r = 0, i.e. points lying on the longitudinal axis of 
the tube. In the figure, the component v, corresponds to 
the steady, non-fluctuating component of the heart action, 
the component vb corresponds to the externally impressed 
body acceleration and the component vp results from the 
pulsating component of the heart action. The maxima of 
the peak occurs at the neck of the stenosis, i.e. at z = 0, 
and the minima at the ends of the stenotic portion, i.e. 
z = + 2 z  o . 

7% x 0.1 kg m - l s  -2 

2 Z o  Zo 0 Zo 2 Z o  
Z 

Fig. 3 Variation of peak shear stress along the length of the sten- 
osis. (Carotid artery, a o = 0.2 g, 6 = 0.2a, a = 0.4 cm, 
fb = 0"6 Hz) 

z, = component due to steady heart action 
z b = component due to body acceleration 
zp = component due to pulsating heart action 

3.2 Variation o f  shear stress alono the stenosis 

Fig. 3 shows the variation of peak shear stress com- 
ponents %, % and zp along the length of the stenosis. In 
the figure, the component % corresponds to the steady, 
non-fluctuating component of the heart action, the com- 
ponent zb corresponds to the externally imposed body 
acceleration and the component rp results from the pulsa- 
ting component of the heart action. The maximum of the 
peak shear stress occurs at the neck of the stenosis, i.e. at 
z = 0, and the minima at the ends of the stenotic portion, 
i.e. at z = ___ 2Zo. 

3.3 Effect  o f  the size o f  stenotic protuberance 

Fig. 4 shows the effect of the size of stenotic protuber- 
ance 6 on Ap pressure drop across the stenosis. It is found 

that greater the size of the protuberance, the greater is the 
pressure drop. The increase in pressure drop for a given 
increase in 6 is small at smaller values of 6, and it becomes 
exponentially large at larger values of 6. Also, it is found 
that the pressure gradient is the largest at the neck of the 
stenosis and becomes smaller as the radius R1 increases on 
either side of the neck (eqn. 22). 

1200 

1000 

8O0 
% 
3-E 600 

6 ~,00 x 
f2. 
<I 

200 

I [ I 
o 0.1 0-2 0.3 

6/a 
Fig. 4 Effect of  depth of  occlusion 6 on pressure drop AP. 

(Carotid artery, a = 0.4 cm, z o = 0.4 cm, Q = 
12"57cm 3 s -  1) 

3.4 Effect  o f  length o f  the stenosis 

When the stenotic protuberance remains constant in 
comparison with the nominal radius of the artery, it is 
found that pressure drop Ap varies in proportion to the 
length of the stenosis (eqn. 20). 

3.5 Effect  o f  magnitude o f  the body acceleration 

The effect of the body acceleration a0 is to increase the 
flow velocity and flow rate. As a result, the shear stress and 
the pressure drop across the stenosis are also increased. It 
is found that the above dependent variables vary linearly 
with a 0 (eqn. 21). 

3.6 Effect  o f  f requency  o f  body acceleration 

Fig. 5 shows the effect of frequency of the periodic body 

40 
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30 

25 

T 20- 
co 

u 15 
.,3 

Q 

10 

5 

I I I I 
1.20 2.l,0 3.60 4-80 

fb, Hz 

Fig .  5 Dependence o f  Q b on f~. (Carotid artery, a = 0"4 cm, a o = 

0"20) 
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acceleration fb on the flow component due to body acceler- 
ation. It is found that an increase in the frequency of 
periodic body acceleration fb results in a decrease of the 
component of flow rate ascribable to body acceleration. 
Consequently, the shear stress, the velocities of flow and 
the pressure across the stenosis decrease correspondingly. 

3.7 Effect  o f  resistive impedance 

The resistive impedance to flow of the stenosed artery 
may be defined as the ratio of the pressure drop across the 
artery to the volume rate of flow through it. The variation 
of resistive impedance with body acceleration is shown in 
Fig. 6. In the p~esence of body acceleration and the pulsa- 
tile pumping action of the heart, the impedance of the 
stenotic portion of the artery can be split into two main 

12 

10 

'u~ 8 

~ 6 
% 

x 
~ 4 
r- 
~J 
�9 2 
E 

Fig. 6 

components- -one non-fluctuating corresponding to the 
steady component of the pressure gradient A o due to the 
heart action, and the other fluctuating due to the exter- 
nally imposed periodic body acceleration a o. (The com- 
ponent of impedance due to the fluctuating component of 
pressure gradient as a result of the heart action can be 
neglected as small.) Now the pressure drop across the sten- 
osis and the flow rate due to the steady portion of the 
heart action remain with time. But both the pressure drop 
and the flow rate vary in direct proportion to the ampli- 
tude of the body acceleration. When a o is small, impedance 
is governed by the steady heart action, and when ao is 
large, impedance is practically governed by the body accel- 
eration. This is because, in the latter case, flow rate due to 
a o far exceeds that due to Ao. 

amplitude of the body acceleration or the smaller its fre- 
quency, the greater are the effects of body acceleration 
(Fig. 5). 

From the above one can deduce the effects of occlusion 
and body acceleration on impedance of the stenotic artery. 
We find that bigger the size of the occlusion, the greater 
the pressure drop and therefore the greater the impedance 
(Fig. 4). It is found that the impedance of a moderately 
stenosed carotid artery caused by body acceleration is 
smaller than that due to the pressure gradient produced by 
the pumping action of the heart. 

5. Conclusion 
(1) Stenosis increases peak velocities, velocity gradient and 

resulting shear stress. 

I I I I I 
0-20 0-49 0-59 0-8g 1-Og 

a o  

Variation of independence with acceleration. (Carotid artery, z o = a, 6 = 0.2a, a = 4 cm, fb = 0"6 Hz) 

4 D i s c u s s i o n  
The effect of occlusion spread over a certain length of a 

tube conveying a fluid is to cause an increase in the pres- 
sure drop across that length. This is because an occlusion 
decreases the cross-sectional area of the tube over the 
length where it extends. As a result the flow velocity 
increases, if the same volume rate of flow is maintained 
(Fig. 2). Because fluid velocity at the outer radius is always 
zero the velocity gradients and hence shear stress are 
increased by an occlusion. The bigger the occlusion, the 
greater the increase in shear stress (Fig. 3). 

Now the externally imposed body acceleration tends to 
increase the rate of flow through the artery. As a result, it 
contributes its own terms to velocity gradient and shear 
stress. If this increased flow is maintained through the 
stenotic region of the artery, it results in a further increase 
of the pressure drop across that region. The greater the 
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(2) The bigger the occlusion or the greater the length of 
the stenosis, the larger the pressure drop across the 
stenotic artery and greater its impedance. 

(3) Body acceleration increases both the flow rate and the 
pressure drop across the stenosis. 

(4) Impedance to body acceleration in a carotid artery is 
smaller than that due to pressure gradient created by 
heart action. Also, the impedance of the artery progres- 
sively decreases as the magnitude of body acceleration 
is gradually increased. 
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