
1 I n t r o d u c t i o n  
POSTURAL PERTURBATIONS are often used in experimental 
investigations of human balance and postural control .  
Typically, the subject stands on a moving platform and the 
resulting postural sway is measured. The postural sway 
may be characterised in terms of 

(a) motion of certain body segments or joints 
(b) joint moments 
(c) electromyographic activity in various muscle groups 
(d) displacement of the centre of pressure on the feet. 

Many investigators have studied the spontaneous postural 
sway of subjects as they stand quietly on a stationary floor 
(TEREKHOV, 1976). Spontaneous sway measurements quan- 
tify an output of the posture-control system but fail to 
characterise the input which caused the sway to occur. As 
a result, the system itself cannot be identified and no infer- 
ences or predictions can be made regarding the per- 
formance of the system under different test conditions or 
its response to destabilising perturbations. To make these 
predictions an input/output model must be identified. 

An input/output model of the posture-control system 
can be identified by applying measurable postural pertur- 
bations to the subject. The perturbation is treated as the 
input to the model and the postural sway response is the 
output. 

The particular perturbation signal used in an experi- 
ment may have a substantial influence on the accuracy of 
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the system identification and on the interpretation of the 
results. A wide variety of different perturbation signals 
have been used by various investigators, as shown in Table 
1. ANORES and ANDERSON (1980) pointed out the need for 
accurate quantification of perturbation signals; however, 
the criteria by which perturbation parameters are selected 
have not been adequately addressed in the literature. 

The purpose of this review is to discuss the selection of 
perturbation parameters for use in posture-control experi- 
ments. After a description of some general requirements 
for system identification, the selection of appropriate per- 
turbation parameters is discussed in light of these require- 
ments. Experimental results are then used to illustrate 
some of the specific issues. 

It is assumed that the purpose of the posture-control 
experiment is system identification, with the aim of pre- 

d ic t ing  balance performance in 'daily life' situations on the 
basis of laboratory tests. It is also assumed that the goal is 
a linear, time-invariant model. Linear analysis has a tre- 
mendous advantage over nonlinear methods in terms of 
computational simplicity and ease of interpretation. 
Although linear time-invariant models are a gross simplifi- 
cation of the true posture-control system, these models can 
often provide useful results when applied over a limited 
range of input amplitudes and a limited time period. 

2 General requirements 

2.1 Persistent excitation 

A minimum requirement for system identification is that 
the input signal 'persistently excites' the dynamics of the 
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Table 1 Perturbation parameters used by other investigators 

Perturbation parameters 

Type of Position Power Frequency 
Investigator(s) motion waveform spectrum range, Hz Amplitude Duration 

HONJO and FURUKAWA, 1957 rot (ap) ramp? N/A N/A 4 20 ~ s-1 N/A 
NASHNER, 1971; 1976; 1977 rot (ap) ramp? N/A N/A 0.15 6 ~ s -1 N/A 

tra (ap) ramp? N/A N/A 0-5 in s- 1 N/A 
GANTCHEV et al., 1972; rot (ap) sine N/A 0-2-1.0 3 ~ ? 
GANTCHEV and PoPov, 1973 tra (ap) sine N/A 0.2 1-4 36 mm ? 
LITVINTSEV, 1973 tra (ap, ml) ramp? N/A N/A ? N/A 
WALSH, 1973 rot (ap, ml) sine N/A 0.06-0.7 0.3 ~ 20 s 
GURFINKEL et al., 1976 tra (~ip) sine N/A 0.2-2.0 5 cm 40 cycles 

rot (ap) sine N/A 0.2 2-0 1, 2 ~ 40 cycles 
ramp N/A N/A 0.1 0.2 ~ 0.6 ~ s 1 N/A 

MEYER and BLUM, 1978 rot (ap) sine N/A 0-1-1-0 ? 160 s 
random ? ? 1.0 0.5 ~ max 160 s 

ram p N/A N/A 0.6 ~ 15 ~ s 1 N/A 
ALLUM and BUDINGEN, 1979 rot (ap) ramp N/A N/A 1~ ~ 30-50 ~ s-1 N/A 
NASHNER et al., 1979; rot (ap) half-sine N/A 2, 4 5 ~ 20 ~ s-1 N/A 

NASHNER, 1980; tra (ap) half-sine N/A 2, 4 8 cm, 30 cm s- 1 N/A 
NASHNER and CORDO, 1981 tra (vt) half-sine N/A 2, 4 5 cm, 20 cm s-~ N/A 

HIBINO, 1980 rot (ap) sine N/A 0.1 3.0 5 ~ ? 
ISHIDA and IMAI, 1980 tra ( a p )  binary-PRN bell-shaped 0-2-2.0 ? ? 
ANDRES, 1982 tra (ap) ramp N/A N/A 7.5 cm s-1 N/A 

sine N/A 0.2-0-8 6-18 cm s-~ 20 s 
PRN ? 0-1-2.0 4-10 cm s- t  max 20 s 

DIENER et al., 1984 rot (ap) ramp N/A N/A 2-8 ~ 1(~100 ~ s-1 N/A 
TOKITA et al., 1984 tra (ap) PRN ? 0.1-5.0 10 cm max ? 

rot = rotational, t ra=  translational, ap = anterior-posterior, ml = medial-lateral, vt = vertical, PRN = pseudorandom noise, 
N/A = not applicable 

system over the measurement period (ISERMANN, 1980). 
This means that the frequency content of the input must 
exercise the system over the range of frequencies for which 
the model is needed. 

2.2 Accuracy of  identification 
Selection of appropriate input (i.e. perturbation) param- 

eters can help to minimise random error and bias in the 
model estimates. In fact, it is possible to design optimal 
input signals that minimise model errors, given constraints 
on the measurement time, the sampling rate and the ampli- 
tude and power characteristics of the input and output 
signals (GooDWIN and PAYNE, 1977). However, in general, 
the design of truly optimal input signals requires detailed 
prior knowledge of the system model and noise character- 
istics (Box and JENKINS, 1976), information which is gener- 
ally not available a priori. 

2.3 Stationarity 

Identification of a time-invariant model requires that the 
characteristics of the system do not change over. the mea- 
surement period, i.e. the system must be stationary. In 
studying the posture-control system, there are at least 
three factors that could influence stationarity: 

(a) adaptation to the perturbation stimulus 
(b) adaptation to the test environment 
(c) fatigue. 

To minimise adaptation, the test perturbation must be 
unpredictable. Changes in anxiety level may influence pos- 
tural responses, as subjects gain familiarity with the test 
environment. Fatigue will become a factor if the duration 
of the test is excessively long. 

2.4 Human tolerance 

The test perturbation must be safe, i.e. the risk of falling 

must be minimised. The subjects' perception of the risk 
must also be minimised, since subject apprehension could 
result in changes in the response strategy. For example, 
subjects might 'brace' themselves through increased co- 
contraction of antagonist muscle groups. Discomfort is 
another factor that could influence the response. High- 
frequency vibration can induce discomfort, as can exces- 
sively long measurement periods. 

3 Per turbat ion parameters 

3.1 Type  of  perturbation 

For a perfect linear system the system identification is 
independent of the nature of the input. However, the 
posture-control system is not perfectly linear and extrapo- 
lation of experimental test results to actual balance and 
falling behaviour depends on the degree to which the test 
perturbation simulates common causes of falling, such as 
slips, trips and mis-steps. To allow such extrapolation the 
test perturbation should simulate a typical falling circum- 
stance in terms of 

(a) kinematics, i.e. the relative motion of the body seg- 
ments 

(b) sensory imput, i.e. the visual, vestibular, proprioceptive 
and exteroceptive sensory cues. 

Postural perturbations can be applied easily and in a con- 
trolled manner by moving a platform on which the subject 
stands. By restricting the number of degrees of freedom of 
the perturbation motion it may be possible to reduce the 
complexity of the posture-control model. 

Horizontal platform translation simulates the kine- 
matics of a slip, trip or mis-step in that there is a relative 
acceleration between the feet and the upper body. Provid- 
ed that the visual field moves with the platform, the 
dominant sensory cues are consistent with a fall relative to 
the platform frame of reference. The one inconsistency lies 
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in the utricular otoliths, which record the linear acceler- 
ation of the head in an absolute reference frame. Because 
of the low frequency response of the otoliths (NASHNER, 
1971) and the otolith reflexes (ANDERSON et al., 1977) to 
horizontal accelerations, this inconsistency should have 
relatively little effect on dynamic balancing responses. 

Platform rotation might simulate overstepping a curb or 
stairway tread, but otherwise does not simulate the kine- 
matics of typical falls. Furthermore, the resulting sensory 
cues may be inconsistent. For  example, a 'toes-up' plat- 
form rotation induces a backwards falling motion yet 
results in ankle dorsiflexion, yielding proprioceptive cues 
consistent with a forward fall. The resulting stretch reflexes 
act to further destabilise the body (DIENER et  al., 1984). 

In an ideal simulation of a slip, trip or mis-step, the 
perturbation would be applied to the supporting foot 
during gait, an approach used by NASHNER (1980). 
However, as discussed in Section 3.2, a continuous wave- 
form may be desired, in which case the one-foot pertur- 
bation becomes impractical. 

3.2 Waveform 
Transient waveforms (e.g. step change in platform 

acceleration) provide the best simulation of sudden slips or 
trips; however, they also present several difficulties. The 
most serious problem relates to the risk of injury to the 
experimental subjects, which is of particular concern in 
testing the elderly. Even if the risk of injury is reduced 
through the use of a safety harness, handrails or padded 
surfaces, subject apprehension may influence the balance 
response. 

To achieve accurate identification of 'noisy' systems 
using transient waveforms, the test must be repeated many 
times and the results averaged (RAKE, 1980). However, 
repetitive testing with the same transient waveform can 
lead to adaptive changes in the response (NASHNER, 1976), 
thereby degrading identification of a time-invariant model. 
This problem may be overcome to some degree by rando- 
mising the time of onset of the perturbation and by ran- 
domly varying the amplitude and/or direction of the 
perturbation. 

The use of transient waveforms may lead to reduced 
linearity in the measured sway response. Since the tran- 
sient input must have a relatively large amplitude to 
achieve acceptable signal-to-noise in the measurements, it 
is more likely to excite saturation-type nonlinearities in the 
posture-control system. 

The use of continuous waveforms can circumvent many 
of the difficulties inherent to the use of transient wave- 
forms. Through appropriate choice of amplitude, power 
spectrum and bandwidth, a continuous perturbation can 
be designed so as to minimise apprehension and risk of 
falling. If the waveform is unpredictable to the subject then 
the test should elicit posture-control system behaviour 
similar to that occurring in an actual slip, trip or mis-step. 

Sinusoidal inputs have the disadvantage of predictability 
(STARK, 1968). Subjects are able to adapt to this type of 
perturbation, and may learn to 'ride' the platform (ANDRES, 
1982). As a result, the measured response may not be 
indicative of the response in typical falling situations. Use 
of sinusoidal waveforms has the further disadvantage of 
being time-consuming, since each frequency within the 
range of interest must be tested separately. 

To circumvent the problems of learning and adaptation, 
the perturbation must be made unpredictable. This can be 
accomplished by using random or pseudorandom wave- 
forms. STARK (1968) reported that a pseudorandom wave- 
form composed of a sum of as few as three sinusoids 

cannot be predicted by human subjects. However, the 
period of the pseudorandom waveform also seems to be 
important. If the period is too short, then subjects may be 
able to recognise and predict certain features of the wave- 
form. 

The choice of random or pseudorandom will affect the 
accuracy of the system identification. For a linear model, 
the best choice will depend on the linearity of the system. 
In general, a periodic pseudorandom waveform allows 
accurate model estimates to be achieved using shorter 
measurement times; however, if the system has a signifi- 
cant degree of nonlinearity then the use of certain pseudo- 
random waveforms can lead to bias errors in the linear 
model estimates (MAKI, 1986). The pseudorandom wave- 
form has a discrete power spectrum, the frequencies being 
integer multiples of the fundamental frequency (t/period). 
Nonlinearities will generate harmonics in the response at 
other frequencies in the input spectrum, thereby creating 
biased estimates at those frequencies. 

This problem may be overcome by using pseudorandom 
waveforms in which none of the frequencies are small- 
integer multiples of other frequencies in the signal (MAKI, 
1986). Since, in general, only the low harmonics will 
contain significant energy, this will minimise harmonic dis- 
tortion at the input frequencies. However, caution should 
be exercised in using this type of waveform, as the 
increased spacing between frequencies can cause sharp 
peaks or troughs in the system frequency response to go 
undetected. 

Pseudorandom waveforms can be generated in a 
number of forms. Maximum-length binary signals are 
widely used in system identification applications (GRAUPE, 
1976); however, they have the disadvantage that the shape 
of the power spectrum cannot be changed readily 
(EYKHOFF, 1974). Greater flexibility is attained by using a 
signal comprised of a sum of a number of sinusoids with 
random phase angles. Any desired (discrete) power spec- 
trum can be achieved through appropriate selection of the 
amplitudes and frequencies of the sinusoids. 

3.3 Power spectrum 
The power spectrum specifies the distribution of the per- 

turbation power over the selected frequency range. In 
general, it is desirable to increase the power at frequencies 
where the system frequency response is low, to increase the 
signal-to-noise ratio in the response measurements at those 
frequencies. Ideally, an optimal input power spectrum 
could be selected so as to compensate for the system fre- 
quency response, yielding an equal signal-to-noise ratio at 
all frequencies in the measured response. In practice, 
however, this can only be achieved using an iterative 
approach, since optimal input design requires a priori 
information about the system characteristics. 

3.4 Bandwidth 
The frequency content of the perturbation signal must 

allow for persistent excitation, i.e. it must exercise the 
posture-control system over its frequency response limits. 
Some information about the frequency response limits of 
the posture-control system can be derived from previous 
studies. Typically, results show a decrease in gain with 
increasing frequency. For  example, data from ISHIDA and 
IMAI (1980) show attenuation of approximately 20 to 40 dB 
as the frequency increases from 0.2 Hz to 2.0 Hz. 

Another consideration is subject tolerance. In particular, 
exposure to high-frequency vibration can lead to discom- 
fort and fatigue. The poorest tolerance is generally in the 
range from 4 to 8 Hz (MCCORMICK, 1976). 
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3.5 Amplitude 
Selection of the perturbation amplitude is governed by 

three considerations : 

(a) signal-to-noise ratio in the measurements of the input 
and output 

(b) linearity of the model 
(c) subject safety and tolerance. 

The need to measure signals accurately in the presence of 
measurement noise calls for large input amplitudes, 
whereas safety and tolerance concerns require small ampli- 
tudes. Linear modelling is best served by moderate ampli- 
tudes. If the amplitude is too small, then certain sensory 
components may not be stimulated due to threshold 
effects. Alternatively, if the amplitude is too large, then 
large-amplitude nonlinearities may be excited (e.g. muscle 
strength and range-of-motion limits). In general, a linear 
model will only apply over a limited range of perturbation 
amplitudes. 

3.6 Duration 
To minimise random error in the model estimates the 

measurement time must be maximised. However, in a 
practical experiment, the measurement time will be limited 
by subject fatigue and tolerance. 

4 Experimental  m e t h o d s  
Experimental results were obtained using an anterior- 

posterior translational platform acceleration as the test 
perturbation and a linear nonparametric transfer function 
(or frequency-response) model of the posture-control 
system. The platform acceleration is the input to the 
system and the centre-of-pressure displacement (for each 
foot, separately) is the output. 

4.1 Apparatus 
The sway platform allows one degree of freedom of hori- 

zontal translational motion. The range of motion is 
approximately 0.6 m, with a peak speed of 2 m s 1 and a 
peak acceleration of 20 m s -2 (for a 100 kg load). The 
frequency response (carrying a 100 kg load) is flat to 
within 1 dB for frequencies up to 5 Hz. 

For  safety, the platform mechanics are covered by a 
plywood base and safety handrails are mounted onto the 
undercarriage. The safety handrails also provide a frame- 
work for a polyurethane-foam padded enclosure and for a 
styrofoam visual surround which moves with the platform. 

Two force plates are mounted side by side on the plat- 
form, one for each foot. For  each force plate, four cantile- 
ver load cells measure the vertical force and an additional 
load cell measures the anterior-posterior horizontal force. 
Ball transfers are placed between the plates and the load 
cells to minimise crosstalk between the horizontal and ver- 
tical force measurements. Based on dynamic tests, the 
mean absolute error in centre-of-pressure measurement 
ranged from 0.0 mm to 1.4 mm. The error standard devi- 
ation ranged from 0.3 mm to 1.2 mm. 

The acceleration of the platform is measured by an 
accelerometer. Performance tests at accelerations ranging 
from 0.1 to 5 m s -2 resulted in a mean error of 0.07 
m s -2. The error standard deviation was 0.23 m s -2. 

The transducer signals are passed from the platform via 
an umbilical cable to a bank of low-pass anti-aliasing 
filters (cutoff at 6 Hz) and an analogue-to-digital conver- 
tor. The data are sampled at 0-06 s intervals (sampling 
rate 16.7 Hz) and stored on magnetic disk for later 
analysis. 
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4.2 Subjects 
The eight subjects (four males and four females) who 

participated in the experiments were all healthy, normal 
adults with no obvious neurological or musculoskeletal 
deficits. The subjects ranged in age from 19 to 40. 

4.3 Test procedure 
For  each test, the subject was instructed to stand 

relaxed, with feet comfortably spaced and arms at sides, 
and to look straight ahead. Headphones were used to 
listen to music so as to mask any auditory cues from the 
motor  and to distract the subject from consciously modify- 
ing his/her motion. Prior to the first test the outlines of the 
feet were traced, to allow the feet to be repositioned identi- 
cally in subsequent tests. 

Tests were approximately 5 min in duration. The plat- 
form motion was controlled to start and end gradually, 
with no sudden changes in acceleration. During the test 
the subject was observed to determine whether he/she 
needed to grab the handrail or move his/her feet in order 
to maintain balance. At the end of each test the subject 
was allowed a 2-3 min seated rest. The maximum duration 
of any single testing session was 1�89 hours. 

4.4 Protocol 
Six subjects were each tested using three different wave- 

forms: 

(a) a pseudorandom input composed of a sum of harmonic 
sinusoids (HPRN) 

(b) a pseudorandom input composed of a sum of non- 
harmonic sinusoids (NHPRN) 

(c) a Gaussian band-limited white noise random input 
(RAN). 

To construct the random waveform, Gaussian white noise 
was bandpass filtered with cutoffs at 0.1 and 5-0 Hz. The 
two pseudorandom signals both had periods of 15.36 s, 
and were constructed as a sum of equal-amplitude sinus- 
oids having random phase angles uniformly distributed 
between 0 and 360 ~ The frequencies of the sinusoids 
ranged from 0-13 to 4.95 Hz. The H P R N  signal comprised 
75 sinusoids, spaced at equal frequency intervals of 
0.065 Hz. The N H P R N  version comprised 15 sinusoids at 
the following frequencies: 2, 3, 5, 8, 11, 14, 18, 21, 25, 29, 
35, 43, 51, 61 and 76 cycles per 15.36 s period. 

Three subjects were each tested using three different 
input power spectra: 

(a) flat acceleration power spectrum (ACC) 
(b) flat velocity power spectrum (VEL) 
(c) flat position power spectrum (POS). 

All three signals used a random waveform and had an 
identical frequency range (0.1-5.0 Hz). For  each spectrum 
the amplitude was adjusted to the upper limit of the 
subject's tolerance, i.e. the highest amplitude at which the 
subject could balance without grabbing a handrail or 
moving his or her feet. 

Three subjects were tested at different amplitudes using 
the N H P R N  waveform. Each subject was tested three 
times at each of five amplitudes, in random order. The 
largest amplitude tested was the maximum that the sub- 
jects could tolerate without moving their feet or grabbing a 
handrail. 

4.5 Analysis 
The sampled load cell voltages were used to calculate 
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the anterior-posterior locations of the centre of pressure 
for each foot, and the sampled accelerometer voltages were 
converted into acceleration values. Treating the acceler- 
ation data as the system input and the centre-of-pressure 
data as the output, the data were fit with a nonparametric 
linear transfer function model. 

The method of 'averaging periodograms' was used 
(B~NDAT and PIERSOL, 1971). First, the data were divided 
into segments of equal length, discarding the first segment 
to eliminate any transient response. Then, for each 
segment, the input/output cross-spectrum, the input auto- 
spectrum and the output autospectrum were estimated. 
These spectral estimates were averaged, and the frequency 
response was estimated as the ratio of the average cross- 
spectrum divided by the average input autospectrum. The 
coherence function was estimated as the squared magni- 
tude of the average cross-spectrum divided by the product 
of the input and output autospectra. 

The spectral estimates were made using a fast Fourier 
transform (FFT) algorithm. The FFT  length was chosen to 
be 256 points, resulting in a segment duration of 15.36 s 
and a spectral resolution of 0.065 Hz. Using 50 per cent 
overlap of segments a total of 37 segments was obtained. 
In tests using random inputs, the data in each segment 
were windowed (using a Hamming window) to reduce 
truncation effects ('leakage'). This was not necessary for the 
pseudorandom inputs. Since the segment length was 
chosen to equal the period of these inputs (15.36 s), 
leakage could not occur. 

5 Experimental  results and discussion 

5.1 Waveform 
It is tempting to compare results obtained using differ- 

ent waveforms on the basis of the coherence function, as 
the coherence is supposed to indicate the 'goodness of fit' 
of a noise-free, linear, single-input/single-output model. 
However, this interpretation of the coherence function 
applies only to RAN inputs (MAKI, 1986). For  N H P R N  
inputs, reduction in coherence indicates measurement 
noise and/or response due to unmeasured inputs, but 
cannot be used to assess the linearity of the true system. 
For  H P R N  inputs the coherence cannot be interpreted in 
a useful way. 

Typical results are shown in Fig. 1. The large frequency- 
to-frequency fluctuations in the H P R N  frequency response 
estimate are actually bias errors caused by nonlinear har- 
monic generation. The RAN estimate is smoother, but still 
exhibits greater variability than the N H P R N  estimate. The 
larger variance is due in part to nonlinear harmonic gener- 
ation and in part to the randomness inherent in the RAN 
input. The lower coherence of the RAN estimate compared 
with the N H P R N  estimate indicates that the RAN linear 
model estimate has been degraded as a result of nonlin- 
earities in the system. The frequency response derived 
using the RAN input exhibits no sharp peaks or troughs; 
therefore, the reduced frequency resolution of the N H P R N  
input is not a problem. 

5.2 Power spectrum 
Fig. 2 shows an example of the input power spectrum 

and the resulting frequency response and coherence esti- 
mates obtained using the ACC, VEL and POS input 
power spectra. 

Because the input was random, the coherence function 
indicates the relative 'goodness of fit' of a noise-free, linear, 
single-input/single-output model. As illustrated in the 
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figure, the VEL spectrum resulted in markedly reduced 
coherence at lower frequencies, with relatively little 
improvement at the high frequency end, compared with 
the ACC spectrum. Although the POS spectrum yielded 
high coherence at frequencies above 4 Hz, the coherence 
was extremely poor at frequencies below 2 Hz. Compared 
with the ACC spectrum, the VEL and POS spectra were 
perceived to be very uncomfortable. 

5.3 Bandwidth 
The frequency range used in the experimental tests was 

approximately 0-1-5.0 Hz. As is evident in Fig. 1, the 
lower frequency limit was sufficiently small to allow the 
flat low-frequency asymptote of the frequency response to 
be determined. At the high-frequency limit there was suffi- 
cient additional attenuation ( - 4 0  dB) to define a high- 
frequency asymptote. 
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5.4 Amplitude 
Typical results are shown in Fig. 3. Above a certain 

amplitude, substantial changes in the frequency response 
(as quantified by gain values at 0.13 Hz) and improve- 
ments in mean coherence occurred; however, there was 
relatively little change as the amplitude was increased 
further. In general, the best amplitude will depend on the 
waveform and its frequency content. For the N H P R N  
waveform tested here, a root-mean square (RMS) ampli- 
tude between 0.15 and 0.25 m s 2 would be selected for 
use in subsequent experiments. 

5.5 Duration 
The experimental studies used a test duration of approx- 

imately 5 min. All eight subjects tested were able to toler- 
ate this duration. Moreover, this duration was sufficient to 
achieve reasonably accurate results. In the experimental 
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analysis the 5 min of data were divided into 19 segments of 
15.36 s duration. Using 50 per cent overlap of adjacent 
segments, a total of 37 segments was obtained. According 
to formulae derived for nonparametric frequency response 
estimates and random Gaussian inputs (DOEBELIN, 1980)i 
averaging over 37 segments of data will yield gain esti- 
mates accurate to within 10 per cent with 95 per cent 
probability, assuming a coherence of 0-8 or greater. 

For pseudorandom inputs the required duration will be 
less. Using a random input, much of the variance in the 
frequency response estimates is due to the inherent varia- 
bility in the input signal. For  a deterministic pseudoran- 
dom input the variance is much less (due only to random 
noise) and therefore can be reduced to an acceptable level 
by averaging a smaller number of data segments. 

Lacking a general method for estimating the required 
duration for pseudorandom inputs, the effects of changes 
in duration were observed experimentally. Frequency- 
response estimates were made using all 5 min of the data; 
the first 50 per cent of the data and the first 25 per cent of 
the data. As illustrated in Fig. 4, reduction to 50 per cent 
resulted in only small changes in the estimates (maximum 
change in gain <2  dB, maximum change in phase angle 
< 10~ whereas reduction to 25 per cent resulted in sub- 
stantially larger changes. 

To assess whether the 5 min duration was too long and 
thereby causing changes in the system characteristics (due 
to fatigue or adaptation) each test was analysed for sta- 
tionarity. The output data were divided into 19 15.36 s 
segments, the variance of each segment was calculated and 
a 'runs test' (BENDAT and PIERSOL, 1971) was performed. 
The data for the RAN input showed significant nonsta- 
tionarity (at p < 0-05) in only one of 30 tests. The HPR N 
and N H P R N  inputs did not result in any tests with signifi- 
cant nonstationarity. 
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6 Conc lus ion  
A translational platform acceleration in the anterior- 

posterior direction is a reasonable simulation of the kine- 
matics and sensory input of a slip, trip or mis-step. If the 
platform motion is random or pseudorandom, then the 
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steady-state characteristics of the posture-control system 
can be identified safely and with minimal subject appre-, 
hension. The steady-state model can then be used to 
attempt to predict transient response to a slip, trip or mis- 
step. 

A pseudorandom perturbation (composed of a sum of 
nonharmonic sinusoids) will yield more accurate identifica- 
tion of a linear nonparametric transfer function model 
compared with random signals or pseudorandom signals 
with harmonic content. Good experimental results are 
achieved using a flat acceleration power spectrum, with a 
bandwidth of 0.1-5.0 Hz. The optimal amplitude will 
depend on the waveform. In general, the best amplitude is 
a moderate value, large enough to exceed sensory thresh- 
olds and to yield adequate signal-to-noise in the measure- 
ments yet small enough to guarantee subject safety and to 
avoid saturation nonlinearities. Using a random input, a 
test duration of 5 min yields accurate results but is not so 
long as to cause adaptive or fatigue-related nonsta- 
tionarity. For pseudorandom inputs reduction of the dura- 
tion to 2.5 min does not appear to substantially change 
the results. 
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