
Applied Mathematics and Mechanics 

(English Edition, Vol 25, No 1, Jan 2004) 
Published by Shanghai University, 

Shanghai, China 

~) Editorial Committee of Appl. Math. Mech., ISSN 0253-4827 Article 1D: 0253-4827(2004)01-0102-08 

EXACT SOLUTIONS FOR NONLINEAR TRANSIENT FLOW 

MODEL INCLUDING A QUADRATIC GRADIENT TERM* 

CAO Xu-long ( ~ ) 1 . 2 ,  TONG Deng-ke ( ~ [ ~ ) 3 ,  WANG Rui-he ( ~ 1 )  3 

( 1. Institute of Chemical Physics, Chinese Academy of Sciences, 
Lanzhou 730000, P.R. China; 

2. Geological Science Research Institute, Shengli Oilfield Co. Ltd, 
Dongying, Shandong 257000, P.R. China; 

3. Department of Applied Mathematics, University of Petroleum, 

Dongying, Shandong 257061, P.R. China) 

(Communicated by ZHANG Hong-qing) 

Abstract: The models of  the nonlinear radial flow for the infinite and finite reservoirs 

including a quadratic gradient term were presented. The exact solution was given in real 

space for flow equation including quadratic gradiet term for both constant-rate and constant 

pressure production cases in an infinite system by using generalized Weber transform. 

Analytical solutions for flow equation including quadratic gradient term were also obtained 

by using the Hankel transform for a finite circular reservoir case. Both closed and constant 

pressure outer boundary conditions are considered. Moreover, both constant rate and 

constant pressure inner boundary conditions are considered. The difference between the 

nonlinear pressure solution and linear pressure solution is analyzed. The difference may be 

reached about 8% in the long time. The effect of the quadratic gradient term in the large 

time well test is considered. 

Key words: nonlinear flow; integral transform; analytical solution; well test analysis 

Chinese Library Classification: T E 3 1 2  Document code: A 

2000 Mathematics Subject Classification: 83C15; 35Q35; 34A25 

Introduction 

In the certain operations, the small pressure gradients may cause significant error of the 

predicted pore pressure, such as hydraulic fracturing, large-drawdown flows, drill-stem test and 

large-pressures pulse testing. However, classical pressure transient models are assuming small 

compressibility or small pressure gradient, and the nonlinear quadratic gradient term is 

neglected Ell . In order to describe the effect of the quadratic gradient term, Odeh and Babu [2] 
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built the nonlinear pressure transient model considering the effect of the quadratic gradient term. 

They discover that the absolute change in well bore pressure is different for injection and pumping 

conditions, unlike what is predicted by the linear solutions. Finjord and Aadnoy E33 presented 

steady state and approximate psudosteady state solution. Wang and Dusseault N] used the same 

technique to predict pore pressure around boreholes. Chakrabarty et al .  ~sl showed a noticeable 

effect of the nonlinear term for the constant discharge case with high injection rate and small 

reservoir transmissibility. Tong Deng-ke E6~ s] discussed the flow problem of fluid in double 

porous media including the effects of the quadratic-gradient term. But the exact solution in real 

space has not given, let alone the constant-pressure producing and finite formations. Real 

reservoirs are finite. Thus, it is necessary that the pressure transient model including the nonlinear 

quadratic gradient term and well test theory be perfected. 

In this paper, we give the exact solution in real space for flow equation including quadratic 

gradient term for both constant-rate and constant pressure production cases from in an infinite 

system by using generalized Weber transform. Analytical solutions for flow equation including 

quadratic gradient term are also obtained by using the Hankel transform for a finite circular 

reservoir case. Both closed and constant pressure outer boundary conditions are considered. 

Moreover, both constant rate and constant pressure inner boundary conditions are considered. The 

nonlinear transient pressure behavior characteristic of fluids through porous media including a 

quadratic gradient term is analyzed. The sensitivity of the system response to the nonlinear 

parameter and outer boundary are also examined in detail. Conventional well test model is a 

special case of the nonlinear well test model with a quadratic gradient term (that is, a = 0 ) .  

1 The Nonlinear Pressure Transient Analysis Model Considering the Effect 
of the Quadratic Gradient Term 

The following assumptions are made in deriving the mathematical model considered in the 

present study: 

1) The porous medium has a uniform thickness h ,  and the radial flow takes place around 

well 

fluid 

pressure production is described as follows: 

92po 1 3Po 
3 r 2 + r o 3 r o 

with the initial condition given by 

Po 

The inner boundary condition is as follows: 

o r  

bore with the well penetrating the entire formation thickness; 

2) The porous medium is homogeneous and isotropic; 

3) Porosity and permeability are constant; 

4) Fluid compressibility is constant, and fluid viscosity is constant. 

Analytical pressure-transient problem for single-phase radial flow of a slightly compressible 

into a well of the cylindrical-symmetry reservoir center with constant rate or constant 

a ( ~ P ~  2 3P~ ( 1 )  
ff~rD ! - 3 t o "  

to=o = O. 

3P~ ~ ro =l = - 1 .  

(2) 

(3) 
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P o  [ro=l = 1. 

Considering well bore storage, the inner boundary condition becomes 

C D  ~ D  ro = 1 -- - -  

The outer boundary conditions are as follows: 

3po 

3 r D 

or 

or 

3po 
3r o Iro=l = 1. 

(4) 

The rest are defined as 

For the constant rate production, dimensionless pressure and dimensionless compressibility are 

defined as 

2 n k h ( p i  - p )  qllc 
P D  = , a - ,uq 2 n k h  " 

For the constant rate production, dimensionless pressure and dimensionless compressibility are 

defined as 
(p~ - p )  

P D  - , a = c ( p i  - Pw)" 
P i  - P ~  

r k t  c 
r D --  , t o  --  C D - , 

rw cr ~ ' 2n~cthraw 

where P w is the well bore pressure, k, ~ are the porosity and permeability respectively. /~ is the 

fluid viscosity, c is fluid compressible coefficient, Pi is the initial pressure. 

The six typical initial value and boundary value problems for the nonlinear flow equation 

with the effect of quadratic gradient term: 

1) The flow Problem I are made of Eqs. ( 1 ) ,  ( 2 ) ,  (3) and (5) for the constant-rate 

production with closed outer boundary condition; 

2) The flow Problem 11 are made of Eqs. (1 ) ,  (2 ) ,  (3) and (6) for the constant-rate 

production with finite constant-pressure outer boundary condition; 

3) The flow Problem I]I are made of Eqs. (1) ,  (2) ,  (4) and (5) for the constant-pressure 
production with closed outer boundary condition; 

4) The flow Problem 1V are made of Eqs. (1) ,  (2) ,  (4) and (6) for the constant-pressure 

production with a finite constant-pressure outer boundary condition; 

5) The flow Problem V are made of Eqs. ( 1 ) ,  ( 2 ) ,  (3) and (7) for the constant-rate 

production with an infinite outer boundary condition; 

6) The flow Problem VI are made of Eqs. (1) ,  (2) ,  (4) and (7) for the constant-pressure 

production with an infinite outer boundary condition. 

2 E x a c t  Solutions for the F l o w  P r o b l e m  of  F l u i d  T h r o u g h  t h e  Porous Media 
Considering the Effect of the Quadratic Gradient Term 

The exact solution for the flow Model I 
Because the partial differential equation in Model I is a nonlinear differential equation, the 

2.1 

= o ( 5 )  
rD = R  

Po "o =R = 0 (6) 

lira Po = O. (7) 
r ~  
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equation can not be solved. Introducing transform 
pD = - a-1 lnx .  (8)  

Model I may be simplified as 
a2x 1 3x  3x 
Or 2 + - , (9)  r o 3 r o 3 t o 

x I to=o = 1, (10) 

~ - a x  I~o=~ =0,  (11) 

3x 
3r--o I ro=R ~- O. (12) 

The generalized Hankel transform [5] is defined as 

~ ( s n , t D )  = I i ~ r D B ( S , r o ) x ( r o , t o ) d r o ,  (13) 

where 

B(snrD) = [S~Jl(Sa)  + a J o ( s ~ ) ] Y o ( s ~ r o )  - [ S n Y l ( S n )  + a Y o ( s ~ ) ] J o ( s J o ) ,  (14) 

where s= are the n -th positive root of the following equation: 

[SJ l (S )  + a J o ( s ) ] Y l ( s r o ~ )  - [ s Y l ( s )  + a Y o ( s ) ] J l ( S r D e )  = 0. (15) 

Applying the Hankel transform to Eqs. (9)  ~ (12) yield 

3:~ 2 - 2a 
ato - -  s~x ,  ~ I,o=0 ns2 

The above differential equation is solved, and one has 

( ~ s 2 )  sn to ] .  (16) = e x p [ -  2 

The application of the inversion of the Hankel transformation to Eq. (16) yields 

" exp[ - s2~tD ] B ( s~r  o )J2(s.roe ) 
x ( r  n to )  = n a ~  { [ s ~ J , ( s ~ ) +  a J ~ s ~ ) - ~ Z ( s ~  + , .=, 2 a2)J21(snrD,)}" (17) 

Inserting (17) into ( 8 ) ,  yields 

p o ( r o , t o )  = -  In rca { [ s . j l ( s ~ + a f 0 ( ~ f _ - ~  + ~ i 2 1 ( s . r o r  } . (18) 

The pressure solution of well bore ( r  o = 1 ) can be simplified as 
e x p [ -  2 2 

- .= 2 a2)j2(s~ro~) } . (19) pwD(to)  = In na { [ s~J l ( s~ )  + a Jo ( s~ ) ]  2 - (sn + 

The inverse solution in Laplace transform for Model I with the wellbore storage can be written as 

p o ( r o , t o )  = -  l l n { 1  - aL- l [Ko( ro , f s ) t l ( rm .~ / s )  + Io(ro . fS)Kl(ro~, f s )  ] x 
t2 

[$(CD3 + 0~)/~ 1 + 3~r$-/~2]-1 } ,  (20 )  

where ~1 = I 0 ( ~ s ) K l ( r o ~  ./s-s) + Ko(~-s) I i ( roe  ~s ) ,  ~2 = Kl (4~s ) I , ( roe  ~ )  - 

I1 (~-s)K1 ( r o ~ / s ) .  

2 .2  T h e  e x a c t  so lu t ions  fo r  M o d e l s  II ~ M o d e l  ~I 

The other solutions are obtained by using the Hankel transform and Weber transform, and 

listed in Table 1. 
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Table 1 Exact solutions for nonlinear transient flow model including a quadratic gradient term 
Type The pressure solutions in real space s, satisfied equation 

IV 

Vl 

__~ [ alnr~ + 1 n a ( l  - alnrm) 
po(ro , to )  = -  In alnrm+ 1 + (a ln rm + 1) x 

~-~ exp[-s~, , to]B~(S.rD)J~(s . ro~)  ] 
.~ {[,.J,(s163 ~ _--(~.~ ~)j~(,.,~)} 

po(ro , to )  = -  ~ 1  l n [ e  -~ + n (e -"  - 1) • 
t~ 

~ e x p [ -  s2,to]B2(s.ro)J~(s, rt~)] 

.o ,r~ ,o>---  + , ~  ~ + ' - e  ~176 + 
lnro. 

~(e-" - I ) ~ ,  exp[- s]to]B3(s.ro)J~(s.ro~)] 
.=, T E ] ~ ( Z T ~ i Y  i 

20t x 
(X - e x p [ -  U2to][tupo,o(ro,l,u) + u~o o ,(ro 1,~)]du 1 

[ 2(e  -~ - 1) pv ( ro , t v )  = -  In e -~ + - -  

B, ( S.ro ) 

s. is the n 

B1 ( srm ) 

= [ s . J l ( s  . )  + aJo(s.)]Yo(s.ro) - 

[ s .  Y l ( s . )  + aYo(s.)]Jo(s.rv) ,  

-th positive root of the following equation 

= 0 .  

~ 2 ( S J o )  = Yo(s.)Jo(snro) - Jo(s.)Yo(sJo),  

s. is the n -th positive root of the following equation 

Yo(s)J l (sr~)  - Jo(s)Yl(sro~) = O. 

B3(s.ro) = Yo(s.)Jo(SJo) - Jo(s.)Yo(s.ro), 

s. is the n -th positive root of the following equation 

O 3 ( s , r ~ )  -- 0. 

~ . , . ( x , y , 2 )  = Y. (x~)J . (yA)  - J . (x~)Y. (yA) ,  

where J .  ( x ) ,  Y. ( x )  is the first type and the 

second type Bessel function, respectively. 

~Oo,o(l,r o , s )  = Jo(sro)Yo(s) - Yo(sru)Jo(s ) 

2 .3  The discussion of the solution for Model  u 
1) The solution in Laplace space 

By using transform (8) and applying Laplace transform to Model V ,  yield 

3r2 + - s~ - ax = 0, lira ~ = l / s .  
ro Oro ~ ~ 1 tD~| 

The solution in the Laplace space is obtained 

1 a Ko (V~sro) 
~ ( r o , s )  : - -  __ 

s s [ a Ko (ff--~s) + ff-~Kx ( i f -s) ] " 

Substituting the Laplace inversion of Eq. (21) into Eq. (8) yields 

po(ro,to) = -  In 1 - aL -~ s[aK0(4%-s) . ~ s K . ( ~ s s ) ]  " 

The inverse solution of the Laplace Transform with wellbore storage is written as 

po(ro,tD) = - l l n ( 1  - aL- '{  K~ (~-rv) }) 
, [ ( C o s  + ~ ) K o ( ~ )  + ~ K , ( ~ ) ]  " 

2) The approximate solution for the short-time 

As s --~ w ,  the modified Bessel function K~ (z) can be approximated as 

K. (z )  � 9  
~'Y 2z " 

Using Eq . (24) ,  Eq.(21) can be reduced to the following form: 

1 aexp [ -  ( r  o - I ) ( ~ / -~ ) ]  
�9 ( r o , ~ )  = - -  - 

~ G - ~  ( ~  + ~ ) ~  

Inverting Eq. (25) by using Laplace transform tables, one obtains, after simplifying, 

(21) 

(22) 

(23) 

(24) 

(25) 
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_ 1___~_[ ! ro - 1 \  
x ( r o , t o )  : 1 a/~o e r f C [ ~ o ) -  

. , r o - 1  )1 exo[a2to + a ( t o  - 1 ) J e r f c [ ~  ~ + a ~  . (26) 

Substituting Eq. (26) into Eq. (8) ,  the short-time approximate solution can be obtained 

[ 1 
p o ( r o , , o )  = -  l l n  1 - : e r f c [ r ~  ~ 2 ~ D ]  + - 1/ 

/__exp[0/ to + a ( r o  - 1)]erfc ~ + a,r . (27) 
q ro 

3) The large-time approximate solution 

For to -~ oo, such that s --'- 0, one obtains 

Ko(s) = -  ln~-  + ~ , Kl(s)  - s 

Substituting Eq. (26) into Eq. (21),  after simplifying 

~ c ( r o , s ) =  + [ l  + a ( l n - ~  + ~,)(1 + a ( l n ~  + y ) ) +  O ( a 2 ) ] .  (29) 

Inverting Eq. (29) by using Laplace transform tables, one obtains 

a 4to 4 (  4 t~  a2~2 
x ( r o , t o )  = 1 - ~lncr--~o + ln~r2o] - 24 ' (30) 

where C = e r , )' = 0.577 2 is Euler constant. 

The large-time approximate solution can be written as 

l [  o 4,o 4,o/  
P o ( r D , t . )  = -  In 1 - ~-lncr-~D + 4 -  I n c r , ]  - - -  

0/2 2 
24 ]" 

(31) 

The Pressure  Behavior of the Nonl inear  Flow Model  with the Quadratic 
Gradient  Term 

In the present analysis, we have considered the nonlinear pressure distribution in an infinite 

reservoir during constant-rate production. Fig.1 demonstrates the variation of nonlinear 

dimensionless well bore-pressure with time for different values of C o ,  namely, 0 and 1000. The 

nonlinear solutions are characterized by two values of a. 

From Fig. 1 it can be seen that irrespective of the effect of the dimensionless well bore 

storage, the nonlinear and linear solutions show very small differences at small time. However, 

the difference increases with time if a pressure value is controlled by the magnitude of a .  From 

Fig. 1, the difference between the nonlinear solution of a = 10 -4 and the nonlinear solution of 

a = 10 -2 at to = 109 is 9 % .  

In order to quantify the difference between the linear and nonlinear pressure solutions, we define 

the following term: 

e = 1 Po___~,z (32) 
Pot 

where Pont and Pot are dimensionless nonlinear and linear solutions, respectively, for any given 

set of boundary conditions. From (32) it can be seen that the greater the deviation of the term 

"e"  from zero, the more is the difference between the linear and nonlinear pressure solutions. 
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Fig.3 Error in linear pressure solution Fig.4 Error in linear pressure solution 

versus radius at different times: versus time at different a : finite 

infinite medium closed formation 

Figure 2 exhibits the temporal variation of  the error at different radii close to the well bore,  

for two different values well bore storage. At early times, the error is smaller at different radii 

closer to the well bore ,  for larger magnitudes of  well bore storage. The error incrases with time. 

Fig.  3 shows that magnitude o f  the error at any radial distance would depend not only on the 

values of  a and C o ,  but also on time. The smaller the times ( e . g . ,  at t o = 105) ,  the smaller 

error is for the values of  a and C o  �9 At larger times ( e . g . ,  at t o  = 108) ,  the spatial distribution 

of  error is not affected by the value of  C o . At any t ime, the spatial distribution of  the error would 

increase with increasing distance from the well bore. At  large distances, however,  the error tends 

to flatten out after reaching its maximum value. The maximum error would probably be of  the 

order o f  10 % .  

During the constant-rate production, the error is affected by the values of  a ,  roe and C o  �9 

At any time the variation o f  the error between nonlinear and  linear pressure solutions are affected 

by the value o f  a .  At early times, the error is smaller at the well bore.  With increasing times, the 

error increases. The larger is the value of  a ,  the more is the error ( e . g . ,  for a = 10 -2 , the error 
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Fig.5 Error in linear pressure solution versus time 

at different Co : finite closed formation 
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Hg.6 Error in linear pressure solution versus time 

at different rm : finite dosed forrmtion 

reaches about 6% ) .  As a is small,  the error may be neglected (such as a = 10 -4 ) .  From Fig. 

5 it can be seen that the error is not nearly affected by the magnitudes of  Co at early times. With 

increasing times, the effect of  Co is more and more. The effect time of  the error is earlier and 

larger as the magnitude of  Co is small. It can be seen from the Fig.  6 that the error distributions 

are affected by the values of  roe at any given time. The larger is the value of  roe,  the greater is 

the error. Especially, the error is clearer at larger times for the value of  roe �9 
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