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E X C I T A T I O N  OF A T U B E  WAVE IN A B O R E H O L E  B Y  A S L O W  W A V E  
P R O P A G A T I N G  IN A FLUID L A Y E R  

P. V.  Kraukl i s  and L. A. Krauklis  UDC 550.34.016 

Conversion of a slow wave propagating in a fluid layer inside an elastic medium into a tube wave propagating 
in a borehole that intersects this layer is considered. It is shown that the total field of  the latter wave con- 
sists of three summands of different physical nature. Seismograms of the slow and tube waves are presented. 
Bibliography: 5 titles. 

It is known tha t  in a fluid layer located inside an elastic medium, a low-velocity (slow) wave arises. The 
spectrum of the slow wave begins with the null frequency [1-2]. Lately, interest in slow waves has increased 
in connection with different geophysical applications (volcanic activity, wave propagat  ion in oil-bearing rocks 
[3]) related to such waves. A slow wave is a surface wave, the ampli tude of which decreases exponentially 
in both directions away from the fluid layer. The energy of the propagating wave is part ia l ly  t r apped  by 
the elastic medium,  and, for sufficiently low frequencies, this part  of the energy can be significant. At its 
incidence on a borehole intersecting the fluid layer, the slow wave excites intricate in terference oscillations 
in the borehole, which are related to the response of the elastic medium with a fluid-fiUed cylindrical cavity 
to the incident per turba t ion .  The investigation of the nature  of this response is the purpose  of this paper. 
This problem is solved in the frequency approximation for X >> a, where X is wavelength,  a is the radius of 
the borehole. Earlier,  the problem of the excitation of a tube  wave in a fluid-filled borehole  by  the Rayleigh 
wave propagat ing along the free surface of an elastic half-space was considered in [4-5]. T h e  problem of 
conversion of a slow wave into a tube wave is more complicated because of the dispersion of the phase 
velocity of the slow wave. In this case, we are unable to provide the solution in the t ime domain  in explicit 
form, and the inverse Fourier transform must be applied. 

1. C o n s t r u c t i o n  o f  t h e  s o l u t i o n  for  a s low wave  The  model of the med ium is presented in Fig. 1 
and consists of a fluid layer (1) ( - 2  h- < z < h) sandwiched between two identical elastic half-spaces (2) 

h h (z > 5-, z < -5")" The  velocities of the longitudinal and transverse waves in the corresponding medium are 
denoted by ai (i = 1, 2) and bi (i = 2); the densities of the media are denoted by pi (i = 1,2),  and the Lam6 
constants are denoted by Ai (i = 1, 2) and/_q (i = 2). 

A point source of the center of dilatation type is located at the point r = 0, z = H ,  and its dependence 
on time is described by the Heaviside step function. The  potential  of the field of d isplacements  induced by 
such a source is determined by the expression 

co o"+ioo 

f J o ( k r ) d k f  xO(k,r])ek(tb~o+(z_H)c~2)dT],  (1) 
q~ o = 27ri 

0 a - - i ~  

where a2 = ~/1 + 7202, O~ 1 = ~/1 + 721~ 2, "[i ~" b2/ai, 77 = ivb21 , X ~  = [3()~2 + 2/~2)~2]-1 It, and v = w / k .  
In equality (1), the "+"  ( " - " )  sign in the exponent is taken for z < H (z > H) .  T h e  branch  cuts on the 

q plane are drawn from the branch points ~i7~ -1 into the left half-plane in parallel to  the real axis, and the 
branches of the radical c~2 are specified by the condition arg c~2 = 0 for 77 > 0. 

For this problem, it is convenient to split the total field into its symmetric and an t i symmet r ic  (about  the 
plane z = 0) parts .  The  slow wave is a symmetric oscillation. Therefore,  the solutions for the Fourier-Bessel 
transforms of the potcntials  of displacements can be sought in the form 

@1 = A J o ( k r ) c h k z o q e  ktb2r C22 = BJo(kr )e  -(z-~)kc'2+ktb2'7, ~l'2 = C J l ( k r ) e  - ( z - ~ ) k # 2 + k t b 2 r t ,  ( 2 )  

h where/32 = ~/1 + q2, and the half-space z > 7 is considered. 

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 230, 1995, pp. 115-124. Original article submitted June 
13, 1995. 
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FIG. 1. THE GEOMETRY OF THE MODEL; FL: FLUID LAYER; B: BORE- 
HOLE FILLED WITH WATER; EM: ELASTIC MEDIUM 

In this case, the boundary  conditions are given by the requirements that  the vertical displacements must 
vanish for z = 0, the tangential  stresses must vanish for z = h/2, and the normal stresses t~  must be 
continuous. Thus, we arrive at the following system of linear algebraic equations for the unknowns A, B, 
and C: 

Aa l sh  kha---2"l + a2B - C = a2e-k(H-~)~'~X ~ 
2 

2a2B - (2 + r/2)C = 2a2e-k(H-~)~'X ~ (3) 

P12r/2Ac h khat (2 + r/2)B + 2fl2C = (2 + rl2)e-k(H-~)c~2X ~ 
2 

The  determinant  of this system is the left-hand side of the dispersion equation 

khal R khvq = 0, (4) L2(kh,~?)-cqsh---~ 2+p]2r /4a2ch 2 

where R2 = g~-4a2f12, g2 = 2 + r / 2 ,  and P12 = pt/Pe. The  quantities A, B, and C are given by the 
expressions 

A = 2a2g2772e-k(H-~)~2Lfl(kh, rl)X ~ 

B = -  aiT2sh--~-p12r14a2ch e-k(H-~)e*'L;l(]ch, r])X~ (5) 

= -4C~la2g2sh kh;~'e-k(H-~)C~2L2'(kh, rl)X ~ C 

in which T2 = g2 2 + 4a2f12. 
As a result the potentials  ~1, P2, and ~2 of the displacements are represented as 

oo e,+ioo 
l / Jo(rk) / AA ]cZO~lr dr], 

0 ~--ico 

eo o-+ioo 
1 /  d r0 (k r )dk  / AB 6-k(H+z-h)et2+ktb2rIX 0 do, (6) 

c22 = 2 27ri 
0 a- ioo 
oo a'+ ioo 

1 f J l ( k r ) d k  / AC e-k(H+z--h)a2+ktb2rtx 0 drl, 
~P2 = -~ 2~ri -A-  

0 a--ioo 
kh_~_~.. ~ and A c  = 4g2a]a2sh kh~ where~=-L2(kh, rl),AA=-2a2g277 2,AB=alsh 2 ~t2-P12r/4a2ch 2 ' 

The  vertical U~ and horizontal U~ displacements and the components  Cry, Ezz, ~ o  of the strain tensor 
are then determined by the equations 

OU~ U, OU: 
Oz + ~  + - '  U, Or Oz Or r ' Oz 
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The slow-wave field is described by residues at the corresponding roots of Eq. (4), which are located on 
the imaginary axis symmetrical ly about  the origin of coordinates. For brevity, we present  explicit formulas 
only for the components  of the displacement vector: 

U . i = R e  ~2 /kJo(kr)cq ~ AA sh,zaie ~4.2e a,~ 

i / ~ A  c h  k z o l  1 c - ~ ' 2  . . . .  , Url = Re - 

0 

{J 
/J i [ _ABe_k( ,_  ~),~ x U,2 = Re g o  kJ,(kr) + n~A~e-'(:-r )~`] (OL~lO~)-'e-'r176176 

(s) 

In order to i l lustrate the dispersion of the slow wave, the model with the following values of parameters  
is considered: ax = 1.6 kin/s,  a2 = 3.0 km/s ,  b2 = 1.5 km/s ,  pa = 1.2 g / cm 3, p2 = 2.5 g / c m  3, h = 18 m, and 
H = 2m. The  t ime dependence of the source is described by the function (see Fig. 2) 

4ate atsinwot, t>0 ,  
f ( t )  = 0, t < 0, (9) 

the spectrum of which is provided by 

8~wo(O, + i~) 
s(~)  = [~o~ + (~ + i~)~]~ (10) 
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FIG. 2. TIlE TIME FUNCTION OF THE SOURCE 
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FIG. 3. THEORETICAL SEISMOGRAMS OF THE SLOW WAVE 
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FIG.  4 .  THE DISPERSIONS OF THE PHASE Vph AND GROUP Vgr VELOCI- 

TIES OF TtIE SLOW WAVE (CROSSES INDICATE THE VALUES OF Vph AND 

Ug r DETERMINED FROM THE SEISMOGRAMS FOR f0 ,  WHERE f0 IS THE 

DOMINANT FREQUENCY OF THE IMPULSE) 

The dominant frequency of the impulse is f0 = w0/27r = 50Hz, the attenuation a is equal to 0.79W0/Tr. 
The seismograms of the slow wave for z = 0 obtained at several profile points are presented in Fig. 3. 
The wave shows a significant anomalous dispersion. In this case, group velocity, i.e., the velociLy of the 
impulse envelope is higher than phase velocity (Vph ~ 1220m/s, vgr ~ 1300m/s), which is confirmed by the 
numerical solution of Eq. (4) (see Fig. 4). The  corresponding frequency is 50 Hz, the wavelength A is 24 m. 
For the borehole radius a ..~ 0.1 m, the inequality A >> a is fulfilled, which allows us to consider the problem 
of conversion of the slow wave into a tube wave in the quasistatic approximation. Below we outline these 
considerations, following [4-5]. 

2. C o n s t r u c t i o n  o f  t h e  s o l u t i o n  for  a l o w - f r e q u e n c y  t u b e  wave  

We assume that  the fluid motion in the borehole is of the piston type. Then  the motion equat ion can 
be writ ten in the form 

O~U~ Op 
p0 0t 2 0 t '  ( I i )  

where U~ is the vertical displacement in the fluid, and p is the dynamic per turbat ion  of the local pressure 
in it. The  pressure p is related to the relative variation of the fluid volume through the bulk modulus A0: 

V- - \ O z  + ' (12) 

where Ur is the radial displacement of the borehole wall. 
Under the assumption that  no external stress field is present, in the static approximation the radial 

displacement is expressed in terms of the shear rigidity #5, the radius of the tube  a, and the pressure p 
exerted upon the wall of the hole by the well-known formula Ur = ap/2#2. External  stresses caused by the 
slow wave approaching the borehole are responsible for a deformation of the borehole cross section. As a 
result the total radial displacement of the wall averaged over angle is given by 

where E is Young's modulus of the medium, and the effective stress Creff is expressed in terms of Poisson's 
ratio u and the components  of the stress tensor in the cylindrical coordinates as follows: 

O'eff = Grr -~ O'~o~o -- /YO'zz. (14) 

Using Hooke's law, one can express the effective stress in terms of strains and the ratio 3' o f  the shear 
velocity in the surrounding medium to the compression velocity as follows: 

3 - 472 
(Srr -~- S~o~o ~- ( i  - 27~)Sz~ ). (15) cre~r = 2(1 - 7 2 ) 

2779 



Eliminating the displacements  U~ and U: from Eqs. (11)-(14), we obtain  the final equa t i on  of mot ion  for 
the pressure in the tube  wave: 

O:p 1 a:p . O:a~ff 
az~ ~ a~: - ~p ~ ' (16) 

a l where VT = k/ l+m2(~)2.  

Applying the t ime Fourier t ransform to p(t, z) and a(t, z), 

? ? 1 
#(w,z) = p(t,z)e-i~tdt, p(t,z) = ~ #(z,w)ei~tdw, (17) 

- - 0 0  - - 0 0  

for the Fourier t rans form of the pressure/5 we obtain the following boundary-value p rob lem:  find a solution 

of the equat ion 
05/5 
Oz--- 5 + g:/5 = f (g ,  z), (18) 

where x = W/VT and  f ( ~ ,  z) = - 9 ~  # ~  under the following boundary  condi t ions.  The  t ransform/5  
of the pressure in the tube  wave must  be equal to the t ransform of the pressure caused  by the slow wave, 

i . e . ,  

p(~ ,  ~ )  = ~7~e ~ -Jo (k r )p l . 02  G~-~--a,O.A2 e - cn - -  , ,1/ '~ -- oA, ,/32 ] ,  (19) 

in addition, the radia t ion condition lira /5 =cons t  e x p ( - i g z )  must  be satisfied. T h e  solut ion of problem 
Z ~ O O  

(18)-(19) can be cons t ruc ted  in the known way and can be represented as 
CO Z 

/5(z) = -- f ( x ,  z ' )  sin > f z e  - i x z '  d z '  2C p(k, h/2)e_i,,~: _ _1 sin x z ' f ( x ,  z ' ) e - ' " 'dz ' ,  (20) 

z 0 

where 
g2v~p~ 

q --- 72 ' 

f --q {[(1 - 2 ~ ) ~  - 1] z~B~ -*z~2 + :~ :# :zxc~  - ~ z ~  } 
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FIG. 5. TIME WAVEFORMS OF THE TUBE WAVE EXCITED IN TIlE BORE- 
HOLE BY THE SLOW WAVE: (A) TIlE WAVE EXCITED BY THE RESPONSE 
OF THE ELASTIC MEDIUM; (B) TIlE NONPROPAGATING OSCILLATION; 
(C) THE WAVE CAUSED BY TIlE PRESSURE IN TIlE FLUID LAYER; (D) 
THE TOTAL OSCILLATION 
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The integrals in (20) can be easily calculated. Thus, finally, for p(z,w) we obtain a representation as a 
sum of three terms 

+ ( 2 1 )  

where 
e-iXz 

e--kt~2z 
= q [ (1  - - 1 l a b  + + 

~a(z,w)= plv~hAaCh ~ ) - e - i X C  

q272f12 Ace -ixz 
+fl k  ' 

q272132Ace -k~2~ (22) 

Each of the summands in (21) allows for a simple physical interpretation. The first term/3, (z, c~) describes 
the tube wave excited by the elastic deformations of the solid surrounding medium and propagating along 
the borehoie with velocity VT. The second term/52 is a diffusion-type field, which exponentially decreases, 
as the distance from the layer increases. The term/53 is the tube wave arising as a result of the exposure of 
the borehole fluid at the intersection of the borehole and fluid layer to the pressure in the .slow wave. The 
existence and intensity of this effect are determined by the hydrodynamic coupling between the layer and 
borehole. In the case of a nonstationary action in the medium described by (9)-(10), the inverse Fourier 
transform must be applied. 

For the values of the parameters and the model geometry considered above in calculating the slow wave, 
seismograms of the pressure 

p(z+ t) = pl(z, t) + p~(z, t) + p3(z, t) (23) 

in the borehole are presented in Fig. 5, where waveforms of individual summands (Pt (z, t) is the tube wave 
excited by the response of the borehole walls to the slow-wave action; pz(z, t) is the nonpropagating part of 
the borehole elastic response; p3(z, t) is the tube wave excited in the fluid layer, which does not arise if the 
layer and the borehole fluid are not hydrodynamically coupled) and the resulting oscillation are indicated. 

This work was supported by the Russian Foundation for Basic Research (Grant No. 93-011-16148) and 
by the ISF. 

Translated by P. V. Krauklis. 
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