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Abstract: A numerical method for two-phase flow with hydrodynamics behavior was 

considered. The nonconservative hyperbolic governing equations proposed by Saurel and 

Gallout were adopted. Dissipative effects were neglected but they could be included in the 

model without major difficulties. Based on the opinion proposed by Abgrall that " a two 

phase system, uniform in velocity and pressure at t = 0 will be uniform on the same variable 

during its temporal evolution", a simple accurate and fully Eulerian numerical method was 

presented for the simulation of multiphase compressible flows in hydrodynamic regime. The 

numerical method relies on Godunov-type scheme, with HLLC and Lax-Friedrichs type 

approximate Riemann solvers for the resolution of conservation equations, and 

nonconservative equation. Speed relaxation and pressure relaxation processes were 

introduced to account for the interaction between the phases. Test problem was presented in 

one space dimension which illustrated that our Scheme is accurate, stable and oscillation 

free.  
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Introduction 

The study of two-phase system in very important because a great number of two-phase flow 

phenomena exist in industrial processes and our daily life. By now two kinds of mathematical 

models have been developed. One is Euler-Lagrange model that treats fluid as continuum and 

particles as discrete phase, and tracks the particle trajectory in the Lagrange system. The other is 

two-fluid model in which both the fluid and discrete particles were thought as continuum and solve 

the equations in the Euler system, This paper focuses on the two-fluid model. Being known little 

about its flow mechanism and wave structure, numerical simulation to it is still in infancy and the 

main start point is to transfer the scheme for conservation equations to it. Some works have been 
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done in this area. Toumi [1] , based on the work of G. Dal Maso and P. Le Floch  [2] , tried to 

linearise the system and had solved i t ,  but the choice of the integral path still be a question; L. 

Sainaulieu [3] used finite volume method to solve locally linearised two-fluid system, and from the 

numerical results, we can see that the scheme is inaccurate and has a low resolution for 

discontinuities; R. Saurel [4] , on the work of Abgrall [5] , used HLL scheme to discrete the 

conservative flux, but unphysical oscillation occurred near the discontinuities. In this paper, we 

use HLLC scheme to solve the equations proposed by D. A. Drew [6] and numerical tests are 

presented to test the accuracy and stability of the scheme. 

1 Mathematical  Model  

The compressible two-phase flow model proposed by D. A. Drew [b] , Saurel and Gallouet [7] 

was used here 

30tg 3 a  s 
a--[ + E = 0 ,  (1)  

a( gps) a( spsus) 
a t  + 3x - m ,  (2) 

c3a s 3 ( a g p s u g )  3 ( a g p s U ~  + a s P s )  = Pi + m V  i + F d (3) 
3 t + 3 x -~x ' 

3ag  
a(' gagEs) a[ug(' sagG + ' gPs)] = PIV  + mEi + GVi:+ Qi, (4) 

3 t  + 3 x  

a ( a l p l )  a ( a l p l u l )  
o t  + a x  - m ,  (5) 

Oag 
3 ( a t p l u l )  a ( a l p t u ~  + a l p l )  = -  Pi - inV i - F a ,  (6) 

3 t  + Ox 3 x  

3 ( a t p l E 1 )  3 [ u t ( a t p l E t  + a ]p l ) ]  = _ p i v i  (gas _ m E  i _ FdVi _ Q i ,  (7) 
3 t  § 3 x  3 x  

where subscripts g and 1 represent gas phase and liquid phase, respectively, ak (k  = 1, g) is the 

phase volume fraction and satisfies relation a s + at = 1, m is the mass transfer between phases, 

the drag force Fa is usually in form F a = A(ut - u s) and A is a positive parameter, P~ amd V~ 

are average pressure and velocity on the interface, and Qi is connective heat exchange. 

The estimate for P~ and V~ proposed by Saurel [4] was used here 

Pi = ~ a k p k  (k  = 1 ,g ) ,  (8) 

V i = ~_ j c t kpku~ /~ - ] j c t kp  k (k  : l , g ) .  (9)  

From Eqs. (2)  - (7)  we can see that if we add the mass conservation, momentum conservation, 

and energy conservation equations, respectively; we will get the Euler equations for the mixture. 

Being no theoretical solution existed about two-phase flow equation, one commonly accepted 

method is to compare the mass-averaged numerical solution of the system with the thoeretical 

solution of the Euler equation of the mixture. 

2 Difference Scheme 

Assumingm = 0 and Q~ = 0,  E q s . ( 2 )  ~ (7 )  can be written as follows, when F d is 
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neglected, 

~Otg 3 U  O F ( U )  H ( U )  (10) 
Ot + 3 ~  - Ox" 

Equation (1) is still in nonconservative form 

where 

8a s 3a s 
O-T + E ~ = O, (11) 

U = ( a s p s , a g p g u g , a s p s E g , a l P l , a l P l U l , a l P l E t )  T, 

F (  U) = (agpsug,agpgU2s + a s P s , u g ( a g p g E g  + agpg) ,  

a l p l u l , a l p l  uz + a l p l , u t ( a l p l E t  + a t p t ) )  T, 

H (  U) = ( O , P i , P i V i , O ,  - P i ,  - PiVi)  T. 

In general, it is reasonable to assume that the two-phase system is in equilibrium due to that 

the characteristic time of the system is much longer than the relaxation time between the two 

phases. From this point of view, the whole solution procedure could be divided into three steps, 

1 ) Solving Eq. (10) using differencing scheme; 

2) Instantaneous velocity relaxation with interphase interaction; 

3) Instantaneous pressure relaxation with interphase interaction. 

S tep  1 Solving E q .  (10) us ing  differencing scheme 
The criterion for building up the numerical scheme in this paper is proposed by Abgrall [53 , it 

is stated as "a two phase system, uniform in velocity and pressure at t = 0 will be uniform on the 

same variable during its temporal evolution". The equation of the state used in this paper is 

p = ( ) '  - 1)pe - ~'~. (12) 

To solve the system (10) ,  we use following central difference scheme: 

un + l n F ~ , 1 = U) - A(F;+u2 - j-1/2) + A t H ( U ] )  7 (13) 

where V represents the discrete form of Oag/OX which will be given later. Saurel [4] used the HLL 

scheme for term F]§ 5 . Here we use HLLC scheme due to its higher resolution for contact 

discontinuities, i . e . ,  we choose, 

where 

f FL F ~ F L "[" SL ( U .  L FHLL C L : -- UL ) 

j+l/2 "= F .  R F R "1- S R ( U .  R UR ) 

FR 

( S  L ~ 0 ) ,  

(& <o<~ s~),  

(s~ ~o<~ SR), 

(SR <. 0), 

(14) 

U ( x K x x K X X X a ~ p ~ , a ~ p ~ u X , a ~ p ~ E ~ ) T  -=- a spg,agtOg U s , a g p g E g ,  

F K ( U )  ( K K K K K K 2 K K K (  K K ~ K K 
= a s p s u s , a s p s u s  + a g p s , u s  a s p s E s  + a g p s ) ,  

K a a~pKu K , a f p f u ,  + a f p K , u [ ( a [ p K E ~  + a [ p f ) ) T ,  
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K K K K K 
S K a g P g  -- a s tog U s 

SK - S .  

K K K K K 
S K a g p g  - a g p g  Ug S .  

SK - S .  

Kp~(SK - u~)[E~ + (S x) Ctg . - -  I t g  

( s .  + e~"(s~-o ~_))J (s~ - s .  ) 
U.K = 

K K 
S : l  pl - afpf uf 

S r  - S .  

SKaf p f  K K 
S .  

SK - S .  

a{pf(SK - u f ) [ E f  + (S.  - u f ) .  

pl r 
) ] / (S~ - S . )  (s .  + pf(s~ - uf) ~=~,~ 

Many estimates existed for shockwave speeds SL and SR (see Ref.[8]). The formula used here is 

SL = min(uLs _ cgL, u f  - c f  , u s ~ - cgR,u~ - c[ r ) ,  (15) 

~ , . ~  + c7).  (16) s .  : max(   + 4 , u f  + + 

As for S . ,  assuming pressure equilibrium on the two sides of interface, we get 

L L L R R R 
pg _ p• + P m u m ( S  L _ U m )  -- ~ )mUm(SR  _ U m )  

S .  = L L - - p z ( S  R - u ~ )  (17) pm(SL u~) R 

where 
r K X  r r  r K X  ~ K  

P m =  a g p r  + a l  P l  , prn = a g p g  + a p , 
( K  = L , R ) .  

K z K K K K K K ' x l  K 
/,tm = t, Otgpg Zig + a I /01 U 1 ) l p m  

Supposing that Eq.(14) can be written as 

l j + l / 2  = 

and substituting it into Eq. (13), we get the difference scheme for the conservation terms of the system. 

Here we just do manipulation to the gas phase, the similar result is for the liquid phase. 

For mass conservation equation 

(agPs);+' = (asO~)? -X{(agpgU~)~%2 + S;+,n[(as0s)L+,,2 - (aspg)~2J - 

(ag~OgUg)?_i /2  . S n r[t~ Xn a n �9 j -1/2Lk g / O g J * j ' l / 2 -  ( g lO g) j - l / 2 ] }  ( 1 8 )  

For momentum conservation equation 

(O~gpgUg) ;  +1 -: (t2g~gg/.tg)j -- ~{(Otg{gg/ . tg + 

S j+ l /2 [ (O~gpgUg)n. j+ l /2  - (OLg{ggUg)jt l /2 ~ - (OtgpgU2g + Olgpg)jn-l/2 - 
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S ; - l l 2 [  ( ~ g p g U g ) n j - l l 2  - (~176  A t P i  V . 

~ s~ If Note that u s = = . 

n 
V = (,~+1/2 - ,~'-~/2), 

we have u~ +l = u ] .  So we have difference scheme for 3ag/Ox, 

O~g~ -- ~ . (0~;+1/2  -- Otjn-1/2 )"  

(19) 

(2o) 

(21) 

For energy conservation equation 

( , ~ p ~ E ~ ) ~  +~ = ( , ~ p ~ E ~ ) ?  - a{[~(~p~E~ + ~p~)];+~ + 

S;+,/2[ (aspsEg)n~j+t/2 - (agpgEs)j~+l/2] - [us(agpgEg + agpg)]?_]/2 - 

S;-,/2[ ( agpgEg )nj-l/2 - ( agpg Eg )?-l/2]} + AtPi Vi V . (22) 

Making use of  the relation E s = e s + u~/2 and the equation of state, we can prove that only if 

rt+l tt rt n n, rt rt 
Ctj -~Ct; -- A { Uj (Ctj+I/2 -- Otj-1/2) 4" S j + l / 2 ( c t . j + l / 2  - ~j+l /2)  - 

S n tan n 
j - Y 2  ~, *]-I /2  -- tT ] -b ' 2 ) ) ,  ( 23 )  

could we get p ]  = p~+~. And in this way,  we get the nurrexical scheme for the scalar F_q.( l l ) .  Because 

we could not get aa, i+~n directly, Roe average [9] was used tbr it 

~ /  L L L / - ' R ~ R  R 
a g t O g a g  + N/ agtOg t2g (24 )  

a . i+u2 = ~"-~t. L a.f%~ p,~ 
g/Og + g 

It is easy to see in formula (23), that the classic discrete form u~ (ai~+~ - ai~_l ) for the convective term 
~n  { t2n n n Vi(3as/Ox) was adopted, a n d  t h e  o t h e r  te rm Oj+l/2\  *j+l /2 -- 6t]+I/2) -- S ; - l l 2 ( a n j - l l 2  - a ' j -1 /2) ,  

represents the viscosity of  the scheme. 

As a comparison, Lax-Friedrichs scheme was also used to discrete the conservation terms and we 

have 

(25) 

(26) 

(27) 

where 

U~j +J U) 2 ~ - F ~  �9 = ~ -  (F~+u2 1-v2'  + A t H ( U ~ ) 7 ,  

Lr 1 1 
F}+l/2 ---- ~ - ( F ;  + F~+,) + - .  (U~ - U)~+,), 

0~ +I ~- 0/; -- /~{ U;(O~jn+l/2 -- o~jn..l/2)}- 0/; +0.5(o~jn+l  + O/jn..1). 

S t e p  2 I n s t a n t a n e o u s  ve loc i ty  r e l axa t i on  w i th  i n t e r p h a s e  i n t e r a c t i o n  

According to the momentum conservation of the whole system, we have 

/$ ---- /..tg _--: U l = 
0~g~0gUg 0 -I- ~IIOIUlO 

O/grOg + ~ l P l  

and consequently there is a variation of energy in each phase 

~O/g/Og 
8t - O, 

(28) 

(:29) 



Difference Scheme for Two-Phase Flow 541 

a a s P s u s  - a ( u l  - u s )  ( 3 0 )  
at 

3aspsEs  
-- ~V/(/.z 1 - Ug) ,  (31) 

a t  

and after some manipulation we have 

1 
eg = %0 + ~ ' ( u s  - Uso)(V~/ - Usa), (32) 

then we should adjust the conservation variable U0, where subscript "0" represents the result of  the first 

step. The same result is similar for liquid phase. 

S t e p  3 I n s t a n t a n e o u s  p r e s s u r e  r e l axa t i on  w i t h  i n t e r p h a s e  i n t e r a c t i o n  

Pressure relaxation will lead to variation of internal energy and volume fraction, Due to the fact that 

pressure relaxation is important to the resolution of interface, a reasonable estimate for # is infmite 

especially when we know nothing about parameter/z.  From equations 

3~z s 
at  - /Z(Ps - p~) '  (33) 

a%Ps  - O, ( 3 4 )  
at 

aaspsUg O, (35) 
at 

3as Pg Es 
a t  - - '~p~ ( p s  - p t  ) , ( 3 6 )  

we get 

~Otg 
3 a g t ~  - -  P l  �9 (37)  

Ot Ot 

Integrating with t in~,  the following relation approximately holds, 

. o _ p ~ / ( ~ p ~ ) ( ~  _ ,~o).  (38 )  eg = eg 

The similar result is for the liquid phase. For given the equation of the state, our aim is to find a s 

satisfying pressure equilibrium condition 

f ( a  s)  = P s ( p s , e s )  - P / ( ~ O l , e l )  = O, (39) 

where Pi = ( P i + P~i ) / 2 , P~ is c~ from state ( a~ , P s~ , e sO ) and P i is from state ( a g , p s , e s ) . Ill 

this way the whole system is solved. 

3 N u m e r i c a l  31bst 

Here the numerical test used in Ref. [4] is used and a conoadson is made, 

Consider a shock tube filled with high-pressure liquid on the left side and with air on fight, that is, 

WL = (e , 1 E -  6 kg /ma , lE  - 6 m/s , lE  - 6 Pa,1 000 kg/m 3 ,1E - 6 m / s , l E  - 9 Pa) ,  

~'L = 4 .4 ,  a- L = 6,18 , 

W~ = (1 - e , 5 0  kg/m 3 ,1E - 6 m / s , l E  + 0 .5  P a , I E  - 6 kg/m 3 ,1E - 6 m / s , l E  - 6 P a ) ,  

7R = 1-4,~rR = 0 . 0 , ~  = 1 E - 8 .  
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Numerical  simulation was done at t = 299tts with 100 and 1000 computational cells,  

respectively,  the result was shown in Fig.  1 to Fig.  5 ( solid line represents the theoretical result 

and dotted line represents numerical result) and a comparison was done with that o f  Saurel Eel . 
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Figures 1, 2 and 3 are using HI.I • scheme us the solver the numerical results with 100 cells 

using Lax-Friedrichs scheme, I-I lL scheme and HI.! C scheme as the solver respectively. F igs .4  and 5 

are the numerical results with 1 000 cells using HLL scheme and HLLC scheme as the solver 
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respectively. From the result, we can see all the schemes are stable and by comparison, the H I J C  

scheme has a higher resolution for shock waves and more stable than HLL scheme at discontinuities. 

And for contact discontinuities, the Lax-Friedrichs is smearing and H L I C  scheme is sharp. 
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Fig.5 Comparison between exact and numerical solutions with 1 000 

cells using HLLC scheme as the solver 

4 Conclusion 

Based on the work of  Saurel [~] , a new scheme was presented and numerical simulation was 

done.  From the result we can see that the scheme is both stable and accurate and meanwhile has 

a higher resolution for shock waves .  But the mathematical model used did not consider the mass 

and heat transfer between phases and from the computation procedure we can see that the scheme 

is expensive and most  of  the computation t ime is spent on the iteration for gas volume fraction. 

So it is necessary to pay more effort to simplify the pressure relaxation procedure and take into 

account the mass and heat transfer between phases.  
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