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Abstract: The finite element method to form Michell truss in three-dimensions is presented. 
The ot~thotropic composite with fiber-reinforcement is employed as the material model to 
simulate Michell truss. The orientation and densities of fibers at nodes are taken as basic 
design variables. The stresses and strains at nodes are calculated by finite element method. An 
iteration scheme is suggested to adjust the orie~Dtions of fibers to be along the orientations of 
principal stresses, and the densities of fibers according to the strains in the orientations of 
fibers. The strain field satisfying Michell criteria and truss-like continuum are achieved after 
several iterations. Lastly, the MieheU truss is showed by continuous lines, which are formed 
according to the orientations of fibers at nodes. Several examples are used to demonstrate the 
efficiency of the presented approach. 
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Introduction 

The Michell 's [1] theory for optimizing structural topology for stress constraints under one 

load condition plays an important role in structural optimization field. The optimum structures 

based on such theory are called as Michell truss, or least-weight mass. Subsequently, this theory 

developed greatly in many aspects [2-8] . It is proved that Michell truss is identical with the least- 

weight mass for compliance consllaints. The Michell tresses under some load cases were gained 

by analytical method Is- 10]. Michell mass is established based on strict theory. So it is frequently 

taken as some theoretical upper limits to check some optimum results gotten by various numerical 

methods. It is still rather difficult to derive MicheU structures by analytical method. Having some 
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special character, Michell tlusses in three-dimensions have been a little further studied [81 . For no 

general effective analytical method to achieve Michell truss at present, it is important to study 

numerical method. 
To optimize structural topology, a number of numerical methods are studied. The ground 

structures approach optimizes discrete structural topology. There are many difficulties including 
too great calculating work a n d  singular [n'12] . In the homogenization m e t h o d  [13] , introduced by 

Bends~e and Kikuchi, the material property of each design cell is computed by the 

homogenization theory and the optimum topolgy is achieved by solving a material distribution 
problem. Sui Y unkang [14] proposed the independent-eontinuons topological variable concept and 

mapping Wansformation method. Xie and Steven proposed the evolutionary structural optimization 
method [15] . In ths last two methods, structural topology is iteratively changed by deleting some 

structural elements based on their stress level. The method of suppressing intermediate densities is 

commonly used to get distinct (0-1 ) topology designs. The optimum results are influenced by the 

fashion of partition and penalization function. The optimum topology is showed by perforated 
plate or foam body. It is proved that this perforated plate tends to least-weight tress if the volume 
fraction approaches zero. Therefore, Michell truss provides an important check on numerical 
solutions for least-weight perforated plates. In the problem of free material optimization [16-19], 

anisotropic material models are used, in which elastic tensor Eijkl is considered as design variable. 

Its results are hard to be displayed by graphics, and unsuitable to be applied directly in practice. 
For an overview, see also the review [2~ . 

Michell truss in three-dimensions is formed by finite element method in this paper, which 

extends the work in Ref. [ 22]. The orthotropic material models are used. The Michell trusses are 

showed by continuous lines, which stand for disWibuted members in Michell tress. It is discussed 
that this material model is suitable to describe Michell truss. The numerical method has been 

improved. 

1 The Constitutive Relat ion  of Orthotropic M a t e r i a l  

1.1 Elastic matrix on-axes 
Generally, Michell tress is anisotropic continuum structures. To describe such structure by 

finite element method, orthotropic composite material model with fiber-reinforcement is 

employed. It will be proven in Section 1.3 that this model can also describe nonorthogonal 

members in Michell truss. Three groups of continuously distributed orthotropic fibers, which will 

form the continuous or discrete Michell truss, are embedded in matrix. The three orthogonal 

orientations of fibers are denoted a s  l i with components of I l l ,  li2 , l i3( i = 1,2 ,3) .  The stresses 

and strains of three groups of fibers are denoted by a~ ,ei(  i = 1 ,2 ,3) ,  respectively. The three 

planes normal to the directions of fibers are called as principal planes of material. The symbol 
ti ( i = 1,2,3) is defined as density of fiber. This definition means that, in the infinitesimal area 

of dAi in principal planes i, the area of fiber is tldAi. It is assumed that the stiffness of matrix in 

the principal plane of material vanishes, i . e . ,  matrix does not bear normal stress on principal 
t 

planes. The force acting on dAi is aitidA, the average stress acting on dAi can be calculated as 

ai = tial ( i  = 1 ,2 ,3) .  (1) 

If elastic modulus E of three groups of fibers is assumed to be identical, the stress-strain 
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relations of fibers can be expressed as 
t 

ai = Eel ( i  = 1 ,2 ,3 ) .  (2) 

According to the characters of Michell mass, there is no interaction between adjacent parallel 

members. Therefore the Poisson' s ratios are assumed as zero. The combination of Eqs. ( 1 ) and 

(2) lead to the stress-strain relations of material in the principal direction of material 

a i = E t l e  i ( i  = 1 ,2 ,3 ) .  (3) 

In Micbell truss, the directions of members are collinear to that of principal stresses, the 

shearing stress and strain in the principal plane vanish. The shear modulus plays a trivial role in 

optimum structures. On the other hand, in the process of iteration, the shearing stress and strain 

are not zeros. So the shear modulus should not vanish, otherwise, the stiffness matrix would 

become singular, and equilibrium is unstable or even impossible. In addition, the convergent will 

become slow with too little shear modulus, and oscillating with too great ones. In this paper, the 

relations between shearing strain and stresses in principal directions are assumed that 

[r23 r31 r12] T = 0 .25E 'd iag[ t2  + t3 t3 + tl tl + t2][?`23 ~'31 ?`12] T, (4) 

where rz3, r31 , r12 and ?'23, ?`31, ?`12 denote shearing stresses and strains on principal planes, the 

diag diagonal matrix. In this case, the numerical examples show that the shearing stress in 

principal planes are less than 10 -7 times of the maximal normal stress, and can be ignored. 

Now the constitutive relations in the orientations of fibers can be determined completely by 
combination of Eqs. (3) and (4) as that 

= D e ,  (5)  

where tr, z are stress and strain matrixes, respectively, D elastic matrix in the orientations of 
fibers 

D ( t l , t 2 , t 3 )  = E 'd i ag ( t l  tz t3 (t2 + t3)/4 (t3 + t l ) /4  ( t l  + t2) /4) .  (6) 

1 . 2  Elastic matrix off-axes 

The stress and strain matrix in global coordinates Oxyz, respectively, is written as o', , .  The 
constitutive relation can be expressed as 

tr = D e ,  (7)  

where D denotes the elastic matrix, which can be calculated by 

D (  tl , tz ,  t3 ;11,12,13) = TT( I1 ,12 ,13)"D(  tl , t2, t3)" T~ ( l  I , 12,13) 

= E  

t l l  0 0 0 t3t/2 t12/2 

t22 0 t23/2 0 t12/2 

t33 t23/2 t31/2 0 

(to - t11)/4 t12/2 t31/4 

Sym. ( to - tzz )/4 t23/4 

( t o - t33)/4 

where T, is frame rotation matrix. Other parameters are def-med as that 
3 3 

1.3 

, ( 8 )  

to = ~ t k ,  t o �9 = ~ l ~ l i k t k  ( i , j  = 1 ,2 ,3 ) .  (9) 
k = l  k = l  

Fur the r  discussion abou t  elast ic matrix 

The orthotropic material model mentioned above can describe the orthogonal members in 
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Michell truss. It is proven as follows that such material model can also describe the nonorthogonal 

members in Michell truss. 

Some conclusions can be drawn from the properties of Michell truss. 1) If two members are 

nonorthogonal then any number of coplanar members are possible, the strain of any members in 

their plane must be allowable strain, and shearing strain in their plane vanishes. 2) If three non- 

coplanar nonorthogonal members meet at a point, then any number of members passing the point 

in any direction am possible, the strains of all members must be allowable swain, and shearing 

strain in any plane vanishes. The latter will be discussed as follows, and the former is the special 

case of the latter. 

From the conclusion above, for the latter, the strain matrix in any coordinates is 

= %[1 1 1 0 0 0 ]  T . (10) 
where % is allowable strain, % = % / E , %  allowable stress. The densities and orientations of 

members are denoted as t; ,  ~ ( i = 1,2 . . . . .  n ) .  The elastic matrix in global coordinates is 

O = ~ rT(g ,0,0).D(t'/ ,0,0).  r~ (ll ,0,0). (11) 
i=1 

The stress matrix in global coordinates is 

2 2 2 2 1' '2  ' '2  ' --- EEp l i l t  i E l i 2 t i  li2ti li2113t, ~ 113li15 ~ lilli2t, i (12) 
i=1 i=1 i=1 i=1 i=1 

,The principal stresses am denoted as a/~ ( i = 1 ,2 ,3 ) .  The stress matrix in this direction is 

= [ O ' ;  ( 7 ;  O ' ;  0 0 0 ]  T . (13) 

If the orthotropic elastic matrix defined by Eq. (6)  is employed, where the orientations of 

fibers am collinear to the direction of principal stresses, and the densities of fibers am taken as 

ti = a; /E% ( i  = 1 ,2 ,3 ) ,  (14) 

in the state of swain given by Eq. (10) ,  the stress matrix is identical to Eq. (13 ) .  So, the 

orthotropic material model can also be used to describe the material property of nonorthogonal 

members in Michell truss. 

2 F i n i t e  E l e m e n t  A n a l y s i s  

The densities and orientations of fibers at nodes am taken as design variables. The elastic 

matrix in element can be calculated by the weighted average of elastic matrix at all nodes of 

elements. 

2 .1  I te raf ive  algori thm 

(1) The design domain is partitioned by finite elements. 

(2) Initial value at every node is set. The three groups of fibers along coordinates densities 

are set as 1. 

(3) Structure is analyzed by finite element method. The strains at nodes am calculated by 

the average strains at the all corresponding nodes of neighbor elements. 

(4) The orientations of fibers are adjusted to be collinear to the principal orientations of 

stresses and the fiber densities am adjusted by following stress ratio method: 
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I, I, t~  t~  = R •  m a x  { k k , t i~e~ /ep  > , tk.+ 1 ; tin~in/~p k k 

tlnF'irL/~P ~ ' n= 1 ,2 , " ' ,N  

( i  = 1 , 2 , 3 ; n  = 1 , 2 , ' " , N ) ,  (15) 

where superscripts k, k + 1 stand for the iteration number, subscript n the index of nodes, 

subscript i the index of principal axes of material, ta density threshold to avoid stiffness matrix 

becoming singular, R a given trivial value, taken as R = 10 -7 in this paper. 

Steps ( 3 ) ,  (4 )  are repeated until the relative change of the volumes in two successive 

iterations is less than a given tolerance, which is taken as 0 .5% in this paper. 

After getting converged, the orientations of principal stresses tend to that of fibers, and the 

shearing swains and stresses in the principal plane vanish. The strains along the orientations of 

fibers approach allowable strains, otherwise, the densities of fibers in the orientations tend to 

threshold (nearly no material), and stresses (not strains) tend to zero. These characters are 

similar to that of Michel] truss. So the Michell optimum criterion is satisfied. For the orientations 

and densities of fibers at nodes being design variables, the densities and orientations of fibers at 

any point in an element are not constant generally. In this paper, optimization with one load case 

and identical allowable stress in tensile and compression is studied. Such problem is always 
nonsingular [21] . 

2.2 Forming MicheH t russ 

Some starting points, for example, the points acted by point forces, is chosen properly. The 

line along the direction of fibers from a point will intersect the boundary of an element. The line 

is drawn along the direction of principal stress at current point and ended at the point of 

intersection with the boundary of element. To improve precision of line, the direction of line is 

modified once. The next segment line is drown from the end point. A continuum line is achieved 

by repeating above process until the boundary of design domain is arrived. The direction of fiber 

at a point on boundary of element is calculated by weighted average of directional cosines at four 

nodes around the point. 

3 N m n e r i c a l  E x a m p l e s  

All examples are modeled by 8-node isopammelric cube f'mite elements with elastic modulus 

E = 210 x 109 N/m 2 , allowable stress ap = 160 x 106 N/m 2 , and length dimension is given in 

meter. 

Exampe  1 Figure 1 showed a box-formed design 

domain, which is subjected to torsion at the upper surface. All 

nodes on the lower surface are fixed in the horizontal plane. In 

calculation process, four point forces are acted at four nodes on 

upper surface of the topside central element. The elements of 15 

x 15 x 7 are used. Figure 2 illustrates the optimum structure 

after eight iterations. The Michell truss El] derived by analytical 

method is given in Fig. 3. 

Exampe  2 Figure 4 showed a cubic design domain, 

which is subjected to a concentrated load at the center of upper 

~ 7 

Fig.1 Design domain and 
geometry condition for 
Example 1 
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surface and equipped with miler supports at four comers of the lower surface. Figure 5 illustrates 

the optimum structure after six iterations. 

Example  3 Figure 6 showed a cubic design domain, which is subjected to four parallel 

concentrated loads at the upper surface and equipped with fixed hinges at the four comers of the 
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Fig.2 Optimum structure for Example 1 Fig.3 MicheU structures 
for Example 1 
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Fig.4 Geometry and boundary condi- 
tion for Example 2 

Fig.5 Optimum structure for 
Example 2 
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Fig.6 Geometry and boundary condi- 
tion for Example 3 

Fig.7 Optimum structure for 
Example 3 



Forming Michell Truss in 3-D by Finite Element Method 387 

lower surface. Figure 7 illustrates the optimum 

frame after seven iterations. The Michell truss 

derived from it is showed in Fig. 8 ( a ) .  The 

Michell truss showed in Fig .8(b)  is derived from 

the optimum smacmre~ given by other papers. In 

fact, both structures are Michell mass, although 

the smacture in Fig.8(a)  is unstable ~z3J . 

In the last two examples, a quarter of design 

domain with elements of 10 x 10 x 20 are 

computed on account of symmetry. 

4 Conclusions 

/ 
/ 

1 1  / 

(a) (b) 

Fig.8 " Michell structure for Example 3 

A finite element method to construct Michell truss in three-dimensions has been reported. 

The optimum sWuctures may be continuum or discrete structures. The optimum structural topology 

is expressed by densely continuum lines. As free material design, more visual results are given by 

post processing technology. More details in Michell truss can be obtained using fewer elements 

than that by other methods. 
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