
1 I n t r o d u c t i o n  
ONE-THIRD of all deaths in the world are due to coronary 
artery disease (KRUPP, 1982). For this reason, early detec- 
tion of coronary artery disease is one of the most impor- 
tant areas of medical research. Although direct assessment 
of coronary occlusions is conclusive only using catheter 
angiography, this method is expensive, and has an element 
of risk (mortality rates range from 0.2 to 7 per cent) 
(KRUPP, 1982). A reliable noninvasive method is required 
for the early detection of coronary artery disease and for 
repeatedly monitoring the state of coronary occlusions 
before and after angioplasty. 

Previous studies showed that coronary stenoses produce 
sounds due to the turbulent blood flow in partially 
occluded arteries (SEMMLOW et al., 1983; AKAY et al., 
1988a; b; 1989; SEMMLOW et al., 1990). During diastole, 
coronary blood flow is maximum and the sounds associ- 
ated with turbulent blood flow through partially occluded 
coronary arteries are loudest (SEMMLOW et  al., 1983; AKAY 
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et al., 1990a; b). If these signals could be reliably detected, 
they would provide a simple, noninvasive approach to the 
detection of coronary artery disease. 

The principal objective of this study is to improve 
signal-processing techniques used to identify the additional 
signal components found in heart sounds of patients with 
coronary artery disease. These added components form the 
basis of our approach to noninvasive detection of coro- 
nary artery disease. In earlier studies, the average power 
spectrum of diastolic heart sounds was estimated using 
traditional FFT methods (SEMMLOW et  al., 1983). Although 
some success was achieved in distinguishing normal from 
abnormal patients, this signal-processing technique was 
not pursued because it was sensitive to the effects of noise, 
which masks detection of the desired diastolic signal 
(SEMMLOW et  al., 1983). 

Because the application of parametric modelling 
methods to signal identification problems results in a 
better estimation of spectral features, particularly for low 
signal-to-noise ratios (SNR), such model-based methods 
were employed to analyse recordings of diastolic heart 
sounds and to detect features associated with coronary 
stenosis (AKAY et al., 1988a; b; 1990a; b; SEMMLOW et al., 
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1990). From the many model-based methods, the adaptive 
AR method was chosen to represent the diastolic signal 
source because it does not require prior knowledge of the 
signal characteristics and it can track changes in signal 
characteristics (ORFANIDIS, 1988; HAYKIN, 1986). The 
results showed encouraging differences between normal 
and diseased patients, indicating a resonance process in 
diseased patients (AKAY et al., 1988a; 1990a; AKAY, 1990; 
SEMMLOW et al., 1990). To support this finding, a theoreti- 
cal model has been developed which shows that coronary 
stenoses produce well defined acoustic resonances (WANG 
et al., 1990; TIE, 1990). 

Subsequently an angioplasty study was initiated to 
investigate the fundamental assumptions of the acoustical 
approach in the detection of coronary artery disease. In a 
blind study, assessment based on spectral features as well 
as the poles and reflection coefficients of the AR and 
ARMA methods were correct in 21 out of 23 patients. The 
changes in decision parameters obtained from the angi- 
oplasty patients before and after angioplasty proved the 
basic acoustic concept, that coronary stenoses have an 
auditory correlate. 

A parallel study was begun to evaluate the diagnostic 
capability of the acoustic approach in detecting coronary 
artery disease. As in the angioplasty study, all estimations 
were performed in a blind fashion to guard against bias. 
One hundred heart sound recordings obtained from 57 
patients were analysed using the AR and ARMA methods 
(only 20 of these recordings were analysed using the 
ARMA method). Using the same decision parameters 
developed in the angioplasty study resulted in 80 out of 
the 100 recordings being correctly diagnosed (AKAY, 1990; 
AKAY et a/.,1991 ; WELKOWITZ et al., 1990). 

Although the results of our previous studies were prom- 
ising, all recordings were taken in a soundproof room. 
Improvements were necessary for the recording to be made 
at the patient's bedside (noisy room) as the AR/ARMA 
model of the diastolic heart sounds was found to be 
unstable for some patients due to excessive noise. In those 
cases, the poles and zeros of the ARMA method were 
outside the unit circle, producing errors in the spectral 
estimate of the diastolic heart sounds. A similar problem 
was reported in ARMA modelling of the electroencepha- 
logram (EEG) (NARASIMHAN, 1989). The spectral estimates 
obtained after filtering the EEG were found to be far 
superior to the direct estimation of the ARMA spectrum 
(NARASIMHAN, 1989). The sensitivity of the ARMA and 
particularly of AR methods to observation noise has been 
well documented (MAKHOUL, 1975; KAY and MARPLE, 
1981; TUFTS and KUMARESAN, 1982; PARK and GERHARDT, 
1989; KAY, 1979; SAKAI, 1979). Thus, techniques to reduce 
excessive noise can be expected to improve the effec- 
tiveness of our diagnostic system, because the effect of 
excessive observation noise reduces the dynamic range of 
the estimation of the AR/ARMA power spectral density 
function. As some noise sources are within the body they 
cannot be measured and analysed independently from the 
desired signal. 

For  these reasons, we used the adaptive line enhancer 
(ALE) method to reduce background noise on the input 
signal. The modified Yule-Walker (MYW) AR and ARMA 
methods were then applied to the filtered signal. The 
MYW AR and ARMA methods were chosen because they 
show better performance (KAY and MARPLE, 1981; KAVEH 
and BRUZZONE, 1981) when the poles of the AR and 
ARMA models are very close to the unit circle. The 
analysis was carried out on 43 recordings (33 abnormal 
and 10 normal) taken from 34 normal and diseased 
patients. 

2 M e t h o d  

2.1 Adapt ive  line enhancer ( A L E )  method 
The adaptive line enhancer (ALE) (W~DROW et al., 1975; 

TREICHLER, 1979; FERRARA and WIDROW, 1981), which is a 
modified version of adaptive noise cancelling methods, has 
been widely used in many fields including biomedical 
signal processing (CHEN et al., 1989; KENTIE et al., 1981; 
AL-NASHASH et al., 1988). A particular advantage of this 
method is that it does not require a reference (noise) signal. 
The input signal x(n) provides its own reference signal, 
which is a delayed replica of the input. In this method the 
only difference between the primary and reference signals 
is the delay d. Assuming that the input to the ALE consists 
of a correlated signal y(n) and an uncorrelated noise signal 
v(n), if the delay is properly chosen, the noise in the refer- 
ence signal r(n) becomes uncorrelated with the primary 
noise signal v(n). Then, the output of the adaptive line 
enhancer estimates the desired signal y(n) after the con- 
vergence of the adaptive algorithm (FERRARA and 
WIDROW, 1981 ; ORFANIDIS, 1988). 

Motivation behind choosing the delay can be explained 
as follow (ORFANIDIS, 1988): 

x(n) = y(n) + v(n) 

r(n) = y(n - d) + v(n - d) 

E[y(n)y(n -- d)] 4 = 0 

E[v(n)v(n - d)] = 0 

(1) 

(2) 

(3) 

(4) 

where x(n) represents the primary signal; y(n) represents the 
desired signal; r(n) represents the reference signal; v(n) rep- 
resents the primary noise signal; E represents the expecta- 
tion operator; d represents the delay. 

In this study, we used the adaptive lattice implementa- 
tion of the line enhancement method (ORFANIDIS, 1988; 
AKAY et al., 1990a). To initialise the ALE, the forward and 
backward estimation errors were set to 0.01. In addition, 
the forgetting factor 2 was taken either as 1, or between 
0.98 and 1.0 (AKAY et al., 1990a; AKAY, 1990). Based on 
our previous findings, the diastolic heart sound signal is 
highly correlated and does not decay to zero even after 50 
autocorrelation lags (see Fig. 3 in AKAV et al., 1990a). 
Hence, we selected the delay d = 7 for ALE (see Fig. 3 in 
AKAV et al., 1990a) because this value is large enough so 
that v(n) in the primary signal input will be uncorrelated 
with v(n - d) in the reference signal. Based on some initial 
findings (see Fig. I in AKAV et al., 1990a; AKAV, 1990), the 
filter order m = 10 for ALE, which should be greater than 
the delay d (W~DROW et al., 1975; ORFANIDrS, 1988), was 
chosen. 

2.2 Autoregressive ( A R )  method 
The AR model is the most widely used modelling 

method to estimate the power spectral density (PSD) func- 
tion associated with some biological signals. The AR 
model is called the all-pole method (MAKHOUL, 1975; KAY 
and MARPLE, 1981). Each sample of a signal can be 
expressed as a linear combination of previous samples and 
an error signal e(n). The error signal can be assumed to be 
independent of the previous samples (MAKHOUL, 1981). 

y ( n ) =  -- ~ a p y ( n - - p ) + e ( n )  (5) 
p - 1  

where y(n) represents the signal to be modelled; ap rep- 
resents the AR coefficients of the AR process at the pth 
stage; e(n) represents the estimated error signal; m rep- 
resents the AR model order. 
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The transfer function of the AR method can be calcu- 
lated as follows (KAY and MARPLE, 1981): 

1 
H(z) -A(z) (6) 

where A(z) represents filter function. 
The PSD of the AR method SAR(CO) can be calculated as 

follows (KAY and MARPLE, 1981): 

2 O" e 
SAR(c~ = 2 (7) 

[ 1 +  ~ ap exp (-flOp At) 1 
p=l 

2 is the noise power and is assumed to be constant; where ae 
~o is the frequency; At is the sampling interval. 

z is a constant, the only values that are needed for As a e 
calculating the shape of the PSD function are the so-called 
prediction coefficients ap (ORFANIDIS, 1988; HAYKIN, 1986; 
KAY and MARPLE, 1981). 

The estimation of the prediction coefficients ap can 
be carried out either by using block processing methods 
such as autocorreIation, covariance and Burg (maximum 
entropy) methods, or adaptive processing methods such as 
least mean square (LMS), conventional recursive least 
square (RLS) and gradient adaptive lattice methods (GAL) 
(KAY and MARPLE, 1981; ORFANIDIS, 1988; HAYKIN, 1986). 

2.3 Autoregressive moving average (ARMA) method 
Some discrete-time random processes can be modelled 

using the ARMA method when the signal is corrupted by 
heavy observation noise. The method described is called 
the 'pole-zeros' method. The output sequence y(n) can be 
modelled by assuming an input driving sequence v(n) as 
follows (KAY and MARPLE, 1981) : 

y(n)= -- ~ apy(n-- p) + ~ bpv(n-  p) (8) 
p - 1  p--O 

where ap represents the AR coefficients of the AR process 
at the pth stage; bp represents the MA coefficients of the 
MA process at the pth stage; m represents the AR model 
order; q represents the MA model order. 

The key point here is to separate the driving force v(n) 
from any observation noise. The transfer function of the 
ARMA process H(z) can be given in terms of the transfer 
functions of the AR and MA processes as follows: 

B(z) 
H(z) - (9) 

A(z) 

where B(z) represents the transfer function of the MA 
portion of H(z); A(z) represents the transfer function of the 
AR portion of H(z). 

The coefficients of the AR and MA models can be calcu- 
lated accurately and efficiently using the MYW method 
(KAVEH and BRUZZONE, 1981; BRUZZONE and KAVEH, 
1984; FRIEDLANDER and PORAT, 1984; IZRAELEVITZ and 
LIM, 1983). Although the ARMA process can be modelled 
by maximum likelihood techniques that minimise a non- 
linear function, it has been shown that this is not the best 
method in practical applications (KAY and MARPLE, 1981). 
As an alternative to the maximum likelihood realisation of 
the ARMA technique, we chose the easily implementable 
MYW ARMA method (FRIEDLANDER and PORAT, 1984). 
The overdetermined YW ARMA method also shows better 
performance than the maximum likelihood realisation of 
the ARMA process when the poles of A(z) are sufficiently 
close to the unit circle (KAVEH, 1979; BRUZZONE and 
KAVEH, 1984; FRIEDLANDER and PORAT, 1984). 
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The power spectral density (PSD) term SARMA(O)) 
obtained from the ARMA method can be calculated as 
follows: 

where cr 2 represents the noise variance from the ARMA 
method. 

For the initial estimation, one chooses a(0) = b(0) = 1. 
Details of the MYW AR and ARMA methods have been 

described elsewhere (KAY and MARPLE, 1981; AKAY, 1990; 
WELKOWITZ et al., 1990). A study using the AR model has 
shown that, for filter order m greater than 10, the predicted 
error power as a function of filter order was relatively 
stable (see Fig. la, in AKAY et al., 1990a). Based on the 
data of Figs. la and lb in AKAY et al., (1990a) and our 
initial empirical findings, filter orders between 10 and 15 
were judged sufficient to represent the signal recordings. 
Furthermore, our results were insensitive to the filter 
orders within this range and the reduction in normalised 
error with increased order is very small (see Fig. l b in 
AKAY et al., 1990a). Filter orders of m = 10 (the AR order) 
(see Fig. 1 in AKAY et al., 1990a), q = 3 (the MA order), 
and L = 15 (the autocorrelation function order) were 
chosen as adequate to produce an estimate of the white 
noise process after filtering y(n) with the estimated inverse 
transfer function of the ARMA method (Box and P~RCE, 
1970; AKAY et al., 1991). 

2.4 Patient analysis 
Patients were selected from those undergoing catheteri- 

sation and/or angioplasty at the Cardiodynamics Labor- 
atory of Robert Wood Johnson University Hospital. 
Diastolic heart sounds were recorded from the fourth 
intercostal space on the chest of patient using a specially 
designed high-sensitivity accelerometer (PADMANABHAN et 
al., 1989). These sounds were recorded while the patients 
held their breath and were supine. 

The objective of this study was to investigate the diag- 
nostic ability of diastolic heart sounds to detect coronary 
artery disease noninvasively in a relatively noisy environ- 
ment; hence, recordings were made at the patient's 
bedside. For each patient, ten cardiac cycles were digitised 
(sampling frequency = 4 kHz) and an average spectrum 
was constructed to obtain representative frequency infor- 
mation, as spectra obtained from individual diastolic cycles 
showed some slight variation. The spectra were obtained 
using the techniques described above. Before the analysis, 
the DC component from each recording was eliminated 
(period by period). As detailed elsewhere (SEMMLOW et al., 
1983), the diastolic heart sounds were passed through an 
antialiasing analogue filter with a cutoff frequency of 1200 
Hz. A high-pass digital filter with a cutoff frequency of 
350 Hz was used to reduce the large amount of low- 
frequency energy. 

3 R e s u l t s  a n d  d i s c u s s i o n  
For this study, 43 (33 abnormal and 10 normal 

recordings) heart sound recordings were obtained from 34 
patients. For each recording, ten diastolic heart periods 
were isolated and analysed using the AR and ARMA 
methods. For the purpose of this study, patients with 
occlusions of less than 30 per cent were considered to be 
normal. All of these patients, except for four pseudonor- 
mals (symptomless subjects assumed to be normal, but not 
cath-proven) were cath-proven as normal or diseased. 
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Table 1 shows a description of the stenoses for the 
patients used in this study. Table 2 shows the absolute 
power between 400 and 800 Hz  (ap), and the second 
complex conjugate pole pairs obtained with the AR and 
A R M A  methods  (z2) for the normal /abnormal  patients. 

Table 1 Abnormal patients' database 

Number of 
Patient ID Condition, per cent occlusions 

10202 LAD 40, 40, RCA 90, CFX 45 4 
10702 LAD 90, 90, RCA 70 3 
11002 LAD 40, RCA 40, CFX 40 3 
11502 LAD 45, 35, RCA 45, 68, CFX 48 5 
12702 LAD 95, RCA 100 2 
13702 LAD 25, CFX 35, 80 3 
14602 LAD 80, CFX 80 2 
10204 LAD 40, 40, RCA 90, CFX 45 4 
10902 LAD 90, RCA 85 2 
12902 LAD 95, 50 2 
13602 LAD 50, 60, 80 3 
10502 LAD 75, 90, 60, RCA 100 4 
12602 LAD 70, 90 2 
12802 RCA 30, 50 2 
13302 LAD 99, 70, RCA 100 3 
13902 LAD 70 1 
10502 LAD 75, 90, 60, RCA 100 4 
14002 CFX 90 1 
14302 LAD 95, RCA 40, CFX 65, 65 4 
13502 LAD 50, CFX 90 2 
11102 LAD 90 1 
11602 LAD 65, RCA 100 2 
13802 LAD 60, 60, RCA 100 3 
10602 LAD 25, 30, RCA 15, 30 4 
13604 LAD 50, 30, 80 3 
14202 LAD 90, 100, RCA 80 3 
10302 LAD 75, RCA 68 2 
13102 LAD 75, RCA 40, 65 3 
14502 CFX 70, 90 2 
13004 LAD 25, 50, RCA 50 3 
13504 LAD 50 i 
11104 LAD 10 1 
13304 LAD 100, RCA 100 2 
13104 RCA 60, 45, CFX 30 3 
12604 LAD 20, 20 2 
11202 LAD 10 

LAD is the left anterior decending artery 
RCA is the right coronary artery 
CFX is the circumflex artery 

Fig. 1 shows a typical time recording of isolated dias- 
tolic heart  sounds taken from a normal  patient (14004) 
before (upper curve) and after (low curve) AL E  filtering. 
The PSD functions obtained from the AR and A R M A  
models applied to the isolated heart  sounds of a normal  
patient  (12604) as well as an abnormal  patient (12602) are 
shown in Figs. 2 and 3, respectively. These spectra were 
obtained using ALE filtering and a clear difference is seen 
in the energy content  between 400 and 800 Hz. 

The effect of ALE filtering is demonst ra ted  in Figs. 4-7.  
Figs. 4 and 5 show the PSD functions obtained from the 
AR model  applied to the diastolic heart  sounds of an 
abnormal  patient (14002) and normal  patient (14004), with 
and wi thout  adaptive filtering. Figs. 6 and 7 show the PSD 
function obtained from the A R M A  model  for the same 
patients. Figs. 4 -7  show that  the level of noise between 400 
and 800 Hz  was substantially reduced after adaptive filter- 
ing. Yet, despite the reduct ion in noise at these frequencies, 
the filtered spectra of  diseased patients clearly display a 
resonance peak a round  600 Hz, as shown in Figs. 4 and 6. 
Note  that  this peak is not  seen in the filtered data of 
normal  subjects, as shown in Figs. 5 and 7. 

An alternative decision criterion used an estimation of 
the poles obtained with the AR and A R M A  method for 
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Table 2 Normal/abnormal patients'parameters 

Patient ID ap(AR) ap(ARMA) z2(AR) z2(ARMA) 

10202 1220"3 1156'2 0.89/7+0.29 0-88/-70.23 
10702 1326'5 - -  0-89/T0"27 - -  
11002 1274'9 4819.0 0"89/T- 0"43 I'00/-T- 0'33 
11502 1051'0 629.2 0"87/-70"28 0"84/T- 0'27 
12702 1011.7 329"9 0"86/T-0"29 0"83/--70'28 
13702 711"2 1856'0 0'86/--70'30 0"98/-70"34 
14602 710-6 673'8 0'86/--70'32 0.84/-70.30 
10204 899"0 1221.0 0"85/-70"31 0"86/-7-0"32 
10902 496-3 754"8 0-85/-T- 0"35 0'84/T- 0'34 
12902 696"2 662"0 0"85/-70"31 0"84/T- 0"30 
13602 776-9 607"3 0'85/T- 0'33 0.82/-70-33 
10504 612'0 1766.6 0"84/-T- 0-34 0"88/--70-35 
12602 512.4 598'6 0'84/T- 0'32 0.83/-70.33 
12802 444'0 1520-2 0.84/-70.34 0-91/-70.35 
13302 343.2 491.0 0"83/T- 0"33 0'83/T- 0.33 
13902 432'8 361-7 0.83/--70.40 0"80/-T- 0'41 
10502 552.8 0"82/--7 0" 37 - -  
14002 342"5 331.2 0"82/T0"41 0"81/-T- 0"42 
14302 276.4 312.7 0"82/~0"28 0"80/-70.27 
13502 356"0 455'8 0.82/--70.26 0.80/-70.26 
11102 411'8 705.8 0.81/~0-36 0"85/T- 0.37 
11602 237-1 216-2 0.80/-70.25 0"78/-T- 0"27 
13802 312.6 267.2 0"80/--70-31 0-80/T- 0.32 
10602 410"0 1023'3 0"80/--70"30 0"86/--70"30 
12502"~ 423.2 231.0 0"80/--70"37 0"76/T- 0.37 
13604 299.2 189"0 0-78/T- 0.30 0-70/~0.29 
14202 197'2 212.8 0.78/--70.32 0"77/--70'32 
10302 256"9 338"5 0.77/T- 0.31 0.79/--70.33 
13102 173'3 200.1 0"76/-70"33 0"75/T- 0.33 
14502 192-5 188.2 0"76/T-0.34 0-73/-T- 0.32 
13004 136-3 89"3 0"73/T- 0"27 0-62/T- 0-30 
13504 127.0 412.3 0"72/-7-0.33 0"76/-T- 0"27 
10402* 175'3 183.2 0"72/-T- 0"36 0-71/-7-0-32 
11104* 124"3 122.0 0"71/T-0"36 0"68/--70"32 
14702* 154-0 112.9 0"71/-70"34 0-70/T- 0.33 
13304 75-0 113.0 0"69/--70'31 0.70/-T- 0.30 
14004* 64.2 318.5 0"69/--70"32 0"76/T- 0.34 
12302"1" 90"8 88"8 0'68/T- 0.35 0"62/T- 0"37 
13104 82'0 100.2 0"67/--70"23 0"72/-7-0.27 
12102""f 47'3 412.8 0.62/--70.35 0.74/~0.42 
12604* 23.3 31"1 0"58/T- 0"32 0"56/-T- 0"32 
12002* 38"7 41'0 0'50/T- 0.22 0"55/T0"23 
11202" 22"6 - -  0"48/T- 0.31 

ap is the absolute area between 400 and 800 Hz (units of pressure, 
Hz) 
z2 is the second complex pair of poles from the ARMA method 
* normal patients 
t pseudonormal patients 

the normal /abnormal  patient groups  (AKAv, 1990). In all 
patients, large frequency peaks were found at either end of 
the effective spectra shaped by a combinat ion  of  micro- 
phone characteristics, analogue filtering and low-frequency 
energy found in both diseased and normal  subjects. The 
source of the low-frequency energy has yet to be deter- 
mined. At the high-frequency end of the spectra, the peak 
is created by transducer resonance. This specially designed 
transducer has a relatively low resonant  frequency to max- 
imise sensitivity over the region of interest (200 800 Hz) 
(PADMANABHAN et al., 1989). These two frequency peaks 
gave rise to two complex conjugate pole pairs falling close 
to the unit circle, which were not  considered relevant as 
decision criteria as they are nearly the same in all patients. 
However,  the second complex conjugate pole pair falls 
closer to the unit circle for patients with coronary-ar te ry  
disease compared  with normal  patients, as shown in 
Table 2. This indicates that  the diastolic heart sounds of 
diseased patients contain more  energy between 400 and 
800 Hz  than those of  normal  patients, 

All these findings are in agreement  with the theoretical 
studies which showed that co ronary  occlusions produce 
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Upper curve: diastolic heart sounds recorded during a single period at the patient's bedside. Lower curve: filtered diastolic heart 
sound signal (ALE output) 

24 

18 
r n  
1D 

12 

E 
a 

6 

Fig. 2 

II ~\ A 

I 

400 800 1200 1600 2000 

frequency, Hz 

PSD function obtained from the AR and ARMA models 
applied to the isolated diastolic heart sounds of  CAD 
patient 12602 after adaptive line enhancement. Solid line: 
AR spectrum; broken line: A R M  A spectrum 
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PSD function obtained from the AR and ARMA models 
applied to the isolated diastolic heart sounds of  normal 
patient 12604 after adaptive line enhancement. Solid line: 
AR spectrum; broken line: ARMA spectrum 
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PSD.function obtained from the AR model applied to the 
isolated diastolic heart sounds of  CAD patient 14002. Solid 
line: after ALE; broken line: before ALE 
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Solid line: after ALE; broken line: before ALE 
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24 Table 4 First two moments of normal/abnormal patient 
parameters 
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PSD function obtained from the ARMA model applied to 
the diastolic heart sounds of CAD patient 14002. Solid 
line: after ALE; broken line: before ALE 
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Fig. 7 PSD function obtained from the ARMA model applied to 
the isolated heart sounds of  normal patient 14004. Solid 
line: after ALE; broken line: beJ'ore ALE 

resonances with frequencies ranging between 200 and 
1200 Hz (WANG et al., 1990; TIE, 1990). 

Before differentiating between diseased and normal 
patients, a t-test (to test means) (KENDALL and STUART, 
1977) was employed to determine whether the decision 
parameters  have the same mean and whether the differ- 
ences in the means were statistically significant. Although 
both the spectral peak parameter  ap, as well as the pole 
parameter  and z, showed significance values (Q-values in 
Table 3) less than 0.001, the parameter  z was most signifi- 
cant. In addition to the Student's t-test, the Kolmogorov-  
Smirnov (K-S) test was applied to the decision parameters 
ap and z. Table 3 shows the K-S distance D between the 
cumulative distribution functions of normal/diseased 
patient decision parameters and the related significance 
level S which should be less than or equal to 0.01. All 
decision parameters were found to be significant in differ- 
entiating diseased patients from normal patients. Finally, 
the first two moments of the decision parameters were 
calculated. Table 4 shows that these moments  were con- 
siderably different for normal and diseased patients. 

The diagnostic effectiveness of the decision parameters 

Table 3 T, K-S test results of  normal/abnormal decision 
parameters 

Parameters T-value Q D S 

ap(AR) 5-48 0.0001 0.748 0.0003 
z(AR) 4.87 0-0001 0.809 0.0001 
ap(ARMA) 3-35 0-0001 0 - 5 6 9  0-0021 
z(ARMA) 4-51 0-0001 0 - 7 7 4  0-0004 

z is the second pole pair among the second and third pole 
pair 
T-value shows Student's t-test 
Q shows the significance of the t-test 
D shows the K-S distance between two group cumulative 
distributions 
S shows the significance of K-S test 

Parameters Condition Mean Variance 

ap(AR) CAD 513.86 125 230.2 
normal 116.36 14 525.55 

z(AR) CAD 0.814 0.00313 
normal 0.649 0.00109 

ap(ARMA) CAD 729.12 802 096" 1 
normal 171.25 16622.15 

z(ARMA) CAD 0.812 0.00618 
normal 0.675 0.0066 

was estimated by constructing curves of sensitivity against 
specificity for these parameters. Fig. 5 shows curves con- 
structed from only the parameter  z obtained with the AR 
model (after ALE), because the AR and ARMA methods 
showed essentially the same diagnostic performance. Each 
point on the curve represents the combination of true posi- 
tives against false negatives estimated for a given threshold 
value of the parameter. It is obvious from this figure that 
this curve provides a good basis for determining the useful- 
ness of a decision parameter. For example, in Fig. 8 selec- 
ting a threshold of 0-72 for the amplitude of z2 leads to a 
sensitivity of 93 per cent and a specificity of 90 per cent. 
Using this threshold value, three of 30 abnormal and one 
of 10 normal subjects were incorrectly diagnosed. 

The incorrectly diagnosed normal patient 12502 was, in 
fact, a pseudonormal assumed to be normal. Considering 
the incorrectly diagnosed diseased patients, 13304 had two 
100 per cent LAD occlusions. These blockages would 
permit negligible blood flow and thus can be expected to 
appear  normal. There was no clear trend among the other 
two misdiagnosed patients, 13504 and 13104, except that 
both were postangioplasty patients. 
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Fig. 8 Diagnostic performance of parameter z showing sensitivity 
as a function of spec!h'city 

None of the patients had aortic regurgitation, mitral 
s t enos i s  or other audible diastolic murmurs. Further work 
involving the development of additional signal-processing 
techniques will be necessary to overcome these problems. 

These results compare quite favourably with other non- 
invasive methods for detecting coronary artery disease. 
For  example, the sensitivity of the cardiointegram (CIG) 
technique developed by TZICHHOLZ et al. (1984) was found 
to be 73 per cent with a specificity of 78 per cent. This 
approach was considered to be a moderately useful nonin- 
vasive method to detect coronary artery disease. Although 
the sensitivity of the thalium stress test is 83 per cent, and 
its specificity is 90 per cent, it is costly and takes time 
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(JOHNSON, 1985). However, our approach as described 
above is based on measurements associated with turbu- 
lence, which is closely related to stenosis, and not on 
symptoms as with other noninvasive approaches. Thus, it 
is likely that our approach will be able to detect coronary 
occlusions before they become large enough to induce 
symptoms, allowing considerably more flexibility in treat- 
ment. 

4 Conc lus ion  

In this study, the ALE filtering method was to reduce 
background noise from diastolic heart sounds recorded in 
a relatively noisy room (patient's bedside). The per- 
formance of filtering method was evaluated using AR and 
ARMA modelling of the filtered sounds, and both methods 
showed essentially the same diagnostic performance. 
Results obtained when comparing groups showed that the 
spectral energy distribution differed markedly between 
normal and diseased patients with the energy between 400 
and 800 Hz being greater for diseased patients. For normal 
subjects, it was found that the second poles of the AR and 
ARMA methods were farther from the unit circle than 
those of diseased patients. The ALE filter was shown to 
improve this differentiation with either spectral method. 
The curve of sensitivity against specificity using the AR 
second poles as a decision criterion shows that this method 
can be used successfully to noninvasively detect coronary 
artery disease. The assessments based on the PSD function 
parameters and poles of the AR and ARMA methods cor- 
rectly identified the diagnostic state of 39 out of 43 
patients. 
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Erratum 

Medica l  & Biological  Engineer ing & Comput ing ,  Vol. 29, No.  5, Sep tember  1991, 548-553 and Vol. 29 No. 6, N o v e m b e r  
1991, 629-633.  

' P r o g r a m m a b l e  imp lan tab l e  device for inves t igat ing the adap t ive  response of  skeletal  muscle to chronic  electrical s t imu- 
l a t i on '  by L. Cal lewaer t ,  B. Puers,  W. Sansen, J. C. Jarvis and  S. Sa lmons  

The  names  of  J. C. Jarvis  and  S. Sa lmons  were omi t ted  
from the conten ts  list on the front cover  of the Sep tember  
1991 issue and  f rom the a u t h o r  index in the N o v e m b e r  
1991 issue. 

The  correct  conten ts  en t ry  should  have been:  

Communicat ion 
Programmable implantable device for investigating the 

adaptive response of skeletal muscle to chronic 
electr ical st imulat ion: L. Callewaert, t3. Puers, W. 
Sansen, J. C. Jarvis and S. Salmons . . . . . . . . . . . . . . . . . . .  548 

The full entry in the au tho r  index should  have been:  

Callewaert, L., Puers, B., Sansen, W., Jarvis, J. C. and 
Salmons, S. Programmable implantable device for investi- 
gating the adaptive response of skeletal muscle to chronic 
electr ical st imulat ion (Communication) 548-553 

The fol lowing two entr ies should  also have been inc luded:  

Jarvis, J.C. (see Callewaert, L., 548-553) 
Salmons, S. (see Callewaert, L., 548-553) 
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