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de Boor-Fix Dual Functionals and Algorithms for 
Tchebycheffian B-Spline Curves 

R J. Barry 

Abstract. The de Boor-Fix dual functionals are a potent tool for deriving results 
about piecewise polynomial B-spline curves. In this paper we extend these functionals to 
Tchebycheffian B=spline curves and then use them to derive fundamental algorithms that 
are natural generalizations of algorithms for piecewise polynomial B-spline algorithms. 
Then, as a further example of the utility of this approach, we introduce "geometrically 
continuous Tchebycheffian spline curves," and show that a further generalization works 
for them as well. 

1. Introduction 

Piecewise polynomial B-spline curves possess an elegant theory making them useful for 
geometric modeling. For example, they have simple recursive algorithms for evaluation, 
subdivision, and differentiation. Moreover, one particularly satisfying aspect of B-spline 
curves is that much of their theory--such as the derivation of these algorithms--follows 
in a coherent, economical manner from a few basic tools or principles such as knot 
insertion, blossoming, or dual functionals (see, e.g., [10]). 

There are many generalizations of B-spline curves. This raises the question--to what 
extent do B-spline curve results extend to these generalizations? The answer is that 
often the theory extends in an elegant manner. For example, geometrically continuous 
splines are piecewise polynomial curves that rely on geometric, rather than parametric, 
continuity. Many B-spline curve results extend to this setting. More specifically, two 
recent works, [20] and [1], showed that the B-spline approaches of blossoming [16], 
[17], and [19] and de Boor-Fix dual functionals, [6] and [7], extend to the geometrically 
continuous setting; these generalizations then allow generalization of a number of B- 
spline curve algorithms, e.g., evaluation, differentiation, knot insertion, and conversion 
to other (e.g., Bernstein-Brzier) representations. The algorithms will, of course, become 
more complicated, but the point is they extend in a natural manner. 

As a second example, Lyche [ 13] showed that certain B-spline results, among them the 
B-spline recurrence and a knot insertion identity, extend to Tchebycheffian B-splines. 
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Tchebycheffian B-spline curves are a class of curves that generalize regular (i.e., piece- 
wise polynomial) B-spline curves so as to allow curves in a space based on a Tchebycheff 
system. This allows study of a wide class of curves containing not only piecewise poly- 
nomials, but also curves such as some trigonometric splines. More recently, Pottman 
extended the B-spline technique of blossoming to Tchebycheffian B-spline curves [ 14], 
[15]. From this extension he then derived a number of results about Tchebycheffian 
spline curves. 

The purpose of this paper is to extend the de Boor-Fix dual functionals for (piecewise 
polynomial) B-spline curves to Tchebycheffian B-spline curves and then to provide 
examples of how the dual functionals induce algorithms that are natural generalizations 
of piecewise polynomial B-spline algorithms. Then, as a further example of the utility of 
this approach, we introduce "geometrically continuous Tchebycheffian spline curves," 
and show that a further generalization works for them as well. The algorithms produced 
can be computationally complex, and so it is an open question as to whether they are 
of direct computational interest, or if they should be considered primarily as tools for 
further investigation (see Section 9 below). Nonetheless, the extension of the de Boor- 
Fix dual functionals provides a potent tool for deriving numerous results about these 
types of generalized spline curves. Moreover, although many details of this extension 
are almost identical to those in the piecewise polynomial setting, there are also interesting 
differences. 

This paper is therefore closely related to the works [1], [13], [14], and [15], as well 
as to fundamental Tchebycheffian spline results; however, it also contains significant 
differences. Specifically, [14] and [15] use intersections of osculating linear flats to 
define the blossom of Tchebycheffian splines, and from this tool derive results about 
these curves. Here we rely on the de Boor-Fix dual functionals. These ~.pproaches are 
related, but are sufficiently different and are sufficiently powerful that both are valuable. 
The extension to geometrically continuous Tchebycheffian splines parallels the work in 
[1], but there are enough minor differences in this setting that providing the basic results 
for this extension is useful. Some results here are similar to results in [13], but again we 
use a different approach, have a different emphasis, and derive some different results. 
Finally, this work relies heavily on fundamental results about Tchebycheffian splines, 
and some results here are variants of well-known results, but other results are new or are 
used in new ways. 

This paper is structured as follows. Many of the results in this paper rely on results for 
Tchebycheff spaces, and so in Section 2 we recall needed background and set notation. 
In Section 3 we then extend the de Boor-Fix dual functionals to Tchebycheffian B-spline 
curves, and prove some useful results about these functionals. Section 4 contains three 
examples of the use of these functionals, when we use them to generate algorithms for 
evaluation, subdivision, and differentiation. We then turn our attention to geometrically 
continuous Tchebycheffian spline curves, first defining, in Section 5, the spline spaces 
of interest, and then, in Section 6, proving results about functions in related spaces. 
These results allow us, in Section 7, to extend the dual functionals, and in Section 8 
we show the existence of "B-splines" for these spline spaces. In Section 9 we provide a 
numerical example and briefly discuss some computational issues. Section 10 is devoted 
to concluding remarks. 
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2. Notation and Background 

In this section we recall some results about Tchebycheffian splines and about the de Boor -  
Fix dual functionals. Proofs of  the Tchebycheff results can be found in Chapter 9 of  [ 18]. 

We begin with a set o fm  + 1 functions uo(t) . . . . .  Um (t) defined over an interval [a, b] 
suchthat ui E Cm[a, b] for all i. ForanyO < k < m, le ta  < r0 < rl < . . .  < rk < bbe  
any sequence. This sequence may contain multiple instances of  the same value, so from 
the sequence form another sequence to . . . . .  td where d §  1 is the number of distinct values 
and ti is the (i + 1)st smallest value in the original sequence. Also, let li, for i = 0 . . . . .  d, 
be the number of times the value ti appears in the original sequence. Now define 

(1) D ( r O  . . . . .  r k )  = 
I, U0, - , Uk 

uo(to) us(to) . . .  u~(to) 
Duo(to) Dul(to) . . .  Duk(to) 

Dlo-luo(to) Dlo-lul(to) ~.. D~O-luk(to) 

u0(tl) ul(t l)  .-- Uk(tl) 

Dlt- luo(h)  Dl t - lu t (h )  . . .  Dl , - luk(h)  

uo(td) ux(td) ""  Ut,(td) 

Ol~-luo(td) Ol~-lul(td) . . .  Ot~-luk(td) 

/ \ TO r~ 
If D [  . . . . .  I > 0 f o r a l l a  < r0 ~ . . .  _< rk < b f o r a l l k  = 0  . . . . .  m, thenthe 

\uo . . . . .  uk/ 
sequence of  functions uo . . . . .  Um is said to be an extended complete Tchebycheffsystem 
(ECT-system). An (m § 1)-dimensional linear space b/m+1 with a basis that is an ECT- 
system is said to be an extended complete Tchebycheffspace (ECT-space). An important 
part of  the theory of  ECT-spaces relies on the existence of  a canonical basis: given any 
ECT-space, there exist weight functions wi E C m-i [a, b], positive on [a, b], such that: 

uo(t) :=  wo(t), it Ul(t) :=  Wo(t) Wl(Sl)dSl,  

(2) 

f ,  f s ~ f s m _ ,  Urn(t) := Wo(t) Wl(SI) "'" tOm(sm)dsm'"dsl ,  

is an ECT-system which is a basis for Um+l. Conversely, given any wi ~ cm-i[a,  b], 
and positive on [a, b], the functions defined by (2) form an ECT-system. 

When working with ECT-spaces it is convenient, rather than using usual derivatives, 
to use the differential operators D o f  :=  f ,  and 

(3) D i f  :=  D ( ~ ) ,  i = l , . . . , m + l ,  

L i f  := DiDi- i  . . .  Do, i = 0 . . . . .  m + 1. 
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Below we will use the fact that L i u j  ~- 0 if  i > j ,  and equals w~ for i = j ,  for 
all i = 0 . . . . .  m + 1, and j = 0, . . . ,  m. The operators L i a r e  related to the usual 
differential operators. In particular, a funct ion f c b/m+1 has the property that, for any 
r c ( a , b )  a n d /  6 { 0 , . . . ,  m}, we have D r f ( r  - )  = D r f ( r  +) for r = 0 . . . . .  i i f  and 

only  if  L r f ( r - )  --- L r f ( r  +) for r = 0 . . . . .  i. 
The bes t -known example of an ECT-space is the polynomials  over any interval [a, b]. 

Let wo(t) = 1 and W i ( t )  -= i for i = 1 . . . . .  m. Then u i ( t )  = (t - -  a )  i for i = 0 . . . . .  m. 
We will also use heavily the dual canonical ECT-system. Given any canonical  basis 

* * is uo . . . . .  Urn, the dual system u o . . . . .  u m 

(4) u;(t)  : =  1, f' 
: =  Wm (Sin) dsm, u*~(t) 

u~(t) =fa'Wm Sm f?f?wl S, d ldSm 
The associated operators D* and L* are given by D ~ f  = f and 

1 
D * f  . -  - -  D f ,  i = 1 . . . . .  m + 1, 

(5) wry-i+1 

L ~ f  : =  D i D i _ I . . . D o ,  i = 0  . . . . .  m + l .  

* * = 0 i f i  > j ,  a n d e q u a l s  1 f o r i  = j ,  f o r a l l  Below we will use the fact that L i u j  

i = 0  . . . . .  m + l a n d j = 0  . . . . .  m. 
* * is a lso an ECT-sys tem (for this to We assume throughout  this work that u o . . . . .  u m 

occur it is sufficient that each wi be positive and be in C max(m-i'i-1) [a, b]). Observe this 

implies  L/* : =  span{u~ . . . . .  Ur*_l} is an ECT-space for r = 1 . . . . .  m + 1. We will also 
assume that wo(t) - -  1, which implies  that constants  are in the space. One  result  about  
ECT-spaces that we will use heavily is that any funct ion in an ECT-space of  d imens ion  

r + 1 can have at most  r zeros. In particular,  any funct ion in b/;+ 1 can have at most  r 
zeros over [a, b], count ing multiplicit ies (see, e.g., Theorem 9.12 (and Theorem 9.3) of  

[18]). 
To define a spline space based on an ECT-space, we take a set of  knots a = to < t1 < 

�9 " < tk+l = b, and an associated set of  multiplicit ies 1 _</zi _< m for i = 1 . . . . .  k. For  

simplicity, we will assume that/x0 =/~k+~ = m + 1. Then the space of  Tchebycheff ian 

splines with knots {ti} and multiplici t ies {/zi} is given by 

(6) S : =  { f :  f](tj;t~+,) CHm+l[(ti,ti+,) fOri = 0  . . . . .  k, and 

Drf( t~  -) = D~f( t~ -) f o r r  = 0 , . . . ,  m - / z i , i  = 1 . . . . .  k}. 

k Let K = ~ i = 1 / z i .  The d imens ion  of  S is then m + 1 + K.  Moreover, S has "B-splines." 
That  is, there exist funct ions {Nz }i=0 ...... +K in S with the fol lowing properties: first form 
a knot  sequence v0 . . . . .  rZ,n+l+K that implici t ly contains  the mult ipl ici ty informat ion by 
repeating each knot  tz as often as its multiplicity�9 Then  Nz has properties: (i) the support 

of  Ni = (ri, r i+m+l); (ii) Ni (t) > 0 for t c (zi, "Ci-Fm+l); and (iii) z.,i=0X-''+K N/(t)  = uo(t) 
for all t 6 [tm, tin+K+1] = [a, b]. 
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In order to study properties of  curves written in terms of this basis, in the next section 
we examine a generalization of the de Boor-Fix form of the dual functional for B-splines. 
In the usual (piecewise polynomial) case, the de Boor-Fix dual functionals are written 
as 

m D m - r ~ o i ( v ) D r  f ( r )  
(7) )~if := E ( - 1 )  m-r 

m! 
r = 0  

w h e r e  ~ e (ri, ri+,,+l) and  ~oi(t) : =  (Vi+l - t ) . . .  (r:i+rn -- t ) .  This  is a wel l -def ined  

functional on the spline space with 

)~iNj = 3ij for all i, j ,  

i.e., the {~.i} are the dual basis for the {Nj}. 
There are other forms of the dual functionals for the Tchebycheffian B-splines. For 

example, there is a well-known integral form of the functionals (see [18]), and the 
blossom will furnish yet another form [14]. Clearly each of these forms is related to the 
others, but there are also enough differences that each form is valuable. 

3. Generalization of the de Boor-Fix Functionals 

In this section we generalize the de Boor-Fix form of the dual functionals to the Tcheby- 
cheff setting. 

Because of the simple form of the de Boor-Fix functionals--in particular, their reliance 
on the polynomials ~pi----~ey provide an efficient tool for developing many B-spline 
results. Our approach here is therefore to generalize these functionals, and then in the 
next section to use them to study curves written in terms of the Tchebycheffian B-splines. 

To define the generalized functionals we first note that the functions ~0i in the piecewise 
polynomial case have zeros at m consecutive knots, and have lead coefficient ( - 1 )  'n. 
For the generalized funct ions--which we also denote by ~0i--we will use functions in 
/'/m*+l that also have zeros at m consecutive knots, but which have lead coefficient (i.e., 
the coefficient of  u~ in the expansion of the function in terms of the dual canonical 
basis) equal to 1 rather than ( - 1 )  m. We use this normalization because these functions 
have appeared previously in Tchebycheffian spline theory, e.g., in the Tchebycheffian 
version of Marsden ' s  identity, or in an integral version of the Tchebycheffian B-spline 
dual functionals [18]. Here we show these same functions appear in the de Boor-Fix 
form of the dual functionals as well. 

Specifically, we let ~oi be the function in L/m*+l with zeros at ri+l . . . . .  ri+m and lead 
coefficient 1. If  one of the knots ri+l . . . . .  ri+m is multiple, then goi has a zero there of  
multiplicity the number of  times that knot value appears in the sequence ri+l . . . . .  ri+m. 
(A function f 6 L{~+ l has a zero of multiplicity l at r if L ~ f ( r )  = 0 for j < l and 
L ~ f ( v )  ~ 0; similarly a function f 6 b/m+1 has a zero of multiplicity l if L0 through 
Lt-1 applied to f at v are zero but Lt isn't. However, this is equivalent in both cases to 
O 0 f ( v )  . . . . .  D l - l f ( r )  = 0 and D l f ( r )  r 0.) 

The function q9 i will always exist un iquely- -we can write it as a ratio of  determinants. 
Let x0 . . . . .  X,n be any sequence, and define d / t o  be the number of  terms previous to xi 
that have the same value as xi (observe the d/wil l  not be the same as the/zi). Next define 

(8) Du:+, (xo . . . . .  Xr) :-- det[L~i u~ (x i) ]i, j=O ...... 
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We can now write 

(9) ~0i (t) = D ~ + l  (ti+l . . . . .  ti+m, t) 
DU~ (ti+l . . . . .  ti+m) 

Because  L/~* is an ECT-space,  the denomina tor  of  this rat io is nonzero,  and is, in fact, 
the coeff icient  of  u~, (t) in the numerator.  Moreover ,  it is easy to see that  the numera tor  
does indeed have zeros at the des i red  values.  The uniqueness  of  q)i also fo l lows since 
any funct ion in U~*+I can have at mos t  m zeros.  

We are now ready for  the main  resul t  of  this section. 

Theorem 1. The functions 

r L*ir~Oi('c)Lr f (7:) 
(10) )~i( f)(v)  : =  ~ . . , ( - -1 )  , i = 0 . . . . .  m q- K ,  

r=O //)r (17) 

for  v E (vi, ri+m+l) are linear functionals on S. Moreover, they have the property 
that )~iNj = ~i,j for  i, j = 0 . . . . .  m + K-- that  is, they are the dual basis for  the 
Tchebycheffian B-splines. 

Proof .  We first show that X~ is well  defined on f at the knots.  Then we show )~i is 
independent  of  v e (vi, ri+m+l). That  )~i is l inear  is then straightforward.  

So cons ider  any tj ~ (r i ,  r i+m+l).  Now 

m 

(11) ~,i( f ) ( t?)  = Z ( - 1 )  rz*m-r~~ 
r=O Wr(t?) 

Now since Wr is at least  C max( . . . . . .  1), and since cpi E /A~+ 1 and is therefore  C m, 
L*_rqgi(t?) = L*_r~Pi(t]-) and Wr(t~-) = Wr(t 7 )  for  r = 0 . . . . .  m. Moreover ,  f is 
C m-m at tj, SO 

m L* rqPi ( t]-)Lrf(t]-)  
(12) ~ i ( f ) ( t  +) = ~ . . : ( - 1 )  r 

r = o  w,(tf) 
_ ~ (__l)rLm_rq)i(9)Lrf( t j  ) 

r=m-m+l w,. (t]-) 

m * - + 
-t- Z (--1)rLm-rq:)i(tj )Lr f ( l j  ) 

r = m - p q + l  Wr(t? ) 

�9 Lm_r~Oi ( t j )  = 0 for  r = m - izj + 1 . . . . .  m, the lat ter  two But  since Lm_r~Oi(tj) = * + 
sums are O, showing ~i f ( t + )  = ~.i f @-). 

To show ~.i f (v) is independent  of  z ~ (z-i, Z'i+m+l ),  first observe  that for  r = 0 . . . . .  m 
both L*_rq)i and (Lr f ) /Wr  are C 1 for  all r s (ri, ri+m+l)\{ti+l . . . . .  ti+m}. So consider,  
for  any such r ,  

D•i f ( v )  (13) 
Dr 

m 
Z ( _ l ) r  F DL*-rqgi('c) . . . .  

- -  I - -  C r Y t r  ) + L *  r ~ i ( v ) D  
r=O L Wr('C) 

m 

X'% 1,rrL* * "c = / ~ t - -  r t m-r+l~~ r ) + L m - r q ) i ( r ) L r + l f (  )]- 
r=O 
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Now L~+ l~pi = 0 and Lm+l f = 0, so using this and reindexing provides that D~.i f ( r ) /  
Dr  = 0 for all r ~ (gi, r i+m+l) \{ t i+l  . . . . .  t i + m } .  Since Z i f ( r )  is continuous for r 
(ri, r/+m+l) from the first part of  the proof, we get that ~'i is a linear functional on S. 

We next show )~i N j  = 0 for i ~ j .  If  Nj is identically 0 on any of the intervals 
(ri, zi+l) . . . . .  (ri+m, ri+m+l), then )~iNj is obviously 0. So we need only examine when 
one or both of the knots ri or ri+m+l has multiplicity > 1. Assume ri . . . . .  ri+t. Nj, 
for j = i  + 1 . . . . .  i + l, has its first m - i - 1 - l + j derivatives equal to 0 at z +. 
Moreover, q9 i has a zero of multiplicity I at ri. So 

m 
(14) ~,iNj : E ( - - 1 )  r L*-r~Oi('c+)Lrf(r+) 

r=0 ~/3r ( r i+ )  ~--- 0.  

A similar argument works at ri+m+l. 
To conclude the proof we show )~i N/ = 1 by observing 

m+K rn+K m . - - r  L * - r ~ O i ( ' C ) L r w o ( ' C )  

( 1 5 )  J~iNi = j~=o ~iNj = ~.i ~ Nj = Ziu 0 = ~.iw0-----E[-l)r=0 Wr(r) " 

Since Lrw0 = 0 f o r r  > O, thisbecomesL*~oi(r).Since Lm* Uj* = 3jm, and the coefficient 
of  u m* in the expansion of ~Pi is 1, we have Li N i  :-- 1. �9 

4. Algorithms for Tchebycheffian B-Spline Curves 

In this section we will use the functionals developed in the previous section to present 
three algorithms for Tchebycheffian B-spline curves. We begin with an evaluation al- 
gorithm generalizing the de Boor algorithm [5], then we prove a subdivision result 
generalizing Boehm's  knot insertion algorithm [4]. Finally, we generalize a well-known 
recursive technique for finding the derivatives of  B-spline curves. 

Dual functionals can actually be used to generate numerous other algorithms (see, 
e.g., the development in [1] for piecewise polynomial geometrically continuous curves). 
However, once we develop a few fundamental results, the algorithm development follows 
easily. For that reason we provide the three representative examples given here, rather 
than an exhaustive development of  a number of  other algorithms as well. 

To develop the algorithms we need some new notation. Let ~O(Xl . . . . .  Xm)(t) be the 
unique function in Hm*+l with a zero at xi, for i = 1 . . . . .  m, of  multiplicity the number 
of  times the value xi appears in the sequence Xl . . . . .  xm, and having coefficient of  U~n, 
when written in terms of the canonical dual system, equal to 1. Observe these functions 
will always exist uniquely in H~+ 1 by the same argument as used in the last section to 
show the existence of the ~0i. 

L e m m a  1. Let x0 . . . . .  Xm ~ [a, b] where xo # Xm, and let dx be the number of times 
the value x appears in the sequence Xl . . . . .  x,n-1. Then 

(16) ~p(xl . . . . .  Xm-l, x)( t )  

L *d~ ~O(Xo . . . . .  Xrn-1)(x )~O(Xl . . . . .  Xm)(t )-- L *dx ~O(Xl . . . . .  Xm)(X )<O(X 0 . . . . .  Xm-l)(t ) 

L *dxcp(XO . . . . .  Xm-1)(X ) -  L *ex ~o(xl . . . . .  Xm)(X ). 
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Proof.  Note 9(x0 . . . . .  Xm-i ) ( t )  - qg(xl . . . . .  xm)(t)  ~ Lt,~ and has m - 1 zeros at 
xl  . . . . .  Xm-1. Because Hm* is an ECT-space, no element of  it can have more than m - 1 
zeros. So this function cannot have a zero of  multiplicity greater than dx at x. Therefore 
the denominator of  the fight-hand side is not zero. 

Then observe that the right-hand side is a function in H*+I with lead coefficient (i.e., 
the coefficient of  u*) equal to 1, and with zeros at Xl . . . . .  Xm-1 and x, so it must be 

~O(X1 . . . . .  X m _ l ,  x) ( t ) .  �9 

The o rem 2. Let  f (t) = ~ j  P j N j ( t )  be a Tchebycheffian B-spline curve and let x be 

any point  in a knot interval (tq, tq+l).  Let  

(17) P~  = Pj, j = q - m  . . . . .  q, 

( L * I  q)(z'j+l . . . . .  t j+m+l-i,  x . . . . .  x ) ( x )  Pj-_~ (x) 
-- Z*_lqg(r j . . . . .  75j+m-i, x . . . . .  x ) ( x ) e j - l ( x ) )  

P j ( x )  = (L*-l~~ . . . . .  rj+m+l-i, x . . . . .  x ) ( x )  

- -  L i* - I~O(T j  . . . . .  " g j + m - i ,  X . . . . .  X ) ( X ) )  

f o r i  = 1 . . . . .  m; j = q - m + i  . . . . .  q.  

Then f ( x )  = P q  (X)Wo(X) = P q  (X). 

Proof. The proof  proceeds by induction on i to show that 

(18) e j ( x )  
m L m _ r ~ O ( ' C j + l  . . . . .  T j + m - i ,  x . . . . .  x ) ( z ) L r f ( r )  

= Z ( - 1 )  r Wr(t  ) ' 

r = 0  

j = q - m + l  . . . . .  q 

for r E (rq, rq+l), and then proving that 

(19) Zm ( _ l )  L._r~O(X . . . . .  x ) ( v ) L ~ f ( z )  __ __f(z) __ f ( z )  
~=o w~(~) wo(r)  

for r s (rq, rq+0 .  
We will prove (19) first. Notice that L*_r~o(x . . . . .  x ) ( z )  = 0 for 0 < r < m, since 

we can choose z = x and get two rows in the matrix Du~+ l (x . . . . .  x, z) to be identical. 
So the left-hand side of  (19) becomes L*~p(x . . . . .  x ) ( r ) f ( r ) / w o ( r ) .  Since L*u~ = 0 
for j < m, and L ' u *  = 1, and since the expansion of  ~p(x . . . . .  x ) ( r )  in terms of the 
canonical dual basis has lead coefficient 1, we get the fight-hand side of  (19). 

To prove (18) note that it is true by Theorem 1 for i = 0. Assume it is true for i - 1. 
Then Pj (x) equals 

( L * : ( r j + 1  . . . . .  r  x . . . . .  x ) ( x ) P : 2 ]  (x)  

(20) - L~_I~(T: . . . . .  r j+m-i ,  x . . . . .  x ) ( x ) P ] - I ( x ) )  

L*_l~O(tj+l . . . . .  tj+m+l--i, X . . . . .  X)(X) -- L~_I~O(~ j . . . . .  ~Ej+m_i, x . . . . .  x ) ( x )  
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( - - 1 )  r L r n _ r [ ( L i _ l q ) ( T j + l  . . . . .  "gj+m+l--i, X . . . . .  X ) ( X ) )  

r~-O 

X q)(15j . . . . .  ~ ' j+m-i ,  X . . . . .  X ) ( ' g )  

- -  ( L i _ l q g ( ' c  j . . . . .  T , j+m-i ,  X . . . . .  X ) ( X ) ) ~ O ( T j +  1 . . . .  T j + m + l : i ,  x . . . . .  x ) ( r ) l  

L r f ( r )  
X + [Li_l~O('Cj+l . . . . .  r j + m + l _ i ,  x . . . . .  x ) ( x )  wr(r) 

- -  L * _ l q ) ( r  j . . . . .  72j_t_m_i, x . . . . .  x ) ( x ) ] [  . 
l 

This then equals the right-hand side of (18) by Lemma 1. 

This algorithm is the generalization of the de Boor algorithm [5] for B-spline curve 
evaluation (see also Corollary 5.4 in [13] and the remarks after Theorem 4.4 in [14]). 
We will make a few brief remarks on this result below, after proving the subdivision and 
derivative results. 

B-spline curves are subdivided by a process called knot insertion. The knot insertion 
process refines the original knot vector {ri } to a new knot vector {~'i }. This enlarges the 
associated spline space. The knot insertion problem is then to take a curve in the original 
space, and express it in terms of the B-splines for the enlarged space. 

There are numerous knot insertion algorithms for B-spline curves. Here we prove an 
identity related to one of  the simplest yet most powerful of  these algori thms--Boehm's  
knot insertion result [4]. This result is a different form of the results in Theorem 5.5 in 
[13] and Theorem 4.4 in [14]. 

Theorem 3. Let ~ c (rq, rq+l) be a new knot to insert. The control points {/3j} ex- 
pressing a Tchebycheffian B-spline curve f (t) = y]j Nj (t) Pj over the new knot vector 
are given by 

(21) 

[~, 

J = I ?; i ( ) 
IPj-I, 

j ~ q - m ,  

q - m + l N j N q ,  

q + l ~ j .  

Proof. For j < q - m or q + i _< j the result follows immediately from Theorem 1. 
For q - m + 1 < j < q, use Theorem 1 with respect to the refined knot vector, together 
with Lemma 1. �9 

Finally, we examine derivatives. We begin with two lemmas. 

L e m m a  2. Let xl . . . . .  Xm-c E [a, b] be any values with 0 < c < m. Then there exists 
a unique function, which we shall denote ~o(xl . . . . .  Xm-c; 6c)(t) ~ Lt~_c+ 1, with: (i) 
zeros at Xl . . . . .  Xm-c (of multiplicity the number o f  times xi appears in the sequence 
xl . . . . .  x,n_~), and no other zeros; and (ii) lead coefficient (i.e., coefficient o f  U*_c) equal 
t o l .  
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P r o o f .  Since/.4m*_c+ 1 and/gm*-c are ECT-spaces ,  Dub_c+ ' (xl . . . . .  Xm-c, t ) /Du~_c(xl ,  
. . . .  Xm-c) is a function in/Am*_c+ 1 having the des i red  propert ies .  Uniqueness  fol lows 
since any e lement  o f  b/m*_c+~ can have at mos t  m - c zeros.  �9 

Not ice  that  the notat ion ac indicates  t h a t  L*_c+jq)(x  1 . . . . .  Xm-c; a c) = 0 for  j = 

1 . . . . .  C. 

L e m m a  3. For any 1 < c < m, and any values xo . . . .  , Xm-~+l with xo # Xm-~+l we 

have 
qg(Xl . . . . .  X m - c + l ;  8c-1)( t )  --go(x0 . . . . .  X m - c ;  U - l ) ( t )  

(22) ~o(xl . . . . .  X m - c ;  a c ) ( t )  = L'~,_c --'-'-'7"-'---tn ~ t x l ,  7 7 - ' f ' - X m ~  o~ * )~(tg[xo'-gT-~'--, . -7~ 

Proof .  Observe  qg(X 1 . . . . .  Xm-c+l; 8 C-i)  - ~p(x0, - . . ,  Xm-c; 8~-1) is in LCm*_r L, is not  
ident ica l ly  0, and has zeros at Xl, �9 . . ,  Xm-~. Because,  for  r = 1 . . . . .  m + 1, a function in 
any space L/r* can can have at mos t  r - 1 zeros,  the difference function,  when expanded  in 

terms of  u ~ , . . . ,  urn_ o *  has nonzero  coefficient  of  u m _ c . N o w L m _ c u r  = 0 for  r < m - c  

and Lm_cUm_ c = 1, SO the denomina tor  is a nonzero  constant .  
It is now s t ra ightforward to see that the r ight -hand side has the appropr ia te  character-  

ist ics to ident i fy it as 9(x l  . . . . .  X m - c ;  3c) .  �9 

We now derive an a lgor i thm for  f inding derivatives.  This  a lgor i thm genera l izes  a 
wel l -known technique for  f inding derivatives of  p iecewise  po lynomia l  B-spl ine  curves.  

T h e o r e m  4. Let  f (t) = y~j P jNj  (t) be a Tchebyeheffian B.spl ine curve and let x be 

any po in t  in an interval (rq, rq+l) .  Let  0 < c < m, and let 

(23) P ~  = Pj, j = q - m  . . . . .  q,  

t ' j  (x  ) = 

(Li*_lq)('rj+ 1 . . . . .  z'j+m+l_i, x . . . . .  x ) (x )Pj_~  (x) 
- L * _ l g ( r  j . . . . .  T.j+m_i, X . . . . .  X ) ( x ) P j - I ( x ) )  

(L* 6o(~j+, . . . . .  rj+m+l-i, X . . . . .  X ) (X)  
- L* lq~(v  j . . . . .  z'j+m-i, x . . . . .  x ) ( x ) ) ,  

i = 1  . . . . .  m - c ;  j = q - m + i  . . . . .  q. 

= pj: (x)l 
* " X;  (~i--(m--c)--l) 

+ [L2m_c_i (qg(zr j+l  . . . . .  "gj+m+l_i ,  x . . . . .  

- -  qg('cj . . . . .  "gj+m-i , x . . . . .  x ;  a i - ( m - c ) -  l ) ) ] 

i = m - - c + l  . . . . .  m; j = q - - m + i  . . . . .  q. 

T h e n  
( - 1 ) C L e f ( v )  

(24) Pq(X)  = We(r)  

P r o o f .  Observe  this a lgor i thm is identical  to the evaluat ion a lgor i thm up to and includ-  
ing when i = m - c. A t  that s tage we have the points  

trt  * 

(25) P ~  -c (x )  = E ( _ . . i ) r  L m _ r ~ ( 7 5 j + l  . . . . .  -Cj+c, X . . . . .  x ) ( r ) L r f ( Z )  

~=o w~(r) 
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for r ~ (rq, rq+l). We now show by induction on i that 

tn , 

(26) P j ( x )  = ) - ~ ( - 1 )  r Lm-r~~ . . . . .  rj+m-i,  x . . . . .  x;  ? / - ( m - c ~ ) ( z ) L r f ( r )  

r = 0  W r ( r )  

for r ~ (rq, rq+l) for m - c < i < m. This is true for i = m - c. Suppose it is true for 
m > i -  l > _ m - c .  Then 

m 

1 ~ L* . . .  (27) Pj (X)  = E ( -  ) { m_~[9(rj+l . . . . .  rj+m-i+x, x, , x; 3(i-1)-(m-c))(v) 
r = 0  

- -  ~O(Z'j . . . . .  72j+m_i, X . . . . .  X; ~(i-1)-(m-c))(r)]Lr f (r)}  

"-- {w~(r)L~m_c_i[9(Zj+l  . . . . .  Zj+m--i+�92 X . . . . .  X; 6(i--1~--(~--~) 

- -  @('gj . . . . .  7Jj4_m_i, X . . . . .  X;  (~(i--l)--(m--c)) ]} 

m . --r  L*_r~o(rj+l . . . . .  rj+m-i ,  x . . . . .  x;  8 i - ( m - ~ ) ) ( r ) L , f ( r )  
= E ( - I )  

by Lemma 3. So we get 

(28) 
m 1) r L ,  rg(X,  P q ( x )  = ~ ( -  . . . ,  x;  3 c ) ( z ) L r f ( r )  

r=o w,-(r) 

Since ~o(x . . . . .  x; ~c) E ~J*-c+l '  we have L T g ( x  . . . . .  x; 3c)(r)  = 0 for I > m - c. 
Also, choosing ~ = x implies L ~ 9 ( x  . . . . .  x;  6c)(~) = 0 for l < m - c. So P q ( X )  
reduces to 

(29) ( . 1 )  c L*m_c~O(X, . . . ,  x;  U ) ( T ) L c f ( r )  _ (--1)____~CLcf(r) 

Wc(r) Wc(r) 

since L *m_c~O(X . . . . .  x;  6 c) = 1. 

We have presented the evaluation, knot insertion, and derivative results because they 
are representative of  how the dual functionals are used to produce the algorithms and 
how some of  the details are handled. A more detailed examination of  Tchebycheffian 
B-spline curves would consider other algorithms such as conversion to the Bernste in-  
Brz ier  form or the Oslo knot insertion algorithm, as well as details not considered here, 
such as evaluation when the point of evaluation is a knot. However, the theme here is 
the utility of  the dual functionals in this setting. Because details such as evaluation at 
a kno t  follow in an analogous manner to the same situation for piecewise polynomial  
B-splines or for geometrically continuous piecewise polynomials  B-spline curves, we 
will not track down these tedious details. Moreover  numerous resul ts--e .g . ,  the Oslo 
knot insertion algorithm, a recurrence for the Tchebycheffian B-spline curve similar 
to the Cox-de  Boor-Mansf ie ld  recurrence, a recurrence for "discrete"�9 Tchebycheffian 
B-spline curves, algorithms for conversion to the Bernste in-Brzier  form, and Boehm's  
derivative algorithm, to name just  a f e w - - a r e  straightforward to derive from the basic 
results presented here (see, e.g., the analogous derivations in [1], [2], and [10]). 
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In summary, the dual functionals and the results in this section allow a large number 
of  algorithms to be developed quite easily. 

5. Geometrically Continuous Tchebycheffian Splines 

In the first part of this paper we extended the de Boor-Fix dual functionals to Tchebychef- 
fian B-spline curves, and showed how this extension provided a straightforward means 
for generalizing numerous B-spline curve algorithms. To provide further evidence of 
this usefulness of  this approach, we next generalize this process further by showing that 
it also applies to "geometrically continuous Tchebycheffian B-spline curves." Specifi- 
cally, we consider spline spaces where each spline segment is in an ECT-space and the 
relationship between the derivatives at the end of  a segment and those at the beginning 
of  the next segment is given by a "connection matrix." 

Such a spline space generalizes both the Tchebycheffian spline spaces studied in 
the first four sections as well as the spaces of  piecewise polynomials determined by 
connection matrices which were introduced in [9], and studied in terms of  dual functionals 
in [1]. Because the results we are interested in for these new spaces parallel those in the 
first part of  this paper and certain results in [9], [ 1 ], and [3], we will provide here only the 
basic results for these spaces. The use of these results to generate algorithms for curves 
written in terms of  "B-splines" for these spaces then follows simply from these results 
in a manner similar to that used above and in [1]. 

Specifically, then, in the next four sections we first define the spline spaces of  interest, 
and then prove results about the number of  zeros functions in a related spline space 
(which takes the role of  the space H*+I above) can possess. We next present certain 
linear functionals which will be analogues of  the de Boor-Fix dual functionals. Finally, 
while we know that B-splines for Tchebycheffian spline spaces exist, we do not yet 
have a similar result for geometrically continuous Tchebycheffian sp!ine spaces. So we 
conclude our investigation with a proof of  the existence of  "B-splines" for these spaces. 

We first define the spline spaces of  interest. Spaces of  piecewise polynomials deter- 
mined by connection matrices are defined by a maximal degree, m, for any segment of 
curves in the space, by a knot sequence {ti }, a multiplicity sequence {/~i }, and a sequence 
of connection matrices {A i }. Connection matrices allow not only the usual parametri- 
cally continuous splines, but also more general notions of  geometric continuity---e.g., 
Frenet frame continuity. 

To generalize these splines, we still use a knot sequence a = to < . . .  < tk+l = b 
and sequence of  multiplicities/x0 . . . . .  /J~k+l with 1 < //,i ~ m for i = 0 . . . . .  k § 1, 
and/z0 = #~+1 = m § 1. But instead of piecewise polynomials, we use segments from 
Tchebycheff spaces. For i = 0 . . . . .  k, let Hm+l,i be a dimension m + 1 ECT-space over 
[ti, ti+l], with canonical basis uo, i . . . . .  Um,i and weight functions wo,i . . . . .  Wm,i. We 
require a continuous join between the weight functions on one interval and those of  the 
next: wr, i - l ( t i )  = wr, i(t i)  for r = 0 . . . . .  m and i = i . . . . .  k. We also require that 
wo,i -= 1 for all i. Let Lo,i ,  L l , i  . . . . .  Lm+I, i denote the differential operators for/4tm+l,i. 
We assume that each dual canonical space ~/m* +i,i is also an ECT-space. Observe that in 
the Tchebycheffian B-spline case a single ECT-space is used for the entire domain; here 
we allow a different ECT-space for each knot interval. Finally, let {Ai } be a sequence 
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of (m -- /-s -t- 1) x (m -- /J,i + 1) matrices indexed from 0 to  m - / z i .  Then  define the 
geometrically continuous Tchebycheffian spline space 

(30) S = {f :  fl[t~,t~+d E Hm+l,i, i = 0 . . . . .  k, a i L m _ m , i _ l [ f ] ( t F )  

= Lm_m,i[f](ti+), i = 1 . . . . .  k}, 

where 

(31) Lj , i [ f ] ( t )  :----- (Lo , i f  (t) . . . . .  L j , i f  (t)) r. 

This spline space depends not only on m, the knots, and the connection matrices, but 
also on the differential operators (and therefore on the weight functions). 

In the piecewise polynomial setting, requiring that each Ai be nonsingular totally 
positive and have its zeroth row and column identical to that of  the (m - #i + 1) • 
(m - /zi + 1) identity matrix ensures that all functions in the space are continuous 
and that there exist B-splines for the space. That is, there exists a basis {Ni} with the 
properties that, if we let {ri } be the knot vector obtained from {ti } by repeating each ti 
as often as its multiplicity: (i) the support of  each Ni is (ri, ri+,~+l); (ii) N/(t)  > 0 for 
t 6 (ri, ri+m+~); and (iii) ~ i  Ni ( t )  = 1 for all t 6 [a, b]. So here we likewise assume 
each A i is nonsingular totally positive with its zeroth row and column identical to that 
of  the identity matrix, and will show below, in Section 8, that this implies the existence 
of "B-splines" for S. 

A key step in our construction of functionals for the geometrically continuous Tcheby- 
cheffian spline space is finding the analogues of  the q)j which figured so prominently 
in the dual functionals in Section 3. To do this, we build an auxiliary spline space of 
dimension m + 1. Certain functions in this space will be analogues of the ~oj; so to 
construct and use the dual functionals here, we will first construct the auxiliary space 
and then study some properties of  its functions. 

We begin by creating a sequence of connection matrices. Let lj denote the j x j 
identity matrix and let 

(32) Ri : 

and then let 

(33) 

Now define the space 

(34) P = 

0 ( - 1 ) m l m  i(ti)) 
(-- l )m-ltOm_l,i(ti) 

(-- 1)0 W0,i (ti) 

0 -T  
Ei :: ei ( Ai Ilzi ) Ri -1" 

^ ,  
{f:  fltt,,,i+,3 ~ L/,~+j,i, i = 0 . . . . .  k, EiLm, i_ l [ f ] ( t  i ) 

^ ,  _~_ 
= Lm, i[ f ] ( t  i ) , i  = I . . . . .  k}, 

* * T LL,/[f](t) = (Lo, i f  (t ) . . . . .  Lm,i f (t)) 
where 

(35) 

(where L0, i , *  L*l,i . . . . .  L*,i are the differential operators for b[*+l,i ) . *  This" space depends 
on m, the knots, connection matrices, and differential operators (and thus on the weight 
functions). 
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Because each Urn, i is an ECT-space, for i ~ { 1 . . . . .  k} the interpolation problems with 

unknown o~ = (o~0 . . . . .  C~m) r and/3 = (ti0 . . . . .  t im)r: 

* ~ -- ^:r -- 
(L j , iUr( t i  ))j,r=O,...,m Ol = E i L m , i _ l [ f ] ( t  i ) (36) 

and 

(37) ( t j* i - l lA; ( t [ - ) ) j , r=O .. . . . .  t ~ = Ei-l  L*m,i [ f ] ( t  +) 

have unique solutions since the matrices on the left-hand sides are nonsingular. So 
specifying an element of P over one interval determines that element over all of [a, b]. 
Thus the dimension of P is m + 1. 

6. Properties of Elements of P 

In order to construct functionals on S we first examine the properties of elements of 
P. Specifically, we investigate the number of zeros an element in P can have, show 
the existence of certain elements, and consider combining elements. Before doing this, 
however, we note 

Theorem 5. For i = 1 . . . . .  k,  the matr ix  Ei is nonsingular  totally posit ive.  

Proof. The nonsingularity is straightforward. The total positivity follows by using the 
Cauchy-Binet theorem and (0.10) of [ 12]. �9 

For the sake of simplicity we will assume that each Ai is also lower triangular, since the 
important notions of geometric continuity all correspond to lower triangular connection 
matrices [ 11 ]. Observe that this implies each Ei will also be lower triangular. It is possible, 
however, to extend many results below to the case of nonlower triangular connection 
matrices. See [1] and [3] for consideration of the nonlower triangular case for piecewise 
polynomial geometrically continuous splines. 

We are now ready to consider the number of zeros an element f 6 P can have. Let 
S 7 I f ]  (t) and Sj + [ f ] ( t )  denote the number of strong and weak sign changes, respectively, 
in the sequence L ~ , i f ( t ) , . . . ,  L ~ , i f ( t )  where t ~ (ti, ti+l). Let Z * ( f ( x ,  y ) )  denote the 
number of zeros (counting multiplicities) of f over (x, y). Let Pi be the largest index 
for which f l(tl,t~+j~ has a nonzero coefficient in its expansion in terms of u~, i . . . . .  u * i .  
Finally, let mi be the number of zeros of f at ti (observe that since E i is lower triangular 
the multiplicity of a zero at t + is the same as the multiplicity at t/-). We begin by recalling 
a result on the number of zeros any element of an ECT-space can have. 

Theorem 6. Let  f 7  ~ O ~ P.  Then f o r  i = O, . . . , k 

(38) Z * ( f ( t i ,  ti+l)) ~ S ~ [ f l ( t  +) - S~[ f l ( t~+l ) .  

Proof. This follows from Theorem 9.12 and (2.48) of [18] and the fact t h a t  ~'~;i+l,i is 
an ECT-space. �9 
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L e m m a  4. Let f 5~ 0 c P. Then for  i = 1 . . . . .  k 

(39) mi < S + [f](t/--) - S~[f]( t+) .  
- -  p i - I  

Proof.  S + I f ]  (t/-) > mi -I- S m [ f ]  (t/-). By the total positivity of  Ei this is greater than 
P i - 1  

Or equal to mi -}- Sm[f]( t  +) = mi + S~[f]( t+) .  �9 

Theorem 7. Let f r O 6 P. Then for  O < i < j < k + l 

(40) Z * ( f ( t i ,  t j)) < S~[ f ] ( t  +) - S + [f](t]-). 
- -  P j  - 1 

Proof. By Theorem 6 
j -2  

(41) Z * ( f  (ti, tj)) < y ~ ( S ~ [ f ] ( t  +) -S ;+[ f ] ( t r+l  ) + m r + l )  
r = i  

+S~_, [f](t+_l) - S +pj_~ [f]( t j - ) .  

Using Lemma 4 reduces this to S~[ f ] ( t  +) - S + [f](tj--). 
P ) - I  

Corol lary  1. For any f 5& 0 E P, Z* ( f [a ,  b]) < m. 

Proof.  That Z * ( f ( a ,  b)) < m follows immediately from Theorem 7. We can show 
the zero bound holds for the closed interval [a, b] by extending the space P to another 
space: for any e > 0 we can always find (m + 1)-dimensional ECT-spaces such that if 
we let Eo and E~+I be the (m + 1) x (m + 1) identity matrix, the (m + 1)-dimensional 
space with knots a - e < a = to < �9 .- < tk+l = b < b + e and connection matrices 
E0 . . . . .  Ek+l is a space of  type (34) which; when restricted to [a, b] is precisely P. So, 
applying Theorem 7 to this extension yields 

(42) Z * ( f [ a ,  b]) < Z * ( f  (a - e, b + e)) < m. �9 

In some cases we can get a lower bound on the number of  zeros. 

Theorem 8. Let f ~ 0 ~ P, and let p = mini=0,...,k pi. Then Z * ( f [ a ,  b]) < p. 

Proof.  We begin with a lemma, �9 

L e m m a S .  Suppose pi_l > p i f o r a n y i  ~ {1 . . . . .  k}. Then 

(43) mi <_ S+_~[f](t~ -) - S~[ f ] ( t  +) + Pi - Pi-1. 

Proof. Let/~i be the matrix formed by the zeroth through (pi_l)st rows and Columns 
of El. Observe Ei is nonsingular and totally positive. Also note mi <_ Pi since Ei is 
lower triangular. For e > 0 define v(e)j for j = 0 . . . . .  Pi-1 by 

0, j = mi . . . . .  Pi, 
- - s ign(L~, f ( t+))e ,  j = m i - - 1 ,  

= I--v(e)J+l ,  j = mi -- 2, mi -- 3 . . . . .  O, 
(44) v(e)j  I -s ign(L*p,f( t+))e '  j = Pi + 1, 

[--v(e)j-l, j = Pi + 2 . . . . .  Pi-1. 
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Then s -  (Lp ,_ , , i [ f l ( t  +) + v(e) )  = s~_~ [ f l ( t  +)  + m i  + pi-~ - pi = S ~ [ f l ( t  +) + mi + 

pi-~ - pi.  Now since/~i  is nonsingular totally positive, S-(Lp~_,,i [ f ] ( t  +)  + v(e) )  < 

S -  (Lp~_,,i_l[f] (t/-) + (/~i) - l  v(e)) .  Since e can be made arbitrarily small, the right hand 
side of  this is < S+_~ [ f ] ( t / - ) ,  proving the lemma. 

Returning to the proof  of  the theorem, let i0 be the smallest index such that P~0 = P. 
Then, given ij for some j ,  take ij+l to be the smallest index such that pr < P # - l  for 
r ----- ij+l . . . . .  ij -- 1. This procedure will terminate at some index ij, = 0. Now 

/ - 1  

(45) Z * ( f ( a , b ) )  < S;o[ f]( t i+)  + _ _  ~ [ f ] ( t + l )  - S + [f]( t i~)  + m# ]. - -  P i j - I  
j=0  

Rearranging the right-hand side and using Lemma 5 yields the right-hand side is less 
than or equal to 

f - 1  

(46) S ; / [ f ] ( t ~ )  + Z [ p i j  - Pi j - , ] ,  
j=0 

which, since p i i _  1 > Pij+~ for j = 0 . . . . .  j '  - 1 by the construction of  the indices ij, 
telescopes to Pio = P, proving Z* ( f  (a, b)) _< p.  Extending this zero bound to the closed 
interval [a, b] is done in the same way as in the proof of  Corollary 1. �9 

Having derived these results on the number of zeros an element in P can have, we 
next examine the existence of  certain functions. 

The o rem 9. Let  ( tq,  tq+ 1 ) be any interval, let 0 < c < m,  and let x l  . . . . .  Xm-c ~ [a, b]. 
Then there exists a unique func t ion  ~o(xl . . . . .  xm-c; 3Cq)(t) c P with the properties: 

1. ~o(xl . . . . .  xm-c; 3q)(t)  has a zero at x j  f o r  j = 1 . . . . .  m - c o f  multiplici ty the 
number  o f  t imes the value x j  appears  in the sequence  Xl . . . . .  Xm-c. Moreover,  the 
funct ion  has no other zeros; 

2. L*_c ,qgO(X 1 . . . . .  X m - c ;  8q) = 1; and 
. * Lj,q~O(Xl . . . .  Xm--c; 3q) = O f o r  j > m -- c. 

-* be the function in P defined by -* * for j = 0, m - c. Uj ] ( t q , t q + l )  = Uj,q . . , Proof.  Let uj 
Next, for i = 1 . . . . .  m - c let ri be the index such that xi E [trl, tri+l) (unless xi = b, 
in which case take ri = k), and let di be the number of  time the value xi appears in the 
subsequence X l . . . . .  xi-1 .  Examine the system with unknowns a0 . . . . .  am-c-1 given by 

m - c - 1  

(47) Z * -* + -L*a,.r, fi*m-c(x+) otjLd,,r~Uj (xi ) = 
j=0 

for i = 1 . . . . .  m -- c (if some xi = b, replace the derivatives from the right for that xi 
with derivatives from the left). The function ~0(x~ . . . . .  Xm-c; 3q) will exist uniquely if  
and only if the matrix (L*d~,r ' [t~ (X i ) ) i=  1 . . . . . . . .  ; j=0 . . . . . . .  c_~ is nonsingular. However, the 
nonsingularity follows from Theorem 8. �9 

We conclude this section with a couple of  results about combining functions in P .  
There are numerous other possible resu l t s - - see  [3]. 
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Theorem 10. Le txo  . . . . .  x m E [ a , b ] b e  s u c h t h a t x o  5k Xm, a n d l e t x  c (tq,tq+l) and 
dx = the number  o f  times the value x appears in the sequence xl . . . . .  Xm-1. Then 

( 4 8 )  qg(X 1 . . . . .  X m _ l , X ) ( t )  = [L*d~,qqO(X 0 . . . .  Xm_l)(X)~9(X 1 . . . . .  Xm)( t )  

-- L*d~,qgO(Xl . . . . .  Xm)(X)q)(Xo . . . . .  Xm-1)(t)  ] 

-? [L*d,,qqg(Xo . . . . .  Xm-1)(X) -- L~,,qq~(Xl . . . . .  Xm)(X)]. 

Proof.  The function q)(xo . . . . .  xm-L) - ~o(xi . . . . .  Xm) is not identically 0, and has 
m - 1 zeros at xl . . . . .  Xm-1. Moreover, because its expansion over (tq, tq+l) in terms 
of  U~,q . . . . .  U~,q has coefficient of  U*q equal to 0, it has no other zeros by Theorem 8. 
Therefore the denominator is not zero. The result then follows since the right-hand side 
has the appropriate characteristics to identify it as q)(xl . . . . .  Xm-1, x ) ( t ) .  �9 

T h e o r e m  11. Let xo . . . . .  Xm-c+l ~ [ a , b ] f o r  l < c < m, be such that xo ~ Xm_c+ 1. 

Also, let (tq, tq+l) be any interval, and y be any point  in (rq, Zq+l). Then 

(49) ~o(xl . . . . .  Xm-c; ~q)(t) 

c--I ~o(xl . . . . .  Xm-c+l; ~q- l ) ( t )  -- ~O(Xo . . . . .  Xm-~; ~q )( t )  
c--1 

L*_c,q(Cp(Xl . . . . .  Xm_c+l ; ~q ) __ ~(Xo . . . . .  Xm_c ; ~-l))(y) 

Proof. The proof  is similar to that of Lemma 3 and Theorem 10. 

7. de Boor-Fix Functionals for S 

We are finally ready to examine functionals on S by generalizing the de Boor -F ix  
formula. 

Theorem 12. Fori  = 0 , . . . ,  m+K,le t~pi  be thee l emen t i n  Pwi th ze rosa t r i+ l  . . . . .  75i§ m 
a n d  L * jcPi = 1 f o r  all j = 0 . . . . .  k. Then f o r  all f ~ S, the funct ion 

m 1) r L*_r,i~qgi (50) ~./f(z') : =  Z ( - -  (r)Lr,  i ~ f ( r )  

r=O Wr, i r ( r )  ' 

where r c (ri,  ri+m+l) and ir is an index such that r c [ri z , zi~+l], is a linear funct ional  
on  S. 

Proof.  We need to show that )~i is well defined at the knots, is independent of r ,  and 
is linear. The last of  these is straightforward, and the second follows in a similar manner 
to the analogous portion of  the proof of Theorem 1. 

To show that )~i is well defined at the knots, note that for all f 6 S, )~i f is a continuous 
function of  r ~ (z-i, ~ ' i+m+l )  everywhere except perhaps at any knot tj E (75i, -g i+m+l) .  

For any such knot, 
m 

(51) )~ i ( f ) ( t? )  = Z ( - - 1 )  r L . . . .  j(pi(t?)Lr, j f ( t ? )  

r=O 113 r, J (t+) 

m--uj L* + + . . . . . .  j~Oi(tj )Lr, j f ( t j  ) 
= 1...~(--1) ' 

r=0  Wr, j ( t ?  ) 
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since L~,/pi(t +) . . . . .  L* + m_l,jq)i(tj ) = 0. This then equals 

(52) 
m-.iz ( -  r (Ep=o(Ej)m-r, pL;, J-l(fli(t]-))(ZqZ:J (Aj)rqLq, j - l f  (t] -)) . 

r=o wr, j(tj) 

Rearranging and observing that the block diagonal structure of Ej yields (Ej)m_r, p = 0 
for r = 0 . . . . .  m --/~2 and p = 0 . . . . .  p~j - 1 provides that this equals 

(53) 
m-t~j m m-lzj ~ J )  k lz='m-r,p'Aj'rqL* 
Z E E (__])r ~r,j(t~ ') p,j_lq)i(t?)Lq,j_lf(t;) .  
q=0 p=lzy r=0 

Now ~ r r  = 0 . . . . .  m - # j ,  p = ~ j  . . . . .  m, 

(54) 

so we get 

( 5 5 ) ) ~ i f ( t ? )  = 

(Ej)m-r,p : (--1)rtor j(tj)(AT1)m - -  r" (~l)m-P , 
, j •, tOm_p,j(lj ) 

m-lzjE s m-l~iE ( -  1)m-p (Afl)m_p,r (Aj)rq 

q=0 p=#j r=0 Wm_p, j(tj) 

m-l~j L*_q,j_l(Pi(tf)Lq,j_lf(t?) 
E (--1)q 
q:0 Wq,j_~ (t;) 

m L;_q j_l~gi(t?)Lq j _ l f ( t ? )  
E ( _ l ) q  ' 
q=0 Wq,j-1 ( t f  ) ' 

Lp,j_lq3 i (t?)Lq,j_ 1 f ( t f  ) 

concluding the proof. �9 

8. B-Splines for S 

We still have not yet shown that the spline space S has "B-splines." Rather than first 
proving that B-splines exist, and then deriving the dual functionals, here we are taking 
the opposite approach. That is, we have shown the existence of certain functionals on S. 
In this section we show that these functionals are the dual basis for a basis of S whose 
elements share the important properties of the piecewise polynomial  B-splines. 

T h e o r e m  13. There exists a basis No . . . . .  Nm+K of S with the following properties 
fo r i  = 0  . . . . .  m + K: 

(i) Ni(t)  = O f o r t  ~ (vi, Vi+m+l); 
(ii) Ni is everywhere nonnegative; and 

(iii) y~ Ni (t) -= Wo,q (t) = 1 for all t E [tq, tq+l] for all q = 0 . . . . .  k. 

Proof.  For clarity we will prove this for the case when all the interior knots are simple. 
The case when ttj > 1 for some j c {1 . . . . .  k} is cumbersome, but uses the same 
general steps. 
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So as sume/z j  = 1 for j = 1 . . . . .  k (and/Zo = ~k+l = m + 1 as before). Note then 

that k = K ,  and 

to, j = 0 . . . . .  m, 
(56) ~j = . t j - m ,  j = m A - 1  . . . . .  r e + K ,  

tk+l, j = m + K + l  . . . . .  2 m + K + l .  

We proceed by a sequence of  steps. First, we show that the funct ionals  ~-0 . . . . .  )~m+K 
are l inearly independent .  So there mus t  be a set of  l inearly independent  funct ions 

No . . . . .  N,n+K ~ S such that ~iNj  = ~ij. We then show property (i). Then  we prove 
that the d imens ion  of  S is m + K + 1, so that the No . . . . .  Nm+K are indeed a basis for 
S. Property (ii) is then proved, fol lowed by property (iii). 

To show that ~-0 . . . . .  )~m+K are l inearly independent ,  let a0 . . . . .  am+K be any con-  
. ~ m + K  Ol ~ ~'r 

stants such that (2.,i=0 i i ~ j  = 0 f o r a l l  f E S. T h e n c o n s i d e r a n y m + K +  1 
funct ions ho . . . . .  hm+K E S with the properties 

Lr, ohj ( t  +)  = 8r, j ,  r, j = 0 . . . . .  m,  
( 5 7 )  hj  ( t)  = O, t ~ "gj; j = m + 1 . . . . .  m + K ,  

Lr, j - m h j ( v ? )  = (~r,m, j = m + 1 . . . . .  m + K;  r = 0 . . . . .  m. 

Such a sequence will  always exist in S. 

Consider  
m L* - 

(58)  )~ihj m_ Z ( - 1 )  r m-r'i~~ 
WriT(r)  r=O 

for r ~ (ri, ri+m+~). Here ir is the index such that r ~ (tit, ti~ + 1). We will con-  
sider the case i < j .  Choose r = r + .  I f m  < i < j < m + K,  then ri < rj 
so hj  is zero over (ri, r i+l) ,  hence )~ihj = 0. If  m < i = j < m + K ,  then 

~,ihj = ( -  1)mqgi ('Ci)/tOm,j--m('Ci). Since ~oi (ri)  5~ 0, we get )~ihi r O. I f 0  < i < m, then 
choose r = t + .  I f m  < j < m + K,  then hj is 0 over [to, tl], s o  ~.ihj = 0. I f 0  < j < m, 

then ~-i hj = ( -  1 ) J L'm_ j, 0 ~Pi (t +) / wj,o ( to ). Now ~Pi has a zero of  mult ipl ici ty m - i at t + , 
so if  i < j ,  then m - i > m - j + 1, s o  ~,ihj = 0. If  i = j ,  then we get ~.ihj r O. 

Therefore for all 0 < i < j _< m + K we have ~,ihj = 0 for i 5~ j and ~.ihi ~ O. This 
then implies  for j = 0 . . . . .  m + K that 

m+K m+K 

(59) 0 = Z ~ = Z ~ 
i=0 i=j  

Now a simple induct ion proof  downward on j shows ~j = 0 for j = m + K,  m + K - 
1 . . . . .  0, proving that )~0 . . . . .  Zm+K are l inearly independent .  

So these funct ionals  are a basis for at least a subspace of  the dual  space of  S. Thus there 

exist No . . . . .  Nm+K C S such that ~-i Nj = r for i, j = 0 . . . . .  m + K.  To prove property 
(i), let (rq, rq+l)  be  any interval outside of  (ri, ri+m+l). Because of their zero structure, 
the funct ions qgq_ m . . . . .  ~Oq are l inearly independent .  This  implies,  for any r c (rq, rq+l) ,  

that the m a t r i x  (L;,q_m~Oq_m+ r (r))j ,r=0 ...... is nonsingular ,  which, in turn, implies  the 
funct ionals  )~q . . . . . . .  ~.q where r 6 (rq, rq+a) are l inearly independent .  Therefore, 

they provide a basis for the dual space oflgm+l,q-m. Now Nil(rq,rq+~) E lt[m+l,q_ m and 
~.jNi ----- 0 for j = q - m . . . . .  q, so Ni = 0 on (rq, rq+l) ,  proving property (i). 
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To show that No . . . . .  Nm+/( form a basis for S, let f be in the orthogonal complement 
of the span of  {No . . . . .  Nm+x} in S. We just showed, for all the intervals (rq, Tq+~), q = 
m . . . . .  m + K, that the functionals )~q . . . . . . .  ~.q restricted to (rq, rq+l) form a basis 
for the dual space of  ~'[m+l,q-m. This implies, since )~if = 0 for i = 0 . . . . .  m + 
K, that fl(~q,~q+~) = 0, which, in turn, implies f is zero over all of  [a, b]. Therefore 
the orthogonal complement has dimension 0, proving that {No . . . . .  Nm+K} is a basis 
for S. 

To prove property (ii), note that the evaluation algorithm (17) above will extend to 
splines in S written in terms of  No . . . . .  Nm+x; the proof is almost identical to that in 
Section 4. So it suffices to show that no combination occurring in that algorithm contains 
a negative coefficient. We show this by examining the sign of any ~o function occurring 
in the algorithm. We prove that at any point t at which such a function does not equal 0, 
the sign is ( - 1 )  m times ( - 1 )  raised to the number of  zeros (counting multiplicities) the 
function has to the left of  t. In particular, since ~0(rj+l . . . . .  rj+m+l-i, x . . . . .  x) always 
has one fewer zero to the left of the point of  evaluation x than (p (rj . . . . .  rj+m-1, x . . . . .  x )  
has (note rj is always < x in the algorithm), the sign of  these two functions is opposite 
over both (rq, x) and (x, rq+l). Moreover, it follows from (4) that the sign of  either 
of these functions at x + s, for sufficiently small s > 0, is determined by the sign 
of evaluating, at x, the application of the operator L* i-~,q-m to the function. Since the 
functions will have opposite sign at x + s, the application o f  Li*_l,q_ m evaluated at x 
must also yield differently signed values. This is what we need for all combinations in 
the algorithm to be nonnegative. 

To prove the signs of the g) functions have the above property, first observe that we 
can extend the space P to a larger space over an interval [ -a0 ,  b] for arbitrarily large a0 
by taking the (m § 1)-dimensional ECT-space consisting of  the polynomials of degree 
at most m over [ -a0 ,  a], and using as a connection matrix at a the (m + 1) • (m + 1) 
identity matrix. This is still a space of  type (34), and each element g E P has a unique 
extension ~ in the larger space. By Corollary 1 applied to the larger space, if g has m 
zeros over [a, b], then ~ has no zeros over I -a0 ,  a), and therefore the sign of ~(t) is the 
same for all values t greater than or equal to - a 0  but less than the smallest zero of  g. 
Since we can choose a0 arbitrarily large, this sign is ( - 1 )  m.  

Next consider how ~ changes sign as it moves across a zero. Suppose first the zero is 
at a knot tz of multiplicity r. For sufficiently small e > 0 one can show that 

(60) sign@(tl - s)) = ( - 1 )  r s ign(L*j_~(t l)) ,  

sign(~(tt + s)) = sign(L*t~(tl)). 

Since Et is lower triangular with positive diagonal entries, sign(Lr*,l_l~ (tl)) = sign(' L*r, lg- 
(tl)). Therefore, as ~ moves across a zero of multiplicity r at a knot, its sign will change 
by a factor of ( - - 1 )  r . The proof of the case when the zero is not located at a knot is almost 
identical. This concludes the proof of  (ii). 

Finally, we prove property (iii). The constant function 1 is in S. Moreover ~i (1) = 
1 for i = 0 . . . . .  m § K. Therefore the coefficient of Ni in the expansion of  1 in 
terms of No . . . . .  Nm+x is 1, proving property (iii), and concluding the proof of  the 
theorem. �9 
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9. Numerical Example 

In this sect ion we examine a numerical example illustrating the results in the last section, 
and make a few remarks about computational costs. 

Consider the geometrically continuous Tchebycheffian spline space with tj = j ,  lzj = 
1, n = 3, and 

A j =  1 
1 

for all j .  Let the weight functions be 

wo, j ( t )  = 1, w l d ( t )  = 1, w2,j(t) = e t - j ,  W3, j ( t )  = e 2(j- t )  

for t 6 [ j ,  j + 1] and j even, and 

wo, j ( t )  = 1, tOl , j ( t  ) = 1, tO2,j(t ) = e j - t+1,  W3,j( t  ) = e 2 ( t - j - l )  

for t 6 [ j ,  j q- 1] and j odd. Then b/a,j = span{l,  t - j ,  e t - j ,  e j - t }  = span{l,  t - 
j ,  sinh(t - j ) ,  cosh(t  - j )} for all j ,  and b/,~* j = span{I, e 2~j-tl, e j - t ,  ( j  - t ) e  j - t  } for 

j even and b/~*j = span{l,  e 2(t- j) ,  e t - j ,  (t - j ) e  t - j  } for j odd. 

= 

Next, observe 

w~'i(J) 1 
w 2 , j ( j )  

0 0 

for all j .  Moreover, 

(61) 

for j even, and 

u ~ j ( t )  = 1, 

u*kj(t)  = - ( e  2~j-t) - 1)/2, 

u~, j ( t )  = e 2 ( j - t ) / 2  -- e j - t  + I /2 ,  

u~, j ( t )  = - ( t  -- j ) e  j - t  - e2(J - t ) /2  + 1/2, 

(62) u~, j ( t )  = 1, 

uT, j ( t )  = (eZ( t -J )_  1)/(2e2), 

u~, j ( t )  = 1/(2e) - e ~- j -1  + e2<t-J)/(2e) ,  

u~, j ( t )  = ( j  - t )e  t - j - 1  + e Z ( t - J ) - l / 2  - 1/(2e),  

for j odd. 

For the example, we will use the evaluation algorithm to evaluate a spline at x = 4.4. 
To do so, we first must find ~01, ~o2, ~o3, and ~o4. We set up linear systems derived from the 
continuity, zero, and third derivative constraints. Since in the case here ~0j (t) = ~pj+z(t+2) 
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for all j ,  t, we need to solve only two linear systems. We find that over [4.5] 

( 991(t)] { 0.000 0.285 1 . 2 2 5  1.000] 
992(t)| = | 0.000 -0.121 -0.061 1.000| |uT,4(t)/ 
993(0| [ 0.000 0.285 -0 .939  1 .000 |  [u~,4(t) | " 
994(t)/ \ - 1 . 1 7 5  3.597 -2 .225  1.000J \u~ ,4( t ) /  

A graph of 991,992,993,994 appears in Figure 1. Each of these 99j is shown over [j, j + 4]. 
We combine the 99j to get the ratios: 

(63) 991(4.4) = 0.838, 
991 (4.4) - 992 (4.4) 

~o2(4.4) 
= 0.459, 

992(4.4) - 993 (4.4) 

r = 0.104. 
993 (4.4) - q94 (4.4) 

Using these ratios, we find 99(3, 4, 4.4), ~p(4, 4.4, 5), and 99(4.4, 5, 6). We then find the 
ratios 

(64) LT,499(3, 4, 4.4)(4.4) = 0.678, 
L~,4~o(3, 4, 4.4)(4.4) - L~.499(4, 4.4, 5)(4.4) 

L~,499(4, 4.4, 5)(4.4) 
= 0.219. 

L~,499(4, 4.4, 5)(4.4) - L~,499(4.4, 5, 6)(4.4) 

Combining 99(3, 4, 4.4), 99(4, 4.4, 5), and99(4.4, 5, 6) toget 99(4, 4.4, 4.4) and99(4.4, 4.4, 
5), we compute 

L~,499 (4, 4.4, 4.4)(4.4) 
= 0.402. 

L~,499(4, 4.4, 4.4)(4.4) - L~,499(4.4, 4.4, 5)(4.4) 

R e m a r k  1. In Section 5 we noted the dependence of the geometrically continuous 
spaces $ and P on the weight functions. Suppose in the example above we use 

tOO, j ( t  ) -~ 1, t O l , j ( t )  --~ e t - j ,  to2,j(/) = e j - t ,  to3,j(t) = e j - t  
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for t E [j, j + 1] and j even, and 

woo( t )  = 1 ,  Wl , j ( t )  = e j - t+1,  w2, j ( t )  = e t - j - l ,  w3, j ( t )  = e t - j - 1  

for t ~ [j, j + 1] and j is odd. In this case we still get H4,j = span{l, t - j ,  sinh(t - 
j ) ,  cosh(t - j)} for all j ,  but the spline space S and the B-splines differ from those in 
the example. Thus the combinations in the algorithms for this case will also differ. 

On the other hand, if we choose different weight functions that result in the same spline 
space S, the combinations in the algorithm will be the same even if the P-spaces differ. 
For example, if we interchange the weight functions for the odd and even intervals in 
the evaluation example, we still get the same space S, but different P-spaces. However, 
note that each level of the evaluation algorithm is an instance of knot insertion, and since 
knot insertion is a unique transformation from the spline space to another spline space, 
we must have the same combinations. 

Remark  2. The evaluation example illustrates computational issues for the algorithms 
described in this paper. In the general situation, finding each of the ~pj involves solving a 
banded (n + 1)2 by (n + 1)2 linear system. Then for each of the n (n + 1)/2 combinations 
in the evaluation algorithm, we must evaluate each function (or a derivative of each 
function) to find the combination, and then combine pairs of functions to obtain the 
functions used in the next level of the algorithm. Even if the ~0j have already been 
computed, this will require a large number of computations. 

So it may well be that the results in this paper should be regarded primarily as the- 
oretical results. On the other hand, the results here cover a large number of algorithms 
for a broad class of spline spaces. So even if a straightforward implementation of an 
algorithm here is not advantageous in general, there may be special cases where the 
calculations in the algorithm simplify appreciably; or the results here may aid in the de- 
velopment of still other algorithms; or there may be alternative implementations of the 
algorithms here--as one example, if certain functions in the algorithms are precomputed 
symbolically, then the associated steps in the algorithm reduce to evaluating the results 
of this symbolic computation. In summary, although the algorithms here are computa- 
tionally complicated, there are a number of computational questions that merit further 
investigation. 

10. Concluding Remarks 

In this paper we have extended de Boor-Fix dual functionals to Tchebycheffian splines, 
and have shown that they induce algorithms for Tchebycheffian B-spline curves in the 
same way that they do for B-spline curves. The approach of generalizing the de Boor- 
Fix formula and using it to derive evaluation, differentiation, knot insertion, etc., results 
has now proved useful in a number of contexts--piecewise polynomial parametrically 
continuous splines, piecewise polynomial geometrically continuous splines, and Tcheby- 
cheffian splines. In each of these contexts the details differ, but many of the main ideas 
are the same. 

Although it is satisfying that the de Boor-Fix dual functionals do generalize to the 
Tchebycheff setting in an elegant manner, this generalization does raise further questions. 
We conclude by listing a few of the most important. 
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�9 There are still other spline generalizations. Can the de Boor-Fix formula be extended 
to these? 

�9 To what extent are the results in this work computationally useful? 
�9 There are still other published Tchebycheffian spline algorithms. What, if any, is the 

relationship of results in works like [8] to the algorithms and approach presented 
here? 
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