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Abstract: Based on the Hellinger-Reissner variatonal principle for Reissner plate bending 

and introducing dual variables, Hamiltonian dual equations for Reissner plate bending were 

presented. Therefore Hamiltonian solution system can also be applied to Reissner plate 

bending problem, and the transformation from Euclidian space to symplectic space and from 

Lagrangian system to Hamiltonian system was realized. So in the symplectic space which 

consists of the original variables and their dual variables, the problem can be solved via 

effective mathematical physics methods such as the method of separation of variables and 

eigenfunction, vector expansion. All the eigensolutions and Jordan canonical form 

eigensolutions for zero eigenvalue of the Hamiltonian operator matrix are solved in detail, 

and their physical meanings are showed clearly. The adjoint symplectic orthonormal relation 

of  the eigenfunction vectors for zero eigenvalue are formed. It is showed that the all 

eigensolutions for zero eigenvalue are basic solutions of  the Saint- Venant problem and they 

form a perfect symplectic subspace for zero eigenvalue. And the eigensolutions for nonzero 

eigenvalue are covered by the Saint-Venant theorem. The symplectic solution method is not 

the same as the classical semi-inverse method and breaks through the limit of the traditional 

semi-inverse solution. The symplectic solution method will have vast application. 
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Introduction 

The problem of middle-thickness plate is one of important parts in theory of plate and shell, 

and the analytical solving process is always a difficult problem. The traditional method of 

elasticity is mainly the semi-inverse method, which can only be used to solve some special 
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problems. The traditional semi-inverse method belongs to the Lagrangian system of one kind of 

variable and lacks rational analysis so that the solving range is limited very largely. The Ref. [ 1 ] 

establishes a new systematic methodology for theory of el~ticity and acquires some achievements [1-3] . 

And the systematic methodology can be applied to many branches of applied mechanics N3 . The 

Refs. [ 5 ~ 7 ] set up the analogue theory between plane problem and Kirchhoff plate bending, and 

present another series of basic equations and solving method for the classical theory of Kirchhoff 

plate bending. Thereby it breaks through the limitations of the classical solution for Kirchhoff 

plate bending, extends the range of the analytical solutions, and establishes a new way of 

analyzing and solving plate bending problem. Based on the above, the Reissner plate bending 

problem is discussed in this paper. First,: based on the Hellinger-Reissner variational principle for 

Reissner plate bending and introducing dual variables of the original variables, the state variables 

in the symplectic space are built, and Hamiltonian dual equations for Reissner plate bending are 

presented, therefore Hamiltonian solution system can be applied to Reissner plate bending 

problem and Reissner plate bending can be solved in the symplectic space via the method of 

separation of variables and eigenfunction vectors expansion. Secondly by rational analyzing all the 

eigenvectors and their Jordan canonical form eigenvectors for zero eigenvalue of the Hamiltonian 

operator matrix can be obtained directly, which have special physical meanings and are the basic 

solutions of Saint-Venant problem. 

1 V a r i a t i o n a l  P r i n c i p l e  of Reissner Plate Bending 

The plate discussed in this paper is in a rectangular domain - a < x < a ,  0 < y < 1, and 

a ~ l ,  where the positive directions of the internal forces of Reissner plate bending is illustrated 

as in Fig. 1; and the corresponding generalized displacements include the deflection w and the 

slopes ~b~ and Cy. 

"_-_2Z--2--2-2-----_'---T-2--2--2 _-.2 -_ ._  

/ 

Fig. 1 Internal force positive sign for Reissner plate bending 

The control equations of Reissner plate bending can be derived from the Hellinger-Reissner 

variational principle 

3//2 = O, (1) 

where 

l-I2 = o -0 M'--3-ffx + My 3 y  M:~y + a x l -  

, ( 2 )  
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and the complementary energy function is defined as 

V - 2 D ( l l -  v2)[Mx2 + M,2 _ 2vMxMy + 2 ( 1  + v)M2xr]+ ~ c ( Q  ~ + Q2y). (3) 

Coordinate y here is employed to simulate the time variable in the Hamiltonian system, and 

a symbol ' �9 ' in the following derivation will be used denoting the differential with respect to y ,  

i . e .  ( ' )  = O/Oy. By making stationary for E q . ( 1 )  with respect to M~ and Qx, Mx and Q~ can 

be expressed as follows: 

M~ = D(1 - v 2) ~ + vMy, Q~ : C r - ~ . (4) 

Substituting F_xlS. (4 )  into Eq. ( 1 ) ,  the Hamiltonian mixed energy variational principle can be 

given as 

[pV 0 -- H -  m x q  1 - myq2  - q , o q 3 ] d x d y  = 0, (5) 
0 - a  

where Hamiltonian density function is defined as 

H ~Dp~ + D(11_ v)p~ + 2 ~ p ~  D ( I - v  2 ) ( 3q , / 2  
= 2 ~ O x /  - 

C ( 3 q  3 )z  3q ,  3qz" 
~-x - ql - uP2 -~x - Pl -~x + P3 q2, (6) 

and for convenience, let 
q = { q l , q 2 , q 3 } T  = {r  p = { p l , P 2 , p a } T  = { _  M x r , M r  ' _ Q y } T . ( 7 )  

2 H a m i l t o n i a n  D u a l  E q u a t i o n  

Now the state vector v which consists of the original variables q and its dual variables p are 
introduced, v = {qT,pT}T,  it forms a symplectic geometry space according to following 

symplectic inner product: 

(v  (1) , v (2) > ~ ~  ( v (~))TJv(2) d~ 
. )  a 

f a  (,)_(2) p~l) q~2) p2(1) q2(2) p~l) q~2) ) d x ,  (8) (q~l)p~2) + q~l)p(2) + q3 1-'3 - - - 
- a  

where the operator matrix J is the unit symplectic matrix 

0 ,  [ i0!l  o], 1 . 

0 
The stationary requirement of Eq. (5)  can yield a group of dual equations as follows: 

i, = H v  + h p ,  

where the Hamiltonian operator matrix H is defined as 

H = 

0 - O/3x 0 2/D(1 - v) 

- v3/Ox 0 0 0 

0 1 0 0 

C - D(1 - y 2 ) ~ 2 ] 3 : g 2  0 - C~[3x, 0 

0 0 0 - 3/3x 

CO/Ox 0 -- C02/Ox, 2 0 

the nonhomogeneous part corresponding to body forces is given as 

0 0 

1/D 0 

0 1/C 

- v3/3x 0 ' 

0 - 1  

0 0 

(9) 

(10) 

(11) 
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hp = {0 0 0 - rn~ - m r - qw}r:  ( I2 )  

Solving the nonhomogeneous linear partial differential Eq. ( 10 ) ,  we should first solve the 

corresponding homogeneous equation 

i, = H v ,  (13) 

where two sides are assumed as satisfying free boundary conditions 

3ql  3q3 _ 0 when x = + a .  (14) D(1 - v 2) ~ + up2 = O, Pl = O, ql 3x  

Integrating by parts, we give as 

(v(a) - (21 = (v(E),Hv(~)> {p~l) q(221 _ p~2) q(211 , k / V  > + - -  

8q~ 11 
3q}21 vP(z 2) ] Cq~ 2) Jai l )  3x ] +  q } , ) [ D ( 1  - v 2) ~ + 

[ 3q} 11 ] ,~ O)[q~2) 3q~2)]}]  § 
ql z) D(1 - v 2) --ff-ff-x + vp~ll + t, q3 3x _~'  (15) 

that is, if v (11 and v (21 satisfy free boundary conditions (14) on two sides, the following identical 

equation can be given as 
( v  (1) , H v  (z)) = (v  (2 / ,Hv(1)} .  (16) 

So H is Hamilton operator matrix in the symplectic geometrical space. It is the same to any other 

boundary conditions such as fixed and simply supported boundary conditions. 

3 S y m p l e c t i c  E i g e n  P r o b l e m  

To the homogeneous Eq. (13) the usual method of separation of variables can be used to 

solve it. Let 
v ( x , y )  = ~ ( y ) W ( x ) ,  (17) 

and substituting the above into Eq. (13) ,  we can get 
~ ( y )  = exp(/zy) (18) 

and eigen-equation 
H W ( x )  = / zW(x) .  (19) 

Where/~ is the eigenvalue to be determined; ~ (  x ) is the eigenfunction vector and should satisfy 

the corresponding homogeneous boundary conditions on two sides, namely Eqs. (14) .  

The above proved that H is Hamiltonian operator matrix in the symplectic geometrical space, 

thus the eigen problem has special characteristics E1'21 : 

1) If ,u is an eigenvalue of Hamiltonian operator matrix H ,  then - /~ must also be its 

eigenvalue. 

2) The eigenfunction vectors have the adjoint symplectic orthonormality relation. 

Let Wi and Wi be the eigenfunction vectors corresponding to eigenvalues /1 i and /~i 

respectively, when/z i + t~j # 0,  Wi and ~ .  must be the symplectic orthogonality, i . e .  

= = 0 ( 2 0 )  

The symplectic adjoint eigenfunction vectors with ~i  must be the eigenfunction vector (or Jordan 

canonical eigenfunction vector) corresponding to eigenvalue - /zi. 

Based on the adjoint symplectic orthonormality relationship, any state vector v can be 
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and 

where 

expanded by the eigenfunction vectors 

v(x,y)  = ~ [  aiexp(,ui y) ~i + blexp(-  /zi y)  W-i] , (21) 
i=1 

where ai and bl are the coefficients to be determined, ~ and ~_~ ( i  = 1 , 2 , ' " )  are 

eigenfunction vector. Of course, if finite item is selected, its approximate solution can be 
obtained. Applying the adjoint symplectic orthonormality relationship of the eigenfunction 

vectors, the coefficients and the solution of Eq. (13) are obtained. 

4 The Eigensolut ions  for Zero Eigenvalue  

Eigenvalue zero is a very special eigenvalue in Hamiltonian eigen problems, this 

eigensolution has also the special important meanings in elasticity. To the rectangular Reissner 

plate bending problem, because free boundary condition of two sides is selected, eigenvalue zero 
must be multiple eigenvalue. 

Now, we seek these eigenfunction vector for eigenvalue zero, namely solve the differential 
equation 

HW(x) = O. (22) 
Solving Eq. (22) with boundary (14),  the basic eigensolutions corresponding to eigenvalue zero 
can be given as 

v0~l) : W0~l)= {0 0 1 0 0 0} T (23) 

and 

v0C2) = W0<2)= f l  0 x 0 0 0} ' .  (24) 

~0 (1) and W0 C2) are the basic eigen vectors, so they are just the solutions of the original (13), v00) 

and Vo C2) . Obviously the physical meaning of %O) and %(2) are rigid body translation and rigid 

body rotation in the plane xOz respectively. Because eigenvalue zero is multiple eigenroot, and 
Yr O) is the symplectic orthonormal with ~10(2) , namely 

< I//(1) , I//0(2)> ~- ~ a  ( ~r  ) T j ~ f ( 2 ) d x  : 0 ,  (25) 
J -  a 

Jordan canonical eigenfunction vector must exit, and ~0 ~1) and ~0 ~2) are both the heads of two 

Jordan chains. According to mathematics physics methods. Jordan canonical eigenfunction 
vectors for eigenvalue zero satisfy 

H~c~J) m(7) (26) : .Xk_ 1 , 

where the subscript k ( = 1,2,3)  denotes that it is the k- th order Jordan canonical eigensolution, 

the superscript j ( = 1, 2) denotes that it is in the j- th Jordan canonical chain. Of course, Jordan 

canonical eigenfunction vectors satisfy not only Eq. (26 ) ,  but also homogeneous boundary 
conditions (14). 

By solving, the first-order Jordan canonical eigensolutions can be solved as 

~ l ) =  {0 1 0 0 0 0} w (27) 

{ mch(ma)'2sh(mx) 2C.  _ ch(Ch(m~) ].' 2Csh(mx)} ~ 2 )  = O, x - O, ~ - [ 1  O, (28) 

m = ~/2C/D(1 - v), (29) 
the two Jordan canonical eigensolutions are not the solutions of the original (13) ,  but they can 
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constitute the solutions of the original (13) respectively as follows: 
yll)  = ~Ig}l) + y~(1)  = ( 0 ,  1, y ,  O, O, O} w (30) 

and 
v ? ) =  + = 

I 2sh(mx) 2C[ _ ] 2Csh(mx) IT ch(mx) j ,  0, . (31) 
y ,  x - mch (ma) '  xy,  ~ - t  1 ch(ma)  m----~(m~ J I. 

Obviously the physical meaning of v~ 1) is rigid body rotation in the plane yOz, and the physical 

meaning of v~ 2) is pure torsion. Because W~2) and Wo O) have the symplectic orthonormality 

relation, simultaneously ~ 2 )  and ~0 ~2) have the symplectic adjoint relation 

( ~ 0  (2) ,~I  2)} = (~o(2))Tj~}2)dx _= --Tiara - t h (ma) ]  # 0. (32) 
a m 

So the second Jordan chain only includes two eigensolutions ~t0~2) and W~2). On the other hand, 

because W~I) is symplectic orthonormality with W0 ~ and ~0 ~z) , there must be the second order 

Jordan canonical eigensolution in the first Jordan chain. By solving, it can be given as 

= §  2 ) , 0  , (33) 

and the corresponding solutions of the original (13) are 
y2 ~ o )  p(1) = ~r247 y~r +_~_ = 

{ }'. - vx, y ,  7 (  vx 2) + d,  O, D(1 - v2), 0 (34) 

Obviously the physical meaning of v2 O) is pure bending solution in the plane yOz. Because Wr 

is symplectic orthonormality with W0 ~I) and ~0 r , so there must be the third order Jordan 

canonical eigensolution in the first Jordan chain. By solving, it can be given as 
{ 2vach(mx) 1 2 2Cv a s h ( m x ) _ x  ] 

~ 1 )  = 0 ,  m, sh( / ' / ta )  - 2 -lax2 § -~--2 § d ,  0 ,  - - ~ [  ~ ( ~ / . ~  , 

0 , -  D(1 - v)[1 + umach(mx)]}  w ' ~ s h ( - m ~ a )  (35) 

and the corresponding solution of the original (13) is 

y2 ut(1) y3 Vr (1) V~I) = ~r.r + yl//'(1) + "~'--~ 1 + -~- = 

- vxy 

2vach( mx ) 1 2 2 1 2 
- - ~ u x  + + + d msh( ma ) ~Y  2 Y 

1 2 1 3 
- - ~ v x  y + - ~ y  + dy 

Dr(1 - v)[ ash(rex) (36) 
sh(ma)  - x] 

D(1 - vZ)y 
~mach(mx) ] 

- D ( 1  - v ) [ 1  + s - f f ( ( m ~  1 

The physical meaning of I~ 1) lS the constant shear stress bending solution. Because W~) and ~0 ~2) 

have the symplectic orthonormality relation, simultaneously ~1 )  and W0 ~1) have the symplectic 
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adjoint relation, namely 

(W~l)'~g~ = I[a(~g~l))TJW~ = 2 D a ( 1 -  v 2) # 0 ,  (37) 

so the first Jordan chain also ends. Thus we obtain all the eigensolutions of eigenvalue zero for 

Reissner plate, every eigensolution has its special physical meaning. Obviously the eigensolutions 

V0 (1) ,vl 1> , v2 (1) and v~ ~) in the first chain are the symmetric deformation about axis y ,  and 

similarly the eigensolutions v0 (2) and v~ 2~ in the second chain are the antisymmetric deformation 

about axis y .  

The adjoint symplectic orthonormality relation of the six eigenfunction vectors are shown in 

Table 1, where 0 represents that they are certainly orthonormal, "~ represents the symplectic 

adjoint relation, and d represents that the two eigenfunction vectors can be made symplectic 

orthonormal by choosing appropriate constant d as 
m2a2v(1 + 3v) - 6(1 + 2v) - 6mavEth(ma) 

d = 6m2(1 + v) , (38) 

So far, we have achieved the adjoint symplectic orthonormality relation of the eigenfunction vector 

for eigenvalue zero, i . e .  they constituted one adjoint symplectic orthonormality vector group. 

The six eigensolutions for eigenvalue zero are all basic solutions of the Saint-Venant 

problem, which can form a perfect symplectic subspace for eigenvalue zero and take effects in the 

total domain. Eq. (13) have infinite eigensolutions for nonzero eigenvalue, which are covered by 

the Saint-Venant theorem, damped and take effects in the local domain. With the 

length limited, it i sn ' t  discussed here. 

Table 1 Adjoint symplectic orthonormality relation among the six eigenfunction 
vectors for eigenvalue zero 

~o (1) 

W~ l) 

~1) 

~eo ~2) 

W~ 2) 

0 0 

0 

0 

d 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

5 C o n c l u d i n g  R e m a r k s  

This paper shows that Reissner plate bending problem can be applied in Hamiltonian system, 

and the corresponding symplectic solution system is presented. The symplectic solution system 

solve directly all basic solutions of the Saint-Venant solutions via entirely rational analysis, which 

constitute a perfect symplectic subspace. The significance is that it not only present a new 

methodology to solve the analytical solution for Reissner plate bending problem, but also 

introduces the unified methodology into the analysis of couple stress plane elasticity according the 

analogy between Reissner plate bending and couple stress plane elasticity Es] , in this aspect there 

are many tasks to do. 
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