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de Boor—Fix Dual Functionals and Algorithms for
Tchebycheffian B-Spline Curves

P.J. Barry

Abstract. The de Boor-Fix dual functionals are a potent tool for deriving results
about piecewise polynomial B-spline curves. In this paper we extend these functionals to
Tchebycheffian B-spline curves and then use them to derive fundamental algorithms that
are natural generalizations of algorithms for piecewise polynomial B-spline algorithms.
Then, as a further example of the utility of this approach, we introduce “geometrically
continuous Tchebycheffian spline curves,” and show that a further generalization works
for them as well.

1. Introduction

Piecewise polynomial B-spline curves possess an elegant theory making them useful for
geometric modeling. For example, they have simple recursive algorithms for evaluation,
subdivision, and differentiation. Moreover, one particularly satisfying aspect of B-spline
curves is that much of their theory—such as the derivation of these algorithms—follows
in a coherent, economical manner from a few basic tools or principles such as knot
insertion, blossoming, or dual functionals (see, e.g., [10]).

There are many generalizations of B-spline curves. This raises the question—to what
extent do B-spline curve results extend to these generalizations? The answer is that
often the theory extends in an elegant manner. For example, geometrically continuous
splines are piecewise polynomial curves that rely on geometric, rather than parametric,
continuity. Many B-spline curve results extend to this setting. More specifically, two
recent works, [20] and [1], showed that the B-spline approaches of blossoming [16],
[17], and [19] and de Boor-Fix dual functionals, [6] and [7], extend to the geometrically
continuous setting; these generalizations then allow generalization of a number of B-
spline curve algorithms, e.g., evaluation, differentiation, knot insertion, and conversion
to other (e.g., Bernstein—Bézier) representations. The algorithms will, of course, become
more complicated, but the point is they extend in a natural manner.

As a second example, Lyche [13] showed that certain B-spline results, among them the
B-spline recurrence and a knot insertion identity, extend to Tchebycheffian B-splines.
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Tchebycheffian B-spline curves are a class of curves that generalize regular (i.e., piece-
wise polynomial) B-spline curves so as to allow curves in a space based on a Tchebycheff
system. This allows study of a wide class of curves containing not only piecewise poly-
nomials, but also curves such as some trigonometric splines. More recently, Pottman
extended the B-spline technique of blossoming to Tchebycheffian B-spline curves {14],
[15]. From this extension he then derived a number of results about Tchebycheffian
spline curves.

The purpose of this paper is to extend the de Boor-Fix dual functionals for (piecewise
polynomial) B-spline curves to Tchebycheffian B-spline curves and then to provide
examples of how the dual functionals induce algorithms that are natural generalizations
of piecewise polynomial B-spline algorithms. Then, as a further example of the utility of
this approach, we introduce “geometrically continuous Tchebycheffian spline curves,”
and show that a further generalization works for them as well. The algorithms produced
can be computationally complex, and so it is an open question as to whether they are
of direct computational interest, or if they should be considered primarily as tools for
further investigation (see Section 9 below). Nonetheless, the extension of the de Boor-
Fix dual functionals provides a potent tool for deriving numerous results about these
types of generalized spline curves. Moreover, although many details of this extension
are almost identical to those in the piecewise polynomial setting, there are also interesting
differences.

This paper is therefore closely related to the works [1], [13], [14], and [15], as well
as to fundamental Tchebycheffian spline results; however, it also contains significant
differences. Specifically, [14] and [15] use intersections of osculating linear flats to
define the blossom of Tchebycheffian splines, and from this tool derive results about
these curves. Here we rely on the de Boor-Fix dual functionals. These spproaches are
related, but are sufficiently different and are sufficiently powerful that both are valuable.
The extension to geometrically continuous Tchebycheffian splines parallels the work in
[1], but there are enough minor differences in this setting that providing the basic results
for this extension is useful. Some results here are similar to results in [13], but again we
use a different approach, have a different emphasis, and derive some different results.
Finally, this work relies heavily on fundamental results about Tchebycheffian splines,
and some results here are variants of well-known results, but other results are new or are
used in new ways.

This paper is structured as follows. Many of the results in this paper rely on results for
Tchebycheff spaces, and so in Section 2 we recall needed background and set notation.
In Section 3 we then extend the de Boor-Fix dual functionals to Tchebycheffian B-spline
curves, and prove some useful results about these functionals. Section 4 contains three
examples of the use of these functionals, when we use them to generate algorithms for
evaluation, subdivision, and differentiation. We then turn our attention to geometrically
continuous Tchebycheffian spline curves, first defining, in Section 5, the spline spaces
of interest, and then, in Section 6, proving results about functions in related spaces.
These results allow us, in Section 7, to extend the dual functionals, and in Section 8
we show the existence of “B-splines” for these spline spaces. In Section 9 we provide a
numerical example and briefly discuss some computational issues. Section 10 is devoted
to concluding remarks.
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2. Notation and Background

In this section we recall some results about Tchebycheffian splines and about the de Boor—
Fix dual functionals. Proofs of the Tchebycheff results can be found in Chapter 9 of [18].

We begin with a set of m + | functions ug(¢), . . . , u, () defined over an interval [a, b]
such thatu; € C™[a, blforalli.Forany0 <k <m,leta<gp <17 <:--- <17, <bbe
any sequence. This sequence may contain multiple instances of the same value, so from

the sequence form another sequence #y, . . ., z; where d+1 is the number of distinct values .
and #; is the (i 4+ 1)st smallest value in the original sequence. Also, letl;, fori =0, ...,d,
be the number of times the value ¢; appears in the original sequence. Now define
uo(to) ui(to) <o ue(to)
Duy(1o) Du; (to) -+ Dui(t)
D" ug(te) DY luito) - D lug()
uo(t1) ui(tr) e ()
m b)) z ;
OB D gy DM@ - DY)
ug(ta) ui(tq) 1)
D lug(ts) D luy(tg) oo DMTlug(ty)

Ug, ..., Uy
sequence of functions uo, . . ., Uy, is said to be an extended complete Tchebycheff system
(ECT-system). An (m + 1)-dimensional linear space U,,,; with a basis that is an ECT-
system is said to be an extended complete Tchebycheff space (ECT-space). An important
part of the theory of ECT-spaces relies on the existence of a canonical basis: given any
ECT-space, there exist weight functions w; € C™'[a, b], positive on [a, b}, such that:

(2) up(t) = wo(t), t
u(t) = wo(l‘)/ wi(sy) dsy,

wo(t)f wl(sl)/]"'/"h] Wi (Sp) dSpy - - - dsy,

is an ECT-system which is a basis for I4,,,. Conversely, given any w; € C™ [a, b],
and positive on [a, b], the functions defined by (2) form an ECT-system.

When working with ECT-spaces it is convenient, rather than using usual derivatives,
to use the differential operators Dy f := f, and

— f _
& Dl-f._D< ) i=1,...,m+1,

Wi—1
Lif = D;D;_y--- Dy, i=0,...,m+1.

IfD(tO""’Tk) >0foralla <t <--- <7 <bforallk =0,...,m, then the

Um(t) :
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Below we will use the fact that L;u; = 0 if i > j, and equals w; for i = j, for
alli =0,...,m+ 1,and j = 0,...,m. The operators L; are related to the usual
differential operators. In particular, a function f € U, has the property that, for any
T €(ab)andi € {0,...,m}, wehave D" f(t~) = D" f(z") forr =0, ...,i if and
onlyif L, f(r7) =L, f(zT) forr =0, ...,1i.

The best-known example of an ECT-space is the polynomials over any interval [a, b].
Letwy(t) = land w;(t) =ifori =1,...,m.Thenu;(t) = (t —a)' fori =0,...,m.

We will also use heavily the dual canonical ECT-system. Given any canonical basis
Ho, ..., Up, the dual system ug, ..., uy, is

4 ug(t) = 1,

t
L{T(t) = / wm(sm)dSM5

t Sm 52
/ wm(sm)f f wl(Sl)dSI-"dSm.

The associated operators D} and L} are given by Dy f = f and

1
Dif = Df, i=1...,m+1,
5) / Win—i4] f

Lif :=DiD;,---Dj, i=0,...,m+1.

u, (1) :

Below we will use the fact that L;“u;k = 0ifi > j, and equals 1 for i = j, for all
i=0,....m+land j=0,...,m

We assume throughout this work that uf, ..., u}, is also an ECT-system (for this to
occur it is sufficient that each w; be positive and be in C™*~:¢=D[g_ p]). Observe this
implies 24 := span{uj, ..., u;_,} is an ECT-space forr =1,...,m+ 1. We will also
assume that wg(r) = 1, which implies that constants are in the space. One result about
ECT-spaces that we will use heavily is that any function in an ECT-space of dimension
r + 1 can have at most r zeros. In particular, any function in 4, ; can have at most r
zeros over [a, b], counting multiplicities (see, e.g., Theorem 9.12 (and Theorem 9.3) of
[18]).

To define a spline space based on an ECT-space, we take aset of knotsa = #p < #; <

- < tg41 = b, and an associated set of multiplicities 1 < u; <mfori =1,...,k. For
simplicity, we will assume that 1o = gy = m + 1. Then the space of Tchebycheffian
splines with knots {f;} and multiplicities {u,} is given by

(6) S = {f: fle.s € Unsilg ey fori =0,..., &, and
D fay=D f@Hforr=0,....,m—p;,i=1,...,k}

LetK = Zf=1 ;. The dimension of S is then m + 1+ K. Moreover, S has “B-splines.”
That is, there exist functions {N;};—q....m+x in S with the following properties: first form
aknot sequence 1, - - . , Tan+1+& that implicitly contains the multiplicity information by
repeating each knot #; as often as its multiplicity. Then N; has properties: (i) the support
of N; = (%, Tizm+1); (i) N;(2) > Ofor ¢ € (7, Tpm+1); and (iid) Z?:JBK N;i(8) = up(?)
forall ¢t € [tw, tmrx+1] = la, b].
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In order to study properties of curves written in terms of this basis, in the next section
we examine a generalization of the de Boor—Fix form of the dual functional for B-splines.
In the usual (piecewise polynomial) case, the de Boor-Fix dual functionals are written
as

m D", D’
@) ,Xif . Z(_l)m—r o (T)D” f(7) ,
r=0

m!

where T € (7, Tipms1) and @;(t) == (Tipy — £) - - - (Tiym — 1). This is a well-defined
functional on the spline space with

)»,'Nj =(S,'j for all i, j,

i.e., the {A;} are the dual basis for the {N;}.

There are other forms of the dual functionals for the Tchebycheffian B-splines. For
example, there is a well-known integral form of the functionals (see [18]), and the
blossom will furnish yet another form [14]. Clearly each of these forms is related to the
others, but there are also enough differences that each form is valuable.

3. Generalization of the de Boor-Fix Functionals

In this section we generalize the de Boor—Fix form of the dual functionals to the Tcheby-
cheff setting.

Because of the simple form of the de Boor—Fix functionals—in particular, their reliance
on the polynomials ¢;—they provide an efficient tool for developing many B-spline
results. Our approach here is therefore to generalize these functionals, and then in the
next section to use them to study curves written in terms of the Tchebycheffian B-splines.

To define the generalized functionals we first note that the functions g; in the piecewise
polynomial case have zeros at m consecutive knots, and have lead coefficient (—1)™.
For the generalized functions—which we also denote by ¢;—we will use functions in
Uy, | that also have zeros at m consecutive knots, but which have lead coefficient (i.e.,
the coefficient of u}, in the expansion of the function in terms of the dual canonical
basis) equal to 1 rather than (—1)™. We use this normalization because these functions
have appeared previously in Tchebycheffian spline theory, e.g., in the Tchebycheffian
version of Marsden’s identity, or in an integral version of the Tchebycheffian B-spline
dual functionals [18]. Here we show these same functions appear in the de Boor-Fix
form of the dual functionals as well.

* Specifically, we let ¢; be the function in I, | with zeros at 7;y, ..., T4, and lead
coefficient 1. If one of the knots 7,11, ..., Ti1n is multiple, then ¢; has a zero there of
multiplicity the number of times that knot value appears in the sequence zj., ..., Tiym.
(A function f € U, | has a zero of multiplicity / at 7 if Lif(x) =0forj </and
L} f(r) # 0; similarly a function f € U, has a zero of multiplicity ! if L through
L;_ applied to f at T are zero but L; isn’t. However, this is equivalent in both cases to

Dof(zr)y=+--=Di1f(r)=0and D, f(x) #0.)
The function ¢; will always exist uniquely—we can write it as a ratio of determinants.
Let xp, ..., x, be any sequence, and define 4; to be the number of terms previous to x;

that have the same value as x; (observe the d; will not be the same as the ;). Next define
® Dy (xo, ..., X,) i= det[Lj u} (x:)];, j=0,...r-

r+l
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We can now write

DU* (ti+1,---,ti+ 9t)
© ¢ilt) = —= -
DU,: (ti—f-‘lv ey ti+m)

Because U, is an ECT-space, the denominator of this ratio is nonzero, and is, in fact,
the coefficient of ), () in the numerator. Moreover, it is easy to see that the numerator
does indeed have zeros at the desired values. The uniqueness of ¢; also follows since
any function in 24;, | can have at most m zeros.

We are now ready for the main result of this section.

Theorem 1. The functions

- Ly _,ei(T)L, f(T)
(10 L)) =) (=) "=

gg w,(T)
for v € (%, Tiwm+1) are linear functionals on S. Moreover, they have the property
that MN; = 8, j for i, j = 0,...,m + K—that is, they are the dual basis for the
Tchebycheffian B-splines.

, i=0,...,m+K,

Proof, We first show that A; is well defined on f at the knots. Then we show 4; is
independent of T € (1;, Ti+m+1)- That A; is linear is then straightforward.
So consider any ¢; € (7;, Ti4ms1). Now
0 GL f(ED)
w, ()

e L
(11) MO =Y (=1

r=0
Now since w, is at least C™*™—"r=1 and since ¢; € U, and is therefore C™,
L o (tj’L) = L;_,¢i(t]) and w,(t;“) = w, (1) forr = 0,...,m. Moreover, f is
C™ W att;, so
m—r @i (&)L f(57)
Wy (tj_)

7 L
(12) MHE) = Y1y
r=0

m

LY _ ()L, f(7
Lyl DL

r=m—pj+1 Wr (tj )

" LY _oi(t7 )L, f(tF
+ Z 1y m—r@i(t) f(,)‘

r=m—i;+1 w"(tj_)
But since L}, _,¢i(t;7) = L, _,¢i (tj.*) =0forr =m— i+ 1,...,m, the latter two
sums are 0, showing A; f (1) = 4: £ (¢).
To show A; f () is independent of T € (1;, Ti+my1), firstobserve thatforr =0, ..., m
both L* ¢ and (L, f)/w, are C' forall T € (i, Tim+1)\{fi+1, - - - » li4m). S0 consider,

for any such t,

(13 PHI@ _ Z(_l),[DLm_,wiu) L £+ L n(®) D(erm)]

Dt wr (T) wr(T)

r=0

= Z(—l)r[Lfn_,+1fpi(T)er(f) + L, 0 (T Lrp1 F (D]
r=0
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Now L ;¢ = 0and Ly f = 0, so using this and reindexing provides that DA, f (t)/

Dt =0forall T € (1, Tixm+1)\{tit1, - - - » ti+m]}. Since A; £ (1) is continuous for 7 €

(Ti, Ti+m+1) from the first part of the proof, we get that A; is a linear functional on S.
We next show A;N; = 0 fori # j. If N; is identically 0 on any of the intervals

(Tis Tit1)s -+ +» (Tigm, Tigm+1), then A; N; is obviously 0. So we need only examine when
one or both of the knots t; or 7;,,,+1 has multiplicity > 1. Assume 7; = - - - = 1;44. N},
forj=i+1,...,i+1 hasits firstm —i — 1 — I + j derivatives equal to 0 at ;.
Moreover, ¢; has a zero of multiplicity / at 7;. So
Ly ei(tHL, f(57)
14 AN = 1N = 0.
14) Z( ) )

A similar argument works at 7;4,,11.
To conclude the proof we show A; N; = 1 by observing

m+K m+K

(15) ;iN; = ZAN = A ZN _Auo—kwo—Z( r (DL wo(0)

r=0 wr (T)

Since L,wo = Oforr > 0, this becomes L}, ¢;(t). Since L}, u* = 8;m, and the coefficient
of u}, in the expansion of ¢; is 1, we have A;N; = 1. [ |

4. Algorithms for Tchebycheffian B-Spline Curves

In this section we will use the functionals developed in the previous section to present
three algorithms for Tchebycheffian B-spline curves. We begin with an evaluation al-
gorithm generalizing the de Boor algorithm [5}, then we prove a subdivision result
generalizing Boehm'’s knot insertion algorithm [4]. Finally, we generalize a well-known
recursive technique for finding the derivatives of B-spline curves.

Dual functionals can actually be used to generate numerous other algorithms (see,
e.g., the development in [1] for piecewise polynomial geometrically continuous curves).
However, once we develop a few fundamental results, the algorithm development follows
easily. For that reason we provide the three representative examples given here, rather
than an exhaustive development of a number of other algorithms as well.

To develop the algorithms we need some new notation. Let ¢(x1, ..., x»)(¢) be the
unique function in U, 41 with a zero at x;, for i = 1, ..., m, of multiplicity the number
of times the value x; appears in the sequence xi, ..., X», and having coefficient of u?,,

when written in terms of the canonical dual system, equal to 1. Observe these functions
will always exist uniquely in U, by the same argument as used in the last section to
show the existence of the ¢;.

Lemma 1. Letxg, ..., X, € [a, b] where xo # X, and let d,. be the number of times
the value x appears in the sequence x1, .. ., Xpm_1. Then

16) @1, ...\ X1, X))

Lo, X 1)X)Q(x, - X)) =L 9(x1, - Xm) ()P0, - Ximm 1) (0)
L o(x0, s Xm—1) () =L 9(x1, - - - 5 Xm) (x).
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Proof. Note ¢(xo,...,Xpu—1){) — @(x1,..., %)) € U and has m — 1 zeros at
X1, ..., Xm—1. Because U}, is an ECT-space, no element of it can have more than m — 1
zeros. So this function cannot have a zero of multiplicity greater than d,. at x. Therefore
the denominator of the right-hand side is not zero.

Then observe that the right-hand side is a function in £}, +1 With lead coefficient (i.e.,
the coefficient of u}) equal to 1, and with zeros at x, ..., x,,—; and x, so it must be

¢(x1,---,xm—1sx)(t)- |

Theorem 2. Let f(t) =) i PiN;(®) be a Tchebycheffian B-spline curve and let x be
any point in a knot interval (4, T,11). Let

an P =P, j=q-m....q,

(LE @415 - oo Tigmr—is %y - X)) P ()
i1
Pl(x) _ - L;-k_lgo(fj,...,Tj+m_i,x,...,x)(x)[’j (x))
! (L1 @9(Tj1s - - Tibmetdmis Xy - o5 X)(X)

— L 0T, oo, Tigmeiy X, -5 X)(X))
fori=1,....m;, j=qg—m-+i,....q.

Then f(x) = P;‘(x)wo(x) = P(;”(x).

Proof. The proof proceeds by induction on i to show that

. " L* Titls e vvs Tigomeis Xy, X)L, f(T
(18) le(x) - Z(_l)r m_,(ﬁ( 41 jAm—is X x) ()L, f( )’
r=0 wr(f)
j=q—-m+1,...,q
for T € (14, 74+1), and then proving that
i(_l)r L;—r(p(x? A ’x)(T)er(t) . f(t)

— w, (T)  wo(t)

(19) = f(r)

for r € (14, Tg41).
We will prove (19) first. Notice that L}, _ .¢(x, ..., x)(t) =0for 0 < r < m, since

we can choose T = x and get two rows in the matrix Du;H (x,...,x, 7)tobe identical.
So the left-hand side of (19) becomes L} ¢(x, ..., x)(t) f () /we(7). Since L;“nu;‘ =
for j < m, and L} u}, = 1, and since the expansion of ¢(x, ..., x)(t) in terms of the

canonical dual basis has lead coefficient 1, we get the right-hand side of (19).
To prove (18) note that it is true by Theorem 1 for i = 0. Assume it is true fori — 1.
Then P]‘ (x) equals

(LI 1@ty ooy Grmt i X -« X)X P (6) .
— Li0(T, oy Tigmein X, o X)X P (X))

L?_l(p(rj+l7 ey ‘Ej+m+1—i7 X, ion, -x)(-x) - L;‘k_lgo(rj’ ey Tj+m—‘ia X,... 7-x)(x)

(20)
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=Y (-1 {L;_r[(L?_lq)(er, ey Tiameadais Xy« o0y X) (X))

r=0
X QT ooy Tigm—is X, .., X)(T)
— (L7190, ooy Timeis Xy oo EO(Tigd - oy Tipmatlmin Xy -2, X)(T)]
x wa((:)) LI 0Tt s Tiamaiois T ey X))
— L} 0(Tj, o Tiameis Xs oo o x)(x)]} .
This then equals the right-hand side of (18) by Lemma 1. [ ]

This algorithm is the generalization of the de Boor aigorithm [5] for B-spline curve
evaluation (see also Corollary 5.4 in [13] and the remarks after Theorem 4.4 in [14]).
We will make a few brief remarks on this result below, after proving the subdivision and
derivative results.

B-spline curves are subdivided by a process called knot insertion. The knot insertion
process refines the original knot vector {t;} to a new knot vector {f;}. This enlarges the
associated spline space. The knot insertion problem is then to take a curve in the original
space, and express it in terms of the B-splines for the enlarged space.

There are numerous knot insertion algorithms for B-spline curves. Here we prove an
identity related to one of the simpiest yet most powerful of these algorithms—Boehm’s
knot insertion result [4]. This result is a different form of the results in Theorem 5.5 in
[13] and Theorem 4.4 in [14].

Theorem 3. Let T € (t,, 7y41) be a new knot to insert. The control points {13,-} ex-
pressing a Tchebycheffian B-spline curve f(t) = 3 ;i Nj (1) P; over the new knot vector
are given by
P;,
@i 1(D)P; — 9 (D) P;_y
@;i—1(T) — @; (1)
Pi_1, g+1=<j.

qu—ma

@) P = L g—mt1<j<gq,

Proof. Forj<g—morqg+ 1 < j the result follows immediately from Theorem 1.
Forg —m+1 < j < g, use Theorem 1 with respect to the refined knot vector, together
with Lemma 1. [ ]

Finally, we examine derivatives. We begin with two lemmas.

Lemma 2. Letxy,...,xn_c € [a, b] be any values with 0 < ¢ < m. Then there exists
a unigque function, which we shall denote ¢(x1, ..., Xm—c; 8)() € u:_. 10 With: (i)
zeros at Xxi, ..., Xm— (of multiplicity the number of times x; appears in the sequence
X15 -+ » Xm—c), and no other zeros; and (ii) lead coefficient (i.e., coefficient of u*, _ ) equal
tol.
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Proof. Since U, _ , and U . are ECT-spaces, Du* (xl, v Xm—gs 1)/ Dz (x4,
, Xm—c) 18 a function in L{* —eq1 having the desired properues Uniqueness follows

since any element of 24, ; can have at most m — ¢ zeros. [ |
Notice that the notation §° indicates that L, _ .. jgo(xl, ceerXm—e; 8°) = 0for j =

I,...,c.

Lemma 3. Forany 1 < c¢ < m, and any values xg, . .., Xy—c+1 WIR X F Xp_cq] WE

have

qo(xl, s et 13 8O — (0, + s Xm—e; 5TIN(D)

(22) §0(-x19 vy Xm—c ac)(t)

Ly c(w(xl, s Xt 13 8T =00, Ly Xme; 8671))
Proof. Observe ¢(x1, ..., Xm—ci1; 01 —@(x0, - ..\ Xm_¢; 87 ) isinld;, __,,isnot
identically 0, and has zeros at xi, . . ., X,_.. Because,forr =1,...,m+1, afunct1on in

any space U can can have at most r — 1 zeros, the difference function, when expanded in
terms of u, . . ., u},__, has nonzero coefficient of u;,_ .. Now L; _uy =0forr <m—c
and L}, u,_. =1, so the denominator is a nonzero ) constant.

It is now straightforward to see that the right-hand side has the appropriate character-
istics to identify it as @(xq, . . ., Xp—c; ). [ ]

We now derive an algorithm for finding derivatives. This algorithm generalizes a
well-known technique for finding derivatives of piecewise polynomial B-spline curves.

Theorem 4. Let f(t) = 3 i PiN; (1) be a Tchebycheffian B-spline curve and let x be
any point in an interval (14, Ty1). Let 0 < ¢ < m, and let

@3) Plx) =P, j=q-m,....q,

(LI @Gty - Tiamaleis X - X))@ P (x)
l, LY 0T, ..., TGymeis X ,...,x)(x)P’ e
Pi(x) = "
(L1915 oo s Tipmal—is X, - -y X))
- Ll_l(p(t]! coes Tidm—is Xy - x)(x))

i=1,...,m—c; j=q-—m+i,...,q.
Pi(x) = [P{7'(0) = P[]

- [L;m—c—i((p(ij-ﬂa ooy Tipmalmin Xv e ey X5 5i—(m_,_»)_1)
- (0(1,']-, ooy Tjdmeis Xy ey X5 6i_(m_c)_1))]
i=m—c+1,....m; j=q-m+i,....q
Then e
%) ey - CV LS @)

we (1)
Proof. Observe this algorithm is identical to the evaluation algorithm up to and includ-
- ing when i = m — c. At that stage we have the points

ij—c(x) — Z(_‘l)r Lm—r(p(-[j'H’ s tj+C’ IR X)(T)er(‘l')

wr (1)

(25)



de Boor-Fix Dual Functionals and Algorithms for Tchebycheffian B-Spline Curves 395
for 7 € (74, 7,41). We now show by induction on i that

ey Tipmeis Xy ey X5 87T (D)L, f (1)

w,(t)

. m L* N
(26) P;(x) = Z(_l)r m—r(p(fj—i—l
=0

for T € (74, 7441) form — ¢ < i < m. This is true for i = m — c. Suppose it is trae for
m>1i—1>m—c. Then

m

D DL, Qs - Gamit 1 X, -, X3 88770 ()

@7) Pl(x)

r=0
— @(Tjy vy Timeis Xo ooy x3 8 DTN OYL, £(1))
+{w (VL3 i lo(Tints oo Tigm—itls Xy oo, X5 §E—D—m=c)y
=0T, ooy Tigm—is X, oo, X5 §U=D—m=ony)y
- i(—l)r Ly o @(Tigts oo Tamein X, o, %3 870N (D)L, f(2)
= w, (1)

by Lemma 3. So we get

< p L9, x; 8 (D)L, f(T)
(28) Pr(x) =y (=1 ==L :
= w, (1)

Since p(x,...,x;8) e U, _ .., wehave Lfo(x,...,x;8)(r) =0forl > m —c.
Also, choosing T = x implies Lig(x,...,x;8 () = 0for{ < m —c. So Pl (x)
reduces to

L s X389 ()L —1)°
29) —1)° m—c® (X x;89) ()L, f(T) _&D L.f ()
we(T) we(7)
since L}, _ o(x,...,x;8) =1 |

‘We have presented the evaluation, knot insertion, and derivative results because they
are representative of how the dual functionals are used to produce the algorithms and
how some of the details are handled. A more detailed examination of Tchebycheffian
B-spline curves would consider other algorithms such as conversion to the Bernstein—
Bézier form or the Oslo knot insertion algorithm, as well as details not considered here,
such as evaluation when the point of evaluation is a knot. However, the theme here is
the utility of the dual functionals in this setting. Because details such as evaluation at
a knot. follow in an analogous manner to the same situation for piecewise polynomial
B-splines or for geometrically continuous piecewise polynomials B-spline curves, we
will not track down these tedious details. Moreover numerous results—e.g., the Oslo
knot insertion algorithm, a recurrence for the Tchebycheffian B-spline curve similar
to the Cox—de Boor-Mansfield recurrence, a recurrence for “discrete” Tchebycheffian
B-spline curves, algorithms for conversion to the Bernstein—Bézier form, and Boehm’s
derivative algorithm, to name just a few—are straightforward to derive from the basic
results presented here (see, e.g., the analogous derivations in [1], [2], and [10]).
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In summary, the dual functionals and the results in this section allow a large number
of algorithms to be developed quite easily.

5. Geometrically Continuous Tchebycheffian Splines

In the first part of this paper we extended the de Boor—Fix dual functionals to Tchebychef-
fian B-spline curves, and showed how this extension provided a straightforward means
for generalizing numerous B-spline curve algorithms. To provide farther evidence of
this usefulness of this approach, we next generalize this process further by showing that
it also applies to “geometrically continuous Tchebycheffian B-spline curves.” Specifi-
cally, we consider spline spaces where each spline segment is in an ECT-space and the
relationship between the derivatives at the end of a segment and those at the beginning
of the next segment is given by a “‘connection matrix.”

Such a spline space generalizes both the Tchebycheffian spline spaces studied in
the first four sections as well as the spaces of piecewise polynomials determined by
connection matrices which were introduced in [9], and studied in terms of dual functionals
in [1]. Because the results we are interested in for these new spaces parallel those in the
first part of this paper and certain results in [9], [1], and [3], we will provide here only the
basic results for these spaces. The use of these results to generate algorithms for curves
written in terms of “B-splines” for these spaces then follows simply from these results
in a manner similar to that used above and in [1].

Specifically, then, in the next four sections we first define the spline spaces of interest,
and then prove results about the number of zeros functions in a related spline space
(which takes the role of the space U, above) can possess. We next present certain
linear functionals which will be analogues of the de Boor—Fix dual functionals. Finally,
while we know that B-splines for Tchebycheffian spline spaces exist, we do not yet
have a similar result for geometrically continuous Tchebycheffian spline spaces. So we
conclude our investigation with a proof of the existence of “B-splines” for these spaces.

We first define the spline spaces of interest. Spaces of piecewise polynomials deter-
mined by connection matrices are defined by a maximal degree, m, for any segment of
curves in the space, by a knot sequence {7}, a multiplicity sequence {x;}, and a sequence
of connection matrices {A;}. Connection matrices allow not only the usual parametri-
cally continuous splines, but also more general notions of geometric continuity—e.g.,
Frenet frame continuity.

To generalize these splines, we still use a knot sequence a = fp < +++ <ty = b
and sequence of multiplicities o, ..., it With 1 < y; <mfori =0,...,k+1,
and pg = piqy = m -+ 1. But instead of piecewise polynomials, we use segments from
Tchebycheff spaces. Fori = 0, ..., k, let Uy, ; be a dimension m + 1 ECT-space over

[#:, tix1], with canonical basis ug, ..., um,; and weight functions wo;, ..., Wyi. We
require a continuous join between the weight functions on one interval and those of the
next: wy;— () = wy; @) forr = 0,...,mandi = 1,...,k. We also require that
wo; = 1 foralli.Let Lo, L1, ..., Lyt1,; denote the differential operators for 2.1,

We assume that each dual canonical space U, ., ; is also an ECT-space. Observe that in
the Tchebycheffian B-spline case a single ECT-space is used for the entire domain; here
we allow a different ECT-space for each knot interval. Finally, let {A;} be a sequence
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of (m — u; + 1) x (m — w; + 1) matrices indexed from 0 to m — ;. Then define the
geometrically continuous Tchebycheffian spline space
(30) S = {f: fls e €Umgr, i =0,...,k, ALy, i LFIE)

= Ly iLF1G7), i =1,... &},
where
€2)) LiilF10) = (Los f @), ..., L f)'.

This spline space depends not only on m, the knots, and the connection matrices, but
also on the differential operators (and therefore on the weight functions).

In the piecewise polynomial setting, requiring that each A; be nonsingular totally
positive and have its zeroth row and column identical to that of the (m — u; + 1) x
(m — p; + 1) identity matrix ensures that all functions in the space are continuous
and that there exist B-splines for the space. That is, there exists a basis {N;} with the
properties that, if we let {1;} be the knot vector obtained from {z;} by repeating each ¢;
as often as its multiplicity: (i) the support of each N; is (1;, Tjrme1); (i) N; (1) > O for
t € (T, Tigms1); and (i) Y, N; (1) = 1 forall ¢ € [a, b]. So here we likewise assume
each A; is nonsingular totally positive with its zeroth row and column identical to that
of the identity matrix, and will show below, in Section 8, that this implies the existence
of “B-splines” for . '

A key step in our construction of functionals for the geometrically continuous Tcheby-
cheffian spline space is finding the analogues of the ¢; which figured so prominently
in the dual functionals in Section 3. To do this, we build an auxiliary spline space of
dimension m + 1. Certain functions in this space will be analogues of the ¢;; so to
construct and use the dual functionals here, we will first construct the auxiliary space
and then study some properties of its functions.

We begin by creating a sequence of connection matrices. Let I; denote the j x j
identity matrix and let

0 (= 1) Wi (8
(32) R — (——l)m_lwm~1,i(ti)
(—=1)%wo,; (1) 0
and then let
-T
(A O -1
33) E;, = R; (O Iu,-) R,

Now define the space
(34) P = {f- fl[{;,tf_{_]] € u:i-{-],i’ i = 0’ s k, Eii‘:(n,i_l[f](ti_)
= L5 LA, i =1, k),

where
(35) Ly 10 = (L5 f @), Ly f O
(where Lg ;, LY ;, ..., Ly, ; are the differential operators for L4y, | ;). This space depends

on m, the knots, connection matrices, and differential operators (and thus on the weight
functions).
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Because each 4, ; is an ECT-space, fori € {1, ..., k} the interpolation problems with
unknown o = (ap, ..., &,)" and B = (Bo, ..., Bw)':
(36) (L3} ) rmo,ome = EiLY o [F107)
and
37 (L} 6 )jr=0...mB = E7 L3, 1)

have unique solutions since the matrices on the left-hand sides are nonsingular. So
specifying an element of P over one interval determines that element over all of [a, b].
Thus the dimension of P is m + 1.

6. Properties of Elements of P

In order to construct functionals on § we first examine the properties of elements of
P. Specifically, we investigate the number of zeros an element in P can have, show
the existence of certain elements, and consider combining elements. Before doing this,
however, we note

Theorem 5. Fori =1, ...k, the matrix E; is nonsingular totally positive.

Proof. The nonsingularity is straightforward. The total positivity follows by using the
Cauchy-Binet theorem and (0.10) of [12]. n

For the sake of simplicity we will assume that each 4, is also lower triangular, since the
important notions of geometric continuity all correspond to lower triangular connection
matrices [11]. Observe that this implies each E; will also be lower triangular. It is possible,
however, to extend many results below to the case of nonlower triangular connection
matrices. See [1] and [3] for consideration of the nonlower triangular case for piecewise
polynomial geometrically continuous splines.

We are now ready to consider the number of zeros an element f € P can have. Let
SJ.‘ [f1() and Sj+ [ f1(¢) denote the number of strong and weak sign changes, respectively,
in the sequence Lg; f(f), ..., L;.‘,,-f(t) where ¢ € (1;, t;+1). Let Z*(f(x, y)) denote the
number of zeros (counting multiplicities) of f over (x, y). Let p; be the largest index
for which f|,1,,,) has a nonzero coefficient in its expansion in terms of ug ,, ..., uj, ;
Finally, let m; be the number of zeros of f at #; (observe that since E; is lower triangular
the multiplicity of a zero at ;" is the same as the multiplicity at7;”). We begin by recalling
a result on the number of zeros any element of an ECT-space can have.

Theorem 6. Let f #0e P.Thenfori =0,...,k

(38) ZX(f (@, 1i41)) < SpLF1GD) = SLF1¢5)-

Proof. This follows from Theorem 9.12 and (2.48) of [18] and the fact that L{p Y

an ECT-space. I
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Lemmad. Let f #0€ P.Thenfori=1,...,k

39) m; < 8516 = S;LA16H.
Proof. Sy [f1(#7) = m;+S,[f1(z"). By the total positivity of E; this is greater than
or equal tom; + S, [F1¢) =mi+S,;[f](th)- n
Theorem 7. Let f #0c P.ThenforO<i < j<k+1
(40) Z5(f 1)) < S, LF1ED = 871716
Proof. By Theorem 6
j=2
(41) Z(ft 1) < Y (S LA = STUFIAS) + mpsn)

r=i

+85 LG — S5 116,
Using Lemma 4 reduces this to S, [ f ](t,.+) - S;;‘] Lf 1¢). [ ]

Corollary 1. Forany f 2#0¢€ P, Z*(fla, b]) < m.

Proof. That Z*(f(a, b)) < m follows immediately from Theorem 7. We can show
the zero bound holds for the closed interval {a, b] by extending the space P to another
space: for any ¢ > 0 we can always find (m + 1)-dimensional ECT-spaces such that if
we let Ep and Egy be the im + 1) x (m + 1) identity matrix, the (m + 1)-dimensional
space withknotsa —e¢ < a =ty < -+- < 41 = b < b + ¢ and connection matrices
Ey, ..., E¢y1 is a space of type (34) which, when restricted to [a, b] is precisely P. So,
applying Theorem 7 to this extension yields

(42) Z*(fla,b) = Z*(fa— &, b +¢)) <m. u
In some cases we can get a lower bound on the number of zeros.

ey

Proof. We begin with a lemma. n

LemmaS. Suppose p;_y > p; foranyi € {1,...,k}. Then
(43) m; < Sy (f1¢7) = S, Lf1¢) + pi — pic1.

Proof. Let E; be the matrix formed by the zeroth through (p;_;)st rows and columns
of E;. Observe E; is nonsingular and totally positive. Also note m; < p; since E; is
lower triangular. For £ > 0 define v(e); for j =0, ..., p;_; by

O’ j=mi9'--7pis
—sign(L;, f(& e, j=m; —1,
(44) v(e); = { —v(&)j+1, j=mi—2,m;—3,...,0,

—sign(L} f@& e, j=pi+1,
—v(8)j-1, J=pi+2,...,pi_1.
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Then S™(Lp,_ [ F1G¢) +v(e) = S, [f1G) +mi+pii— pi = Sy +mi +
pi—1 — pi- Now since E,: is ponsingular totally positive, §~ (ip,._,,i[ f ](tl.+) + v()) <
S™ (lA,p,,_, i1 LF1E )+ (l:?,-)‘lv(s)). Since £ can be made arbitrarily small, the right hand
side of this is < S;;_ Lf1(#7), proving the lemma.

Returning to the proof of the theorem, let iy be the smallest index such that p;, = p.
Then, given i; for some j, take i;; to be the smallest index such that p, < p; _; for
r =ij.1,...,1; — 1. This procedure will terminate at some index i;; = 0. Now

i=1
@5)  Z*(f(a.b) < S, [F1E) + -ZO[S”_‘”' A1) = Sy A1) +my )
j:
Rearranging the right-hand side and using Lemma 5 yields the right-hand side is less
than or equal to
i1

(46) S, LAY + Y1y, = pyl,
J j=0

which, since p;,_y > p;,,, for j = 0,..., j' — 1 by the construction of the indices i;,
telescopes to p;, = p, proving Z*(f(a, b)) < p.Extending this zero bound to the closed
interval [a, b] is done in the same way as in the proof of Corollary 1. B

Having derived these results on the number of zeros an element in P can have, we
next examine the existence of certain functions.

Theorem 9. Let (¢,, t;11) beanyinterval,letQ < ¢ < m,andletxy, ..., Xpn_ € [a, b].
Then there exists a unique function (xy, ..., Xm—c; 6;)(0 € P with the properties:

1. (X1, ..., Xm—c; 6;)(t) has a zero at x; for j = 1,...,m — ¢ of multiplicity the
number of times the value x; appears in the sequence X, . . . , X—c. Moreover, the
Junction has no other zeros;

2. Lj‘n_c‘q(p(xl, e Xm—e) 83) = 1; and

3. L;‘,qu(xl, R 6;) =Q0forj>m—c.

Proof. Let 4} be the function in P defined by i}l r,,,) = u}, for j =0,...,m —c.
Next, fori = 1, ..., m — c let r; be the index such that x; € [, £,,4;) (unless x; = b,
in which case take r; = k), and let d; be the number of time the value x; appears in the
subsequence x1, . . ., Xx;—1. Examine the system with unknowns «y, . . . , &, given by

m—c—1

(47) 3 Lyt h) = — L, ()
=0

fori =1,...,m — ¢ (if some x; = b, replace the derivatives from the right for that x;
with derivatives from the left). The function ¢{x|, ..., Xu—c; 8;) will exist uniquely if
and only if the matrix (L:',-,r,- ﬁ}“ (X:))i=1,...m—c; j=0,...m-c—1 18 nonsingular. However, the
nonsingularity follows from Theorem 8. [ ]

We conclude this section with a couple of results about combining functions in P.
There are numerous other possible results—see [3].
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Theorem 10. Let xg, ..., X, € [a, b] be such that xy # Xy, and let x € (ty, t5+1) and
dy = the number of times the value x appears in the sequence x, ..., Xy—1. Then

48) o(xt, . s X1, X)) = [LG 0005+ o X 1) (X)Q(XL, -+ s X ) (2)
- LZX,qQD(xla R Xm)(x)¢’(xo7 R xm—l)([)]
+ LG 905 oy X)) (X) = LY 01, .o, X)) ()],

Proof. The function ¢(xg, ..., Xm-1) — ¢{X1, ..., Xy) is not identically 0, and has
m — 1 zeros at X1s .-+, Xm—1. Moreover, because its expansion over (#,, f,41) in terms
of ”o e has coefficient of u;, equal to 0, it has no other zeros by Theorem 8.
Therefore the denommator is not zero. The result then follows since the right-hand side
has the appropriate characteristics to identify it as ¢{xq, ..., Xu»—1, x) (). n

Theorem 11. Let xq, ..., Xp—cq1 € [a,b] for 1 < ¢ < m, be such that xo % Xp_cv).
Also, let (14, t,41) be any interval, and y be any point in (z,, T441). Then

(49 el X 6 (1)
PO, oy Xt 15 85 D)) — @(x05 -+ s Xme3 857 (0)
L;kn—c,q(go(xl’ oy Xm—c+1s 85]‘_1) - §0()C(], cees Xm—cs 8;_1))(})) .

Proof. The proof is similar to that of Lemma 3 and Theorem 10. [ ]

7. de Boor-Fix Functionals for §

We are finally ready to examine functionals on S by generalizing the de Boor-Fix
formula.

Theorem 12. Fori =0, ..., m+K . letg; bethe elementin P withzerosattiyy, .. ., Tiim
and L, i = 1forall j =0, ...,k Thenforall f € S, the function

“ L;‘;t—ri i Lrl} ()
(50) Hf@ =31 AAEA

= W, (7)
where T € (T;, Tiimyt) and i, is an index such that v € [, T;_+1], is a linear functwnal
onS.

L]

Proof. We need to show that A; is well defined at the knots, is independent of 7, and
is linear. The last of these is straightforward, and the second follows in a similar manner
to the analogous portion of the proof of Theorem 1.

To show that A, is well defined at the knots, note that for all f € S, A; f is a continuous
function of © € (T;, Tiym+1) €verywhere except perhaps at any knot 5 € (Ti, Titmt1)-
For any such knot,

+ L +
GD M(HE) = D 1y Lnrs# f()t+;1f(t )
r,] ]

”‘Z‘:f 1y Lo 0L F )
wr,j(t;_)

’
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since Ly ;i (67 = --- = Ly e (") = 0. This then equals

mij(-—l)r Qo CEDmrp Ly 06N 0 (A rgLg. i1 f (5 ))

52
©2) wy, ; (t)

Rearranging and observing that the block diagonal structure of E; yields (E;)p—,,, =0
forr=0,...,m—pjand p=0,..., u; — 1 provides that this equals

N Ej)m—rp(A))r
(53) 22 - 1>’uu;—’(’7()¢L;, G Lg i1 £
. rJ

Nowforr =0,....m—u;, p=pj,...,m,

(54) (B = 1 0, 0) AT D= 5
m—r.p rj\lj\A; m_p’rwm—p,j(tj)’
so we get
" A Dmopr (A

55) Mfh) =Y D D (="

q=0 p=u; r=0

Lr . it )L, i t
) pa 1O et L)

mZ#]( l)q m q.j— 1991(5 )qu 1f(3f

Wy, i1 (t )

H

g=
= Xm:( 1)4 Ly i-19i ) Lg i1 f (&)

wq,]—l(t] )

L]

q=

concluding the proof. [ ]

8. B-Splines for S

We still have not yet shown that the spline space § has “B-splines.” Rather than first
proving that B-splines exist, and then deriving the dual functionals, here we are taking
the opposite approach. That is, we have shown the existence of certain functionals on §.
In this section we show that these functionals are the dual basis for a basis of S whose
elements share the important properties of the piecewise polynomial B-splines.

Theorem 13. There exists a basis Ny, ..., Nyix of S with the following properties
fori=0,...,m+K:

(D) Ni(0) =0fort ¢ (i, Tiym+1);
(ii) N; is everywhere nonnegative; and
(iii) > N;(t) = woqa(t) = 1forallt € [ty, ty (] forallqg =0,... k.

Proof. For clarity we will prove this for the case when all the interior knots are simple.
The case when u; > 1 for some j € {1,...,k} is cumbersome, but uses the same
general steps.
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Soassume pj = 1for j =1,...,k (and po = pgy1 = m + 1 as before). Note then
that K = K, and

tOv j:(),...,m,
(56) T = yti-m., j=m+1,....m+K,
e, j=m+K+1,....2m+K+1.

We proceed by a sequence of steps. First, we show that the functionals Ag, ..., Amex
are linearly independent. So there must be a set of linearly independent functions
Ng, . ..s Nypx € S such that A;N; = §;;. We then show property (i). Then we prove
that the dimension of S is m + K + 1, so that the Ny, ..., N2 g are indeed a basis for
S. Property (ii) is then proved, followed by property (iii).

To show that Ag, ..., Anix are linearly independent, let o, .. ., o, ¢ be any con-
stants such that (Z;”JBK a; ;)f = 0 for all f e S. Then consider any m + K + 1

functions hy, . .., hu+x € S with the properties

L,-,()hj(tg—) = 5,,]', r,j=0,...,m,
7N hi(t) = 0, 1<t j=m+1,....m+K,
Lrjmhi(@) =8m j=m+1,....m+K; r=0,...,m

Such a sequence will always existin S.
Consider

L L;kn—ri Qi (T)Lr irhj (T)
(58) Aihj =) (=1) = :
! ;0 Wy i, (T)

for T € (7, Tivm+1). Here i; is the index such that ¢ € (1,1, + 1). We will con-
sider the case i < j.Choose t = ¢/".If m <i < j < m+ K, thent; < T
S0 h; is zero over (7;, t41), hence Ah; = 0. fm < i = j < m + K, then
Aihj = (=1)" @i (t:)/ Wp, j—m (;). Since ¢; (1;) # 0, we get A;h; # 0.1f0 < i < m, then
choose T =1 . If m < j < m+ K, then h; is O over [tg, ], 50 A;h; = 0.If0 < j < m,
then A;h; = (—l)ijn_jy()(pi (t5)/wjo(to). Now @; has a zero of multiplicity m — i at 1",
soifi < j,thenm —i >m — j+ 1,80 ,;h; = 0.If i = j, then we get A;h; 0.

Therefore forali 0 < i < j <m+ K we have A;h; = Ofori # j and A;h; # 0. This
then implies for j =0, ..., m + K that

m+K m+K

(59) 0= Z OliA.ihj = Z Oli)\.,‘hj.
i=0 i=j

Now a simple induction proof downward on j showsa; =0forj=m+ K, m+ K —
1,...,0, proving that A, ..., An4x are linearly independent.

So these functionals are a basis for at least a subspace of the dual space of S. Thus there
€XiSt No, ..., Nk € SsuchthatA; N; = §;;fori, j =0, ..., m+ K. To prove property
(1), let (7,4, 7441) be any interval outside of (z;, t;1,+1). Because of their zero structure,

the functions ¢;_p, . . ., ¢, are linearly independent. This implies, forany t € (74, 7541,
that the matrix (L;‘, g—mPa—m-+r (t))j r=0,..,m is nonsingular, which, in turn, implies the
functionals A;_n,..., 4, where T € (14, 7,41) are linearly independent. Therefore,

they provide a basis for the dual space of U1 4. Now N; l(zgte) € Umy1,4q—m and
AjNi =0forj =g —m,...,q,s0 N; = 0on (t,, 7,41), proving property (i).
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To show that Ny, ..., Ny, form a basis for S, let f be in the orthogonal complement
of the span of {Ny, ..., Nk} in S. We just showed, for all the intervals (z,, T541), ¢ =
m,...,m+ K, that the functionals A;_., ..., A, restricted to (z,, 7,4;) form a basis

for the dual space of U1 4—m. This implies, since A;f = Ofori = 0,...,m +
K, that f l(rq,fqﬂ) = 0, which, in turn, implies f is zero over all of [a, b]. Therefore
the orthogonal complement has dimension 0, proving that {Ny, ..., N, g} is a basis
for S.

To prove property (ii), note that the evaluation algorithm (17) above will extend to
splines in S written in terms of Ny, ..., N1 ; the proof is almost identical to that in
Section 4. So it suffices to show that no combination occurring in that algorithm contains
a negative coefficient. We show this by examining the sign of any ¢ function occurring
in the algorithm. We prove that at any point ¢ at which such a function does not equal 0,
the sign is (—1)™ times (—1) raised to the number of zeros (counting multiplicities) the
function has to the left of ¢. In particular, since ¢(T;41, ..., Tj4ms1—is X, . .., X) always
has one fewer zero to the left of the point of evaluation x than ¢(z;, ..., Tjpm—1, X, ..., X)
has (note 1; is always < x in the algorithm), the sign of these two functions is opposite
over both (t,, x) and (x, 7441). Moreover, it follows from (4) that the sign of either
of these functions at x + &, for sufficiently small ¢ > 0, is determined by the sign
of evaluating, at x, the application of the operator Lf_l’ g—m © the function. Since the
functions will have opposite sign at x + ¢, the application of L;_, ,_,, evaluated at x
must also yield differently signed values. This is what we need for all combinations in
the algorithm to be nonnegative.

To prove the signs of the ¢ functions have the above property, first observe that we
can extend the space P to a larger space over an interval [—ag, b] for arbitrarily large ag
by taking the (m + 1)-dimensional ECT-space consisting of the polynomials of degree
at most m over [—ayg, a], and using as a connection matrix at g the (m + 1) x (m + 1)
identity matrix. This is still a space of type (34), and each element g € P has a unique
extension g in the larger space. By Corollary 1 applied to the larger space, if g has m
zeros over [a, b], then g has no zeros over [—ayp, a), and therefore the sign of g(¢) is the
same for all values ¢ greater than or equal to —ag but less than the smallest zero of g.
Since we can choose qg arbitrarily large, this sign is (—1)".

Next consider how g changes sign as it moves across a zero. Suppose first the zero is
at a knot # of multiplicity ». For sufficiently small £ > 0 one can show that

(60) sign(g(t — &)) = (=1)"sign(Ly,_,8(1)).
sign(g(n +¢)) = sign(L},§(1)).

Since E; is lower triangular with positive diagonal entries, sign(L},_,£(#)) = sign(L],g
(). Therefore, as g moves across a zero of multiplicity r at a knot, its sign will change
by a factor of (—1)". The proof of the case when the zero is not located at a knot is almost
identical. This concludes the proof of (if).

Finally, we prove property (iii). The constant function 1 is in S. Moreover 4;(1) =
1fori = 0,...,m -+ K. Therefore the coefficient of N; in the expansion of 1 in
terms of Ny, ..., Nyyx i8 1, proving property (iii), and concluding the proof of the
theorem. -
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9. Numerical Example

In this section we examine a numerical example illustrating the results in the last section,
and make a few remarks about computational costs.

Consider the geometrically continuous Tchebycheffian spline space with#; = j, u; =
1, n =3, and

1 00
Aj=10 1 0
0 1 1
for all j. Let the weight functions be
we,j(t) =1, wy, (1) =1, wy, (1) = ', wy, (1) = U1
fort € [j, j + 1] and j even, and
wy,;(£) =1, wy () =1, wy (1) = e/ ws, (1) = XD

for 1 € [j, j + 1] and j odd. Then Uy ; = span{l,r — j, &'/, e/~'} = span{l,t —
J» sinh(t — j), cosh(z — j)} for all j, and 1 ; = span{1, e2UD i~ (j — 1)el~!} for
j even and Uy ; = span{1, eX'=7, &'~/ (t — j)e'~/} for j odd.

Next, observe

1 0 00
0 1 00
E=1o 2l
wa,;(j)
0 0 0 1
for all j. Moreover,
(61) ug () = 1,
;1) = =970 —1)/2,
wy (1) = U012 - 4 1/2,
w3 ;1) = =@t = j)e!™ = /241/2,
for j even, and
(62) ug ; (1) = 1,
ui ;@) = (70 - 1)/2eh),

uj (1) = 1/Q2e) — 7 4+ 27D [ (2e),
ujy () = (j— 0 420D 1/(2e),

for j odd.

For the example, we will use the evaluation algorithm to evaluate a spline at x = 4.4,
To do so, we first must find ¢y, @2, @3, and @4. We set up linear systems derived from the
continuity, zero, and third derivative constraints. Since in the case here ¢; (f) = ;2 (t+2)
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for all j, ¢, we need to solve only two linear systems. We find that over [4.5]
A 0.000  0.285 1.225 1.000\ [ug 4(2)
e | 0000 -0.121 -0.061 1.000 | | uf ()
o) | 0.000 0.285 -0.939 1.000 | | u3 4(0)
©4(t) —-1.175  3.597 -2.225 1.000/ \uj3 (1)
A graph of @1, @2, @3, @4 appears in Figure 1. Each of these ¢; is shown over [/, j +4].
We combine the ¢; to get the ratios:
¢1(44)
(63) = 0.838,
¢1(4.4) — r(4.4)
4.4
28D _ o450,

02(4.4) — ¢3(4.4)
4.4
e84 _ 04
¢3(4.4) — @a(4.4) _
Using these ratios, we find ¢(3, 4,4.4), p(4,4.4,5), and ¢(4.4, 5, 6). We then find the

Lt ,0(3,4,4.4)(4.4)
(64 : : - = 0.678,
L} ,0(3,4,44)(4.4) — L} ,0(4,4.4,5)(4.4)
L} ,0(4,44,544)
C LY,p(4,4.4,5)(4.4) — L] ,0(4.4,5,6)(4.4)
Combining ¢(3, 4, 4.4), ¢(4,4.4,5), and p(4.4, 5, 6) togetp(4, 4.4, 4.4)and 9 (4.4, 4.4,

ratios

= 0.219.

5), we compute
L 9p4,4.4,44)4.4
249 )44 = 0.402.

L5 ,0(4,44,44)(44) — L] 49(44,44,5)(4.4)

In Section 5 we noted the dependence of the geometrically continuous

Remark 1.
spaces S and P on the weight functions. Suppose in the example above we use
wa () =€ wy ) =€

wo,; () = 1, wy () =e,
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fort € [j, j + 1] and j even, and
wy,; (1) =1, wy, () = e/ wy () = &1 ws () = e 7!

fort € [j, j -+ 1] and j is odd. In this case we still get Uy, ; = span{l,t — j, sinh(z —
j),cosh(t — j)} for all j, but the spline space S and the B-splines differ from those in
the example. Thus the combinations in the algorithms for this case will also differ.

On the other hand, if we choose different weight functions that result in the same spline
space S, the combinations in the algorithm will be the same even if the P-spaces differ.
For example, if we interchange the weight functions for the odd and even intervals in
the evaluation example, we still get the same space S, but different P-spaces. However,
note that each level of the evaluation algorithm is an instance of knot insertion, and since
knot insertion is a unique transformation from the spline space to another spline space,
we must have the same combinations.

Remark 2. The evaluation example illustrates computational issues for the algorithms
described in this paper. In the general situation, finding each of the ¢; involves solving a
banded (n + 1)? by (n+ 1)? linear system. Then for each of the n(n + 1) /2 combinations
in the evaluation algorithm, we must evaluate each function (or a derivative of each
function) to find the combination, and then combine pairs of functions to obtain the
functions used in the next level of the algorithm. Even if the ¢; have already been
computed, this will require a large number of computations.

So it may well be that the results in this paper should be regarded primarily as the-
oretical results. On the other hand, the results here cover a large number of algorithms
for a broad class of spline spaces. So even if a straightforward implementation of an
algorithm here is not advantageous in general, there may be special cases where the
calculations in the algorithm simplify appreciably; or the results here may aid in the de-
velopment of still other algorithms; or there may be alternative implementations of the
algorithms here—as one example, if certain functions in the algorithims are precomputed
symbolically, then the associated steps in the algorithm reduce to evaluating the results
of this symbolic computation. In summary, although the algorithms here are computa-
tionally complicated, there are a number of computational questions that merit further
investigation.

10. Concluding Remarks

In this paper we have extended de Boor-Fix dual functionals to Tchebycheffian splines,
and have shown that they induce algorithms for Tchebycheffian B-spline curves in the
same way that they do for B-spline curves. The approach of generalizing the de Boor-—
Fix formula and uvsing it to derive evaluation, differentiation, knot insertion, etc., results
~ has now proved useful in a number of contexts—piecewise polynomial parametrically
continuous splines, piecewise polynomial geometrically continuous splines, and Tcheby-
cheffian splines. In each of these contexts the details differ, but many of the main ideas
are the same.

Although it is satisfying that the de Boor-Fix dual functionals do generalize to the
Tchebycheff setting in an elegant manner, this generalization does raise further questions.
We conclude by listing a few of the most important.
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¢ There are still other spline generalizations. Can the de Boor—Fix formula be extended

to these?

o To what extent are the results in this work computationally useful?
e There are still other published Tchebycheffian spline algorithms. What, if any, is the

relationship of results in works like [8] to the algorithms and approach presented
here?
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