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Abstract: Considering Peierls-Nabarro effect, one-dimensional finite metallic bar 

subjected with periodic field was researched under Neumann boundary condition. Dynamics 

of this system was described with displacement by perturbed sine-Gordon type equation. 

Finite difference scheme with fourth-order central differences in space and second-order 

central differences in time was used to simulate dynamic responses of this system. For the 

metallic bar with specified sizes and physical features, effect of amplitude of external driving 

on dynamic behavior of the bar was investigated under initial "breather" condition. Four 

kinds of typical dynamic behaviors are shown: x-independent simple harmonic motion; 

harmonic motion with single wave; quasi-periodic motion with single wave; temporal 

chaotic motion with single spatial mode. Poincard mop and power spectrum are used to 

determine dynamic features. 
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Introduction 

To the weakly damped, periodically forced sine-Gordon equation, A . R .  Bishop El-31 

analyzed its solution under periodic boundary condition and concluded that its solution would 

show different spatial Structures and long-time asymptotic states along with the variation of 

parameters. In Ref. [ 1 ] ,  a single-hump sine-Gordon breather was given as initial condition and 

the pde (partial differential equation) bifurcation diagram corresponding to the amplitude of 

external force eP was achieved. For certain eP ,  pde would exhibit chaotic effect. In Ref. [ 2 ] ,  

several transitions from periodic to chaotic behavior were investigated for initial conditions as flat 
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spatial structure, breather and kink, respectively. The influence of initial conditions on the 

solution of a.c. driven, damped sine-Gordon equation was discussed. In Ref. [ 3 ] ,  the 

bifurcation diagram shown as functions of driving frequency and strength was given. It indicated 

that driving frequency was also an important factor, which influenced the solution evolving from 

periodic state to chaotic state. J . C .  Eilbeck [4] studied sine-Gordon equation numerically with 

damping and a spatially inhomogeneous force varying harmonically in time under linear outflow 

boundary condition: u~ _+ u, = 0. It is shown that solution would show chaotic character with 

enough energy inputted by driving force to make breather break up into a kink-antikink pair Is] . 

When the metallic bar is loaded, the inner structure would change and deform. It has to 

overcome the potential barrier expressed by Peierls-Nabarro force ap [61: 

ere = P s i n a u  . (1) 

Meanwhile the temperature would rise in it. It is the viscous effect, which could be considered as 

au  (2) 

Considering the factors mentioned above, the motion of one-dimensional finite bar loaded with 

harmonic external disturbation could be obtained 

E c ~ ~u s  (3) - P s i n ,  au ,  - - -  + 
Utt  7u,, p p t p 

This is just perturbed sine-Gordon type equation. Here E is the elastic modulus; p is the bar ' s  

density; P and F are the amplitudes of Peierls-Nabarro force and external driving force acting in 

unit volume, respectively; to is the circular frequency of disturbation, ~ is the viscous coefficient. 

One-dimensional finite bar loaded with harmonic perturbation would be researched. Motive 

evolution of bar considering the Peierls-Nabarro force and viscous effect would be shown under 

Neumarm boundary condition. This motion could be described by sine-Gordon type equation. 

Through numerical calculation, not only propagation of kink soliton, but also the chaotic motion 

could be observed in some special conditions. 

1 B a s i c  R e l a t i o n s  

The length and the maximal size of the one-dimensional finite bar restricting rotation in both 

ends are l and d ,  respectively. Initial conditions are given as 

u ( x  ,0) = 1.6 x 10-Sarctan ,r 
0.7eosh(10x 0~67~.51)' u t ( x , 0 )  = 0. (4) 

Boundary conditions are 

u~ - T , t  = u~ ~- , t  = 0 .  (5) 

Now we will give the dimensionless forms of the governing equation (3) .  The characteristic 

length is chosen as L = l l l 2 ,  and characteristic time is T = L ~ / p / E .  T h e  dimensionless 

quantities labeled with ..... are given as x = L x ' ; t  = L p ~  t ' ; d  = L d ' ; w  = t o ' I T  = t o ' l L  v/-E-]p; 

u = d ' 2 L u  ' . Substituting them into Eqs. (3 ) ,  (4) and (5) and removing ..... of dimensionless 

quantities, the dimensionless equation could be written as 

P L  2 ~L F L  
- -  = - - - U  t + d--~-~cos(tot). (6) u,, u~ + ,Tzs in(~d Lu) 

t t - / 5  
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In which, u ,  t ,  x ,  d ,  co are all dimensionless. Dimensionless initial conditions are 

,/-65i 
u ( x , O )  = 4arctan , u t ( x ,O)  = 0. (7) 

0 ,7cosh(x 0vr-0--.~. 51 ) 

Dimensionless boundary conditions are 

u , ( -  6 , t )  = u , ( 6 , t )  = 0. (8) 

Equation (6) is damped, periodically forced sine-Gordon type equation. Here we will study the 

bar with parameters as l = 1.2 m, d = 0.632 ram, E = 2 x 1011 Pa, p = 7 .8  x 103 kg/m 3, 

P = 8 x 107 N/m 3", ~ = 1.58 x 107 kg/(s-m3),  and ad2L = 1. In this case, Eq. (6) could be 

written as 

ut, - u= + sinu = - cut + f c o s ( w t ) .  (9) 

In which, dimensionless coefficients are e = 0 .04,  f = F L / ( d 2 E ) .  The external driving 

frequency o~ is chosen near but less than 1, co = 0.87.  When e and f a r e  all set as zero, Eq. (9) 

would reduced into SG equation. 

2 F i n i t e  D i f f e r e n c e  S c h e m e  

The perturbed sine-Gordon type equation (9) would be discretized by difference scheme with 

second-order central differences in time and fourth-order central differences in space. This scheme 

is constructed taking ( n A t  , j A x )  as center: 

1 . n+l (Uu)~ -- l [ ( u , , ) ] + l  + (U , , ) ]  -1] + -~-[sinui + sinu7 -1] 

= - e ( u, )• + fcostot.  (10) 

The superscript indicates time and the subscript indicates space. With derivatives discritized 
further, difference equation could be written as 

u,§ . . , . ,  [ (  24Ax2 r ) ] 
i+2 - louj+l + 30 + ~ + ~-~  24Ax 2 uin+l + 12Ax2sinu~ +1 - l"oUj~In§ + un+lj_2 

24Ax 2 
-- At  2 ( 2 U ;  - ujn-1) 4. ( _  Uj+2n-1 4" 16/~+ I - 30U~ -1 4" 16/,t~-~_ UJ -2n-l') _ 

e'24AX2 n.1 
12Ax2sinu~ -1 + ~-~  uj + 24Ax2"fcos( tot ) .  (11) 

Here e and f in Eq. (9) are all very small. If disturbing terms are ignored ( i .  e . ,  e = f = 0 ) ,  

Eq. (9) would be reduced into typical sine-Gordon equation, whose numerical solutions would be 

compared to two exact solutions of sine-Gordon equation to show effectiveness of unperturbed 

difference equation. 

2 . 1  V e r i f i e d  w i t h  k i n k  w a v e  s o l u t i o n  

The initial conditions and boundary conditions are chosen as the kink soliton wave, which is 

one exact solution of the sine-Gordon equation 

r I x - v t  ~] 
u ( x , t )  = 4arctan |exo |  ~ /  . (12) 

t - ~ / 1  - v ' l  

The kink solitary wave propagating with constant velocity v is described in Eq. (12) .  The length 

of bar is chosen as 120, v = 0 ,2 .  The maximum error and kink soliton propagating with time are 

illustrated in Fig. i and Fig. 2. 
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Fig.1 The max error versus time Fig.2 Numerical solution of kink soliton 

One of the most important properties of  sine-Gordon equation is conservation of energy. 

Multiplying both sides of sine-Gordon equation by d u and integrated along space, we have 

E f [ 1  2 1 2  ] = "~ut + ' ~ u ~  + F ( u )  dx = const.  (13) 
l 

In which, F ( u )  is a source function of sin u ,  F ( u )  = 1 - cos u .  Energy could be discretized as 

-2Ax~  uj - 1 _ )2 = u;+, uj + ( G , ' u ~ )  ~ ]+  

(2 - cosu} § - cosu])} .  (14) 

Numerical result shows that variation of energy is between 8. 160 24 ~ 8. 160 25 during t = 

0 ~ 200 and it is shown that this difference scheme could keep conservation of energy very well. 

2 .2  V e r i f i e d  w i t h  " b r e a t h e r "  so lu t i on  

Initial conditions and boundary conditions are chosen as "breather",  which is another exact 

solution of the standard sine-Gordon equation: 

u ( x , , )  = 4arctan OObC%S-~(-- ~ ? 1  - ~ )  ' (15) 

where cob is the internal vibration or "breathing" frequency and chosen as 0 . 2 .  The maximal error 

and wave shape varying with time are illustrated in Fig. 3 and Fig. 4. Variation of energy is 

between 15.667 5 ~ 15.671 2. 

From examples above, the effectiveness of the unperturbed difference scheme could be 

proved. When the damping term and external disturbance term are all small enough, disturbed 

system could be simulated with unperturbed difference scheme approximately. 
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Fig.3 The max error versus time Fig.4 Numerical solution of breather 
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3 T h e  N o n l i n e a r  C o m p l e x  D y n a m i c  P h e n o m e n a  i n  t h e  B a r  

Through numerical computing, the spatial modes and long-time asymptotic states of the bar 

varying with the external disturbance f are shown in Fig. 5. In which K 0 denotes a spatially 

homogeneous component of zero wave numbers; K 1 denotes a period one component of wave 

number K1 = 27t/l ; K 0 @ K 1 denotes the nonlinear superposition of the two modes. 

(1) F o r f  < 0.055 ( F < 4 .4  x 106 N) ,  spatial structure of the initial breather decays as a 

transient and the final evolution is an z-independent  flat state with no spatial structure. All 

particles of the bar vibrate periodically with frequency locked to perturbation just as a single 

particle. 

(2) In the range0.055 ~ < f  < 0 . 0 5 7 5  (4 .4  x 106 N ~< F < 4 .6  x 106 N ) ,  we find an 

evolution into a synchronized breather-like state. There is one localized breather o f  period l 

superimposed on the fiat state and oscillating periodically with frequency locked to external 

perturbation. Power spectrum and spatial waveform varying with time are illustrated in Fig. 6 and 

Fig.7 f o r f  = 0.055 ( F  = 4 .4  • 106 N) .  

(3)  For0 .057  5 ~< f ~< 0.058 5 (4 .6  x l06 N ~ F < 4 .68  • 106 N ) ,  the spatial mode is 

also breather superimposed on the flat state and the hump of breather rides on the ends of the bar 

as shown in Fig. 10. Time-displacement curve (Fig.  8 ) ,  power spectrum (Fig.  9) and Poincar6 

map (Fig. 11 ) show that the temporal response is quasi-periodic. 

(4) In the case of 0.058 5 < f < 0.069 (4 .68  • 106 N < F < 5 .52  • 106 N) ,  the initial 

breather is smoothed once again and all the particles of  the bar move synchronously with 

frequency locked to the perturbation. 
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Fig.6 Power spectrum f o r f  = 0.055 Fig.7 Spatial structure figure fo r f  = 0.055 
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(5)  As we increase f to 0 .069  or more ( F  ~> 5.52 x 106 N ) ,  we note the intermittent 

jumping between two weakly unstable spatial modes, a "breather" peaked either at the center or at 

the ends of the bar, with an intermediate passage through a flat state, and the temporal response 

is chaotic. Computational results are shown in Figs. 12 ~ 15 f o r f  = 0. 105. Fig. 12 illustrates the 
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bar ' s  spatial structure varying during t = 7 800 ~ 8 000, long after all transients have passed. 

Power spectrum (Fig. 13) ,  Poincar6 map (Fig. 14) and time-displacement curve of the mid-point 

of the bar (Fig. 15) show chaotic effect for f = 0 .105.  
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Fig.13 Power spectrum f o r f  = 0.105 Fig.14 Poincar6 map fo r f  = 0.105 

4 C o n c l u s i o n s  

Taking account of Peierls-Nabarro effect, perturbed sine-Gordon type equation is derived to 

describe one-dimensional f'mite metallic bar subjected to external field, which is spatially 
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Fig. 15 Time-displacement curve of the 

mid-point f o r f  = 0. 105 

homogeneous and temporally harmonic. Finite 

difference scheme with second-order central 

difference in time and fourth-order central difference 

in space is employed to simulate the system. With 

specified sizes and physical characters, dynamic 

responses of this bar are investigated under Neumann 

boundary conditions and initial displacement 

waveform as "breather". The results of one example 

reveals some kinds of dynamic responses: 1 ) F o r f  < 

0.055,  all the points move synchronously with 

frequency locked to external disturbance. 2) Within 

the range 0.055. ~< f < 0.057 5, spatial points move 

harmoniously. The spatial mode is not fiat. It shows breather superimposed on the fiat state. 3) 

When the dimensionless driving force is: 0.057 5 ~< f ~< 0.058 5,  every point on the bar moves 

quasi-periodically, and spatial displacement still keep sum of  breather and nonzero mean state. 4) 

For0.058 5 < f < 0 .069 ,  the movement of points is similar to case ( 1 ) .  5 ) When the 

perturbation is increased further, intermittent jumping between these two spatial modes (flat and 

breather) appears, and temporal chaotic feature occurs. 

R e f e r e n c e s :  

[ 1 ] Bishop A R, Flesch R, Forest M G, et al. Correlations between chaos in a perturbed sine-Gordon 

equation and a truncated model system[J]. SIAM J Mathematical Analysis, 1990,21(6) : 1511 - 
1536. 

[ 2 ] Bishop A R, Fesser K, Lomdahl P S. Influence of solitons in the initial state on chaos in the driven 
damped sine-Gordon system[ J].  Physica D ,  1983,7(2) :259 - 279. 



Perturbed Metallic Bar Considering Dissipating Effect 149 

[4]  

[ 6 ]  

Bishop A R, Forest M G, Mclaughlin D W, et al. A quasi-periodic route to chaos in a near-integra- 

ble PDE[J] .  Physica D,1986,23(2) :293 - 328. 

Eilbeck J C, Lomdahl P S, NeweU A C. Chaos in the inhomogeneously driven sine-Gordon equation 

[ J ] .  Physics Letters A,  1981,87( 1 ) : 1 - 4. 
7hang Nianmei, Yang Guitong. Chaotic belt phenomena in nonlinear elastic beam I J ] .  Applied 

?,~ athematics and Mechanics (English Edition),2003,2,4(5) . 5 0 9 -  513. 

Shu X F, Yang G T. The influence of material properties on dynamic behavior of structures[A]. 

In:Senoo M ( e d . ) .  Proceedings of IMMM'97 [ C] .  Mie University Press, Kamihama, 1997, 279 

- 284. 


