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Kazhdan-Lusztig Polynomials and Character Formula for the
Lie Superalgebra gl (m|n)

Vera Serganova

Abstract. We find the character formula for irreducible finite-dimensional gl (m|n)-modules.
Also multiplicities of the composition factors in a Kac module are calculated.
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0. Introduction

In this paper we find the characters of finite dimensional irreducible g-modules for
the Lie superalgebra g = gl (m|n). This problem was posed by V. Kac in 1978
in [7]. There were several conjectures and partial results about these characters
(see [2], [5], [9]), but the general problem was open. In this paper we prove our
earlier conjecture formulated in [14].
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We develop the approach suggested in [14]. We study the category F of finite-
dimensional g-modules in the spirit of works [1], [10], [16] and [3] on the categoryO.
Due to the fact that the enveloping algebra of a purely odd Lie superalgebra is finite-
dimensional, some interesting effects happen in the super case for finite-dimensional
modules. In particular, the category of finite dimensional g-modules is not semi-
simple and has a quite complicated structure, as it happens for Lie algebras over a
field of finite characteristic.

The Lie superalgebra g has a Z-grading g = g−1 ⊕ g0 ⊕ g1 with purely even
g0 = gl (m) ⊕ gl (n) and purely odd g±1. Therefore there is a natural finite-
dimensional counterpart of the Verma module, the Kac module

Vλ = U (g)⊗U(g0⊕g1) Lλ (g0 ⊕ g1) ,

i.e., the module induced from the irreducible g0 ⊕ g1-module Lλ (g0 ⊕ g1) with
highest weight λ and trivial g1-action. This module was introduced in [6] and
it was proven that for a typical weight λ, the module Vλ is irreducible, where
typicality is a Zariski-open condition on the set of weights.

In general any irreducible finite-dimensional g-module is the quotient Lλ of Vλ
by the unique maximal submodule. A natural question arises: find the multiplicities
aλ,µ = [Vλ : Lµ]. On the other hand Lλ has a resolution, each term of which has a
filtration with quotients isomorphic to Kac modules. It is analogous to the BGG
resolution but is infinite for an atypical λ. If

0←M0 ←M1 ← . . .

is such a resolution, then clearly

chLλ =
∞∑
i=0

(−1)i chM i.

Note that characters of M i can be easily calculated because the characters of Kac
modules are known. Therefore

chLλ =
∑
µ

bλ,µ chVµ

for some coefficients bλ,µ. It is clear that the matrices A = (aλ,µ) and B = (bλ,µ)
are inverse to each other. There is a natural partial order on the set of weights (see
definition in Section 1) such that the matrix B is lower triangular with respect to
this order, i.e., bλ,µ 6= 0 implies µ ≤ λ. This allows us to invert the matrix B. So
if we know the coefficients bλ,µ we can find the multiplicities aλ,µ.
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In this paper we determine the coefficients bλ,µ and aλ,µ (the main theorems
are formulated in Section 2). We do it in the following way. First, we define the
Kazhdan-Lusztig polynomials as the following generating functions:

Kλ,µ (q) =
∞∑
i=0

[
Hi (g−1;Lλ) : Lµ (g0)

]
qi.

Though Hi (g−1;Lλ) 6= 0 for infinitely many i, one can easily show that Kλ,µ are
polynomial.

Using some simple homological algebra, one proves the formula:

bλ,µ = Kλ,µ (−1) .

We evaluate Kλ,µ (−1) using induction on dimension and the natural embedding
gl (1)⊕gl (m− 1|n) ⊂ gl (m|n). The crucial tool in the induction step is the functor
U defined in Section 4. Roughly speaking this functor measures the “difference”
between the resolution of Lλ for gl (m|n) and that for gl (1)⊕gl (m− 1|n). One can
see U as a counterpart of the Vogan functor. Formally, U is a derived functor in the
categoryDF . We evaluate its cohomology U i (Lλ) by some recurrent procedure (see
Section 6). During this calculations we use mostly two tools: GL (m|n)-sheaves on
the supergrassmanians and the functor of tensoring with the tautological g-module.
The last functor plays a very important role in the study of the category F , similar
to the category O. We describe this functor in detail in Section 5.

As a corollary of our calculations we obtain the semisimplicity of U i (Lλ) as a
g-module. While we do not use this for the calculation of multiplicities, it seems im-
portant because of the following reason. In [14] we showed how the semi-simplicity
of the complex U• (Lλ) (as an object in the derived category) would allow us to
find the Kazhdan-Lusztig polynomials Kλ,µ (q). Now we know, at least, that the
cohomology groups of the complex U• (Lλ) are all semi-simple. This gives us hope
that the strong conjecture about semi-simplicity of the complex is also true.

We thank I. Penkov and I. Zakharevich for useful discussions and suggestions
and J . Bernstein who inspired this approach to the problem.

The algorithm for computing the characters is described in Section 2.

1. Preliminaries

In this paper the ground field is C. We use gothic letters to denote Lie algebras and
superalgebras. The corresponding Lie supergroups are denoted by Latin capital
letters. For example, if g = gl (m|n), then G = GL (m|n) is the corresponding
supergroup. In this section we discuss some properties of weights for gl (m|n),
natural modules Mλ, Vλ, and Lλ associated to the given weight λ, subsets of
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dominant and positive weights, structure of some useful categories of modules, and
properties of the center of the universal enveloping algebra.

Let g = gl (m|n), h ⊂ g be its Cartan subalgebra, g = g−1⊕g0⊕g1 be the natural
Z-grading consistent with parity, where g0 = gl (m) ⊕ gl (n). Put g− = g0 ⊕ g−1,
g+ = g0 ⊕ g1. The adjoint action of h on g determines the root decomposition
g = h⊕

⊕
α∈∆

gα, where each weight space gα has dimension one (even or odd).

We fix a triangular decomposition g = n− ⊕ h ⊕ n+ such that g1 ⊂ n+ and
g−1 ⊂ n−. Let b = h ⊕ n+ be a Borel subalgebra. Let ∆ be the set of roots of g,
∆+ the set of positive roots, ∆0 the set of even roots and ∆1 the set of odd roots
(roots are even or odd according to the parity of the corresponding root space). If
{ε1, . . . , εm, δ1, . . . , δn} is the standard basis in h∗ then

∆+
1 =

{
εi − δj | 1 ≤ i ≤ m, 1 ≤ j ≤ n

}
∆+

0 =
{
εi − εj | 1 ≤ i < j ≤ m

}
∪
{
δi − δj | 1 ≤ i < j ≤ n

}
.

Put ρ = 1/2
(∑

α∈∆+
0
α−

∑
α∈∆+

1
α
)

. Denote by (·, ·) the symmetric form on h∗

induced by the invariant symmetric form on g. In the standard basis (εi, εj) =
− (δi, δj) = δij , (εi, δj) = 0. All odd roots are isotropic with respect to this form.
As usual we put α∨ = 2α/ (α, α) for any even root α, and denote by W the Weyl
group of g0. Obviously W is isomorphic to the direct product of two symmetric
groups Sm × Sn. For any weight λ ∈ h∗ denote by Wλ the stabilizer of λ in W .

Remark 1.1. Note that all roots (even and odd) are vectors in the even-dimension-
al space h∗, and the form (·, ·) is a nondegenerate symmetric form. But in contrast
with the Lie algebra case this form is not positive definite on the real subspace R∆.

Throughout this paper we will consider the following family of reductive subal-
gebras:

g (k, l) = h⊕
⊕

α∈∆(g(k,l))

gα,

where

∆
(
g (k, l)

)
=
{
εi − εj , εi − δp, δp − δq, where m− k < i, j ≤ m, 1 ≤ p, q ≤ l

}
.

The algebra g (k, l) is isomorphic to gl (k|l)⊕ Cm−k+n−l|0.
Let us denote by Lλ the irreducible g-module with even highest vector of weight

λ. For a subalgebra k ⊂ g denote by Lλ (k) the irreducible k-module with even
highest vector of weight λ (if this makes sense for k, for example when k is a regular
reductive subalgebra of g). In particular, Lλ (g) = Lλ.

Let Vλ be the Kac module U (g) ⊗U(g+) Lλ (g+), where Lλ (g+) ∼= Lλ (g0) as
g0-module and g1 acts trivially on Lλ (g+). It is clear that Vλ is free as U (g−1)-
module. We also consider the Verma module Mλ = U (g) ⊗U(b) Cλ, where Cλ is
1|0-dimensional b-module with weight λ.
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A weight λ ∈ h∗ is integral if (λ, α) ∈ Z for all α ∈ ∆0. A weight λ is dominant
if (λ, α∨) ∈ Z≥0 for all α ∈ ∆+

0 , λ is regular if (λ, α∨) 6= 0 for all α ∈ ∆+
0 , i.e.,

Wλ = {1}. We denote the set of all integral weights by P , the set of all integral
dominant weights by P+. Define the standard partial order on the set P of integral
weights as λ ≤ µ iff µ− λ =

∑
kαα where α ∈ ∆+, kα ∈ Z≥0. Note that a weight

λ is integral and dominant if and only if dimLλ <∞ (see [6] for details).
Note that the subsets {λ ≥ 0} and P+ are closed under addition. As we

just mentioned all finite dimensional irreducible representations are numerated
by λ ∈ P+. It is easy to see also that P+ is a fundamental domain of the
W -action on P . The set {λ ≤ 0} is the minimal set closed under addition that
contains all weights of Verma module M0. In what follows we use the following
property quite a bit: if V is a g-module of the highest weight λ, i.e., V is a quotient
of the Verma module Mλ, and µ is a weight of some vector in V , then µ ≤ λ.

Remark 1.2. In the standard basis {ε1, . . . , εm, δ1, . . . , δn} an integral weight λ ∈
P can be written as

λ = a1ε1 + · · ·+ amεm + b1δ1 + · · ·+ bnδn, ai − ai+1 ∈ Z, bj − bj+1 ∈ Z.

Then λ ∈ P+ iff a1 ≥ a2 ≥ · · · ≥ am and b1 ≥ b2 ≥ · · · ≥ bn. We also often use the
fact that if λ ∈ P+ then

λ+ ρ = a1ε1 + · · ·+ amεm + b1δ1 + · · ·+ bnδn,

where a1 > a2 > · · · > am and b1 > b2 > . . . bn.
Note also that λ ≥ 0 iff a1, a2, . . . , am, b1, . . . , bn ∈ Z, and

a1 ≥ 0, a1 + a2 ≥ 0, a1 + a2 + . . . am ≥ 0,
a1 + a2 + · · ·+ am + b1 ≥ 0, a1 + . . . am + b1 + · · ·+ bn−1 ≥ 0,

a1 + · · ·+ an + b1 + · · ·+ bm = 0.

It is worth mentioning that the convex hulls of the sets P+ and {λ ∈ h∗ | λ ≥ 0}
are not dual to each other contrary to the case of gl (m), since P+ is determined
by the condition (λ, α∨) ≥ 0 for simple even α only, and α∨ can go in the opposite
direction to α.

For a g-module X denote by Xπ the g-module with shifted parity, i.e., Xπ
0 = X1,

Xπ
1 = X0 and g-action is the same.

The superdimension dimX = (a|b) is written formally as a+ bε where ε2 = 1.
Obviously dimXπ = ε dimX . In this paper we always denote by ε the variable
satisfying the relation ε2 = 1.

In this paper we will consider only h-diagonalizable g-modules, i.e., modules
semi-simple with respect to the h-action. Any such module X has the decompo-
sition X = ⊕Xν where ν runs the set of weights P (X) ⊂ P of the module X .
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Consider formal variables {eν : ν ∈ P} with the relations eνeµ = eν+µ. We define
the character of X as:

chX =
∑

ν∈P (X)

dimXνe
ν .

So chX ∈ Z [ε, eν] for all ν ∈ P .
For simplicity of notations in what follows, we assume all modules to be h-

diagonalizable. Note that h = h ∩ [g0, g0] ⊕ Z (g0), and dimZ (g0) = 2. If X is
finite dimensional, then X is h∩ [g0, g0]-diagonalizable. So actually our assumption
is not very restrictive.

Here we give several statements which we use later. The first theorem establishes
relations between Vλ, Mλ and Lλ.

Theorem 1.3.

(1) The irreducible module Lλ is a quotient of the Kac module Vλ by the unique
maximal submodule Jλ;

(2) If λ is integral dominant then in turn Vλ = Mλ/Iλ, where Iλ be the unique
minimal submodule of Mλ with finite dimensional quotient. If vλ is the
highest vector in Mλ then Iλ is generated by vectors (g−α)kα vλ, where α
runs the set of all even simple roots, g−α ∈ g−α, kα = (λ+ ρ, α∨).

Proof. For the proof of (1) see [6]. To prove (2) notice that Mλ = U (g) ⊗U(g+)

Mλ (g+), Iλ = U (g)⊗U(g+)Iλ (g+), where Mλ (g+) = Mλ (g0) as g0-module, g1-acts
trivially, and Iλ (g+) is the maximal submodule of Mλ (g+). �

Definition 1.4. Let F be the category of all finite dimensional h-diagonalizable
g-modules, let F free be the subcategory of F consisting of modules that are free
under U (g−1)-action (for example, Vλ is an object in the category F free). Let k ⊆ g

be a subalgebra containing h. Denote by Fk the category of finite dimensional h-
diagonalizable k-modules. Usually we will consider the case when k = g− or g (k, l).

Any irreducible module in the category F is isomorphic either to Lλ or Lπλ for
some λ ∈ P+. So one can formally define the generalized multiplicity [X : Lλ] as
a+ bε, where a is the multiplicity of Lλ in X and b is the multiplicity of Lπλ in X
(in this paper by multiplicity we always mean the multiplicity in the Jordan-Hölder
sense). According to this remark the Grothendieck ring K [F ] is a Z [ε]-module with
the convention ε [X ] = [Xπ], where [X ] is the class of a module X in K [F ].

We also consider the character ring Ch [F ] as the subring in Z [ε, eµ]µ∈P gener-
ated by chX , X ∈ ObF . Then {chLλ:λ ∈ P+} form a basis in Ch [F ] over Z [ε]
(linear independence follows from the fact that chLλ = eλ +

∑
µ<λ aµe

µ). There-
fore the natural map K [F ]→ Ch [F ], which sends [X ] to chX is an isomorphism
of rings.

Let τ be the automorphism of g given by τ (g) = −gst (supertransposition,
see [6]). For any g-module X one can construct the g-module Xτ by putting
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gx = τ (g)x. For X ∈ ObF denote X∨ = (X∗)τ . Obviously, chX = chX∨ and
therefore L∨λ ∼= Lλ.

Lemma 1.5.
(1) The modules Vλ and V πλ are projective and injective in the category Fg− ;
(2) Any g-module V ∈ ObF free has a filtration with quotients isomorphic to Vµ

or V πµ for some dominant µ. Moreover, it is isomorphic to the direct sum
of the quotients as U (g−)-module.

Proof. To prove (1) it is sufficient to show that Vλ does not have any nontrivial
extensions in category Fg− , i.e. H1 (g−; HomC (Vλ,M)) = 0 for any M ∈ ObFg− .
Note that H1 (g−; HomC (Vλ,M)) = [H1 (g−;M∗ ⊗ Vλ)]∗. First, M∗ ⊗ Vλ is free
with respect to U (g−1)-action, therefore H1 (g−1;M∗ ⊗ Vλ) = 0. Moreover, g0 is
reductive, therefore H1 (g0; (M∗ ⊗ Vλ)) = 0. Hence H1 (g−;M∗ ⊗ Vλ) = 0 by the
spectral sequence with respect to g1 ⊂ g.

To prove the injectivity of Vλ one can use the relation

V ∗λ ∼= (Vµ)π
mn

as U
(
g
−) -module,

where µ = −w0 (λ) +
∑
α∈∆+

1
α and w0 ∈W is the longest element.

The part (2) is proven in [14]. �
The last lemma allows us to define the multiplicity [V : Vλ] of Vλ in V ∈ ObF .

This multiplicity is an element of Z [ε].

Remark 1.6. In what follows we often use the following observation: if some
construction depends on the g−-action only, then by Lemma 1.5 it is sufficient to
consider this construction for modules Vµ instead of all modules from F free. The
proof of the statement below is an example how such argument works.

Corollary 1.7. Let M ∈ ObF free. Then Hi (g−1;M) = 0 if i > 0 and

[H0 (g−1;M) : Lµ (g0)] = [M : Vµ] .

Proof. Notice that Hi (g−1;Vλ) = 0 if i > 0, H0 (g−1;Vλ) = Lλ (g0). Then apply
Remark 1.6. �

Let Z be the center of U (g). Recall that the triangular decomposition g =
n−⊕ h⊕n+ is fixed. Therefore one can define the Harish-Chandra homomorphism
HC : Z → U (h) = S (h∗) in the standard way.

Theorem 1.8. A function f ∈ S (h∗) belongs to the image of HC iff it satisfies
the following conditions:

(1) f (λ+ ρ) = f (w (λ+ ρ)) for any element w of Weyl group of g0;
(2) if α ∈ ∆1 and (λ+ ρ, α) = 0 then f (λ+ tα) = f (λ) for any t ∈ C.
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This theorem is formulated in [8]. The proof can be found in [15].
Our category F splits into the direct sum

⊕
Fχ, where χ runs over the set of

central characters Hom (Z,C). Any weight λ ∈ h∗ defines the central character χλ
by χλ (z) = HC (z) (λ). Clearly, Lλ ∈ ObFχ iff χλ = χ.

Let us define the equivalence relation on P in the following way. Put λ ∼ µ if
µ + ρ = w (λ+ ρ) for some w ∈ W , or if µ = λ + α for some α ∈ ∆1 such that
(λ+ ρ, α) = 0, and extend this relation by transitivity. The above theorem implies
the following corollary.

Corollary 1.9. Let λ, µ ∈ P . Then λ ∼ µ iff χλ = χµ.

Example 1.10. Let g = gl (1|2). Then ρ = −ε1 + δ1. Any weight λ ∈ P is
determined by three numbers (a, b1, b2) where b1 − b2 ∈ Z. There are two odd
positive roots α1 = ε1 − δ1 and α2 = ε1 − δ2. They determine two atypical planes
in P , namely Pi = {λ ∈ P : (λ+ ρ, αi) = 0}, where i = 1, 2. In coordinates P1 is
defined by the equation a + b1 = 0, P2 by a + b2 − 1 = 0. It is clear that the set
of typical weights P r (P1 ∪ P2) splits into equivalence classes which are orbits of
the Weyl group with respect to the shifted action λw = w (λ+ ρ)− ρ. In our case
W = Z2 and the unique reflection w is given by

(a, b1, b2)w = (a, b2 − 1, b1 + 1) .

It is the reflection with respect to the plane P0 given by the equation: b1 =
b2 − 1. Therefore a typical equivalence class consists of two weights (a, b1, b2)
and (a, b2 − 1, b1 + 1), where b1 ≥ b2 − 1, a+ b1 6= 0, a+ b2 − 1 6= 0. If b1 = b2 − 1
then this class actually degenerates into one-element set.

Notice that the intersection P0 ∩ P1 ∩ P2 is the line L consisting of weights
(s,−s, 1− s), s ∈ C.

On the atypical subset P1 ∪ P2 the situation is more complicated. Let λ ∈ P1.
Then λ = (a, b1, b2), where a+ b1 = 0, and the whole line {λ+ kα1: k ∈ Z} belongs
to the same equivalence class. Take k = b1 − b2 + 1. Then λ + kα1 ∈ L. In the
same way one can show that if λ ∈ P2 then the equivalence class of λ has nontrivial
intersection with L. Thus any atypical class intersects L at least at one point.

Now let λ = (s,−s, 1− s) be a point on L. Then clearly the equivalence class Cs

of λ is the union of two lines Ls1 = {λ+ kα1: k ∈ Z} and Ls2 = {λ+ kα2 : k ∈ Z}.
In coordinates Ls1 = {(s− k, k − s, 1− s) : k ∈ Z} , Ls2 = {(s− k,−s, k + 1− s) :
k ∈ Z}. As follows from two last paragraphs there is a one-parameter family of
atypical classes Cs where s ∈ C.

Let us also describe P+ and the cone {λ ≥ 0} in this example. P+ is given by
the inequality b1 − b2 ≥ 0, i.e., actually this is the intersection of P and halfspace
bounded by P ′0, where P ′0 is the plane parallel to P0 and containing 0. The set
{λ ≥ 0} is the integral two-dimensional cone generated by the roots ε1 − δ1 and
δ1 − δ2. Clearly it is a sector in the plane a+ b1 + b2 = 0.
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Lemma 1.11. Let λ, µ ∈ P+, λ ≤ µ and χλ = χµ. Then there is a sequence
α1, . . . , αk of odd positive roots such that

(λ+ ρ, α1) = 0, . . . , (λ+ ρ+ α1 + · · ·+ αk−1, αk) = 0,

and λ+ ρ+ α1 + · · ·+ αi ∈ P+ for all i = 1, . . . , k and µ = λ+ α1 + · · ·+ αk.

Proof. One can find the proof in [12]. Since it is purely combinatorial we do not
give it here. �

Let λ ∈ P+. Define A (λ) =
{
α ∈ ∆+

1 : (λ+ ρ, α) = 0
}

, and #λ = |A (λ) |. The
number #λ is called the degree of atypicality of λ. The weight λ is typical if #λ = 0.

Lemma 1.12. If λ, µ ∈ P+ and χλ = χµ then #λ = #µ.

Proof. So far the degree of atypicality is defined for λ ∈ P+ only. We extend #λ
to any λ ∈ P as follows. In coordinates λ+ ρ =

∑m
i=1 aiεi +

∑n
j=1 bjεj. Define the

functions q±λ : C→ Z by the formulae:

q+
λ (z) =

∣∣∣{i ∈ [1,m] : ai = z
}∣∣∣

q−λ (z) =
∣∣∣{j ∈ [1, n] : bj = −z

}∣∣∣.
If λ ∈ P+ then q±λ (z) = 0 or 1 for any z ∈ C, since a1 > a2 > · · · > am, b1 >

b2 > · · · > bn. The degree of atypicality #λ is the number of pairs (i, j) such that
ai = −bj. Therefore for λ ∈ P+ the following relation holds:

#λ =

(
n+m−

∑
z∈C

∣∣q+
λ (z)− q−λ (z)

∣∣) /2. (1.1)

The sum on the right hand side makes sense since q±λ (z) 6= 0 for finitely many
z ∈ C. This formula allows us to define #λ for any λ ∈ P . Moreover, one
can easily check that

∑
z∈C |q

+
λ (z) − q−λ (z) | is constant on any equivalence class.

Indeed, if ai 6= −bj for any 1 ≤ i ≤ m, 1 ≤ j ≤ n, then the only equivalence is
the action of W , i.e., the permutation of indices. If ai = −bj, then “one step” of
equivalence does not change

∑
z∈C |q

+
λ (z)− q−λ (z) |. �

Remark 1.13. In the example 1.10 the set of all atypical weights belong to P1∪P2.
Note that if λ = (s,−s, 1− s) ∈ L, i.e., is the most degenerate, then q+

λ (z) =
δ (z − s+ 1), q−λ = 2δ (z − s+ 1); here by δ (z) we mean a function which equal
to 1 at z = 0 and 0 otherwise. Therefore by formula (1.1) #λ = 1. This shows
that the first definition of #λ gives a different answer for irregular λ ∈ L. It is
easy to check that in this example the maximal possible degree of atypicality is 1.
In general, #λ ≤ min (m,n) for any λ ∈ P .

Lemma 1.12 allows us to give a correct definition of the degree of atypicality #χ
for a central character χ (namely #χ = #χλ for any λ ∈ P+ such that χλ = χ).
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Lemma 1.14.

(1) Any g-module V ∈ ObF has a U (g−1)-free resolution, i.e.,

0←M0 ←M1 ←M2 ← . . .

such that all M i ∈ ObF free;
(2) If V = Lλ then a resolution can be chosen so that M0 = Vλ and for any

i > 0 the condition
[
M i : Vµ

]
6= 0 implies µ < λ and χµ = χλ.

Proof. The proof of (1) is a simplified version of the proof of existence of the
classical BGG resolution. So we just sketch it. Recall that G is the supergroup
GL (m|n) , G+ is the Lie subsupergroup with Lie superalgebra g+. We consider the
homogeneous superspace G/G+ which is the Grassmannian of (m|0) dimensional
subspaces in Cm|n. It has purely odd dimension (0|mn) and therefore it is isomor-
phic to C0|mn as an algebraic supermanifold. Then the complex D• dual to the de
Rham complex on G/G+ gives a required resolution for the trivial module L0. By
tensoring with V we get a resolution for V .

Note that, by the definition of the de Rham complex, Di = Λ• (g−1)⊗Si (g−1)
as a g0-module; therefore µ ≤ 0 for any µ ∈ P

(
Di
)
. Hence if M• is a resolution

of V obtained in above way and ν < λ for any ν ∈ P (V ) then µ < λ for any
µ ∈ P

(
M i
)
.

To get a resolution of Lλ satisfying the conditions (2) construct a resolution as
above:

0← N1 ← N2 ← . . .

of the finite-dimensional module Jλ (see Theorem 1.3). Consider the complex:

0← Vλ ← N1 ← N2 ← . . . ,

where N1 → Vλ is induced by the embedding Jλ → Vλ. It is clear that this
complex is a resolution of Lλ. Moreover, µ < λ for any µ ∈ P

(
N i
)
. Therefore if[

N i : Vµ
]
6= 0 then µ < λ. By taking the projection of the last resolution to the

category Fχλ one obtains a resolution satisfying (2). �

We call a resolution of Lλ minimal if it satisfies the conditions of Lemma 1.14
(2).

2. Main results

In this section we formulate the main Theorems 2.2 and 2.3 evaluating the multi-
plicity [Vλ : Lµ] and chLλ. Both formulae are based on the following combinatorial
construction.
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First introduce some notations. For λ ∈ P , denote by λ̃ the unique representa-
tive in Wλ ∩ P+. For any α ∈ ∆+

1 denote by l (λ, α) = rkWλ−α − rkWλ−α ∩Wλ,
where by rkS we mean the rank of Coxeter group S. One can easily check that
l (λ, α) = 0, 1 or 2, and l (w (λ) , w (α)) = l (λ, α). LetH be free C [q, ε]-module with
basis {Tλ | λ ∈ P}, where q is a free variable and ε2 = 1. We define a C [q, ε]-linear
operator σα:H→ H for each α ∈ ∆+

1 by the following axioms:
(1) If (λ, α) 6= 0, then σαTλ = 0;
(2) If (λ, α) = 0, then σαTλ = ε

[
ql(λ,α)−1σαTλ−α

]
+ + εqTλ−α, where by [S]+

we denote the part of Laurent polynomial S (q) with strictly positive powers
of q;

(3) If (λ, α) = 0, and λ and −α are in the same Weyl chamber, i.e., there exists
w ∈W such that w (−α), wλ ∈ P+, then σαTλ = εqTλ−α.

Lemma 2.1.
(1) There exists the unique operator σα satisfying (1) − (3). It is given by the

following formulae:

σαTλ = 0, if (λ, α) 6= 0, (2.1)

σαTλ =
∑
k∈Iλ,α

εkqmλ,α(k)Tλ−kα, if (λ, α) = 0. (2.2)

Here Iλ,α ⊂ Z>0 and mλ,α: Iλ,α → Z>0 are uniquely determined by some
inductive procedure;

For any α ∈ ∆+
1 and w ∈W

σαTλ = σw(α)Tw(λ). (2.3)

Proof. Formula 2.1 obviously follows from axiom (1) and does not contradict ax-
ioms (2), (3), since these axioms concern σαTλ with (λ, α) = 0.

The proof of 2.2 can be obtained by induction on the order on P . Assume that
we can calculate σαTµ for µ < λ. The relation (3) provides the base of induction.
Note that for any α ∈ ∆+

1 and λ ∈ P there exists k ∈ Z>0 such that λ − iα and
−α are in the same Weyl chamber for any i ≥ k. Then by axiom (3) formula 2.2
is true for λ− kα with Iλ−kα,α = {1} ,mλ−kα,α (1) = 1. Now we evaluate σαTλ for
an arbitrary α ∈ ∆+

1 using the induction assumption for λ− α.
So we start with the relation

σαTλ−α =
∑

k∈Iλ−α,α

εkqmλ−α,α(k)Tλ−(k+1)α.

Using (2) one can write

σαTλ = ε

 ∑
k∈Iλ−α,α

εkql(λ,α)+mλ−α,α(k)−1Tλ−(k+1)α


+

+ εqTλ−α.
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Now put

Iλ,α = {1} ∪ (1 + Iλ−α,α) ∩ {j ∈ Z>0 | l (λ, α) +mλ−α,α (j − 1)− 1 > 0} ;

mλ,α (j) = l (λ, α) +mλ−α,α (j − 1)− 1, mλ,α (1) = 1.

After substituting j = k + 1 one obtains the formula

σαTλ =
∑
j∈Iλ,α

εjqmλ,α(j)Tλ−jα.

To show that the operator constructed by the induction procedure actually
satisfies all axioms we have to check that axiom (2) is true for λ and α satisfying the
condition of axiom (3). Note that if λ and −α are in the same Weyl chamber, then
λ−α belongs to the same Weyl chamber and Wλ−α ⊆Wλ. Therefore l (λ, α) = 0,
and axioms (2) and (3) are equivalent.

The second statement of the lemma is trivial. �
Define C [q, ε]-linear map Ξ:H → C [q]⊗C K [F ] by putting

Ξ (Tλ) =
[
Lλ̃−ρ

]
if λ̃− ρ ∈ P+;

Ξ (Tλ) = 0 if λ̃− ρ /∈ P+.

Consider the operators s̃α:C [q]⊗CK [F ]→ C [q]⊗CK [F ] given by the formula

s̃α [Lλ] = ΞσαTλ+ρ.

By sα we denote the specification of s̃α for q = −1. So sα is a C [ε]-linear map:
K [F ]→ K [F ].

Theorem 2.2. In the Grothendieck ring K [F ] the following relation holds:

[Vλ] =
←∏

α∈∆+
1

(1− sα) [Lλ] .

Here ← means that the order in the product is consistent with the partial order ≥
on ∆+

1 .

Define the C [ε]-linear map Ψ:K [F ]→ Ch [F ] by the formula Ψ [Lλ] def= chVλ.
Note that chVλ, thus Ψ, can be evaluated easily (see [6]). Namely,

Ψ [Lλ] = chVλ = chLλ (g0) chU (g−1) = chLλ (g0)
∏
α∈∆+

1

(
1 + εe−α

)
.
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Theorem 2.3.

chLλ = Ψ

 →∏
α∈∆+

1

(1− sα)−1 [Lλ]

 ,

here → means that the order in the product is consistent with the partial order ≤
on ∆+

1 .

Remark 2.4. The operator sα is strictly lower triangular in the basis {[Lλ]}. So
(1− sα)−1 = 1 + sα + s2

α + . . . , and the character formula contains infinitely many
summands. However, each term eµ occurs only finitely many times, therefore the
expression makes sense.

The remaining part of the paper provides the proof of these two theorems.

Remark 2.5. Here we give the algorithm for computing chLλ. Theorem 2.3
reduces the problem to computing sα [Lλ] in the case when (λ+ ρ, α) = 0.

For any weight λ ∈ P+ and α ∈ ∆+
1 such that (λ+ ρ, α) = 0 we construct the

sequences {λk} ∈ P+, {αk} ∈ ∆+
1 and {dk} , {pk} ∈ Z, following the rules below

(1) Put λ0 = λ, α0 = α;
(2) If λk − αk ∈ P+, put λk+1 = λk − αk, αk+1 = αk, dk = 0, pk = 1;
(3) If λk − αk /∈ P+, then obviously λ + ρ − αk is not regular. Choose the

minimal positive i for which λk− iαk+ρ is regular. There exists the unique
w ∈W such that w (λk − iαk + ρ) ∈ P+. Put λk+1 = w (λk − iαk + ρ)−ρ,
αk+1 = w (αk), dk = l (w)− i+ 1, pk = i.

Let Ak be the linear operator in the space of polynomials given by Ak (P ) =
εpkqdk

(
q−1P

)
+, and Pk = A0 ◦A1 ◦ · · · ◦Ak−1

(
q2
)
. Then

s̃α [Lλ] =
∞∑
k=1

Pk [Lλk ] .

Example 2.6. Consider g = gl (3|3), λ = 0. Let us find the Jordan-Holder series
for V0. Let α = ε1 − δ3, β = ε2 − δ2, γ = ε3 − δ1. By the symmetry of the weight
it is clear that στ 6= 0 only if τ is equal to α, β or γ. So the last formula becomes

[V0] = (1− sα) (1− sβ) (1− sγ) [L0] .

A reader can check the following relations:

sγ [L0] = −ε
[
L(0,0,−1,1,0,0)

]
;

sβ [L0] =
[
L(0,−1,−1,1,1,0)

]
;

sα [L0] = −ε
[
L(−1,−1,−1,1,1,1)

]
;

sαsγ [L0] = −ε
[
L(−1,−1,−1,1,1,1)

]
− ε

[
L(−1,−2,−2,2,2,1)

]
;

sβsγ [L0] =
[
L(0,−1,−1,1,1,0)

]
+
[
L(0,−2,−2,2,2,0)

]
;

sαsβ [L0] = −ε
[
L(−1,−1,−1,1,1,1)

]
− ε

[
L(−1,−2,−2,2,2,1)

]
;

sαsβsγ [L0] = −ε
[
L(−1,−1,−1,1,1,1)

]
− 2ε

[
L(−1,−2,−2,2,2,1)

]
− ε

[
L(−3,−3,−3,3,3,3)

]
.
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Using the above relations one can easily obtain

[V0] = [L0] + ε
[
L(0,0,−1,1,0,0,)

]
+
[
L(0,−2,−2,2,2,0)

]
+ ε

[
L(−3,−3,−3,3,3,3)

]
.

Remark 2.7. In the case #λ = 1 our character formula coincides with one given
in [2] and proved in [4]. We can also show that the Bernstein-Leites formula is true
for generic weights (see [12], [13]). Our formula is equivalent to the Kac-Wakimoto
formula, when λ satisfies the conditions of Theorem 3.1 in [9].

We don’t know if the conjecture in [5] is equivalent to Theorem 2.2, but it seems
very plausible. We suppose that permissible codes constructed in [5] correspond
to the weights which occur in sα1sα2 . . . sαk [Lλ], where α1, . . . , αk correspond to
nonzero columns in a code.

3. Kazhdan-Lusztig polynomials Kλ,µ

In this section we define the polynomials Kλ,µ (q), which depend on weights λ
and µ ∈ P+, and construct the operators K and K [g (k, l)] which send K [F ] to
K [Fg0 ]. In our theory the polynomials Kλ,µ (q) play a role similar to the role
of Kazhdan-Lusztig polynomials in the representation theory of the category O.
Recall that in the case of simple Lie algebra, the Kazhdan-Lusztig polynomials can
be described as the generating functions

Kλ,µ =
∞∑
i=1

dim (Hi (n−;Lλ))µ q
i.

It can be easily shown that

chLλ =
∑
µ∈P

Kλ,µ

∣∣
q=−1 chMµ.

Thus if we know the h-module structure on Hi (n−;Lλ) we are able to describe
the h-module structure on Lλ. We will see that in the same way if we know
the g0-module structure on Hi ((g−1;Lλ)), we are able to describe the g0-module
structure on Lλ (hence chLλ because h ⊆ g0). So although the polynomials which
we introduce here are not straightforward superanalogues of the classical Kazhdan-
Lusztig polynomials, it is natural to call them Kazhdan-Lusztig polynomials in this
case. See also Remark 3.3.

Definition 3.1. Consider Hi (g−1;Lλ). This space obviously has the structure
of g0-module. Denote the multiplicity [Hi (g−1;Lλ) : Lµ (g0)] by Ki

λ,µ. Define the
generating function Kλ,µ ∈ Z [ε, q] as

Kλ,µ =
∞∑
i=0

Ki
λ,µq

i.
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We call Kλ,µ Kazhdan-Lusztig polynomials.

Remark 3.2. To see that Kλ,µ is actually a polynomial (and not infinite power
series) note that the set of weights P (Hi (g−1;Lλ)) ⊆ P

(
Λi (g−1)⊗ Lλ

)
. Therefore

(Hi (g−1;Lλ))µ = 0 for any fixed µ and sufficiently large i.

Remark 3.3. More generally, let p ⊂ g be a parabolic subalgebra. Then p = k⊕ r,
where r is a nilpotent ideal and k is the reductive subalgebra containing h. Then we
have an analogue of the triangular decomposition g = r−⊕ k⊕ r for an appropriate
r−. Let V be some g-module. In order to describe the k-module structure on V , it
is sufficient to describe k-module structure on Hi (r−;V ).

Lemma 3.4. The character of Lλ can be evaluated as

chLλ =
∑
µ∈P+

Kλ,µ|q=−1 chVµ.

Proof. The proof of this lemma is given in [14]. Here we repeat it briefly. By
Lemma 1.14 Lλ has a U (g−1)-free resolution:

0←M0 ←M1 ← . . .

Using this resolution one can write the following character formula:

chLλ =
∞∑
i=0

∑
µ∈P+

(−1)i
[
M i : Vµ

]
chVµ.

Recall that by Corollary 1.7

Hj

(
g−1;M i

)
= 0, if j > 0,[

H0
(
g−1;M i

)
: Lµ (g0)

]
=
[
M i : Vµ

]
.

Therefore

chLλ =
∑
µ∈P+

∞∑
i=0

(−1)i
[
H0
(
g−1;M i

)
: Lµ (g0)

]
chVµ. (3.1)

Notice that Hi (g−1;Lλ) is equal to the i-th cohomology of the complex

0← H0
(
g−1;M0)← H0

(
g−1;M1)← . . . ,

therefore
∞∑
i=0

(−1)i
[
H0
(
g−1,M

i
)

: Lµ (g0)
]

=
∞∑
i=1

(−1)i [Hi (g−1;Lλ) : Lµ (g0)] . (3.2)

Combining 3.1 and 3.2 we obtain

chLλ =
∑
µ∈P+

∞∑
i=0

(−1)i [Hi (g−1;Lλ) : Lµ (g0)] chVµ.

�
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Lemma 3.5. The polynomials Kλ,µ have the following properties:
(1) Kλ,λ = 1;
(2) If Kλ,µ 6= 0 then µ ≤ λ and χµ = χλ.

Proof. Consider a minimal U (g−1)-free resolution of Lλ:

0←M0 ←M1 ← . . .

As we already mentioned in the proof of the previous lemma Hi (g−1;Lλ) is equal
to the i-th cohomology group of the complex:

0← H0
(
g−1;M0)← H0

(
g−1;M1)← . . . ,

and
[
H0
(
g−1;M i

)
: Lµ (g0)

]
=
[
M i : Vµ

]
. Combining this with Lemma 1.14 (2)

we obtain that if
[
H0
(
g−1;M i

)
: Lµ (g0)

]
6= 0, then µ ≤ λ and χµ = χλ. Since

M0 = Vλ,
[
H0
(
g−1;M0

)
: Lλ (g0)

]
= 1. Now the statements (1) and (2) follow

immediately. �
We also consider Kazhdan-Lusztig polynomials Kλ,µ for the subalgebras g(k, l)⊂

g defined in Section 1. We denote them by Kλ,µ [g (k, l)].
It is very convenient for our calculation to consider an operator K defined by

K [Lλ] =
∑
µ∈P+

Kλ,µ

∣∣
q=−1 [Lµ (g0)] .

To give sense to the infinite summation we have to consider the following formal
completion K̂ [Fk] of the Grothendieck ring. Let K̂ [Fk] be the space generated by
all formal sums

∑
µ∈S aµ [Lµ (k)], where S belongs to the union of finitely many

cones Cν = {µ ∈ P | µ ≤ ν}. Then Lemma 3.5 implies that K : K̃ [F ]→ K̃ [Fg0 ] is
well defined. We also consider the completion of Z̃ [ε, eν ] of the ring Z [ε, eν] by all
sums

∑
µ∈S aµe

µ, where S is as above. Then the operator ch: K̃ [Fk]→ Z̃ [ε, eν] is
well defined. The image of ch is denoted by C̃h [Fk].

Now the formula of Lemma 3.4 can be rewritten as:

chLλ =
∏
α∈∆+

1

(
1 + εe−α

)
ch K [Lλ] . (3.3)

In the same way we consider the operator

Kg(k,l) : K̃
[
Fg(k,l)

]
→ K̃

[
Fg0(k,l)

]
given by

Kg(k,l) [Lλ (g (k, l))] =
∑
µ∈P+

Kλ,µ [g (k, l)] |q=−1 [Lµ (g0 (k, l))]
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A crucial role in our calculations is played by the operator K [g (k, l)] : K̃ [F ] →
K̃ [Fg0 ] defined by

K [g (k, l)] [Lλ] =
∑
µ∈P+

Kλ,µ [g (k, l)] |q=−1 [Lµ (g0)] .

We are going to evaluate K [g (k, l)] by an induction procedure, in which we use
the coefficients Kλ,µ [g (k, l)] for g (k, l)-modules in the category of g-modules.

4. Construction of the functor U

In this section we construct a functor U which can be considered as a “super”
counterpart of the Vogan functor (sometimes also called reflection functor). We
have to mention here that this analogy is not straightforward or trivial. Actually
to call it an analogy one still needs some further investigations.

Using this functor U we describe an induction step that expresses K in terms
of K [g (m− 1, n)] and U in the Theorem 4.14. Here U is basically the operator of
taking Euler characteristic of (a functor in derived category) U .

For motivation of our construction suppose that we want to describe a
U (g−1)-free resolution M• of Lλ. Assume that we know such a resolution for
Lλ (g (m− 1, n)).

First, we construct an exact functor: F → F [g (m− 1, n)], which sends Lλ
to Lλ (g (m− 1, n)). This functor sends M• to some resolution M• [g (m− 1, n)]
of Lλ (g (m− 1, n)). There is a “natural” way to extend M• [g (m− 1, n)] to some
complex of g-modules, which are free over U (g−1). This complex is not a resolution
anymore. Some “new” cohomology groups U i appear.

These new cohomology can actually be defined in a functorial way. Let us give
formal definitions.

Consider a maximal parabolic subalgebra p ⊂ g. Note that p = k⊕ r, where k is
the maximal reductive subalgebra with 2-dimensional center, r is the commutative
ideal. There exists z ∈ Z (k) such that ad z|r = id. Clearly z ∈ h.

Example 4.1. Let p = g (m− 1, n)+n+. Then k = g (m− 1, n), r =
⊕

j=1,...,n
gε1−δj ,

and z = diag (1, 0, . . . , 0).

Let X ∈ ObF , t ∈ C. Consider the subspace

Xt =
⊕

µ∈P (X)
Re〈µ,z〉≥Re(t)

Xµ.

Obviously, Xt is p-invariant.
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Lemma 4.2.
(1) The mapping X 7→ Xt is an exact functor: F → Fk;
(2) V tλ = 0 if Re 〈λ, z〉 < Re (t), and V tλ = Vλ (k) otherwise;
(3) M t

λ = 0 if Re 〈λ, z〉 < Re (t), and M t
λ = Mλ (k) otherwise;

(4) If t = 〈λ, z〉 then (Lλ)t = Lλ (k).

Proof. The first three statements we leave as an exercise. To prove the last one
notice that Lλ is a quotient of the induced module N = U (g)⊗U(p) Lλ (p), where
Lλ (p) ∼= Lλ (k) as k-module and r acts trivially on Lλ (p). Clearly, N t = Lλ (k).
Note that (Lλ)t 6= 0, because it contains a highest weight vector of Lλ. Therefore
(Lλ)t = Lλ (k), since Lλ (k) is irreducible. �

Define the g-submodule of X as

φt [g, p]X = U (g)Xt = U
(
n−
)
Xt,

and the quotient as
ut [g, p]X = X/φt [g, p]X.

Then φt [g, p] and ut [g, p] can be considered as the functors F → F .

Lemma 4.3.
(1) If M ∈ ObF free then φt [g, p]M ∈ ObF free and ut [g, p]M ∈ ObF free;
(2) The functor ut [g, p] is exact on the right;
(3) If 0 → M → X → Y →0 is exact and M ∈ ObF free, then the short

sequences

0→ φt [g, p]M →φt [g, p]X → φt [g, p]Y → 0,

0→ ut [g, p]M →ut [g, p]X → ut [g, p]Y → 0

are exact.

Proof. We use the fact that the construction of the functors φt [g, p] and ut [g, p]
depends only on the U (g−)-action. Therefore it is sufficient to show (1) for M = Vλ
(see Remark 1.6). One can easily check that

φt [g, p]Vλ = Vλ,

φt [g, p]Vλ = 0,

if Re 〈λ, z〉 ≥ Re t;

if Re 〈λ, z〉 < Re t.
(4.1)

To check (2) notice that if Y → Z is a surjective homomorphism then Y t → Zt is a
surjective homomorphism of p-modules. Then by definition φt [g, p]Y → φt [g, p]Z
is surjective. If X → Y is injective, then φt [g, p]X → φt [g, p]Y is injective, since
φt [g, p]X ⊆ X . So if

0→ X → Y → Z → 0 (4.2)
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is an exact sequence, then the complex

0→ φt [g, p]X → φt [g, p]Y → φt [g, p]Z → 0 (4.3)

may have nontrivial cohomology only in the middle term φt [g, p]Y . The complex

0→ ut [g, p]X → ut [g, p]Y → ut [g, p]Z → 0 (4.4)

is defined as the quotient-complex of 4.2 by 4.3. Denote complexes 4.3, 4.2 and 4.4
by A•, B• and C• correspondingly. The short exact sequence of complexes

0→ A• → B• → C• → 0,

produces the long exact sequence

· · · → Hi (A•)→ Hi (B•)→ Hi (C•)→ Hi+1 (A•)→ . . . ,

here i = 0, 1, 2.
Since Hi (B•) = 0, and Hi (A•) 6= 0 only for i = 1, we have Hi (C•) 6= 0 only

for i = 0. In other words the complex 4.4 could have a nontrivial cohomology only
in the left term ut [g, p]X .

To prove the third statement we observe that 0 → M → X → Y → 0 splits
in the category Fg− , sinceM is injective in this category. Therefore both sequences:

0→ φt [g, p]M →φt [g, p]X → φt [g, p]Y → 0,

0→ ut [g, p]M →ut [g, p]X → ut [g, p]Y → 0

are exact in Fg− . Hence in F they are also exact. �
Let DF be the derived category of F . One can construct the derived functor

Ut [g, p] : DF → DF . On objects from F ⊂ DF it is defined in the following
way. Let X ∈ ObF . Let M• be the resolution of X by objects from F free. We
put U•t [g, p]X = ut [g, p]M•. By Lemma 4.3 (2) two different resolutions produce
quasi-isomorphic complexes U•t [g, p]X . So the derived functor U is well defined.
Therefore the cohomologyU it [g, p]X = Hi (U•t [g, p]X) does not depend on a choice
of a resolution M•.

We also consider complex Φ•t [g, p]X = φt [g, p]M•. The short exact sequence

0→ Φ•t [g, p]X →M• → U•t [g, p]X → 0

relates the cohomology Φit [g, p]X = Hi (Φ•t [g, p]X) and U it [g, p]X . The long exact
sequence

· · · → Φit [g, p]X → Hi (M•)→ U it [g, p]X → Φi+1
t [g, p]X → . . .
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implies the following:

Φit [g, p]X = U i+1
t [g, p]X for i ≥ 1;

0→ U1
t [g, p]X → Φ0

t [g, p]X → X → 0 is exact.

We consider actually only two parabolic subalgebras of g : p = g (m− 1, n)+n+

or p̃ = g (m,n− 1) + n+. We fix z = diag (1,0, . . . ,0), z̃ = diag (0, . . . , 0,−1) and
apply functors Φ and U to the irreducible module Lλ with t = 〈λ, z〉. To simplify
the notations we put:

Φ•〈λ,z〉 [g, p]Lλ = Φ•λ; Φ•〈λ,z〉
[
g, p̃
]
Lλ = Φ̃•λ;

U•〈λ,z〉 [g, p]Lλ = U•λ ; U•〈λ,z〉
[
g, p̃
]
Lλ = Ũ•λ .

Remark 4.4. In what follows we use the following simple identity:

〈λ, z〉 = (λ, ε1) (correspondingly, 〈λ, z̃〉 = (λ, δn) ).

We also introduce numbers U iλ,µ =
[
Hi (U•λ) : Lµ

]
and U -polynomials:

Uλ,µ (q) =
∑

U iλ,µq
i.

Example 4.5. Let us evaluate U -polynomials for gl (1|1). In this case ∆0 =
∅,∆+

1 = {α = ε1 − δ1} and ρ = −α/2. It is clear that h∗ = P = P+ and any
λ ∈ P+ is determined by a pair of complex numbers (a, b).

If λ is typical, i.e., (λ, α) = a + b 6= 0 then Lλ = Vλ. Therefore 0 ← Vλ ← 0 is
a resolution of Lλ. Then Φ•λ just coincides with this resolution and U•λ = 0.

Let λ be atypical, i.e., (λ, α) = a + b = 0. Then (1|1)-dimensional Vλ can be
described by the exact sequence

0→ Lπλ−α → Vλ → Lλ → 0.

Therefore a resolution of Lλ can be given by the following complex:

0← Vλ ← (Vλ−α)π ← Vλ−2α ← . . . .

After application of Φa [g, p] to this resolution we obtain Φ•λ:

0← Vλ ← 0← 0← . . . .

The quotient complex U•λ looks like

0← 0← (Vλ−α)π ← Vλ−2α ← . . . .
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It is a shifted resolution of (Lλ−α)π. Therefore U1
λ = (Lλ−α)π, U iλ = 0 for i 6= 1.

Thus U -polynomials for gl (1|1) are the following:

Uλ,µ = 0 if λ is typical or µ 6= λ− α,
Uλ,λ−α = εq if λ is atypical.

Remark 4.6. Sometimes we have to consider an analogue of the functor U for the
subalgebra g (k, l) ⊆ g with

p (k, l) = g (k − 1, l) + n+ ∩ g (k, l) , p̃ (k, l) = g (k − 1, l) + n+ ∩ g (k, l) .

In this case we just put the algebra in brackets after the functor, for example
Ũ•λ [g (k, l)].

Note that the corresponding polynomials Uλ,µ [g (k, l)] do not depend on the
first m− k and the last n− l coordinates of λ, i.e.,

Uλ,µ [g (k, l)] = Uλ+aεi,µ+aεi [g (k, l)] = Uλ+bδj ,µ+bδj [g (k, l)] if i ≤ m− k, j > l,

and if Uλ,µ [g (k, l)] 6= 0, then (λ, εi) = (µ, εi) and (λ, δj) = (µ, δj) for i ≤
m− k, j > l.

Remark 4.7. Note that to calculate Uλ,µ [g (k, l)] one needs to know the numbers
Uλ′,µ′ for the Lie superalgebra gl (k|l).

Lemma 4.8. If Uλ,µ 6= 0 then µ < λ, (λ− µ, ε1) > 0 and χµ = χλ. If Ũλ,µ 6= 0
then µ < λ, (λ− µ, δn) > 0 and χµ = χλ.

Proof. Apply Uλ to a minimal resolution 0 ← M0 ← M1 ← . . . . of Lλ. Then
M i =

⊕
ν∈Ni

Vν as U (g−)-module and all ν ∈ Ni satisfy the conditions ν ≤ λ and

χν = χλ. Then by Lemma 1.11 ν = λ− α1 − · · · − αk for some α1, . . . , αk ∈ ∆+
1 .

Since (αi, ε1) = 1 or 0, (λ, ε1)− (ν, ε1) ∈ Z≥0. If t = (λ, ε1) then

ut [g, p]M i =
⊕
ν∈N ′i

Vν , where N ′i =
{
ν ∈ Ni| (ν, ε1) < (λ, ε1)

}
.

Now if Uλ,µ 6= 0, then
[
ut [g, p]M i : Lµ

]
6= 0 at least for one i. Therefore [Vν : Lµ] 6=

0 at least for one ν ∈ Ni. Hence µ ≤ ν and χν = χµ. By the same argument as
above we can obtain (ν, ε1)− (µ, ε1) ∈ Z≥0. So the first statement is proved.

For Ũ the proof is similar. �
Lemma 4.8 allows us to define the operators Uq and Ũq: K̂ [F ] ⊗C C [q] →

K̂ [F ]⊗C C [q] by

Uq [Lλ] =
∑
µ∈P+

Uλ,µ [Lµ] ,

Ũq [Lλ] =
∑
µ∈P+

Ũλ,µ [Lµ] .
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By U and Ũ we denote the specialization of Uq and Ũq at q = −1.
We use also another geometric definition of functors Φ and U . Consider the

supergrassmanian G/P (in our cases it is in fact the projective super space of (1|0)
or (0|1)-dimensional subspaces in Cm|n). Any p-module X induces the sheaf O (X)
on G/P . As in the usual case the following lemma is true.

Lemma 4.9. Let X and Y be p-modules. Then

(1) O (X ⊗C Y ) = O (X)⊗O O (Y ), where O is a structure sheaf on G/P ;
(2) If X has a structure of g-module and the p-module structure is obtained as

the restriction of this g-module structure, then O (X) is the sheaf of sections
of a trivial vector bundle on G/P , and therefore

Hi
G/P

(
O (X ⊗C Y )

)
= X ⊗C Hi

G/P

(
O (Y )

)
.

Consider the irreducible p-module Lλ (p), where Lλ (p) ∼= Lλ (k) as k-module
and the action of r is trivial. To simplify the notations we put Oλ = O (Lλ (p)),
O∗λ = O

(
Lλ (p)∗

)
.

Remark 4.10. For any induced sheafO (X) onG/P , one can define the projection
pχ on the component with given central character since U (g) acts on O (X). Note
that pχ (Oλ) = Oλ if χλ = χ and pχ (Oλ) = 0 if χλ 6= χ.

The following lemma is very important. It was proved in [14].

Lemma 4.11.

(1) Φiλ = Hi
G/P (O∗λ)∗;

(2) U i+1
λ = Hi

G/P (O∗λ)∗ for i > 0, and

0→ U1
λ → H0

G/P (O∗λ)∗ → Lλ → 0

is exact.

Remark 4.12. Due to the above lemma, to define Φiλ we do not need to require
that λ ∈ P+. It is enough to require dimLλ (k) < ∞, i.e., λ should be domi-
nant with respect to the subalgebra k. Sometimes we use this extended definition
of Φiλ. Note that λ =

∑m
i=1 aiεi +

∑n
j=1 bjδj ∈ P is dominant with respect to

g (m− 1, n) (correspondingly, g (m,n− 1)) iff a2 ≥ a3 ≥ . . . am, b1 ≥ b2 ≥ · · · ≥ bn
(correspondingly, a1 ≥ a2 ≥ . . . am, b1 ≥ b2 ≥ · · · ≥ bn−1).

Remark 4.13. From Lemma 4.11 we see that Uλ,µ 6= 0 for finitely many µ.
Therefore the operators Uq and U are defined on the noncompleted Grothendieck
ring K [F ].

Now we follow the outline described in the beginning of this section.
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Theorem 4.14. For the operators K, K [g (m− 1, n)] : K̂ [Fg] → K̂ [Fg0 ] and U:
K̂ [Fg]→ K̂ [Fg] the following identity is true:

K [g (m− 1, n)] = K−KU.

Proof. Extend the mappings K [g (m− 1, n)] and K to the complexes of g-modules
with well-defined image in the completed Grothendieck group K̂ [Fg]. Consider a
resolution M• of Lλ and the exact sequence of complexes

0→ Φ•λ →M• → U•λ → 0.

Recall that Φ(i)
λ = U (g)

(
M i
)t, where t = 〈λ, z〉 = (λ, ε1) as in Remark 4.4. The

following statement follows from Lemmas 4.2 and 4.3.

Lemma 4.15.
(1) (M•)t is a resolution of Lλ (g (m− 1, n));
(2)

[(
M i
)t : Vν (g (m− 1, n))

]
=
[
Φ(i)
λ : Vν

]
;

(3) [K [Vν ] :Lµ (g0)]=
[
Kg(m−1,n) [Vν (g (m− 1, n))] :Lµ (g0 (m− 1, n))

]
=δµ,ν.

Corollary 4.16. K [Φ•λ] = K [g (m− 1, n)] [Lλ].

Obviously K [U•λ ] = KU [Lλ] and K [M•] = K [Φ•λ] + K [U•λ ]. Therefore

K [Lλ] = K [g (m− 1, n)] [Lλ] + KU [Lλ] .

Since this identity is true for an arbitrary λ ∈ P+, it implies the theorem. �
Corollary 4.17.

K = K [g (m− 1, n)] (1−U)−1 = K [g (m− 1, n)]
(
1 + U + U2 + . . .

)
.

Proof. Notice that U is a strictly lower triangular operator with respect to the
standard order ≤ on P+. Therefore, (1−U)−1 = 1 + U + U2 + . . . . �
Remark 4.28. If we were able to prove that complex U•λ is semi-simple then the
above relation is true for any q as it was shown in [14]. Unfortunately we can
prove only that all cohomology groups U iλ are semi-simple g-modules, which is not
sufficient for the general relation.

5. Decomposition of modules and the tensor product in the category F

In this section we study properties of the tensor product in the category F . In the
first few statement one can see a complete analogy with properties of tensoring
with a finite-dimensional module in the category O.

Below all the tensor products are over C.
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Theorem 5.1. Let E ∈ ObF , then F = Vλ ⊗ E ∈ ObF free, and [F : Vλ+µ] ≤
dimEµ. (We define a+ bε ≤ c+ dε iff a ≤ c, b ≤ d)

Proof. Chose some h-diagonal basis {e1, . . . , ek} ⊂ E with weights ν1, . . . νk in such
a way that n+ei belongs to the subspace generated by e1, . . . , ei−1. Let v be the
highest vector of Vλ. Put Fi = U (g) (v ⊗ ei) + Fi−1, F0 = 0. Then

0 = F0 ⊆ F1 ⊆ · · · ⊆ Fk = F

determines a filtration on F by g-modules such that if Fi/Fi+1 6= 0, it is either
Vλ+νi or V πλ+νi , depending on the parity of ei. �
Corollary 5.2. Let E ∈ ObF , S = Lλ ⊗ E. Then S has a filtration 0 = S0 ⊂
· · · ⊂ Sk = S such that Si/Si−1 = Xi where Xi is generated by a vector of highest
weight νi for some νi ∈ λ+ P (E). In fact the collection with multiplicities (νi) is
a subcollection of λ+ P (E).

Let X be a g-module. We say that v ∈ X is b-singular if bv ⊆ Cv.

Lemma 5.3. Any b-singular vector in Lλ⊗E has weight λ+ν for some ν ∈ P (E).
The dimension of b-singular subspace of weight ν + λ is not greater than dimEν .

Proof. Chose a basis {e1, . . . , ek} of E in the same way as we did in the proof of
Theorem 5.1. Any b-singular vector x ∈ Lλ⊗E can be written as x =

∑k
i=1wi⊗ei

for some wi ∈ Lλ. Let i be the maximal number such that wi 6= 0. Then the
condition n+x = 0 implies that n+wi = 0, i.e., wi is the highest vector of Lλ.
Therefore the weight of x is equal to λ+ ν, where ν is the weight of ei. Clearly the
dimension of b-singular vectors of weight λ+ ν is not greater than dimEν . �
Lemma 5.4. Let λ ∈ P , α ∈ ∆+

1 . Then Homg

(
Mπ
λ−α,Mλ

)
6= 0 iff (λ+ ρ, α) = 0.

Proof. The proof consists of four steps.

Step 1. We want to show that if Homg

(
Mπ
λ−α,Mλ

)
6= 0, then (λ+ ρ, α) =

0. Indeed, if Homg

(
Mπ
λ−α,Mλ

)
6= 0, then χλ = χλ−α. Theorem 1.8 implies

that f (µ) = (µ+ ρ, µ+ ρ) belongs to the image of Harish-Chandra homomor-
phism. Therefore if χλ = χλ−α, then (λ+ ρ, λ+ ρ) = (λ+ ρ− α, λ+ ρ− α).
Since (α, α) = 0, we obtain (λ+ ρ, α) = 0.

Step 2. Consider now an arbitrary Borel subalgebra b′ ⊂ g containing b0. Let
α be a simple odd positive root of b′, µ be a weight. Let Mµ (b′) = U (g)⊗U(b′)Cµ
be the Verma module for b′ with a highest weight vector vµ. Let (µ, α) = 0
and g−α ∈ g−α. One can easily check that w = g−αvµ is a b′-singular vector
of weight µ − α, i.e., Cw = Cπµ−α as b′-submodule. Therefore one can construct
ϕ ∈ Homg

(
Mµ−α (b′)π ,Mµ (b′)

)
by putting ϕ (vµ−α) = w for a highest weight

vector vµ−α ∈Mµ−α (b′)π. So in this case

Homg

(
Mµ−α (b′)π ,Mµ (b′)

)
6= 0.
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Step 3. Now assume that α is not simple with respect to b, and (λ+ ρ, α) = 0,
and

(λ+ ρ, β) 6= 0 and (λ− α+ ρ, β) 6= 0 for any β ∈ ∆+
1 such that β 6= α. (5.1)

Let us choose a Borel subalgebra b′ ⊂ g such that α is a positive simple root of b′

and b0 = b′0. Let ∆+
1 (b′) be the set of all odd positive roots with respect to b′. As it

was shown in [12], condition 5.1 implies that there are the following isomorphisms:

Mµ (b′) ∼= Mπk

λ , Mµ−α (b′) ∼= Mπk

λ−α,

where µ = λ −
∑
β∈∆+

1 r∆+
1 (b′) β, k = |∆+

1 r ∆+
1 (b′) |, and (µ, α) = 0 (see de-

tails in [12]). Therefore Homg

(
Mπ
λ−α,Mλ

)
= Homg

(
Mµ−α (b′)π ,Mµ (b′)

)
6= 0 by

Step 2.

Step 4. Let S =
{
λ ∈ P | Homg

(
Mπ
λ−α,Mλ

)
6= 0
}

. Then S is closed in the
Zariski topology on P ⊂ h∗. Let L = {λ ∈ P | (λ+ ρ, α) = 0}. By step 1 we know
that S ⊆ L. By step 3 any generic point in L belongs to S. Therefore S = L,
which proves the lemma. �
Theorem 5.5. Let α ∈ ∆+

1 , λ and λ− α ∈ P+. Then

Homg

(
V πλ−α, Vλ

)
= 0 if (λ+ ρ, α) 6= 0,

Homg

(
V πλ−α, Vλ

)
= C if (λ+ ρ, α) = 0.

Proof. Since Vλ ∼= U (g−1)⊗C Lλ (g0) as g0-module one can easily prove that

[Vλ : Lλ−α (g0)] = ε

and therefore
dim Homg

(
V πλ−α, Vλ

)
≤ 1.

If (λ+ ρ, α) 6= 0 then χλ 6= χλ−α. Hence Homg

(
V πλ−α, Vλ

)
= 0.

Let (λ+ ρ, α) = 0. Then by Lemma 5.4 there exists a nonzero homomorphism
ϕ:Mπ

λ−α → Mλ. Denote by ϕ̃ the composition of ϕ and the natural projection
Mλ → Vλ. We want to show that ϕ̃ 6= 0. It is sufficient to show that ϕ (vλ−α) /∈ Iλ,
where vλ−α is the highest vector of Verma module Mπ

λ−α.
Assume that ϕ (vλ−α) ∈ Iλ. Recall that Iλ = U (g−1) ⊗ Iλ (g0) as g0-module.

Since ϕ (vλ−α) is b0-singular, a slight modification of the proof of Lemma 5.3 implies
that λ − α = µ − γ for some γ ∈ ∆+

1 and some weight µ of b0-singular vector
in Iλ (g0). By the classical results µ + ρ = w (λ+ ρ) for some w ∈ W . So we
obtain that w (λ+ ρ) − λ − ρ = γ − α. Since by our assumption w 6= 1, we have
α − γ = β1 + β2, where β1 ∈ ∆+

0 , β2 = 0 or β2 ∈ ∆+
0 . Moreover (α, β1) = 1 and
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(λ+ ρ, β1) = 1. But then (λ+ ρ− α, β1) = 0, which contradicts the assumption
λ− α ∈ P+. So we have the nonzero homomorphism ϕ̃:Mπ

λ−α → Vλ. Since Im ϕ̃
is finite dimensional then Iπλ−α ⊆ Ker ϕ̃ (see Theorem 1.3 (2)). Therefore ϕ̃ can be
pushed down to the nontrivial homomorphism: V πλ−α → Vλ. �

Remark 5.6. Note that the above results can be interpreted as statements about
Ker (Vλ → Lλ).

Since we know that the multiplicity of Lλ−α (g0) in a g0-module Vλ is ε, we get

Corollary 5.7. Let α ∈ ∆+
1 , λ and λ − α ∈ P+. Consider Lλ as a g0-module.

Then

[Lλ : Lλ−α (g0)] = ε if (λ+ ρ, α) 6= 0,

[Lλ : Lλ−α (g0)] = 0 if (λ+ ρ, α) = 0.

Corollary 5.8. Let α ∈ ∆+
1 , λ and λ − α ∈ P+ and (λ+ ρ, α) = 0. If M• is a

resolution of Lλ by modules from F free then
[
M1 : Vλ−α

]
6= 0.

Proof. Consider the grading in Vµ induced by the decomposition g = g−1⊕g0⊕g1.
Obviously, the topmost component is an irreducible representation Lµ [g0] of g0.

First, it is clear that
[
M0 : Vλ

]
6= 0. Since M• is a projective resolution in the

category of g−-modules, it contains a direct summand with the 0-th term being
Vλ. Thus we can suppose M0 = Vλ. Since Im

(
M1 d−→M0

)
contains a submodule

of Vλ with highest weight λ − α, M1 contains Lλ−α [g0] as a g0-submodule. As a
g−-module, M1 '

⊕
Vνk , and the above argument shows that one of νk is ≥ λ−α.

Note that any Vµ ⊂ M1 such that µ does not satisfy µ ≤ λ is annihilated by d.
Thus there is a weight νk such that λ−α ≤ νk ≤ λ. Note that if d (Vνk ) intersects
with the component of Vλ of topmost grading, then it contains this component as
a whole, which is impossible. On the other hand, since Vνk contains Lλ−α [g0], it
should be in the component of Vνk of topmost degree. Thus Lλ−α [g0] ' Lνk [g0],
hence νk = λ− α. �

Let χ be a central character. Denote by pχ the projection functor F → Fχ. If
λ ∈ P+, we write pλ instead of pχλ .

Theorem 5.9. Let E = Lε1 (or L−δn), λ ∈ P+, χ is a character of Z, T =
pχ (Lλ ⊗E). Then:

(1) T∨ ∼= T ;
(2) If T 6= 0 then χ = χλ+εi or χλ+δj (correspondingly, χ = χλ−εi or χλ−δj )

for some i = 1, . . . ,m, j = 1, . . . , n;
(3) If #χ ≤ #λ then T is irreducible;
(4) If T is not irreducible, then T contains two up to multiplication by a scalar

b-singular vectors of weights µ and µ′, and µ′ = µ − α for some α ∈ ∆+
1
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such that (µ+ ρ, α) = 0. The submodule generated by a singular vector of
weight µ′ is irreducible. The weight µ is maximal in P (T ). Moreover, T is
indecomposable.

Proof. To prove (1) just notice that the functor ∨ commutes with pχ and (X⊗Y )∨=
X∨ ⊗ Y ∨, L∨λ = Lλ.

We present the proof of (2), (3) and (4) for the case E = Lε1 only. The case
E = L−δn is similar.

Let S = {λ+ ε1, . . . , λ+ εm, λ+ δ1, . . . , λ+ δn} ∩ P+. By Corollary 5.2 T
has a filtration with quotients X1, . . . , Xk, . . . Xl, such that each Xk is a module
generated by a vector of highest weight µk, where µk ∈ S and χµk = χ. One can
easily check that there are only three possibilities:

(1) χµ 6= χ for any µ ∈ S. Then T = 0 by Corollary 5.2. This proves (2).
(2) There is only one µ ∈ S such that χµ = χ. Then by Corollary 5.2 T is

generated by a vector of highest weight µ, and by Lemma 5.3 a b-singular
vector in T is unique up to multiplication by a scalar. This implies that T
is irreducible.

(3) There are two weights µ and µ′ ∈ S such that χµ = χµ′ = χ. In this case
µ = λ+ εi, µ′ = λ+ δj.

Thus l ≤ 2.
Notice that in the last case A (µ) = A (λ) ∪ {εi − δj}; therefore #χ = #µ =

#λ+ 1. So if #χ ≤ #λ then T is irreducible; thus (3) is proved.
So if T is not irreducible, then the third possibility takes place. Then by

Lemma 5.3 T has two up to proportionality b-singular vectors of weights µ and µ′,
µ′ = µ−α, where α = εi− δj . Corollary 5.2 implies that T is included in the short
exact sequence

0→ X (µ)→ T → X ′ (µ′)→ 0,

where X (µ) is generated by a vector of highest weight µ and X ′ (µ′) is generated
by a vector of highest weight µ′. Hence

P (T ) = P
(
X (µ)

)
∪ P

(
X ′ (µ′)

)
,

and µ is the maximal weight of T .
The submodule of T generated by a b-singular vector of weight µ′ does not

contain any other singular vector, and therefore is irreducible.
It is left to prove that T is indecomposable. By the exact sequence above and the

fact that T has two up to proportionality b-singular vectors, if T is decomposable,
then T = Lµ⊕Lπµ′ . Assume that this is true. Consider a minimal resolution of Lλ:

0← Vλ ←M1 ←M2 ← . . . , where M i ∈ ObF free.

Now the complex N• = pχ (M• ⊗C E) is a resolution of T . If T = Lµ ⊕ Lπµ′ ,
then by Corollary 5.8

[
N1 : Vµ′

]
6= 0. By Theorem 5.1 there is ν ∈ P+ such that
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M1 : Vν

]
6= 0 and either µ′ = ν + εp for some 1 ≤ p ≤ m or µ′ = ν + δq for some

1 ≤ q ≤ n. Now recall that µ′ = λ + δj . Lemma 1.14 (2) implies that ν < λ,
χν = χλ, and therefore the only possible case is ν = λ + δj − εp, where p is such
that (λ+ ρ, εp − δj) = 0. The identity

(µ′ + ρ, εi − δj) = (λ+ ρ+ δj , εi − δj) = 0

implies that
(λ+ ρ, εp) = (λ+ ρ, εi) + 1.

The last identity can be written as

(λ+ ρ, εp − εi) = 1.

But then
(λ+ ρ+ εi, εp − εi) = 0.

Since µ = λ + εi ∈ P+ the weight λ + ρ + εi must be regular, and we get a
contradiction. �

6. Recurrence on Uλ,µ

Here we write some recurrent relations for polynomials Uλ,µ. The recurrence is very
simple if λ is typical (see the definition below) with respect to a maximal parabolic
subgroup p or p̃ (Theorem 6.2), or if the associated atypical root is not the highest
odd root ε1 − δn (Lemma 6.4). However, if the the atypical root is ε1 − δn, the
recursion essentially requires us to consider 4 different subcases, summarized in
Corollary 6.26. This section is the most technical section of the paper.

Note that while the recurrence below expresses Uλ,µ in terms of Uλ,µ [g (k, l)],
Remark 4.7 shows that the latter quantities are in fact Uλ′,µ′ for superalgebras
gl (k|l), so one can apply the same formulae to express them via Uλ,µ [g (k, l)] for
yet smaller values of λ, µ, k, or l. Thus the recurrence relations discussed here
form a complete system.

Consider the decomposition p = k ⊕ r of a parabolic subalgebra p ⊂ g into the
reductive part and the nilpotent ideal. Let ∆p

1 ⊂ ∆1 consist of α ∈ ∆1 such that
gα ⊆ r. Recall that the degree of atypicality of λ is the cardinality of the set A (λ),
which was defined in Section 1.

In what follows p and p̃ are the standard maximal parabolic subgroups.

Lemma 6.1. Let λ ∈ P+. Then |A (λ) ∩∆p

1| ≤ 1 and |A (λ) ∩∆p̃

1| ≤ 1.

Proof. Obviously, ∆p

1 = {ε1 − δj | j = 1, . . . , n}. Assume that (λ+ ρ, ε1 − δp) =
(λ+ ρ, ε1 − δq) = 0 for some p 6= q. Then (λ+ ρ, δp − δq) = 0. But λ+ ρ must be
regular, since λ ∈ P+. Thus we obtain a contradiction.
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The case p̃ can be done in the same way using ∆p̃

1 = {εi − δn | i = 1, . . . ,m}. �

A weight λ ∈ P+ is called typical with respect to p if A (λ)∩∆p

1 = ∅. Otherwise
λ is called atypical with respect to p. The unique root α ∈ ∆p

1 such that (λ+ ρ, α) =
0 is called the atypical root of λ with respect to p. In the same way define typical
and atypical weights with respect to p̃.

Theorem 6.2. If λ ∈ P+ is typical with respect to p (or p̃), then

Uλ = 0, Φ0
λ = Lλ, Φiλ = 0 for i ≥ 1

(correspondingly, Ũλ = 0, Φ̃0
λ = Lλ, Φ̃iλ = 0 for i ≥ 1).

Proof. By Lemma 4.8 if Uλ,µ 6= 0 (correspondingly Ũλ,µ 6= 0), then µ < λ and
χµ = χλ. Hence µ = λ− α1 − · · · − αr (as in Lemma 1.11). If λ is atypical with
respect to p (correspondingly, p̃) then all αi /∈ ∆p

1 (correspondingly, αi /∈ ∆p̃

1).
That implies (λ, ε1) = (µ, ε1) (correspondingly, (λ, δn) = (µ, δn)). This contradicts
another condition of Lemma 4.8 (λ− µ, ε1) > 0 (correspondingly, (λ− µ, δn) > 0).
Therefore Uλ,µ = 0 (correspondingly, Ũλ,µ = 0) for any µ ∈ P+. �

Corollary 6.3. Let λ, µ ∈ P+, µ = λ + δn, and λ and µ are both typical with
respect to p̃. Then pµ (Lλ ⊗ Lε1) = Lµ.

Proof. Note that #λ = #µ. Therefore by Theorem 5.9 (3) pµ (Lλ ⊗ Lε1) is ir-
reducible. So we have to show that pµ (Lλ ⊗ Lε1) 6= 0. We use the following
isomorphism of sheaves on G/P̃ :

p∗µ

(
Õ∗λ ⊗O Õ

(
L∗ε1
)) ∼= Õ∗µ.

Recall that Õ (Lε1) is the trivial sheaf on G/P̃ . By Lemma 4.9 (2) one has

pµ
(
H0
G/P̃

(
Õ∗λ
)∗
⊗ Lε1

)
= H0

G/P̃

(
Õ∗µ
)∗
.

Recall that λ and µ are typical with respect to p̃. Therefore by Theorem 6.2 and
Lemma 4.11

H0
G/P̃

(
Õ∗λ
)∗

= Φ̃0
λ = Lλ,H

0
G/P̃

(
Õ∗µ
)∗

= Φ̃0
µ = Lµ.

That proves the statement. �

Notation: if X ∈ ObF then (a+ εb)X denotes the direct sum of a copies of X
and b copies of Xπ.
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Lemma 6.4. Let λ ∈ P+ be atypical with respect to p (or p̃) and α ∈ ∆p

1 (cor-
respondingly, ∆p̃

1) be atypical root. Assume that α = ε1 − δk (correspondingly,
α = εk − δn) and

U iλ [g (m, k)] =
⊕
µ∈Mi

aµLµ (g (m, k)) ,

(correspondingly, Ũ iλ [g (k, n)] =
⊕
µ∈Mi

aµLµ (g (k, n))).

Then

U iλ =
⊕
µ∈Mi

aµLµ (correspondingly, Ũ iλ =
⊕
µ∈Mi

aµLµ).

Remark 6.5. Formally µ ∈ Mi does not have to be in P+; it might be only
dominant with respect to g (m, k) or g (k, n). But actually it never happens because
of Lemma 4.8. The same is true for Theorems 6.13 and 6.15 below.

Proof. We prove the lemma for p, the case of p̃ is similar.
Start with assumption n = k + 1, after which we do the induction on n− k.
We use the geometric definition of Φ and U given by Lemma 4.11. Consider the

parabolic subalgebra q = p∩ p̃. The reductive part of q is g (m−1, n−1). Consider
the sheaf S∗λ on G/Q induced by the irreducible representation Lλ (g (m−1, n−1))∗

with trivial action of the nilpotent ideal of q. We are going to evaluate the coho-
mology of S∗λ using two projections p:G/Q→ G/P and p̃:G/Q→ G/P̃ . The fiber
of p is isomorphic to P/Q ∼= G (m− 1, n) /P̃ (m− 1, n), the fiber of p̃ is isomorphic
to P̃ /Q ∼= G (m,n− 1) /P (m,n− 1).

Observe that λ is typical with respect to p̃, therefore with respect to p̃ (m− 1, n).
By Theorem 6.2 we have p∗ (S∗λ) = H•p (S∗λ) = O∗λ. This implies

Hi
G/Q (S∗λ)∗ = Hi

G/P (O∗λ)∗ = Φiλ. (6.1)

Now evaluate p̃∗ (S∗λ). It is given by cohomologiesHi
p̃ of S∗λ on the fiber G(m,n−1)/

P (m,n− 1). Namely, the following relations are true:(
Hi
p̃ (S∗λ)

)∗
= Φiλ [g (m,n− 1)] ;

therefore (
Hi
p̃ (S∗λ)

)∗
= U i+1

λ [g (m,n− 1)] for i > 0,

and the sequence

0→ L∗λ (g (m,n− 1))→ H0
p̃ (S∗λ)→

(
U1
λ [g (m,n− 1)]

)∗ → 0

is exact.
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By conditions of the theorem

U iλ [g (m,n− 1)] =
⊕
µ∈Mi

aµLµ (g (m,n− 1)) ;

therefore

p̃i∗ (S∗λ) =
⊕
µ∈Mi

aµÕ∗µ for i > 0,

0→ Õ∗λ → p̃0
∗ (S∗λ)→

⊕
µ∈M1

aµÕ∗µ → 0.

Now notice that any µ ∈ Mi is typical with respect to p̃. Indeed, we have to
check that (µ+ ρ, εi − δn) 6= 0 for any i = 1, . . . ,m. Recall that (λ+ ρ, ε1 − δk) =
0. Since λ ∈ P+, by Remark 1.2 (λ+ ρ, εi) ≤ (λ+ ρ, ε1) and (λ+ ρ,−δk) <
(λ+ ρ,−δn). Therefore (λ+ ρ, εi − δn) < 0. Recall that by Lemma 4.8 χµ = χλ
and µ < λ, therefore µ = λ−α1−α2−· · ·−αs for some αj ∈ ∆+

1 , (λ+ ρ− α1 − . . .
−αj , αj+1) = 0. One can easily see from these conditions that αj = εr − δp with
p ≤ k for any j = 1, . . . , s. Therefore

(αj , εi − δn) = 0 or 1; (µ+ ρ, εi − δn) = (λ+ ρ− α1 − · · · − αs, εi − δn) < 0.

Thus Hi
(
Õ∗µ
)

= 0 for i > 0,H0
(
Õ∗µ
)∗

= Lµ by Theorem 6.2. Recalling 6.1 we
obtain

Hi (S∗λ)∗ = Φiλ = H0 (p̃i∗ (S∗λ)
)∗
.

This provides the desired identity for U iλ. �
Remark 6.6. We are going to evaluate Uλ by induction on m and n. The last
lemma together with Remark 4.7 allow us to reduce our calculation to the following
case: λ is atypical with respect to p or p̃, and the corresponding atypical root is
α = ε1 − δn. In the rest of this section we work under this assumption.

Lemma 6.7. Let λ ∈ P+ be atypical with respect to p, and α = ε1− δn be atypical
root. Then Uλ = Ũλ and Φλ = Φ̃λ.

Proof. The proof follows from the definition of U and Ũ applied to a minimal
resolution of Lλ. Lemma 1.11 implies that U•λ = Ũ•λ . �
Remark 6.8. If λ =

∑m
i=1 aiεi +

∑n
j=1 bjδj ∈ P+ satisfies the conditions of Re-

mark 6.6, then there are four different cases which we consider separately below:
(1) a1 > a2, bn−1 > bn. Then λ− α ∈ P+ and λ− ε1 is typical with respect to

p;
(2) a1 > a2, bn−1 = bn. Then λ−α /∈ P+, λ− ε1 ∈ P+ is atypical with respect

to p with the atypical root ε1 − δn−1;
(3) a1 = a2, bn−1 > bn. Then λ−α /∈ P+, λ+ δn ∈ P+ is atypical with respect

to p̃ with the atypical root ε2 − δn;
(4) a1 = a2, bn−1 = bn. Then λ− α /∈ P+, λ− ε1, λ+ δn /∈ P+.
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Theorem 6.9. If λ satisfies the condition (1) of Remark 6.8, then

U iλ
∼=
(
U i+1
λ−α

)π
for i > 1;[

U1
λ

]
= ε

[
U2
λ−α

]
+ ε [Lλ−α] + [Rλ] ,

where Rλ is a g-module such that [Rλ : Lµ] ≤ ε
[
U1
λ−α : Lµ

]
for any µ ∈ P+.

Proof. We start with the following lemma.

Lemma 6.10. If λ satisfies the condition (1) of Remark 6.8 then there is the
following exact sequence of sheaves on G/P :

0→ Oλ → (pλ (Oλ−ε1 ⊗O O (Lε1)))→ Oπλ−α → 0. (6.2)

Proof. Let us study Lλ−ε1 (p) ⊗ Lε1 as p-module. Note that Lε1 has a filtration
with two irreducible quotients:

0→ Lε1 (p)→ Lε1 → Lε2 (p)→ 0.

The module Lε1 (p) is 1-dimensional, and Lε2 (p) is irreducible. Therefore Lε1 (p)⊗
Lλ−ε1 (p) = Lλ (p), and Lε2 (p)⊗ Lλ−ε1 (p) has a filtration:

0→ A→ Lλ−ε1 (p)⊗ Lε2 (p)→ Lλ−α (p)π → 0,

see Corollary 6.3. Note that pλO (A) = 0, since any irreducible subfactor of A has
the highest weight λ− ε1 + εi for i > 1 or λ− ε1 + δj for j < n (see Remark 4.10).
Therefore pλ (Oλ−ε1 ⊗O Oε2) = Oπλ−α, and

0→ Oλ → (pλ (Oλ−ε1 ⊗O O (Lε1)))→ Oπλ−α → 0.

�
Corollary 6.11. If λ satisfies the condition (1)of Remark 6.8 then there is the
following exact sequence:

· · · → Φiλ → pλ
(
Φiλ−ε1 ⊗ Lε1

)
→
(
Φiλ−α

)π → Φi−1
λ → . . . (6.3)

Proof. Consider the sequence dual to (6.2)

0→
(
Oπλ−α

)∗ → (
pλ∗

(
O∗λ−ε1 ⊗O O

(
L∗ε1
)))
→ O∗λ → 0.

Write the corresponding long exact sequence of cohomologies

· · · → Hi
G/P

(
Oπλ−α

)∗ → Hi
G/P

(
pλ∗

(
O∗λ−ε1 ⊗O O

(
L∗ε1
)))
→ Hi

G/P (O∗λ)→ . . .
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By Lemma 4.9

Hi
G/P

(
pλ∗

(
O∗λ−ε1 ⊗O O

(
L∗ε1
)))

= pλ∗
(
Hi
G/P

(
O∗λ−ε1

))
⊗ L∗ε1 .

Take the dual and use the property Hi
G/P

(
O∗µ
)

=
(
Φiµ
)∗. �

Now we will use the sequence (6.3) to prove the theorem. Note that λ− ε1 is
typical with respect to p. Therefore Φiλ−ε1 = 0 for i > 0, Φ0

λ−ε1 = Lλ−ε1 . This
implies that the sequence (6.3) splits in very short pieces. Namely, if i > 0, then(
Φi+1
λ−α

)π ∼= Φiλ, therefore
(
U i+1
λ−α

)π ∼= U iλ for i > 1, which proves the first part of
the theorem.

In case i = 0 one has the following exact sequence:

0→
(
Φ1
λ−α

)π → Φ0
λ

d−→ pλ (Lλ−ε1 ⊗ Lε1)→
(
Φ0
λ−α

)π → 0 (6.4)

Put Tλ = pλ (Lλ−ε1 ⊗ Lε1). We have a situation as in Theorem 5.9 (4), namely:

0→ X (λ)→ Tλ → X ′ (λ− α)→ 0,

where X (λ) is generated by a vector of highest weight λ, and X ′ (λ− α) is gen-
erated by a vector of highest weight λ − α. We claim that dΦ0

λ = X (λ). Indeed,
if M• is a minimal resolution of Lλ, then M0 = Vλ. Then by definition Φ0

λ is a
quotient of φ(λ,ε1) [g, p]M0 = Vλ.

As follows from Theorem 5.9 (4), X (λ) contains exactly two up to proportion-
ality b-singular vectors vλ and vλ−α. Hence X (λ) has the unique minimal quotient
isomorphic to Lλ and the unique minimal submodule isomorphic to Lπλ−α. We
express the last statement in terms of two short exact sequences

0→ Sλ → X (λ)→ Lλ → 0

and
0→ Lπλ−α → Sλ → Rλ → 0.

By the sequence 6.4 we have
[
U1
λ

]
= ε

[
U2
λ−α

]
+ ε [Lλ−α] + [Rλ]. It is left to prove

the following lemma.

Lemma 6.12. [Rλ : Lµ] ≤ ε
[
U1
λ−α : Lµ

]
for any µ ∈ P+.

Proof. As we see from the sequence 6.4, Tλ is indecomposable and has the unique
submodule and the unique quotient isomorphic to Lπλ−α. Note that [Tλ : Lλ−α] =
2ε, and there is the unique subquotient Bλ given by

0→ Bλ → Tλ/L
π
λ−α → Lπλ−α → 0.



640 V. Serganova Selecta Math.

Since T∨λ ∼= Tλ, B∨λ ∼= Bλ. Recall that Bλ has the submodule X (λ) /Lπλ−α. This
submodule has the unique irreducible quotient, and that quotient is isomorphic to
Lλ. By selfduality, Bλ must have a quotient with the unique irreducible submodule,
isomorphic to Lλ. Let this quotient be Bλ/N . We claim that Rλ ⊆ N . Indeed, if it
is not so, then Rλ/Rλ ∩N is a nontrivial submodule of Bλ/N . Since [Rλ : Lλ] = 0
we get the contradiction.

Note that
0→ X (λ) /Lπλ−α → Bλ →

(
U1
λ−α

)π → 0,

0→ Lλ → Bλ/N → R∨λ → 0

are exact. Therefore if N ′ = N + X (λ) /Lπλ−α, then [N ′] = [N ] + [Lλ], and
(Bλ/N ′) ∼= R∨λ is a submodule in

(
U1
λ−α

)π. The last immediately implies the
lemma. �

Now the theorem is proved completely. �
Theorem 6.13. If λ satisfies the condition (2) of Remark 6.8, and

U iλ−α [g (m,n− 1)] =
⊕
µ∈Mi

aµLµ (g (m,n− 1)) ,

for some subset Mi ⊂ P+ (see Remark 6.5) and aµ 6= 0, then

U iλ =
⊕
µ∈Mi

εaµLµ; (6.5)

If λ satisfies the condition (3) of Remark 6.8, and

U iλ−α [g (m− 1, n)] =
⊕
µ∈Mi

aµLµ (g (m− 1, n)) ,

for some subset Mi ⊂ P+ and aµ 6= 0, then

U iλ =
⊕
µ∈Mi

εaµLµ. (6.6)

Proof. Let us prove the first statement.

Lemma 6.14. Under the conditions of the theorem U iλ
∼= pλ

(
U iλ−ε1 ⊗ Lε1

)
.

Proof. Theorem 5.9 (3) implies that there is the following exact sequence of p-
modules:

0→ Lλ (p)→ Lλ−ε1 (p)⊗ Lε1 → A → 0.
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This isomorphism induces the isomorphism of sheaves

pλ (Oλ−ε1 ⊗O O (Lε1)) ∼= Oλ,

since pλ (A) = 0.
The same arguments as in the proof of Lemma 6.10 and Corollary 6.11 imply

in this case the relation
Φiλ ∼= pλ

(
Φiλ−ε1 ⊗ Lε1

)
.

For i > 1 this provides U iλ ∼= pλ
(
U iλ−ε1 ⊗ Lε1

)
. For i = 1 look at the exact

sequences:

0→ U1
λ → Φ0

λ → Lλ → 0,

0→ U1
λ−ε1 → Φ0

λ−ε1 → Lλ−ε1 → 0,

By Theorem 5.9 (3) pλ(Lλ−ε1⊗Lε1)=Lλ, this implies the relation U1
λ
∼= pλ(U1

λ−ε1⊗
Lε1). �

Let us evaluate U iλ−ε1 . The weight λ− ε1 is atypical with respect to p with the
atypical root β = ε1− δn−1. We can express U iλ−ε1 in terms of U iλ−ε1 [g (m,n− 1)]
using Lemma 6.4. Namely, if

U iλ−ε1 [g (m,n− 1)] =
⊕
ν∈Ni

aνLν (g (m,n− 1)) ,

for some Ni ⊆ P+ and aν 6= 0, then

U iλ−ε1 =
⊕
ν∈Ni

aνLν .

Thus we have U iλ =
⊕
ν∈Ni

aνpλ (Lν ⊗ Lε1).

Any ν ∈ Ni satisfies the conditions of Lemma 4.8:

ν < λ− ε1, χν = χλ−ε1 , (ν, ε1) < (λ− ε1, ε1) .

By Lemma 1.11 these conditions imply that ν = λ − ε1 − α1 − · · · − αr, where
αi ∈ ∆+

1 and (λ− ε1 + ρ− α1 − · · · − αj , αj+1) = 0. One can choose the order of
roots in such a way that α1 = β = ε1−δn−1. Obviously ν+δn = λ−α−α1−· · ·−αr
satisfies all conditions of Lemma 1.11, hence χλ = χν+δn . On the other hand, ν
and ν+ δn are typical with respect to p̃; therefore by Corollary 6.3 pλ (Lν ⊗ Lε1) =
Lπν+δn . Hence the following formula takes place:

U iλ =
⊕
ν∈Ni

εaνLν+δn .
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Finally, by Remark 4.6 we have

U iλ−α [g (m,n− 1)] = U iλ−ε1+δn [g (m,n− 1)] =
⊕
ν∈Ni

aνLν+δn (g (m,n− 1)) ,

and one gets formula (6.5) after substituting µ = ν + δn.
The second statement of the theorem is “symmetric” to the first one. By

Lemma 6.7 it is sufficient to prove the statement for Ũλ. One can do it in the
same way as the first one (change ε1 to −δn and g (m,n− 1) to g (m− 1, n)). �
Theorem 6.15. Let λ ∈ P+satisfy the condition (4) of Remark 6.8 and

U iλ−α [g (m− 1, n− 1)] =
⊕
µ∈Mi

aµLµ (g (m− 1, n− 1)) ,

for some Mi ⊂ P+ (see Remark 6.5) with aµ 6= 0; then

U i+1
λ =

⊕
µ∈Mi

εaµLµ,

and U1
λ = 0.

This is the most difficult part of calculation and to do it we have to prove several
preliminary statements.

Lemma 6.16. Let µ be some weight atypical with respect to p, and α = ε1− δk be
the atypical root such that µ− α is dominant. Then pµ−ε1 (Lµ ⊗ L−δn) = 0.

Proof. First, one can easily check that A(µ) = A(µ − ε1) ∪ {α}; therefore #(µ −
ε1) < #µ. Hence pµ−ε1 (Lµ ⊗ L−δn) is irreducible by Theorem 5.9 (3). Thus, if
pµ−ε1 (Lµ ⊗ L−δn) 6= 0, then pµ−ε1 (Lµ ⊗ L−δn) = Lπµ−ε1 . Assume that the last
happens. Then obviously,

pµ−ε1 (Lµ (g (m, k))⊗ L−δk (g (m, k))) = Lµ−ε1 (g (m, k))π .

Therefore without loss of generality one can assume that k = n.
There is an isomorphism of sheaves

Oπµ−ε1 ∼= pµ−ε1 (Oµ ⊗O O (L−δn)) ,

that induces the isomorphism(
Φ0
µ−ε1

)π
= pµ−ε1

(
Φ0
µ ⊗ L−δn

)
.

Notice that µ−ε1 is typical with respect to p and therefore
(
Φ0
µ−ε1

)π = Lπµ−ε1 , but µ
is atypical with respect to p and satisfies the conditions of Theorem 6.9. In particu-
lar,

[
Φ0
µ : Lµ−α

]
=ε,

[
Φ0
µ : Lµ

]
=1. We can say for sure that pµ−ε1

(
Lπµ−α ⊗ L−δn

)
=

Lπµ−ε1 . Indeed, Lπµ−ε1 is the submodule in the tensor product generated by the ten-
sor product vµ−α ⊗ v−δn of highest weight vectors vµ−α ∈ Lπµ−α and v−δn ∈ L−δn .
Therefore pµ−ε1 (Lµ ⊗ L−δn) must be zero. �
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Lemma 6.17. Let λ ∈ P+ satisfy the condition (4) of Remark 6.8, and

U iλ−ε1 [g (m− 1, n− 1)] =
⊕
µ∈Mi

aµLµ (g (m− 1, n− 1)) ,

for some Mi ⊂ P+ and aµ 6= 0. Then

U i+1
λ−ε1 = Φiλ−ε1 =

⊕
µ∈Mi

aµLµ.

Proof. Put ν = λ− ε1. Let q ⊂ g be the parabolic subalgebra with the reductive
part g (m− 2, n). In other words, q = g (m− 2, n)+b. Then G/Q is the superman-
ifold of flags V 1|0 ⊂ V 2|0 ⊂ Cm|n. Let Fν be the sheaf induced by Lν (g (m− 2, n)).
The relation (ν + ρ, ε1 − ε2) = 0 implies that F∗ν is acyclic by the Borel-Weil-Bott
theorem. One can find a superversion of Borel-Weil-Bott in [11].

Consider the projection p:G/Q → G/P . Then p∗ (F∗ν )• = (Φ•ν [g (m− 1, n)])∗.
And one has the following distinguished triangle in the derived category of sheaves
on G/P :

0→ O
(
U•+1
ν [g (m− 1, n)]

)∗ → O (Φ•ν [g (m− 1, n)])∗ → O∗ν → 0 (6.7)

with acyclic middle term.
Lemma 6.4 implies

U iλ−ε1 [g (m− 1, n)] =
⊕
µ∈Mi

aµLµ (g (m− 1, n)) .

All µ ∈Mi satisfy the conditions (µ, ε1) = (ν, ε1) by Remark 4.6, and (µ, δj) ≤
(µ, δn−1) < (ν, δn−1) for j ≤ n − 1, as follows from Lemma 4.8. Hence they are
typical with respect to p. Therefore by Theorem 6.2 a cohomology group Hi

G/P of
the left term in the triangle (6.7) is trivial for any i > 0. Since the middle term
must be acyclic,

Hi
G/P (O∗ν) =

(
Φiν
)∗

= H0
G/P

(
U iν [g (m− 1, n)]

)∗
which proves the lemma. �

Lemma 6.18. Let λ satisfy the condition (4) of Remark 6.8, let µ ∈ P+ be such
that

[
U iλ : Lµ

]
6= 0. Then (µ, ε1) = (λ, ε1)− 1 and (µ, δn) = (λ, δn)− 1.

Proof. We use induction on m+n and assume that the lemma is true for g(m−1, n)
and g (m,n− 1).
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Suppose that our statement fails. Let (µ, ε1) = (λ, ε1)−k and (µ, δn) = (λ, δn)−
l. Assume that k > 1 and l ≤ k. (The case l > 1 and k ≤ l can be done in the
same way using p̃, ε1 and Ũ instead of p, −δn and U).

Consider the sheaf R = pµ−δn (Oλ ⊗O O (L−δn)). Then

Hi
G/P (R∗)∗ = pµ−δn

(
Φiλ ⊗ L−δn

)(π)
.

Under our assumption # (µ− δn) ≤ #µ. Therefore Lµ−δn = pµ−δn (Lµ ⊗ L−δn)
(compare with the last paragraph of the proof of Lemma 6.16) and

[
Φiλ : Lµ

]
6= 0;

thus R 6= 0. Theorem 5.9 (3) implies that the sheaf R is irreducible. Therefore
R = Oν or Oπν , and

[
Φiν : Lµ−δn

]
6= 0. By Theorem 5.9 (2) either ν = λ − εi,

i = 1, . . . ,m or ν = λ − δj , j = 1, . . . , n. We consider the following four cases
separately:

(1) ν = λ− ε1;
(2) ν = λ− δn;
(3) ν = λ− ε2;
(4) ν = λ− εi where 3 ≤ i ≤ m or ν = λ− δj where 1 ≤ j ≤ n− 1.
The case (1) does not happen because of Lemma 6.17. Indeed, by this lemma

Φiλ−ε1,µ−δn 6= 0 implies that

(µ− δn, ε1) = (µ, ε1) = (λ− ε1, ε1) = (λ, ε1)− 1,

i.e., k = 1 which is not the case.
The case (2) does not happen since λ − δn is typical with respect to p and

therefore
[
Φiν : Lµ−δn

]
= 0 because ν 6= µ− δn.

Let us assume that the case (3) takes place. Apply Lemma 6.16 for the subal-
gebra g (m− 1, n), α = ε2 − δn−1. Since R = pµ−δn (Oλ ⊗O O (L−δn)), we have

pλ−ε2 (Lλ (g (m− 1, n))⊗ L−δn (g (m− 1, n))) = Lλ−ε2 (g (m− 1, n)) .

By Lemma 6.16 this can happen only if λ − ε2 + δn−1 is not dominant. One can
easily see that in this case A (ν) = A (λ) ∪ {ε2 − δn−2} r {ε2 − δn−1}; therefore
#ν = #λ. Let us apply Theorem 6.13 to find U iν,µ−δn . We have

U iν,µ−δn = εU iν+δn−ε1,µ−δn [g (m,n− 1)] .

Notice that the weight ν + δn− ε1 satisfies the condition (4) of Remark 6.8 for the
subalgebra g(m,n − 1). Under the induction assumption, if U iν+δn−ε1,µ−δn [g(m,
n− 1)] 6= 0, then

(µ− δn, ε1) = (ν + δn − ε1, ε1)− 1.

By Remark 4.6 (µ− δn, δn) = (ν + δn − ε1, δn). Since ν = λ− ε2, this implies

(µ, ε1) = (λ, ε1)− 2 and (µ, δn) = (λ, δn)− 2.
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Therefore k = 2, l = 2. But then A (µ) = A (µ− δn) ∪ {ε1 − δn}, hence #µ ≥
# (µ− δn). Since #ν = # (µ− δn) and #µ = #λ, one gets a contradiction with
#ν = #λ. This excludes the case (3) as well.

So only the last case takes place. But then ν and µ− δn satisfy our assumption
with the same k and with l decreased by 1. Since l is positive we can not decrease
it infinitely and therefore after finitely many repetitions of the previous arguments
we will come to the case l = 0 and therefore to a contradiction. �
Corollary 6.19. If U iλ,µ 6= 0 then pλ−ε1 (Lµ ⊗ L−δn) = Lµ−δn.

Proof. First, notice that # (λ− ε1)=#λ=#µ. Therefore # (µ− δn)≤# (λ− ε1)
and by Theorem 5.9 (3) pλ−ε1 (Lµ ⊗ L−δn) is irreducible. We know for sure that
[Lµ ⊗ L−δn : Lµ−δn ] = 1. Thus we have to prove only that χλ−ε1 = χµ−δn .

By Lemmas 4.8 and 1.11 µ = λ − α1 − · · · − αs such that (µ+ ρ− α1 − . . .
−αi, αi+1) = 0. One can see from this condition and (λ− µ, ε1) = (λ− µ, δn) = 1
that exactly one αi coincides with α = ε1 − δn, and (αj , ε1) = (αj , δn) = 0 for
j 6= i. Therefore µ− δn = λ− ε1 − α1 − · · · − αj−1 − αj+1 − · · · − αs satisfies the
conditions of Lemma 1.11. Hence χλ−ε1 = χµ−δn . �
Proof of theorem 6.15. We use the isomorphism of sheaves on G/P :

pλ−ε1 (Oλ ⊗O O (L−δn)) ∼= Oπλ−ε1 .

This isomorphism implies the relation

pλ−ε1
(
Φiλ ⊗ L−δn

)
=
(
Φiλ−ε1

)π
.

This relation implies

pλ−ε1
(
U i+1
λ ⊗ L−δn

)
=
(
Φiλ−ε1

)π
, (6.8)

which is obvious for i > 0 and follows from pλ−ε1 (Lλ ⊗ L−δn) = 0 for i = 0.
Now apply Corollary 6.19. For any µ ∈ P+ such that U iλ,µ 6= 0 we have

pλ−ε1 (Lµ ⊗ L−δn) = Lµ−δn . Therefore,

U i+1
λ,µ = εΦiλ−ε1,µ−δn . (6.9)

Let
U iλ−ε1 [g (m− 1, n− 1)] =

⊕
ν∈Ni

aνLν (g (m− 1, n− 1)) ,

for some Ni ⊂ P+ and aν 6= 0; then by Lemma 6.17

Φiλ−ε1 =
⊕
ν∈Ni

aνLν.
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The formula (6.9) implies that U i+1
λ,ν+δn = U iλ−ε1,ν [g (m− 1, n− 1)]. It is left to

show that U i+1
λ is a semi-simple g-module. One can easily check that the functors:

pλ (• ⊗ Lε1) :Fχλ−ε1 → Fχλ and pλ−ε1 (• ⊗ L−δn) :Fχλ → Fχλ−ε1

are adjoint. Therefore

Homg

(
pλ (Lν ⊗ Lε1) , U i+1

λ

)
= Homg

(
Lν , pλ−ε1

(
U i+1
λ ⊗ L−δn

))
= Homg

(
Lν ,Φiλ−ε1

)
.

Notice that (ν + ε1, ε1) = (λ, ε1). Hence Homg

(
Lν+ε1 , U

i+1
λ

)
= 0, therefore

pλ (Lν ⊗ Lε1) 6= Lν+ε1 . Then by Theorem 5.9 (4) pλ (Lν ⊗ Lε1) is indecompos-
able with unique minimal quotient Lπν+δn . Therefore

dim Homg

(
pλ (Lν ⊗ Lε1) , U i+1

λ

)
≤ ε dim Homg

(
Lν+δn , U

i+1
λ

)
.

Therefore

dim Homg

(
Lν+δn , U

i+1
λ

)
≥ ε dim Homg

(
Lν ,Φiλ−ε1

)
= εaν .

This implies U i+1
λ =

⊕
ν∈Ni

εaνLν+δn .

To finish the proof of the theorem observe that by Remark 4.6

U iλ−α [g (m− 1, n− 1)] = U iλ−ε1+δn [g (m− 1, n− 1)] =
⊕
µ∈Mi

aµLµ,

where Mi = Ni + δn. �
Corollary 6.20. For any µ, λ ∈ P+,

∑∞
i=1

[
U iλ : Lµ

]
is equal to 0,1 or ε.

Proof. Theorems 6.2, 6.9, 6.13 and 6.15 actually give some recurrence relations
for U iλ involving U iλ−α and U iλ−α [g (k, l)]. After looking at these relations one can
easily see that the property which we have to prove is invariant under the recurrence
procedure. �
Lemma 6.21. In the setting of Theorem 6.9, Rλ = 0.

Proof. First we prove two statements.

Lemma 6.22. Let λ satisfy the condition (1) of Remark 6.8 and (λ, ε1 − ε2)� 0,
(λ, δn−1 − δn)� 0. Then Rλ = 0.

Proof. We have to show the existence of the following exact sequence

0→ Lπλ−α → H0
G/P (O∗λ)∗ → Lλ → 0.
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Recall that a super sheaf O∗λ is a usual sheaf on G0/P0. As it was shown in [11] it
has a filtration with quotients O∗µi where µi = λ−

∑
β∈Si β for some subset Si ⊆

∆+
1 . Apply the usual Borel-Weil-Bott theorem to this filtration. The condition

(λ, ε1 − ε2)� 0 implies that

Hj
G0/P0

(
O∗µi

)
= 0 for j > 0,

and
H0
G0/P0

(
O∗µi

)
= L∗µi (g0) .

Hence the g-module H0
G/P (O∗λ)∗ can have only Lµi (g0) as g0-components. The

condition (λ, ε1 − ε2) � 0, (λ, δn−1 − δn) � 0 implies that χµi = χλ only for
µi = λ −

∑
β∈Ri β or µi = λ − α −

∑
β∈Ri β for some subset Ri ⊆ ∆+

1 such that
(β, α) = 0 for any β ∈ Ri. In the latter case (λ− µ, ε1) = 1.

Now note that if
[
H0
G/P (O∗λ)∗ : Lµ

]
6= 0 and µ 6= λ, then the above argument

implies that (λ− µ, ε1) = 1. Recall thatH0
G/P (O∗λ)∗ is a quotient of the generalized

Verma module Mλ (p) = U (g) ⊗U(p) Lλ (p), and
[
H0
G/P (O∗λ)∗ : Lµ

]
6= 0 implies

that [Mλ (p) : Lµ (p)] 6= 0. Therefore

[g/p⊗ Lλ (g (m− 1, n)) : Lµ (g (m− 1, n))] 6= 0.

Since g/p is isomorphic to the dual tautological module for g = g (m− 1, n),
one can apply Theorem 5.9 (2) in this case. So we have pµ (g/p⊗ Lλ (g (m− 1, n)))
is irreducible and therefore isomorphic to Lµ (g (m− 1, n)) for µ = λ− α.

Thus the only g-irreducible components of H0
G/P (O∗λ)∗ are Lλ and Lπλ−α. �

Lemma 6.23. Let λ and λ−α satisfy the condition (1) of Remark 6.8, and Rλ = 0.
Then Rλ−α = 0.

Proof. Consider the exact sequence

0→ X (λ) /Lπλ−α → Bλ →
(
U1
λ−α

)π → 0.

Recall that B∨λ ∼= Bλ. If Rλ = 0, then X (λ) /Lπλ−α = Lλ. Clearly [Bλ : Lλ] = 1.
Therefore Bλ = Lλ ⊕

(
U1
λ−α

)π, which implies
(
U1
λ−α

)∨ ∼= U1
λ−α. Then from

Corollary 6.20 we obtain that U1
λ−α is semi-simple. Now recall the exact sequences:

0→ X (λ− α)→ Tλ−α →
(
Φ0
λ−2α

)π → 0;

0→ Sλ−α → X (λ− α)→ Lλ−α → 0;

0→ Lλ−2α → Sλ−α → Rλ−α → 0.
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Recall also that Sλ−α is the quotient of U1
λ−α/U

2
λ−2α from (6.3) for λ−α. Therefore

Sλ−α is semi-simple and the last exact sequence splits. This implies in particular
that Rλ−α is a submodule in X (λ− α). But as we already showed X (λ− α) has
the unique irreducible submodule Lλ−2α. Contradiction. �

The above lemmas immediately imply Lemma 6.21, since for any λ satisfying
the condition (1) of Remark 6.8, one can find sufficiently large k for which λ+ kα
satisfies the condition of the first lemma. Then apply the second lemma and go
back to λ. �

Combining Theorem 6.9 and Lemma 6.21 we obtain

Theorem 6.24. If λ satisfies the condition (1) of Remark 6.8 then U iλ =
(
U i+1
λ−α

)π
for i > 1 and U1

λ
∼= Lπλ−α ⊕

(
U2
λ−α

)π.

Corollary 6.25. For any λ ∈ P+ the g-module U iλ is semi-simple.

Proof. Theorems 6.2, 6.24, 6.13 and 6.15 allow us to evaluate U iλ in terms of U•µ [k]
for µ ≤ λ and k = g (k, l) , k + l < m+ n. Thus we have some inductive procedure
which finally leads to g (1, 1). So we have to check the semi-simplicity for gl (1|1)
and atypical λ. The calculation in Example 4.5 does it. �

The next corollary just summarizes Theorems 6.24, 6.13 and 6.15.

Corollary 6.26. Let λ ∈ P+ be atypical with respect to p and α = ε1 − δk be the
atypical root. Then the following relations hold:

(1) If λ−α ∈ P+, then Uλ,µ = ε
(
q−1Uλ−α,µ

)
+ for µ 6= λ−α, and Uλ,λ−α = εq;

(2) If λ− α /∈ P+ but λ− ε1 ∈ P+, then Uλ,µ = εUλ−α,µ [g (m, k − 1)];
(3) If λ− α /∈ P+ but λ+ δn ∈ P+, then Uλ,µ = εUλ−α,µ [g (m− 1, n)];
(4) If λ− ε1 /∈ P+ and λ+ δn /∈ P+, then Uλ,µ = εqUλ−α,µ [g (m− 1, k − 1)].
Here ()+ has the same sense as in Section 2.

7. Proof of the main theorems

Here we solve the recurrence relations of the previous section in Lemma 7.1, which
permits an immediate proof of Theorems 2.2, 2.3.

We use again the notations introduced in Section 2. We use the embedding
g (k, l) ⊆ g. For all k ≤ m and l ≤ n we introduce operators

Qk,l:K
[
Fg(k,l)

]
⊗ C [q]→ K [F ]⊗ C [q] that send

[Lλ (g (k, l))] 7→ [Lλ] if λ ∈ P+,

[Lλ (g (k, l))] 7→ 0 if λ /∈ P+.
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Define also operators Uq,g(k,l):C [q]⊗K
[
Fg(k,l)

]
→ C [q]⊗K

[
Fg(k,l)

]
by

Uq,g(k,l) [Lλ (g (k, l))] =
∑
µ∈P

Uλ,µ [g (k, l)] [Lµ (g (k, l))] ,

and operators Uq [g (k, l)] :C [q]⊗K [F ]→ C [q]⊗K [F ] by

Uq [g (k, l)] [Lλ] = Qk,l ◦Uq,g(k,l) [Lλ (g (k, l))] .

Recall the convention that whenever the subscript q is omitted from the notation
for the operator, the specialization q = −1 is to be assumed.

Lemma 7.1. Let λ ∈ P+ be atypical with respect to p and α ∈ ∆p

1 be atypical root.
Then

Uq [Lλ] = s̃α [Lλ] .

Proof. We prove the statement by induction on (m,n) and the standard order
on P . Namely we assume that the statement is true for g (k, l), with k+ l < m+n
and for µ < λ.

Let λ− α ∈ P+. Then by the relation (1) of Corollary 6.26 one has

Uq [Lλ] = ε
(
q−1Uq [Lλ−α]

)
+ + εq [Lλ−α] .

By the induction assumption for λ− α we have

Uq [Lλ−α] = s̃α [Lλ−α] = Ξ ◦ σα (Tλ+ρ−α) .

Now axiom (2) implies that Uq [Lλ] = Ξ ◦ σα (Tλ+ρ). This proves the induction
step in this case.

Now consider the case: λ − α /∈ P+. We use the relations (2) − (4) of Corol-
lary 6.26. They can be written in a unified way as

Uq [Lλ] = εql(λ,α)−1Qk,lUq,g(k,l) [Lλ−α (g (k, l))] . (7.1)

Here numbers k, l vary depending on the relation between λ and α. Let β ∈ ∆p(k,l)
1

be the atypical root of λ − α with respect to p (k, l). There exists w ∈ Wλ+ρ−α
such that β = w (α). By the induction assumption for g (k, l):

Uq,g(k,l) [Lλ−α (g (k, l))] = Ξg(k,l)σβTλ+ρ−α.

Note that Qk,l ◦ Ξg(k,l) (Tλ+ρ−iα) = Ξ (Tλ+ρ−iα) for any i ∈ Z≥0, σβTλ+ρ−α =
σαTλ+ρ−α, and Ξ (Tλ+ρ−α) = 0. Using all that (7.1) can be rewritten as

Uq [Lλ] = Ξ
(
εql(λ,α)−1σαTλ+ρ−α + εqTλ+ρ−α

)
.

By axiom (2) the right hand side of this identity is equal to ΞσαTλ+ρ. This finishes
the proof. �
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Corollary 7.2.
1−U [g (k, l)] =

∏
α∈∆p(k,l)

1

(1− sα) .

Proof of Theorem 2.3. Theorem 4.14 implies the relation (induction on k):

K = K [g (0, n)] ◦
m∏
k=1

(1−U [g (k, n)])−1 .

Then by Corollary 7.2 we have the identity

K = K [g (0, n)] ◦
→∏

α∈∆+
1

(1− sα)−1
.

Note that K [g (0, n)] [Lµ] = [Lµ (g0)]. Therefore
∏
α∈∆+

1
(1 + εe−α) K [g (0, n)] =

Ψ. Now recall Lemma 3.4. It implies that

chLλ = Ψ ◦K [Lλ] = Ψ ◦
→∏

α∈∆+
1

(1− sα)−1 [Lλ] ,

which is the statement of Theorem 2.3. �
Proof of Theorem 2.2. To prove Theorem 2.2 we notice that ch:K [F ]→ Ch [F ] is
an isomorphism. Therefore

[Vλ] = ch−1 (chVλ) .

Theorem 2.3 implies

ch−1 =
←∏

α∈∆+
1

(1− sα) ◦Ψ−1,

where Ψ−1 (chVλ) = [Lλ] for any λ ∈ P+. Now Theorem 2.2 follows immedi-
ately. �
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