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Mathematical model of arterial stenosis 
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A b s t r a c t - - A  mathematical model for pulsatile f low in a partially occluded tube is presented. The 
problem has applications in studying the effects of blood f low characteristics on atherosclerotic 
development. The model brings out the importance of the pulsatility of blood flow on separation 
and the stress distribution. The results obtained show fairly good agreement with the available 
experimental results. 
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1 introduction 
ONE of  the present major health hazards is athero- 
sclerosis, which refers to the occlusion of the arterial 
lumen, partly or fully, due to the deposit!0n of fatty 
substances. Until  recently, age, sex, diet, lipid 
metabolism, hormones, hypertension and associated 
diseases were considered to be the factors chiefly 
responsible for the development of atherosclerosis. 
However, the researches of TEXON (1963) have 
proved conclusively that none of these factors is 
always present, nor is any particular combination 
present as a primary factor responsible in a causative 
sense for atherosclerosis. In  spite of the available 
statistical data correlating atberosclerosis with those 
factors, none of them has been established as the 
main cause. On the other hand, studies on human 
autopsy specimens and the experimental production 
of atherosclerosis in dogs (CLARKSON, 1968) by 
altering vascular configurations lead us to believe 
that atherosclerosis is a sequel primarily of the flow 
mechanism of  the circulatory system. The results of  
TEXON (1963), MUSTARD et al. (1963), MITCHELL and 
SCHWARTZ (1965), FRY (1968, 1969) further cor- 
roborate the haemodynamic concept of athero- 
sclerosis, which considers hydrodynamic factors to 
play a major role in the etiology and pathogenesis of 
atherosclerosis. 

The recent investigations of CARO et  aL (1969, 
1971) show that the flow mechanism has a con- 
trolling and inhibitory effect, rather than a causative 
role in atherosclerotic development. I t  is further 
claimed that atherosclerosis is associated with the 
shear-dependent mass-transport phenomenon. 
YOUNG (1968) observed that once a vascular lesion 
has developed, there may be a coupling effect 
between its further development and the subsequent 
flow characteristics. Thus, though the exact role, 
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causative or preventive, o f  the flow of blood in the 
vascular system has not yet been understood clearly, 
the analysis of flow in a stenosed artery based on 
mathematical models has assumed great importance 
in the study of atherosclerotic plaques in the arterial 
system. 

Notwithstanding the importance of hydrodyna- 
mical aspects in atherosclerotic development, not 
much headway has been made in this direction. 
Interest in research along this line was triggered off 
by an excellent paper by YouN~ (1968), dealing with 
the steady flow of a fluid through a partially occluded 
tube. Numerous other investigators such as FOR- 
RESTER and YOUNG (1970), LEE and FUN~ (1970), 
YOUNG and TSAI (1973), BACK et  al. (1979) have 
studied various aspects of the problem, mainly 
presenting the experimental results. With the 
literature on experimental aspects of  atherosclerosis 
increasing rapidly, it is felt that a suitable mathe- 
matical model to describe the phenomenon and to 
study the problem analytically is more appropriate. 
Thus, the purpose of the investigation reported in 
this paper is to examine a simple mathematical 
model describing the arterial stenosis. Closed form 
solutions are obtained for the pulsatile flow in a 
partially occluded tube. 

2 Formulation of the problem 
Young in his trend-setting work has obtained the 

solutions for the steady flow of blood in a stenosed 
vessel, considering blood to be a homogeneous 
viscous fluid. He has also discussed the fluid 

mechanics aspects of separation of flow. The 
applicability of steady-flow analysis to arterial blood 
flow is questionable, since blood flow is distinctly 
pulsatile. This has been appreciated in the said paper 
and an offshoot of this is an experimental work by 
YouNo and TsAI (1973). Thus, we shall now 
re-examine the analysis of YOUNG (1968) of flOW 
through an occluded tube under a pulsatile pressure 
gradient. 
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Blood is taken to be a homogeneous, incompres- 
sible, Newtonian fluid. This assumption is well 
justified in the larger arteries, which are more prone 
to atherosclerotic development. The model for the 
stenosed artery is taken to be a rigid tube with a 
constriction. Various models have been proposed to 
define the geometry of the constriction MANTON 
(1971) proposed a tapered tube model, while LEE 
and FUNG (1970) assumed the constriction to be 
described by a Gaussian curve. Recently, SCHNECK 
and OSTRACH (1975) have modelled the stenosed 
artery by a channel having a small exponential 
divergence. However, following Young's approach, 
we shall take the shape of the axisymmetric con- 
striction to be represented by a cosine curve of the 
form 

R ~ =  a - -3 (T)  (1 + c o S ~ o  ) 

for - 2 Z o  ~< X ~< 2Zo (1) 

= a otherwise, 

where a is the radius of the artery outside the 
stenotic region and 4Zo is the total length over 
which the stenosis extends. 2~(T) represents the 
maximum protuberance of the stenotic growth into 
the lumen of the artery, at time T. However, since 
the rate of growth of the stenosis is very small 
compared with the magnitude of the temporal 
fluctuations of the velocity field, 3 in eqn. 1 can be 
treated as a constant in the present analysis. 

Considering pulsatile flow of circular frequency 
in an axisymmetric tube, the basic equations of 
motion are 

toW 1 ~ (RU)+ = 0 (2 )  
R toR -~x . . . . .  

toU toU toU 1 toP 
TT- + V - ~ -  + W  to--~- = P toR 

[to2U 1 toU to2U U ] 
+ v [  toR2 + T  T-R- + toX " - - -T  - R 2 (3) 

toW toW toW 
TT + VTR-- +w to~ 

= y  to2 W 1 toW to2 W 1 
toR 2 + -~- to---'~-- + toX 2 J 

1 toP 
P toX . . . . . . . . .  (4) 

where U, W are the velocity components i n t h e  R, X 
directions, respectively, taking the cylindrical polar 
co-ordinate system tR, O, X) with the X-axis co- 
inciding with the axis of symmetry of the artery, p 
the density of  the fluid and v the coefficient of 
kinematic viscosity. 

The corresponding boundary condition is the no 
slip condition, which is given by 

U =  W = 0  on R =  R t . . . .  (5) 

Introducing the following nondimensional variables, 

r =  R/a, x-= X/a, p =  P/pUo 2, 

UZo W 
u =  Uo3 ' w =  Uo t =  T~Zo/a (6) 

where Uo e t ~ t  is the upstream velocity with which the 
flow is entering the tube, the basic equations are 
transformed into 

to tow 
"--ff T-r (ru)+ ~ = 0 . . . . .  (7) 

~2 tou 5 tou a tou 

Re tot + Z---~u--~r + T o  TM to--'x 

= _  ( Z o ~  Op 1 [82u  1 tou 

\ T )  ~ + ~ L to"" + 7 T7 

+ tox2 ~ . . . . .  (8) 

~2 ~/Zo~2 tow ~ t0W toW top 
- ~  ~-~)-- -~- + - ; - " T 7  +w to-; -- tox 

+ Re [ tor 2 + - - r  --tox 

+ ~ o  tox2 ] (9) 

where a = a~/f~/v, Womersley's parameter, and 
Re = aUo/v is the Reynold's number. 

It is evident that, eqns. 8 and 9 being highly non- 
linear, it is not possible to solve this system of 
eqns. 7 to 9 analytically. Nevertheless, using the 
available experimental data and certain order 
analysis the above equations are simplified as 
follows. 

In the human arterial system, the parameter a 
takes numerical values between 1 and 4 (FuNG et 
al., 1972) and hence we can take a ~ 0(1). Further, 
during the initial stages of the formation of the 
stenosis, 3/a can be taken as ~0.1 (FRY, 1968). 
Thus, taking 

a_a_ 
~0(1),  A ~ o . 1 ,  R e ~ l  . (10) 

Zo a 

corresponding with a mild stenosis, we fred that 
top/tor ~ top/tox. Further, from the equation of con- 
tinuity (eqn. 7) tow/tox ~ O(6/a). Using this fact, we 
find that the connective terms in eqn. 9 are very small 
compared with the corresponding viscous terms. 
Moreover, among these viscous terms, the term 
(~/a)2 to2 w/tox 2 is negligible compared with the other 
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two terms. Thus, the equations of mot ion  can be 
simplified to a great extent to yield 

a---E-P = O, (l 1) 
gr 

ct2 ,82 t~w gp 1 
Re 8t 8x [ t ~ r 2  + - -  - -  

0.i6 

r 
o oe lr 
006 i lr 
0"04 

l 
0"02 

(14) o 

- 0 0 2  

where ,8 = Zda. 

Since the flow is pulsatile, and the eqns. t l  and 12 
are linear, we seek solutions of the form 

Y = Y*e  u/tJ . . . . . . . .  (13) 

where Y stands for w or p. Substi tuting eqn. 3 in 
eqn. 12, the equat ion for w* is 

~2 w* 1 ~w* Re ?p 
- -  + i~ 2 w* - 

g r  2 r gr ,8 ax 

The corresponding boundary  condit ions are 

R 1 (x) 
w* = 0  on r = - -  . . . . .  (15) 

a 

and the velocity is finite on r = 0. The complete 
solution for the axial velocity is then given by 

w(r ,x , t )=  R.P. {[- l~176 1] 
[Io (i* ~tR (x)) 

t3p Re e itll~ ] (16) 
x t3x l~t2~ / . . . . . .  

~3w ] o.1, f 
r ~r 0-12 

(12) 010 / 
t 

-0',04 

-0-06 
t=2.2 

-008 
08 0.6 0.4 0.2 0 0.2 04 0-6 08 

r 
Fig. 2 Ax ia l  veloci ty  d is t r ibut ion at x = O cross-sect ion 

when  ~ = I ,  ~ = O. 2 a n d  f l  = 1 

where Io is the modified Bessel function. 0"16; / ~ t ~ ~ =  
The steady-state solution is obtained from eqn. 16 0.14 

by taking ~ --* 0 0.12F 0-5 

,~p /r  ~-  R2~ / 
w = t-w-  o,o r ' = ~  

which coincides with the solution of YOUNG (1968). 008 I- 
The resistive impedance, which is a measure of 0.06" / 

resistance to flow, is defined as (McDoNALD, 1974) 
r 

. . . . . . . . . .  

~176 
c -0'02 I 

-0"04 I 

x t -oo6 I 
-006 r 

. ~ o'-8 o'.6 0'.4 0'.2 ~ d.2 0'.4 0'.6 0'.8 
r 

----=---2Zo 
Fig. 3 Ax ia l  veloci ty  d is t r ibut ion at x = O cross-sect ion  

Fig. I Geomet ry  o f  the s tenosed artery when  c~ = 2, ~ = . 0 . 2  and  f l  = l 
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where Ap is the pressure drop across the stenosis, 
and Q is the discharge through the tube. In this 
particular context, therefore 

[ ; ] A = R . P .  ie- i t /a=2 fla2 lo(z)  dx  
r~Re R 12 (x)I  1 (z) 

- - 2  

. . . .  (]8) 
where 

z = i* c tRl(x) /a  

The integrand in eqn. 18 can be put in a neat form, 
in terms of Kelvin functions. However, the integra- 
tion is performed numerically, for closed form 
integration is not possible. To highlight the role 
played by a stenosis, the impedance is calculated in 
the absence of a stenosis, and is given by 

{ i e - "m~t2  fl 2Io(off~) } 
A w s  = - R . P .  ~Re i2(t~i�89 (19) 
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r 

Fig. 4 Ax ia l ve loc i t y  distr ibut ion at x = 0 cross-sect ion 
when oc ---- 2, ~ = O. 2 and  f l  = 2 

The stress distribution on the wall, in view of the 
order of analysis used earlier, simplifies to 

a a y l l (y)  
= R . P . - -  - -  e "w . . . .  (20) 

2~R a I2(y) 

where 

y = i § ~t R (x) 
a 

It is interesting to note that the stress distribution on 
the wall tends to the steady-state value, as ~ ~ 0. 

3 Discussion 

The eqns. 11 and 12 warrant some comments. 
Even though they look very much similar to the 
linearised boundary layer equations, it must be 
noted that the approximation made are not of the 
usual boundary-layer type, but are dictated by 
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Fig. 6 Shear-stress distr ibut ion at di f ferent cross- 
sections when c~ = I ,  ~ = 0 " I  and f l  = I 
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Fig. 5 Ax ia l  veloci ty distr ibut ion at x = 0 cross-sect ion 
whence = 1, ~ = 0 . 1 a n d  f l  = 1 
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Fig. 7 Shear-stress distr ibut ion at di f ferent cross- 
sect ions when = = 2, ~ = 0"1 and  f l  = 1 
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physiological considerations. This is in contrast to 
the work of FORRESTER and YOUNG (1970) who 
have assumed the flow to be only of the boundary- 
layer type and used the Karman-Pohlhausen 
method. 

A mathematical model for the pulsatile flow of 
blood through a stenotic region has been studied. All 
the physiologically relevant factors have been 
incorporated in the analysis and the impedance and 
stress distribution are depicted graphically. Figs. 2 
to 5 describe the axial velocity profile at the middle 
of the stenosis. These figures clearly show that the 
profiles depend very much on time and that they 
change markedly as t varies. For instance, in Fig. 2, 
when time increases from t = 0, the peak velocity 
increases until at t =  0.5, a reduction in the 
velocity profile commences. At t = 2, the flow near 
the tube axis is in the forward direction, while near 
the wall, there is a slight back flow. As time increases, 
there is an indication of the flow reversal in the 
cross-section. Later, the cycle repeats. These four 
figures, though essentially the same, show t~e 
dependence of the velocity on the parameters ~, f l  
and & For example, in Fig. 5, even at t = 0, there 
is a back flow at the wall of the tube. This indicates 
that there is clearly a separated region, in which 
back flow takes place. In fact, evidence of back flow 
was observed in the experiments of YOUNG and 
TSAL (1973). Another observation from Figs. 2 and 3 
is the significant drop in the peak velocity as 
increases. 

Figs. 6, 7 and 8 depict the variation of stress 
distribution and impedance, respectively. It is 
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Fig. 8 Distribution of impedance (I) for different 
combinations of ~ and 

noticed from the stress distribution curve that 
separation first occurs far downstream. From 
Figs. 7 and 8 it is seen that the point of separation 
shifts towards the centre of the stenotic region as 
Womersley's parameter increases. In Fig. 6, we see 
that the stress distribution is negative for some time, 
before becoming positive again. This period of 
negative stress corresponds to the separation of 
flow. 

4 Conclusion 

In this paper, the importance of time dependence 
on the flow characteristics through a stenotic artery 
has been brought out. From the stress distribution 
curve, it is concluded that separation in the flow 
field is predominant for larger values of ~. Hence, 
in view of the observations of CARO et al. (1971), the 
larger arteries, where the value of g is greater than 
in smaller vessels, are more prone to plaque forma- 
tion. This is in general agreement with the experi- 
mental observations available. 

The other physiological factor which has been 
studied is impedance. From the definition of impe- 
dance, it is clear that, under a given pressure 
gradient, a greater impedance will imply less flow of 
fluid. Thus the impedance gives a measure of the 
volume of blood received by different organs; this is 
an important factor which might play a crucial role 
in the diagnosis and treatment of some diseases. In  
the end, it must be mentioned that branching and 
elasticity play a major role in the development of 
atheroscolerosis (O'BRIEN et al., 1976). In a subse- 
quent paper, we intend studying their effects in 
stenosis. 
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