
1 Introduct ion 
WAVE PROPAGATION in compliant ducts filled with stream- 
ing fluids is of basic interest in fluid mechanics (LIGHTHILL, 
1978; SHAPIRO, 1977; KAMM and SHAPIRO, 1979; CANCELLI 
and PEDLEY, 1985) and also has several biological implica- 
tions, particularly in vascular pulse propagation (ST]tEETER 
et al., 1963; JONES, 1969; ANLIKER et al., 1971; PEDLEY, 
1980; Rooz et al., 1985) and expiratory flow limitation 
(DAWSON and ELLIOTT, 1977; HYATT et al., 1979; MINK, 
1984; PEDERSEN and INGRAM, 1985; O'DONNELL et al., 
1986). 

The problem is to determine in a coupled fluid- 
compliant tube system the relationship between pressure 
and flow velocity perturbations, as well as the speed at 
which these perturbations propagate (wave speed). When 
the flow velocity is not much smaller than the wave speed 
the convective acceleration terms of the fluid momentum 
equations have to be considered and the problem becomes 
nonlinear. 

Not purely numerical solutions usually rely upon the 
one-dimensional method of the characteristics, so that the 
unknown axial flow velocity profile is assumed to be rec- 
tangular. This one-dimensional flow simplification is used 
in all the above-mentioned publications, but it has appar- 
ently not been firmly validated. The purpose of this study 
is therefore to investigate the impact of the axial flow 
velocity profile on this wave propagation phenomenon. 

2 Basic equat ions  
The wave motion to be discussed is assumed to show 

axial symmetry in the xr co-ordinate system, where the 
x-axis is identical with the tube axis and r is the radial 

co-ordinate normal to that direction. No field forces act on 
the inviscid and incompressible fluid. The wavelength of 
the perturbations is much larger than the tube radius, 
which allows the radial pressure dependence to be 
neglected. The equations governing the fluid motion are 
the x-momentum and the continuity equations 

~U ~U ~U 1 ~P 
+ U - z - +  V - (1) 

~t dr dx OX P 

dU 1 
0---~ + r -~r ( rV)  = 0 (2) 

The unknowns U(x, r, t), V(x, r, t) and P(x, t) are the x- 
and r-velocity components and the pressure of the flow, t is 
the time and p is the fluid density. 

The uniform, circular tube is assumed to be thin walled, 
surrounded by a constant pressure and not submitted to 
longitudinal stresses. The equations for the motion of the 
tube reduce then to the simple 'tube law' 

A = A[P(x,  t)] (3) 

where A = 7~R 2 is the cross-sectional area of the tube and 
R its radius. 

The boundary condition V--, 0 as r---, 0 expresses the 
axial symmetry, whereas V = OR/t3t + USR/dx  for r = R 
implies the impermeability of the tube wall. Multiplying 
this equation by 2r~R we obtain the boundary condition 

c3A dA 
2 ~ z R V = - ~  + U-~x for r =  R (4) 
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Before solving the system of eqns. 1--4 by a linearised 
method the nonlinear theory will be briefly outlined. 
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3 N o n l i n e a r  t h e o r y  
In the quasi-one-dimensional, nonlinear theory pro- 

posed by Fox  and SAmEL (1965) and by BARNARD et al. 
(1966a; b) the axial flow velocity profile is not a priori 
specified. This theory, which includes the classical one- 
dimensional theory as a particular case, will therefore be 
presented here. Multiplying eqns. 1 and 2 by r, integrating 
them from 0 to R and considering eqn. 4 one obtains the 
integral form of the momentum and continuity equations 

0[7 ~ OA 0[7 [72 OB 1 ~P 
Ot + (1 - B) -~- + B[7 ~ + ~-~ = p 0x (5) 

0A 0 - 
0--7 + ~xx (a  U) = 0 (6) 

The cross-sectional mean velocity (7 and the abbreviation 
B are defined as 

U(x, t) = 2/R 2 fro Ur dr (7) 

B(x, t) = 2/(R[7) 2 f :  U2r dr (8) 

The four unknowns [7, A, P and B are inter-related only 
by three equations, eqns. 3, 5, 6 and, furthermore, the 
derivative OB/Ox appears in eqn. 5. In consequence, the 
method of the characteristics cannot be directly applied to 
this equation system. Therefore, a supplementary equation 
is needed which is obtained by assuming B constant (Fox 
and S~aBEL, 1965; BARNARD et al., 1966a; b; SKALAK, 
1972). T h i s c a n  be achieved by introducing the variable 
separation 

U(x, r, t) = [7(x, t)g (r/R) (9) 

where g = 2(1 - r2/R 2) for the parabolic profile more par- 
ticularly considered by BARNARD et al. (1966a; b). It 
follows then from eqns. 8 and 9 that 

fo x B = [g(s)] 2 ds = constant (10) 

which drops the term [7 2 OB/Ox in eqn. 5. 
The method of the characteristics applied to eqns. 3, 5 

and 6 allows then to determine 

(i) the slope of the characteristics dx/dt, i.e. the wave pro- 
pagation speed c 

(ii) the characteristics equation relating the perturbation of 
the pressure dP to that of the mean flow velocity d[7. 

Denoting the Moens-Korteweg wave speed by a 

( ~ I d A y  ,2 (11) 
a = \ p l d l U  

these two equations are (BARNARD et al., 1966b): 

dxldt  = c = B[7 +_ [a 2 + B(B - 1)[72] ~/2 (12) 

dP = __p[(a 2 + B(B - 1)[72) 1/2 _ (B - 1)/.7] -1 d[7 

(13) 

Except the constants p and B, all the quantities in eqns. 12 
and 13 are functions of x and t. 

4 Linearised theory 
The system considered now is that of a steady basic 

state on which small amplitude perturbations are super- 
posed. 
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U(x, r, t) = Uo(r) + u(x, r, t) (14) 
V(x, r, t) = 0 + v(x, r, t) (15) 

P(x, t) = Po + p(x, t) (16) 

Uo(r ) is the known axial velocity profile of the basic flow, 
Po the corresponding constant pressure and u, v, p the per- 
turbations. 

Let u = 1/rOq?/& and v = -1/rOq2/Ox derive from the 
stream function qJ, so that the continuity equation is auto- 
matically satisfied. We shall seek for travelling wave solu- 
tions of the form 

�9 (x, r, t) = ~(r) e i'(x-a) P(x, t) = P e ia(x-a) (17) 

where a is the wave number and c is the propagation speed 
of the perturbations. Introducing eqns. 14-16 into the fluid 
momentum equation (eqn. 1) and in the boundary condi- 
tion of eqn. 4, replacing u and v by their q~-definition and 
considering eqns. 17 we obtain after linearisation 

(Uo -- c) dr dU____o do = - P U P  (18) 
dr dr 

dA 
- 2 r c ~  = - ~  (Us - c)P for r = Ro (19) 

R 0 is the undisturbed tube radius and U s =_ Uo(Ro) is the 
velocity at which the basic flow slips along the undisturbed 
wall. The solution ofeqn. 18 is 

" s ds 
@ = - P ( U o  - c ) / p  l U g ( s )  - c ]  ~ (20) 

the integration constant being zero because O/r ~ 0 as 
r ~ 0. Eliminating ~ / P  between eqn. 20 with r = Ro and 
eqn. 19 we obtain the eigenvalue relationship for the 
unknown wave speed c 

1 2 ~ao r dr 

Jo (21) 
a 2 - R2o (U o - c) z 

4.1 A general property of  eqn. 21 
We now investigate some properties of eqn. 21 for 

general profiles Uo(r ). First, the left hand side of this equa- 
tion as well as R o and r on the right-hand side are real and 
positive. Also, Uo(r) being real, aft elementary complex 
number analysis shows that c is real: in the long wave- 
length approximation, the present inviscid perturbation 
problem shows indifferent stability. Secondly, eqn, 21 has 
no solution in the interval (Umln, Umax), where Umin is the 
minimum and Umax the maximum of Uo(r) for 0 < r < Ro. 
This follows from the nonexistence (divergence) of the inte- 
gral in eqn. 21 when an essential singularity such as x -2 
lies in the integration range. Thirdly, the integral in eqn. 21 
increases monotonically from 0 to + ~ when c varies from 
- ~  to Umi n and decreases monotonically from + m to 0 
when c increases from Urea ~ to + ~ .  In consequence, eqn. 
21 always has the two solutions c_ and c+,  and only these 
two, which satisfy - o o  < c_ < Umi. and Uma x < C+ < 
+00. 

4.2 Quadratic velocity profiles 
It does not seem possible to give simple explicit solu- 

tions of eqn. 21 for arbitrary velocity profiles Uo(r ). 
However, the quadratic profile 

Uo(r) = 2(/.7 0 --U~)(1 -- r2/R20) + Us (22) 
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is easy to handle ([7 o is the cross-sectional mean of Uo(r)). 
Introducing eqn. 22 into eqns. 21 and 20 we obtain 

C ----- [70 -b [ a  2 + ((-70 - -  Us)2] 1/2 (23) 

2pa2r = P(U s - c)r 2 (24) 

The definition u = 1/r~P/dr and eqns. 17, 23 and 24 then 
give 

P = P [ -  [70 + Us _+ (a 2 + ([70 - Us)2)l/2]u (25) 

For a rectangular profile (U s = [70) eqns 23 and 25 lead to 

c = [70 +_ a (26) 

p = +pau (27) 

and for a no-slip parabola (Us = 0) they lead to 

c = [70 + (a g + [7~)112 (28) 

p = +__p[(a 2 + [72)1/2 -T- [7o]U (29) 

It can be shown from eqn. 18 that if the velocity pertur- 
bation is spatially one-dimensional, i.e. u(x, r, t) = u(x, t), 
then Uo(r ) has the quadratic distribution of eqn. 22. In 
such a case the resulting axial velocity U(x, r, t) (eqn. 14) 
has the same radial dependence as Uo(r). As a conse- 
quence, U(x, r, t ) i s  only then spatially one-dimensional 
when the basic flow profile Uo(r ) is rectangular. 

5 Discussion 
The purpose of this study is to evaluate the dependence 

of the wave propagation phenomenon on the axial flow 
velocity profile. In consequence, the convective acceler- 
ation terms of the fluid x-momentum equation must be 
considered. To obtain simple analytical results the model 
has been strongly simplified. Besides the usual one- 
dimensional pressure assumption dP/~r = 0, the main sim- 
plifications, common to the nonlinear theory as presented 
here and to the linearised theory, are that 

(i) the fluid is inviscid 
(ii) the tube behaviour can be described by a simple 'tube 

law' (eqn. 3). 

More realistic models including skin friction and less ideal- 
ised tubes have been considered in nonlinear theories. 
Most of them, however, rely upon a one-dimensional 
approach, i.e. upon a rectangular axial flow profile. 

Not  being limited to small amplitude perturbations, the 
nonlinear theory should include the linearised one as a 
particular case. For a parabolic profile eqns. 9 and 10 lead 
to g = 2(1 - r2/R 2) and B = 4/3, and for the rectangle to 
g = B = 1 (Fox and SAmEL, 1965; BAR:qARD et al., 1966a; 
b; SKALAK, 1972). However, the nonlinear eqns. 12 and 13 
are then a generalisation of the linearised eqns. 26-29 only 
for the rectangular profile. As shown elsewhere (DARDEL, 
1987), the reason lies in the variable separation, eqn. 9. So, 
any profile defined by eqn. 9 and satisfying the no-slip 
condition U(x, R, t) --- 0 implies a uniform pressure along 
the tube wall, i.e. dP/~x = 0 for r = R. Quite generally, this 
variable separation (eqn. 9) is only  then compatible with 
the basic one dimensional pressure assumption c~P/t~r = 0 
when the profile is rectangular, i.e. when the flow is also 
one-dimensional. 

The relationship between the pressure and the flow 
velocity perturbations, p and u, markedly depends on the 
flow profile as soon as 0 o ~ a is not fulfilled. Indeed, p/ 
(pau) = ___ 1 with the rectangular profile (eqn. 27) for all 
values of [7e/a, but only for [7o/a = 0 with the parabolic 
profile (eqn. 29). For [7o/a = 0.2 the parabolic profile leads 
to p/(pau)= +0-81 for downstream waves and to -1 .21 
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for upstream waves: a given velocity perturbation implies 
a smaller pressure perturbation downstream, but a larger 
perturbation upstream than predicted by the one- 
dimensional approach. The discrepancy increases with 
increasing [7 o/ a. 

This discrepancy is particularly striking for the critical 
flow velocity [7*. The latter is the flow velocity above 
which upstream wave propagation vanishes, i.e. c_ > 0. 
Whereas the rectangular profile (eqn. 26) leads to [7* = a, 
the parabolic profile (eqn. 28) gives 0* = ~ ,  which means 
that waves propagate upstream regardless of [7o/a. In 
developing this approach we were not aware that JOHNSON 
(1971) has reached a similar conclusion in a Ph.D. thesis. 
The latter has, however, not been published in any journal, 
which might explain that this result is not better known.t  

Actually, experiments are often at variance with the dis- 
appearance of upstream wave propagation predicted by 
the one-dimensional theory when 0 0 > a (DAwsoi,~ and 
ELLIOTT, 1977; KAMM and SHAPIRO, 1979; CANCELLI and 
PEDLEY, 1985). This paradox is usually explained by the 
properties of real tubes which do not follow a simple 'tube 
law' (eqn. 3) and which allow perturbations to propagate 
in their own wall. The present study shows that other, 
purely fluid mechanical effects may play a role in this 
apparent paradox. 

The radial dependence of the axial velocity profile 
explicitly appears in the convective acceleration term 
VdU/t3r of the fluid momentum equation (eqn. 1). This 
term, which has been considered in the linearised form 
�9 dUo/dr (eqn. 18), vanishes with the rectangular profile, 
but it may become important for more realistic basic flows 
satisfying the no-slip condition. Such flows are rotational 
and dUo/dr, which is maximum near the wall, increases 
with 0 0 . Because v = t3R/at is not zero on the flexible wall, 
vdUo/dr is not a priori negligible. 

Expiratory flow limitation plays an important rgle in 
the pathophysiology of the respiratory system (DAWSON 
and ELLIOTT, 1977; SHAPIRO, 1977; HYATT et al., 1979; 
MINK, 1984; PEDERSEN and INGRAM, 1985; O'DoNNELL et 
al., 1986). The interpretation of these forced expiration 
tests relies centrally upon the disappearance, in one- 
dimensional flows, of upstream wave propagation for a 
supercritical flow velocity. Considering the present two- 
dimensional results, a re-evaluation of these pulmonary 
function tests could possibly bring new insights in this 
field. 

In vascular pathophysiology a challenging problem lies 
in the determination of the relationship between blood 
pressure, blood flow and the properties of the compliant 
vessels. Although the mean blood velocity is usually much 
smaller than the pulse propagation speed, the peak blood 
velocity can reach a significant amount of the pulse propa- 
gation velocity in large arteries. This justifies considering 
the convective acceleration terms in the fluid momentum 
equations, but the problem is usually handled with a one- 
dimensional, nonlinear method. The present linearised 
theory shows that, in the relevant fluid velocity range, the 
flow velocity profile deeply influences the wave propaga- 
tion phenomenon. This questions the quantitative predic- 
tions of the one-dimensional, fluid dynamically nonlinear 
pulse propagation theory. 

Apparently, only MORGAN and FERgA~TE (1955) and 
WOMERSLEY (1957), in section X of his report, have already 
used a similar perturbation technique, but without neglect- 
ing the fluid viscosity. This leads however to an intricate 
eigenvalue problem that these authors have been able to 
solve only for low-speed Poiseuille flows (Uo/a ,~ 1). As 

t A referee who reviewed an earlier draft of this manuscript called this 
publication to my attention. 
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shown elsewhere (DARDEL, 1987), in this velocity range the 
present results reduce to those of MORGAN and FERRANTE 
(1955). 

Although the generation of the rotational basic flow 
implies viscous effects, the flow perturbations are treated 
as inviscid in the present paper. This procedure is classical 
as it goes back to Rayleigh, but an estimate of the vis- 
coscity effects on the perturbations is presently in progress. 
Preliminary results show that, besides a damping effect, the 
results are practically unchanged by the viscosity v, pro- 
vided the Stokes layer thickness (v/~c) 1/2 is much smaller 
than the tube radius. 
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