
1 I n t r o d u c t i o n  
MAGNETIC STIMULATION is a technique for noninvasive 
stimulation of nerve tissue. The brain can be stimulated 
through the intact head without causing pain (BARKER et 

al., 1987) using magnetic stimulation. Magnetic stimulators 
presently have limited ability to confine the electric field to 
a small target region, and the precise site of stimulation is 
difficult to predict. To improve this situation, a detailed 
understanding of the induced electric field is a necessary 
first step. 

The distribution of the electric field in the head induced 
by current flowing in a nearby coil can also be used to 
interpret magnetoencephalograms. Magnetoencephalo- 
graphy (MEG), like magnetic brain stimulation, also uses 
coils of wire located near the head as transducers. MEG is 
a technique for measuring the minute magnetic fields gen- 
erated by brain activity. MEG can be used to precisely 
locate the source of brain activity, both evoked and spon- 
taneous (WILLIAMSON and KAUEMAN, 1984). 

Many investigators have modelled, in some way, the 
induced fields in the brain during magnetic stimulation. 
Some models have neglected the conductor boundary 
(COHEN, L. G. et  al., 1990), whereas others have treated it 
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as an infinite conducting half space (TOFTS, 1990). More 
advanced models include a quasispherical volume analysed 
with finite-element techniques (UENO et  al., 1988) and a 
three-sphere model using a finite-difference approximation 
(ROTH et  al., 1991). All of these investigators provide 
results for specific coil shapes which have specific orienta- 
tions to the head. In practical applications of magnetic 
brain stimulation, the desired coil shape and placement 
may not conform to any of these previously published 
cases. Several investigators have tried to determine experi- 
mentally how coil orientation affects brain stimulation 
(AMASSIAN et  al., 1989; COHEN, L. G. et  al., 199l; MEYER et  
al., 1991 ; UENO et  al., 1990). 

This paper presents a method for directly computing the 
total electric field inside a homogeneous spherical volume 
conductor for any practical excitation coil of any orienta- 
tion. The method is simple and can provide highly accu- 
rate results with little computing time on a PC. The 
reciprocity theorem allows the results to be applied to 
MEG problems as well. 

2 Model  s y s t e m 
Fig. 1 shows the sphere model which is centred at the 

origin of the co-ordinate system. The sphere is assumed to 
have the permeability of free space kt o, homogenous, iso- 
tropic conductivity tr s and permittivity e~. Outside the 
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sphere is free space (a = 0, e = %). Above the sphere is an 
arbitrarily shaped excitation coil carrying a known current 
distribution. The current in the coil is assumed to flow in 
negligibly small filaments that are located at the centres of 
the wires; the theory can easily be expanded to include 
nonfilamentary coil currents. The frequency of excitation 
~o/2n is assumed to be low enough for all propagation 
effects and skin depth in the sphere to be neglected. These 
two approximations are valid as long as the coil is small 

~ arbitrary coil path 

r Z ~ n d  uct ing sphere 

Fig. 1 Co-ordinate system used in the model development, The 
spherical co-ordinate system and its relationship to the 
cartesian co-ordinates is shown. The vector r locates the 
point inside the sphere where the electric field is calculated. 
The vector r' points to the differential element of coil 
length being integrated. The differential vector dr is 
tangent to the coil path at r'. The coil must form a closed 
loop outside the sphere 

(not much larger than the head of radius ro) and x /~  
~ s .  For the human head, this approximation is 
valid up to about 500 kHz. This paper does not neglect the 
effects of the head capacitance. With skin depth neglected, 
the magnetic field arising from induced currents is ignored, 
so the total magnetic field is only the magnetic field pro- 
duced by the excitation coil. All time varying signals are 
assumed to vary as e ~", where j = x / -  1. Alternatively, all 
field quantities can be thought of as Fourier transforms of 
the time domain quantities. 

2.1 Derivation of field equations 
The magnetic field, B can be found from the curl of a 

vector potential A : 

B = V x A (1) 

The magnetic vector potential of the coil is given by 

Po ~ Idr  
A = ~  oi~ I r - r ' l  (2) 

where r is a vector from the origin to the point where the 
field is being computed, r' is a vector from the origin to the 
differential element of coil current, I is the coil current and 
d/' is directed along the current path. Eqn. 2 is really three 
equations, one for each component of A. The three equa- 
tions are independent only in rectangular co-ordinates. 
Eqn. 2 has identically zero divergence for any closed coil 
(JACKSON, 1975). Substituting eqn. 1 into the Faraday law 
gives 

0B 
V x E =  - - j c o B = - j o o V  x A  (3) 

0t 
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Collecting terms gives 

V x (E + jcoA) = 0 (4) 

which implies that 

E = - j ~ 4  - v v  (5) 

where V is the potential function resulting from charge 
accumulation at the sphere boundary. V must satisfy the 
Laplace equation. A general solution to the Laplace equa- 
tion in spherical co-ordinates is (ARFKEN, 1985) 

l 
V = ~ Z (Fire r '+  Glmr-'-')Yl,"( O' 49) (6) 

1=O m = - I  

where Y~m(0, 49) are spherical harmonic functions and Ft, . 
and Gtm are complex constants. The potential inside the 
sphere Vii must be finite at the origin, which requires all the 
Gtm constants to be zero for V~. The potential outside 
the sphere V o must vanish as r --* ~ which requires all of 
the Ft, . constants to be zero for Vo. The resulting expres- 
sions for Vii and V o are 

l 
Vii = ~ E F,m r'Ylm(O, 49) (7) 

/=0 m=- I  
1 

Vo = E E G,. r - ' - '  Y,.(0. 49) (8) 
/=0 m=- l  

The tangential components of V V  must be continuous 
across the sphere boundary. This requires that 

Gt m = Ft m r2o t + a (9) 

for all l, m. Continuity of the normal component of the 
induced current requires that (at r = ro) 

(, ) (as + JmG) ooA �9 e + ~ IFt,, do x Yl,,(O, 49) 
l=0 m=- l  

=J~176 j~ ,=~( l+ l )G ' ' r~  (10) 

Combining eqns. 9 and 10 and simplifying results in (at 
r = to) 

! 
~ [I(G + JcoG) + J~ + 1)] 

/=Ore= l 

x Fl,,rto-~Yl,,(O, 49) = - [ G  +Jco(G - 8o)]J ~ " ~ (11) 

Eqn. 11 can be solved for Fzm by multiplying both sides by 
orthogonal spherical harmonics and integrating over the 
sphere surface. This could be carried out by computing A 
from eqn. 2 and numerically integrating over the surface; 
however, this is computationally intensive and difficult 
because of the double integration required. By manipulat- 
ing eqn. 2 it is possible to find a direct expression for Fzm. 

The expression 1/] r - r' I used in eqn. 2 can be written in 
terms of spherical harmonic functions (JACKSON, 1975): 

i '  1 4 ~  
Lr- - r ' l  ,=o m=- ,  

�9 t ! 
x + 1)r,,+, Y,m(O, 49)Yr,,(0, 49) (12) 

where * means the complex conjugate. Eqn. 12 is valid for 
r ' >  r. Substituting eqn. 12 into eqn. 2 and pulling 
unprimed variables outside the integral gives 

~ ~ ~c * ' 
G,(O,  493 dr  (13) 

A = #o I ~ rtYt,,(0, 49) (2l + 1)r ''+1 
/=O m = -1 oil 

The integral term in eqn. 13 is merely a set of complex 
vector constants for a given coil geometry and placement. 
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Providing a symbol for the vector constant 

~c Y*m(O', 4") Ctm = (2 /+  1)r '/+1 d r  (14) 
oil ~ ': 

helps simplify the expression for A : 
l 

A = #ol ~ Z rtYt.,(O, 4')Clm (15) 
1=0  m = - l  

For the boundary condition (eqn. 11) it is necessary to find 
the component of A in the ? direction. Eqn. 2 must be 
evaluated in rectangular components, and so the same is 
true for eqn. 14. For convenience, each rectangular com- 
ponent of Czm is given a symbol: 

Czm = C~mi...~ C~mi.-~- C~ms (16) 

Ct~ �9 ~ can then by written as 

Clm.,=[C~m2Jqm]sinOeJr 

[C~m2JC~m I Oe-Jr + sin + C7= cos 0 (17) 

Creating new symbols for two of the expressions above 
simplifies the notation: 

CtI " ~ = Dr,. sin Oe j4' + Elm sin 0e -j~ + Cl~ cos 0 (18) 

where Dim and Elm a r e  given by direct comparison between 
eqns. 17 and 18. Combining eqns. 15 and 18 allows A �9 f to 
be written as 

l 

A " ~ = bloI ~ Z rtYtm(O, 4') 
l=O m = --l 

[Dim sin 0g* + E~= sin 0e -j~ + CI% cos 0] (19) 

The recurrence relationships of spherical harmonic func- 
tions are (ARFKEN, 1985) 

0 = ~ / ( l - - m +  1 ) ( / + m +  1) 
l,~.(o, 4') (21 + 1)(21 + 3) Y/+l, m( 0, 4') COS 

/ (l - m)(l + m) 
+ V(~- ~iVT) r,_ 1, m( O, 4') (20) 

sin Og* = - / ( l  + m + 1)(I + m + 2) ~.,(o. 4,) (2l + 1)(21 + 3) 

X Y / + l , m + l ( 0 ,  4 ' )  

+ ~ ( l ( 2 i m ) ( l - m -  l) 
- 1)(2l + 1) Y~-~.,.+I(O, 4') 

(21) 

sin Oe-J4' = k/(l - m + 1)(I - m + 2) ~,.(o, 4') -(~ + 1)(21 + 3) 

N/(l + m)(l + m - 1) 
- (21 - 1)(21 + 1) Yt 1, ~-~(0, 4') 

Y/+ 1 , . -1(0 ,  4') 

(22) 

When eqns. 20-22 are substituted into eqn. 19, the indices 
shifted and the range of summation adjusted appropriately 
(zero terms added and eliminated as necessary), eqn. 19 
becomes 

A �9 ~ = ~o  I y~ r ' - '  Y g 0 ,  ~) 
1= 1 m =  - l  
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/(l + rn -- t ) ( /+  m) 
X l - -  D l _ l , m _ l ~ /  -~ll 7~))(-~---- f )  

/ ( 1  - -  m - -  1)(1 -- m) 
+E~_ ,  m+l~/  (21+1)(21--1)  

/ ( 1 -  m)(l + m) 
+ CL ~, m ~/(21 + 1)(21 -- 1)J 

l 

+ l,o I ~ Z r'+' Y,.(O, 4,) 
1=0  m = - l  

/(l --m__ + 2)(1 - m + 1) 
• Dl+l'm-l~[ (2 /+  1)(21 + 3) 

x / ( l + m + 2 X l + m +  1) 
- -  Et+t'm+l (2 /+  1)(21 + 3) 

+ C z ~ ( l -  m + l)(l + m + l)} (23) 
/+l,m (21 + 1)(21 + 3) 

Eqn. 23 has two double summations, the first starting at 
l = 1 and the second starting at l =  0. The Appendix 
shows that the bracketed term in the second double sum- 
mation is zero for all l, m. Combining eqns. 23 and 11 and 
using the orthogonality of spherical harmonic functions 
allows a direct determination of the expansion coefficient 
for V/: 

--jW#o l[a~ + jw(e~ -- %)] 
Ftm = l(a s + floe,) + jcoeo(l + 1) 

{ ~ ( l + m - l ) ( l + m )  
• - Dt-l .m-1 (21+ 1)(21- 1) 

/ ( 1  - rn  - 1)(1 - m) 
+ 

E'-1'"+1N/" (2l + 1)(2l -  1) 

/ ( 1 "  m)(l + m) ) (24) 
+ C}' 1"~/~-11 ~- l ~ i - - i - ) J  > 

for I > 0 and Foo = 0. 
The total electric field can be found anywhere inside the 

sphere by combining eqns. 5, 12 and 24: 
N + I  1 

e '~=-~o l  E Z 
/ = 1  ra= - l  

(jco)2eo(2/+ 1) 
x / -  1 Yg0,  4') 

jog(e, l + eol + %) + la, 

x { - - D z _ l , m _ 1 ~  ( l + m - 1 ) ( t + m )  
(21 + 1)(21 - 1) 

/(1 -- m -  1)(1 - m) 

/ (l- m)(l-+--m2~ (25) 
"4- C ~ _  1, m ~ ( 2 1  -'['- 1)(21 - 1 ) J  

N l 

E " $ = - je)#o I Z E J 
/ = 0  m = - I  

X (Dtm e j4~ - -  E l m  e - J * ) ~  YIm(0, 4') 

N+ 1 I jm 
_ ~ ~ Ft m _ _  r 1-1 Ytm(0, 4') (26) 

1=1 r,= I s in0 

E ' 0 - - - j o ~ / z  o l  ~ - -C~+1, ,~  1 
1=0  m = - l  
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e_j4 , / ( l  - m + 2)(I -- m + 1) 
X 

(21 + 1)(2l + 3) 

~ ( l - m +  1 ) ( l + m +  1) 
+ 

4 "(~ + 1)(21 + 3) 

x [Dl+l,m ejq~ + Et+x,me-J~']trt+lYtm(O, ~p) 

- E Z o91~oI C~-l,m-1 
/ = 1  rn=--I  

e_jO / ( l  + m -- 1)(1 + m) 
X 

,4 (21-  1)(2/+ 1) 

/ (l = m)(l_+__m) ] 
+ ~/(21 - 1)(21 + 1) (D~-l'meJ* + Et-1,  me -j*) 

+ z!Vz, m- 1 e-J~'~/( l - m + 1)(I + m) 

- 

x e~*.,,/(l + m + 1)(l - m)tr'-XYl,,(O, ?p) (27) 

Eqns. 25-27 are all Nth order approximations, and 
become exact as N --* oo. The rate of convergence of the 
series depends on the shape and location of the coil(s) and 
the location where the field is being computed. Generally, 
convergence is slow when the coil is large and located near 
the sphere and the field point is located near a current 
carrying wire. Convergence is fast when the coil is small 
and located far from the sphere and the field point is deep 
in the sphere. Because magnetic stimulator coils are 
usually much larger than magnetometer coils, magnetic 
stimulation calculation will normally require a higher 
order approximation than MEG calculations if equal 
accuracy is required. Superconducting magnetometers also 
require a Dewar flask to hold the cooling fluid, and so 
their coils are located farther from the head than magnetic 
stimulator coils. 

2.2 Radial field component 
Eqn. 25 shows the frequency response characteristic for 

the radial component explicitly. Inspection of the fre- 
quency response characteristics reveals that the radial 
component of the induced field decays to zero very quickly 
(in about 5(es + 2eo)/as s) for a ramping coil current and 
has a highly attenuated steady-state value for quadratically 
increasing and sinusoidal coil currents. This is in agree- 
ment with the predictions of COHEN, D. and CUFEIN (1991) 
and BRANSTON and TOETS (1991) who show that the 
steady-state radial electric field induced during magnetic 
stimulation is zero for any coil shape and orientation. For 
brain tissue at low frequency e s ~ 13000eo and as 
0.14Sm -1 (SToY et al., 1982), so the transient lasts about 
4.2#s. The two tangential components are nonzero at 
steady state for ramp current inputs. This shows that sig- 
nificant radially oriented electric fields are very difficult to 
induce in a uniform spherical conductor. Even when e s is 
large (such as in brain tissue or even water), which 
increases the time during which a transient radial electric 
field exists, the radial field is still much smaller than the 
tangential field. This can be seen by examining the fre- 
quency response of the Ftm coefficients (eqn. 24). When 
e, >> Co, the pole in eqn. 24 is approximately cancelled by 
one of the zeros, so that the Ftm coefficients begin very near 
their steady-state values. Therefore, when e~ >> eo none of 
the field components change much between the transient 
and steady-state periods. 

For magnetic brain stimulation and MEG work, the 
radial component is so small compared with the tangential 
components that it can be considered to he zero. If the 
radial field is zero, then the sphere can be made of concen- 
tric shells having different electrical properties, and eqns. 
25-27 will still be correct. This is true because the different 
shells will put additional boundary conditions only on the 
normal (radial) field component. Because this component 
is zero everywhere inside the head, the shell boundary con- 
ditions are already met by the single sphere model. 

3 A p p l i c a t i o n  
The implementation of eqns. 25-27 is straightforward. 

First, the coil geometry is used to define the path and 
direction (cartesian component) used in eqn. 14. The Czr, 
coefficients are computed for all I values up to l = N. Next 
the Dim, Elm and Ftm coefficients are computed and stored. 
The Fzm terms must be determined up to l = N + 1. The 
integrals are easily evaluated numerically because only line 
integrals having no singularities are used. For large l the 
integrands can be highly oscillatory, which may require 
some care in the numerical integration procedure. Once all 
of these coefficients are determined, the sums given in eqns. 
25-27 may be evaluated for any particular location (r, 0, q~) 
inside the sphere. Subroutines for computing spherical har- 
monic functions are given in PRESS et al. (1986). 

3.1 Application to magnetic brain stimulation 
Several contour plots of the magnitude of the electric 

field in various planes through a sphere excited by a 
'butterfly' shaped coil are shown in Fig. 2. The sphere 
diameter is 18cm, and the coil is made from two 5cm 
diameter circular loops touching at one point so that the 
loop planes intersect to form a 140 ~ angle. The coils carry 
currents in opposite directions and are located so that the 
bisector (of the 140 ~ angle), passing through the point 
where the loops touch, also passes through the centre of 
the sphere. The point of the 'V' formed by the coils is 
closest to the sphere and is 0.4cm above the sphere 
surface. The plots show the steady-state electric field pro- 
duced by a 1 A s- 1 current ramp in each loop. The magni- 
tude of the electric field scales directly with the current 
ramping rate, so that a coil current of 100A/~s -1 would 
change the scale from 1 nVm-1  to 0 .1Vm-1.  Note that 
for this example each loop has only 1 turn. 

Fig. 2 shows that the electric field is strongest near the 

Fig. 2 Magnitude of the steady-state electric field in a sphere 
model of the head produced by a 'butterfly' shaped coil 
carrying a current ramp of I A s- t. The sphere is centred 
at the origin and is 18 cm diameter. The coil has two loops 
5 cm in diameter that touch on the z-axis to form a 140 ~ 
angle. The butterfly 'body" is aligned along the y-axis 
0.4 cm above the sphere surface. (a) The field in the planes 
z = 7.7cm; (b) z =6.7cm; (c) z = 5.7cm; (d) 
x = O.Ocm; (e) y = O.Ocm 
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coil and diminishes deeper in the sphere. There are two 
null points in the field which are near the projected loop 
centres in this example. The maximum electric field is 
located directly beneath the point where the loops adjoin. 
The field strength falls off rapidly with distance from the 
coil: the field strength near the brain surface (z = 7.7cm 
plane) is less than one-third of the value at the scalp 
surface. 
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Convergence of the series solution of the vector potential. 
The magnitudes of  the maximum and RMS vector error as 
a percentage of the maximum magnitude found in the plane 
are plotted against approximation order. Accuracy was 
checked at 69 points uniformly distributed in the plane 
z = 7.7cm (a region of slow convergence,)for the butterfly 
coil used in Fig. 2. Undulations are an artefact of  the com- 
putation at discrete points 

A twentieth order (N = 20) approximation was used to 
generate Fig. 2. The convergence characteristics for this 
coil were checked by comparing the vector potential com- 
puted by eqn. 15 (summed up to l =  N) with an exact 
expression given in terms of complete elliptic integrals 
(JACKSON, 1975). The maximum vector error in A between 
the two methods (considering only 0 and ~b components) 
was 1.6 per cent of the maximum magnitude (as given by 
the exact expression) in the z = 7.7 cm plane. Fig. 3 shows 
the convergence characteristics for this coil as the approx- 
imation order increases. The equations for A and E must 
converge at the same rate because of the relationship 
between E "  # and the Ftm coefficients. The contour inte- 
grals were computed using an 80-point Gauss-Legendre 

Table 1 First several constants characterisin 9 sphere/butterfly 
coil of  Fig. 2 

l m D E C z F 

0 0 --j0'0257 j0-0257 0 0 
1 0 -j0"3120 j0"3120 0 0 
1 1 0 0 j0"1257 -j0'0210 
2 0 -j3"639 j3.639 0 0 
2 1 0 0 j1'517 -j0-1268 
2 2 --j0"0900 -j0"7271 0 0 
3 0 --j39-74 j39.74 0 0 
3 1 0 0 j16"05 -j0'894 
3 2 - j l-744 -j11"62 0 0 
3 3 0 0 j0'4987 -j0'0278 

integration formula (ABRAMOWITZ and STEGUN, 1964) for 
each loop. All the coefficients were computed on a Macin- 
tosh I h  (16 MHz  68882) in approximately 5 min. The low- 
order coefficients are given in Table 1. The coil symmetry 
yield',~ all pure imaginary numbers for the tabulated coeffi- 
cients. The C[m coefficients were purely real, but not tabu- 
lated. Computing the field at 50 points took an additional 
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All constant have units of m -~ except F which has units of Vm I. 
Coefficients for negative m can be determined from the relation- 
ships: D l _,~ -- (-- 1)mE~.=; E l -m = (-- 1)roD*,. Fz -m -- (-- 1)mF~.m; 

, . ,  . , , . , 

and C7. -m = (-- 1)mC[ m where * means complex conjugate. 
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30.9 s. No attempt was made to optimise the speed of the 
field computation. Speeding the field computation would 
be simple for this example because a large number of coef- 
ficients are equal to zero and the nonzero coefficients are 
all purely imaginary numbers. 

The effect of changing the angle between the 'wings' of 
the 'butterfly' shaped coil on the induced field is shown in 
Fig. 4. The figure shows the magnitude of the electric field 
along two lines in the z = 7.7cm plane: one along the 
'body' direction and one from 'wing-to-wing'. The two 
lines intersect directly beneath the point where the coil 
loops touch. These curves graphically illustrate how local- 
ised the electric field magnitude is. The full width at half 
maximum along the 'wing-to-wing' direction is 2.9 cm with 
the 'wings' closed and 3.2 cm with the 'wings' open. Along 
the 'body' direction the full width at half maximum is 
10.3 cm with the 'wings' closed and 7.1 cm with the 'wings' 
open. As the field is broadest along the 'body' direction in 
both cases, the flat figure eight coil is most focal. The flat 
coil also produces the greatest field strength in the sphere. 
The rate at which the electric field diminishes with depth is 
similar for different 'wing' angles (Fig. 4c). 

3.2 Application to M E G  

The reciprocity theorem as developed by PLONSEY (1972) 
allows eqns. 25-27 to be interpreted as the lead field of an 
MEG magnetometer. For a SQUID magnetometer, the 
flux coupling the pick-up coil is a more useful quantity 
than the open-circuit coil voltage developed by Plonsey. 
Fortunately, a very simple relationship exists between the 
two. For a current dipole inside the sphere, the flux q5 
coupling the magnetometer pick-up coil is given by 

P -  E(r) (28) 
c~ = j~ol 

where E(r) is given by eqns. 25-27, P is the current dipole 
moment and r is the location of the dipole in the sphere. 
The coefficients used in eqns. 25-27 must be found from 
contour integrals following the path of the pick-up coil 
winding(s). Eqn. 28 provides a very convenient way to cal- 
culate the magnetometer response due to a current dipole 
inside a sphere (or concentric spheres) model. The contour 
integrations need only be carried out once to establish the 
geometric relationship between the sphere and pick-up 
coil, after which the flux from any current dipole located 
anywhere in the sphere with any orientation can be found. 
It should be noted that eqn. 28 computes the total flux 
seen by the coil accounting for the finite area of the coil, 
the loop spacing, winding direction and all 'secondary' 
sources arising from the sphere boundary, regardless of 
coil orientation. 

Conventional MEG theory provides expressions for the 
magnetic fields produced by a given source distribution, 
rather than the flux through a coil. CUFFIN and COHEN, D. 
(1983) have shown that the finite area and gradiometer 
loop spacing significantly impact dipole parameter estima- 
tion if the magnetometers are assumed to measure the 
magnetic field at one point in space. Using a conventional 
magnetic field calculation from a dipole-sphere model 
(CuFEIN and COHEN, D., 1977) requires co-ordinate trans- 
formations and surface integration over the coil area(s) to 
accurately determine the theoretical flux. This is in com- 
parison to eqn. 28 which only requires the evaluation of 
simple sums. Frequently in MEG, measurements are made 
at several sites to locate the equivalent dipole source. The 
localisation algorithm must find five parameters of the 
equivalent dipole. For a given location, the 'best' dipole 
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moment in eqn. 28 can be determined by a linear least- 
squares process, so that the nonlinear optimisation algo- 
rithm need only search in a three-dimensional space. This 
can drastically reduce computation time compared with 
searching in a five-dimensional space. 

An example of the response of a first-order gradient 
magnetometer to dipoles in a sphere is presented in Fig. 5. 
The magnetic field from a sphere 18cm in diameter 
centred at the origin is measured by a magnetometer 
aligned parallel to the z-axis. The magnetometer has six 

: o,b 
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C 

Fig. 5 
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Contours of constant magnetomer flux (labelled in 
nWb A - a m  1) for  various dipoles in an 18cm diameter 
sphere. A first-order gradiometer (baseline of 2.0 cm) with 
six windings 2.0 cm in diameter is located parallel to the 
z-axis, 1"0 cm right of centre and 1-5 cm above the sphere 
surface. (a) The flux from dipoles oriented in the 0 direc- 
tion; (b) the ~ direction in a plane 1.3cm beneath the 
sphere surface; (c) 0 directed dipoles; (d) ~ directed 
dipoles in a plane 2"3cm beneath the sphere surface. 
A 1 A m current dipole oriented in the 0 direction located 
anywhere on the contour labelled 12 in (a) will produce of 
flux of 12 nWb in the pick-up coil. Arrows indicate the 0 
and c~ directions. The circles outlined in light grey show 
the projection of the magnetometer coil into the plane 

coaxial loops, 2 cm in diameter with centres on the line 
y = 0, x = 1 cm, all connected in series. The loops are 
located in planes of constant z at z =  1.5cm, 1-6cm, 
1.7cm, 2.5cm, 2.6cm and 2-7cm. The first three are 
wound in an anticlockwise direction and the last three in a 
clockwise direction viewed from above. Contours of con- 
stant pick-up coil flux are plotted in Fig. 5 for dipoles 
located in the z = 7-7 cm plane (near the brain surface) and 
the z = 6.7 cm plane having 0 or 4~ orientations. 

4 Discussion 
Presently, the relationship between the applied field and 

resulting neural excitation in the brain is not well under- 
stood. Nerve fibres that are modelled as long and straight 
have been shown to be excited at a point where the electric 
field gradient along the fibre direction is maximum (ROTH 
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and BASSER, 1990), but models of finite-length fibres show 
that excitation occurs at the fibre terminus for a uniform 
field directed along the fibre length (REILLY, 1989). The 
later model may be more realistic for the complex 
geometry of neurons in the brain. This suggests that the 
site of maximum electric field oriented parallel to a nerve 
fibre may be the expected site of stimulation, which tends 
to agree with the experimental results of UENO (1990). 

Many studies of the electric field produced by magnetic 
stimulator coils have examined the electric field in an air 
medium or an unbounded conducting medium without 
considering boundary conditions. The electric field in air 
produced by a 'butterfly' coil with various wing angles was 
examined by COHEN, L. G. et al. (1990). They concluded 
that with the 'wings' closed, the electric field was more 
focal and had similar magnitude to that with the 'wings' 
open but that the field direction was substantially different. 
These conclusions are correct in the absence of boundary 
conditions. When exciting a spherical volume conductor, 
however, opposite conclusions are reached (Fig. 4). The 
direction of the induced electric field does not change 
much between open and closed 'wing' positions, but the 
magnitude of the electric field is smaller and less focal with 
the 'wings' closed than with the 'wings' open. This example 
demonstrates the importance of considering the conductor 

b o u n d a r y  in the field calculation. 
Knowing the electric field distribution during magnetic 

stimulation is important to understanding what structures 
in the brain may be stimulated. COHEN, D. and CUFFIN 
(1991) have suggested using the reciprocity theorem in 
conjunction with MEG theory to compute the electric field 
in the brain during magnetic stimulation. This approach 
requires integration of a complicated function over a 
surface bounded by the coil for each point where the field 
is to be found. Such an approach will be slow and difficult 
because of the two-dimensional integrations involved. 
Conversely, the application of reciprocity to the results of 
this paper yields a technique that could probably speed 
computations normally used in MEG dipole localisation. 
This may be particularly true for modern magnetometer 
arrays which are planar and therefore measure significant 
tangential magnetic flux. With enhanced speed, it may be 
possible to analyse the vast temporal data that are nor- 
mally obtained during MEG experiments. 

Fast calculation of eqn. 28 is desirable for an MEG  
source localisation algorithm. The speed of computation 
realised in this paper can be significantly improved by 
using a Shanks transform (SINGH et  al., 1990) on the 1 
summations of eqns. 26-27. The Shanks transform allows 
E to be calculated accurately with only a few terms (small 
N). For  example, for the butterfly coil used in Fig. 2, the 
same accuracy was achieved with 63 per cent less com- 
puter time when N = 11 with a twice iterated Shanks 
transform as when N --- 20 without the Shanks transform. 
For  coaxial circular coils located on one side of the head, 
such as those typically used in MEG work, the coefficients 
of large I ml are insignificant, so considerable computer 
time may be saved by reducing the limits of the m summa- 
tion for large values of l. Many other techniques may also 
help evaluate eqns. 26-27 faster. IOANNIDES and SWl- 
THENBY (1987) have also suggested a series expansion that 
transforms the surface integration of the field over the coil 
area normally used in MEG computations into contour 
integration around the coil. Their technique has rapid con- 
vergence and applies to any head geometry, but requires 
volume integration of the current density everywhere in 
the head. Incorporating the dipole-in-a-sphere model with 
their technique would reduce the volume integration to 
surface integration of all 'secondary' sources arising from 
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the sphere boundary. This seems to negate the advantages 
of their series expansion for simple geometric models. 

The model for the head used in this paper has many 
shortcomings. Human heads are not spherical and are cer- 
tainly far from having homogeneous, isotropic electrical 
properties, even when accounting for the gross inhomoge- 
neities of skull and scalp layers. Nonetheless, a homoge- 
neous sphere model is a good first approximation and has 
provided many useful results in MEG. The location of 
current sources artificially implanted in human brains have 
been accurately determined using MEG theory based on a 
homogeneous spherical head model (COHEN, D. et al. 
1990). This suggests that the sphere model of the head is 
not bad for use in MEG. Because the magnetic fields pro- 
duced by sources in the brain and electric fields induced in 
the brain by magnetic fields are reciprocal problems, the 
sphere model must also be reasonable for magnetic stimu- 
lation calculations even though no induced electric fields 
have been measured in actual human heads. 

A wide variety of models for the head have been used 
for computing the induced electric field in the brain during 
magnetic stimulation. Many of these models used gross 
simplification of the head geometry to reduce the compu- 
tational burden. The spherical shell model is arguably the 
best model with simple geometry. The sphere model also 
has indirect experimental verification from MEG experi- 
ments. This paper provides a simple and direct expression 
for the total electric field induced in the head from an 
arbitrary stimulator coil. Using this method, the field can 
be quickly computed with a personal computer. This 
should allow experimenters to correlate accurately the 
fields produced by the actual coils and placements they use 
with the physiological responses obtained. This is the first 
step to understanding how the induced electric field relates 
to the structures which are stimulated. 
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Appendix  
Because the second double summation in eqn. 23 is zero, the 

expansion coefficients of the potential function (eqn. 24) are inde- 
pendent of r0, the radius of the sphere. This is the key condition 
that forces the steady-state radial electric field to be zero every- 
where inside the sphere when a ramp current is applied to the 
excitation coil, and also greatly simplifies the expression for the 
total induced field. This Appendix shows that the second double 
summation of eqn. 23 is identically zero. The bracketed term in 
the second double summation of eqn. 23 can be expanded from 
the definitions given by eqns. 14 and 17: 

Yl+ t, = -  1( 0 , ~b') 
{ } =  2(2l + 3)r,t+2 oil 

~ / ( l - - m + 2 ) ( 1 - - m +  1) 
(dx' ~ j d  y ~ ) 

x (21 + 1)(21 + 3) 

,~ Y*+ 1, m+ 1( Or, ~)t) 
Y, oil 2(21 + 3)r '~+2 

• / ( 1  + m + 2)(I + m + 1) (dx' 
• (2l + 1)(21 + 3) +jdy') 

~c Y*+ l"m(O" ~') 
+ (21 + 3)r 't+2 

oi l  

N / ( l - - m +  1 ) ( l + m +  
• tiT+  V+Si i) dz' 

Eqn. 29 can be compactly written as 

{ } = ~  Q . a I '  
oi l  

N/(l--m+2)(l--m+ 1) 
Y*+" " - t  "(~ + 1 ) -~+  3i 

N/(l + m + 2)(I + m + 1) 
- Y*+ "=+ ' (21 + 1)(21 + 3) 

Q =  [ 

where 

(29) 

(30) 

2(2l + 3)r 't+2 

/ ( 1 - - r n + 2 ) ( I - - m +  I) , 
Y*+l . . - ,  ~/  (2l + 1)-~-+ 3i ' 

_ /(1 + m + 2)(I + m + 1) 
+ I'*+ ,. ,.+, N/ -(2-~ I)(21 + 3) 

--J 2(21 + 3)r' t+2 f 

Yt+ l,= (l -- m + 1X1 + m + 1)/~ (31) 
+ (21 + 3)r 't+= (21 + 1)(2l + 3) 

The 0' and 4)' arguments of the spherical harmonic functions 
have been dropped for brevity. If the curl of eqn. 31 is zero, then 
Q can be found from the gradient of a scalar function: 

Q = Vff (32) 

It is easier to find the scalar function than to take the curl of eqn. 
31: 

( -- 1)" / (l -- m) ! e-  J"o 

21 + 3 ~/  4n(21 + 1)(1 + m)! r ' t+l 

x [P;"+,(cos 0) cos 0 

- (1 - m + 2)PT'+~l(cos 0) sin 0] (33) 

where P~' is the associated Legendre polynomial. Note that the 
( - 1 )  m phase factor is found in the spherical harmonic function 
normalisation, and not in the Legendre polynomial in eqn. 33. 
The bracketed term must be identically zero, because eqns. 30 
and 32 show that it is a closed line integral around the gradient 
of a scalar function (a conservative field). If the currents cannot 
be treated as filaments, but are distributed over some finite 
volume of the coil, the bracketed term is still zero. This is easily 
shown by using eqns. 32 and 33 and applying Gauss' theorem to 
the resulting volume integral, integrating over a volume slightly 
larger than the coil. 
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