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M E A S U R E S  O N  T O P O L O G I C A L  S P A C E S  

V. I. Bogachev  UDC 517.987.1 

In t roduc t i on  

Integration on topological spaces is a field of mathematics which could be defined as the intersection of 
functional analysis, general topology, and probability theory. However, at different epochs the roles of these 
three ingredients were different, and, moreover, very often none of the three exerted a dominating'influence. 
For example, the theory of topological groups and analysis on manifolds gave rise to questions concerning 
Haar measures, Riemannian volumes, and other measures on locally compact spaces, and their influence was 
so strong that until recently many fundamental books on integration dealt exclusively with locally compact 
spaces. On the other hand, quantum fields and statistical physics provide problems of a totally different type, 
and this circumstance results in another trend in the theory of integration. At present, measure theory is 
especially strongly influenced by the intensive developmdnt of infinite-dimensional analysis in a broad sense, 
including stochastic analysis, dynamic systems, and the theory of representations of groups. This development 
involves measures on complicated infinite-dimensional manifolds and functional spaces. Recent investigations 
in population genetics have given rise to measure-valued diffusions, which, in turn, lead to such objects as 
measures on spaces of measures. 

The main aim of this survey is to present a systematic exposition of the integration theory on topological 
spaces, having in mind the indicated tendencies. Therefore, the target readership includes topologists, func- 
tional analysts, probabilists, and mathematical physicists. However, the main accent is put on analytical and 
probabilistic aspects rather than on purely topological or set-theoretic concepts. For this reason, no special 
topological knowledge is assumed. 

There are several books and recent surveys presenting modern measure theory on topological spaces. 
Schwartz' book [457] remains a standard reference book for basic questions. The results obtained after the 
publication of this book and many more special issues with a strong emphasis on general topology are discussed 
in excellent survey papers [183, 185] and [540]. A good introduction to the whole direction is given in Chapter 1 

of the very informative monograph [527]. In addition, there are a number of books on gene:al measure theory, 
functional analysis, and probability theory, which include material on integration on topological spaces (the 

corresponding references are given in the text). However, there is no systematic exposition of modern theory 
oriented foward nontopologists. In addition, not all aspects of tile theory which are important for applications 
(in particular, those mentioned above) have been discussed in the literature. The central topics of this survey 
are: 

(i) regularity properties of measures on general topological spaces and specific spaces that arise in prob- 
ability theory and functional analysis, including extension theorems for measures, 

( i i)  transformations of measures and related problems such as conditional measures and isomorphic 
classification of measurable spaces, 

(iii) convergence of measures on topological spaces. 
Chapter 1 contains basic concepts from general topology, the theory of locally convex spaces and general 

measure theory, including some examples which are important for the subsequent chapters. 
In Chapter 2 several important sigma-fields on topological spaces are introduced and the Souslin operation 

is defined. 
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Chapters 3-7 play the main part in this survey. Among other things, we discuss Baire, Borel, and Radon 
measures, Souslin spaces and their measure-theoretic properties. In connection with the regularity properties 
of measures several more special classes of topological spaces are described such as Ma/'fk spaces, measure- 
compact spaces, and measure-complete spaces. Basic definitions and results relating to perfect measures and 
Lebesgue-Rohlin spaces are presented. Finally, in Chapter 6 one can find a detailed discussion of conditional 
measures, disintegrations, and their connections with liftings. 

Chapter 7 gives an introduction to the theory of weak convergence of measures. Here the reader will find 
the main definitions and the most important results connected with weak convergence and weak compactness 
(including Prohorov spaces) as well as numerous examples. 

The last chapter deals with measures on linear spaces, namely, additional algebraic structures on a space 
introduce interesting specific features into purely topological notions. This chapter should be regarded as an 
introduction to the corresponding large area. 

Some results are presented with complete proofs; in particular, this concerns a number of new results or 
examples. 

The importance for measure theory of problems motivated by applications was emphasized above. How- 
ever, one should not Overestimate these motivations (which often turn out to be temporary fads). Just as in 
any other field of mathematics, the results in measure theory on topological spaces are subject to the action 
of standard criteria, namely, of mathematical beauty and being of interest in their own right. 

Parts of this survey and related problems have been discussed with many experts. I am especially 
grateful to L. Accardi, S. Albeverio, S. Argyros, E. Behrends, G. Da Prato, G. Godefroy, M. P. Jerschow, 
G. Koumoullis, L. Mejlbro, P. Meyer, S. Negrepontis, J. Orihuela, V. I. Ponomarev, D. Preiss, Yu. V. Pro- 
horov, M. R6ckner, V. V. Sazonov, W.-Schachermayer, 3. Schmets, A. V. Skorohod, O. G. Smotyanov. 
C. Stegall, V. N. Sudakov, F. Topsoe, H. v. Weizs/icker, D. Yost, and Th. Zachariades. The organization of 
the material is based on the lectures delivered by the author at Moscow State Lomonosov University and at 
a number of other universities and mathematical institutes, including the University of Athens, Freie Uni- 
versit/i.t (Berlin), University of Bielefeld, University of Copenhagen, University of Essen, Universitd Paris-VI, 
and Scuola Normale Superiore di Pisa. 
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Chap te r  i 

B A C K G R O U N D  

1.1. S e t - T h e o r e t i c  P r e l i m i n a r i e s  

1.1.1. Classes  of  se ts .  Throughout this survey we use the usual naive set theory (ZFC, the Zermelo- 
Fraenkel system with the axiom of choice, see [301, 238]). The use of the axiom of choice is never specified 
below. The reader should be warned that  there are different views in this respect; however, the author agrees 
with those mathematicians who believe that admitting the axiom of choice for countable collections of sets 
(without which there is no integration theory; see an interesting discussion in [255]), it is natural to do the 
same for arbitrary collections. Strictly speaking, for the majority of positive results which are necessary for 
applications (especially, dealing with "good" spaces such as Polish or Souslin spaces), the countable form of 
the axiom of choice would be sufficient. Therefore it is of interest to find out what kind of integration theory 
on topological spaces will result if the full axiom of choice is replaced, e.g., by the axiom of determinateness, 
which, on one hand, implies the countable axiom of choice and, hence, enables one to develop Lebesgue's 
integration theory etc., and, on the other hand, makes all sets of reals Lebesgue measurable. 

Most of the results that  we discuss below do not depend on other set-theoretic axioms, frequently used 
in general topology, such as the continuum hypothesis (CH) and Martin's axiom (MA). A related discussion 

can be found in [174; 483, 503]. 
Let (A, < ) be a partially ordered set. We say that A is a directed set if, for every a , /3  E A, there exists 

7 E A with a < "T and /3 -< 7. 
The family {z~}~A of elements of a set f/ indexed i3y the directed set A is called a net (or, a generalized 

sequence). Thus, one can consider nets of points, nets of subsets of a given set etc. We say that  the net 

{U~}~A of subsets of f~ increases if U~ C Ut~ whenever a _</3. The union U = Ua Ua is called the limit of an 
increasing net of sets. By analogy, one can define decreasing nets of subsets and their limi:s. 

Standard courses of the Lebesgue integration theory can be found in, e.g., [37, 74, 124,211,219,283,366]. 
One of the main concepts of modern integration theory is that of a a-field (a-algebra) of sets. To be more 

precise, by a a-field we always mean a collection A of certain subsets of the fixed set X (called "space X"),  
which is closed relative to the operations of taking countably many unions, intersections, and complements 
(in particular, it contains o and X). An algebra is a collection of certain subsets of X,  which admits finitely 

many operations of the type indicated above. The pair (X, A), where A is a a-field of subsets of a set X, is 

called a measurable space. Later this term will also be used for triples (X, A, #), where # is a measure on A. 

Since the intersection of any set of a-fields (in the same space) is'again a cr-field, for every collection of 
sets g in X there exists the minimal a-field containing $. It is denoted by a(E) and is called the sigma-field 
generated by $. Clearly, c~(E) coincides with the intersection of all er-fields .4 in X which contain E (obviously, 

there exists at least one A of this kind, namely, the a-field 2 x of all subsets in X). One of the most important 

or-fields is the Borel a-field B(~ 1) generated by open subsets of I~ 1. 
Given two measurable spaces (X, A) and (}', B), a mapping f :  X ---, Y is said to be (B, A)-measurable if 

f - t (B)  G A for ever,,, B 6/3.  
If F is a family of mappings defined on a set X and taking values in a measurable space (Y, B), then there 

exists the smallest c~-field ar  such that all mappings from I" are (B,erv)-rneasurable. Clearly, err is the er-field 
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generated by the family of sets g- l (B) ,  B E /3, g E F. In the case where Y = E l we shall always assume that 

8 = 8 ( ~ 1 ) .  

A a-algebra is said to be countably generated if it has the form a({A,})  for some sequence {A,~}. Note 

that a a-subalgebra of a countably generated a-algebra need not be countably generated (see [546]). 

Def in i t ion  1.1.1. The class/C of subsets of X is compact ([335]) if, for every sequence {K;} C K. such that 
OO n f')~=l K~ = ~, there exists n with Vli=l Ki = r 

It is easy to check that  any class consisting of compact subsets of a topological space is compact. 
The following lemma (see [366, Lernma 1.6.1]) shows that in the definition of the compact class /C one 

can add the condition that  K is closed relative to finite unions and countable intersections. 

L e m m a  1.1.2. Let IC be a compact class. Then the minimal class E which contains IC and is closed relative 
to finite unions and countable intersections is also compact (to be more precise, E coincides with the class of 

at most countable intersections of finite unions of the elements of E). 

For a discussion of compact classes, see [388]. 
The following lemma is straightforward. 

L e m m a  1.1.3. Let (X,E)  be a measurable space and let f : X  --* Y be a mapping such that f - l ( . T )  C g for 

a certain class .U of subsets of Y.  Then f - ' ( a ( ~ ' ) )  C E. 

P r o p o s i t i o n  1.1.4. Let (f~,H) be a m'easurable space and let T be a space with the a-field a~ generated by 

a certain class .7: of real functions on T. The mapping F: (fl, gl) ~ (T, aT) is measurable if and only if for 

every element f from .7: the function f o F: (f~,U) ~ (I~,B(R1)) is measurable. 

Proof .  The necessity of the condition indicated above is obvious. Let us prove its sufficiency. Let A be a 
set of the form A = {t E T: f ( t )  > e}, where f E -%-. Then F-~(A) = ( f  o F)-~((c, c~)), whence F-X(A) E H. 
Now Lemma 1.1.3 implies that  any set from a7 has a measurable preimage. [] 

Def in i t ion  1.1.5. Let g be a class of subsets of a set X. 
(i) g is called a monotone class if UntO__ 1 E ,  E g for every increasing sequence of sets E,, E E and 

N,,~176 1 E~ E g for every decreasing sequence of sets E ,  E g. 

(ii) g is said to be a a-additive class if X E g and 

(a) E~ U E~ for every disjoint pair El, E2 E g, 
(b) F2\F1 E g provided that F,, F2 E g and F, C F2, 
(c) U~__t E,~ E g provided that  E,, E g and E~ C E,+1 for every n E N. 

For any class g of subsets of X there exist the minimal monotone class containing g (called the monotone 
class generated by E) and the minimal a-additive class containing E (called the a-addit ive class generated by 
g). 

The following two results are frequently used in measure theory. Their proofs can be found, e.g., in [348, 
Chapter 1] and [366, Chapter I]. 

T h e o r e m  1.1.6. (i) The a-field generated by an algebra ,4 of sets coincides with the monotone class gen- 
erated by .A. 

(ii) If a class E admits finite intersections, then the a-additive class generated by E coincides with the 
a-field generated by E. 

T h e o r e m  1.1.7. Let ~ be a certain collection of real functions on the set 12 containing 1 and let E be a 
subset of 7[. Then either of the following conditions implies that 7-I contains all bounded functions which are 
measurable with respect to the a-field generated by g: 

3036 



(i) 7/ is a closed linear subspace in the space of all bounded functions on fl with sup-norm such that 
limf~ E 7-/for every increasing uniformly bounded sequence of nonnegative functions f,~ E 7~, and s is closed 
relative to products (i.e., f9  E s for all f ,  g E g). 

(ii) 7/ is closed relative to uniform limits and monotone limits and g is an algebra containing 1. 

(iii) 7-/is closed relative to monotone limits and g is a vector space, containin 9 l, such that min( f ,9 )  E s 
for all f ,  9 E 6. 

1.1.2. Measures .  Basic  no t ions .  

Def in i t ion  1.1.8. Let .,4 be an algebra of sets. The function #: .,4 ~ I~ is additive if # (AUB)  = # ( A ) + # ( B )  
for any disjoint elements A and B of ,4. If, moreover, 

( oo ) 
(1.1.1) 

n = l  n = l  

for any sequence of disjoint sets A,  E ,4 with the property that O,~~176 1A, E ,4, then/~ is said to be countably 

additive (or a-additive) on ,4. Countably additive set functions are called measures. 

Obviously, if .,4 is a a-algebra, then (I. 1.1) holds for all disjoint sequences. The fundamental  Caratheodory 
theorem states that  any bounded countably additive measure on the algebra .A. admits a unique extension to 
a (countably additive) measure on a(,4). Moreover, for nonnegative measures this extension is at tained by 
the restriction to a(`4) of the outer measure #" defined on all sets by the relation 

/~*(M) = inf{#(A): M C A, A E `4}. 

Note that typically #* is not countably additive on the a-field of all sets; however, it is countably additive 
on the class of `4,, of all #-measurable sets (i.e., the sets M with the property that for every r > 0 there exists 

a set A~ E `4 such that  I#I*(MAA,) _< e, where I#l denotes the variation of/~ (see [139, Chapter IIl]). The 
class `4, is known to be a a-field containing ,4. It is called the/,-complement of .,4. (or the Lebesgue extension 

of`4). The restriction of #" to `4u is'called the Lebesgue extension of #. By a/ , -measurable function we mean 

a function which is (/3(R'),,4,)-measurable. 

We repeat these standard ideas here because later we shall deal with other, not necessarily Lebesgue, 
extensions of measures. 

The following nice result shows that one can always extend a measure whose domain does not include all 
sets. For countable families of additional sets this is due to Bierlein [45]; the general case was considered in 

[18]. 

T h e o r e m  1.1.9. Let ( X , B , # )  be a probability space and let {As} be a family of disjoint subsets of X .  Then 
there ezists a countably additive measure u which eztends # to the e-field generated by 13 and {A~,}. 

This result shows that in a sense there may be no maximal extension of a measure. Below we discuss 
extensions to larger a-algebras which are not necessarily generated by joining disjoint families. 

Let (X ,B ,# )  be a measurable space. Note that the restriction of/~ to a measurable subset A is again a 
measure defined on the trace a-field BA of the sets A n B, B E/3. The following construction enables one to 
restrict # to an arbitrary subset A. 

For any set A C X there exists a set ,~ E /3 (called a measurable envelope of A) such that  A C ~, and 

I#t(A) = I/~t'(A). For such a set (which is not unique) one can take (~,, A,~, where A,~ E B, A,, D A, and 
luI(A.) <_ ]#]'(A) + 1/n. 

Def in i t ion  1.1.10. The restriction #A of the measure # to/3a is defined by the relation 

,~,(B n .,~) : , ( B  n .4), B E ~ ,  

where A is any measurable envelope of A. 
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It is easy to see that  this definition does not depend on our choice of .'l and that tL.4 is countably additive. 
For the nonnegative measure #, #a coincides with the restriction of #" to BA. If A E B, then we get an 
ordinary restriction. 

The next useful lemma follows easily from Theorem 1.1.6, part (ii). 

L e m m a  1.1.11. I f  two probability measures coincide on a certain class E of sets which is closed relative to 
finite intersections, then they also coincide on the a-field generated by g. 

The next result is very useful for applications, since it gives a convenient sufficient condition for a- 
additivity of additive measures possessing "compact approximations." 

T h e o r e m  1.1.12. Let # be a bounded additive set function defined on an algebra .,4 of subsets of a space 
X .  Assume that there ezists a compact class ]C of subsets of X with the following property: for  each A E .A 

and each ~ > 0 there ezists a set K~ E 1(, such that K~ C A and I#t ' (A\K~) < E. Then # is countably additive 

on .A and, hence, can be eztended uniquely to a measure on a(al).  

For example, applying this result to the elementary volume defined on the algebra of finite unions of 
parallelepipeds with the edges parallel to the coordinate lines (in a fixed cube), one gets immediately a 
countably additive extension of the elementary volume (=Lebesgue measure). A related result was proved in 

[1481 (see also [220, 276]). 

Def in i t ion  1.1.13. (i) A set function tt satisfying the condition of Theorem 1.1.12 is said to be compact. 

(ii) Let /J  be a measure on an algebra A and let g C .A be a subalgebra. We say tha t  a compact class 

K: approximates s with respect to Jt  and # if, for each E E g and each ~ > 0, there exist sets K~ E K: and 
C E A such that  C C K,  C E and lul(EkC) < e. 

Clearly, (ii) is equivalent to (i) if .A is a a-algebra and g = A. 
According to [376, Proposition 4.1], for every measure # on a a-algebra .A which possesses a compact 

approximating class K C A, the restriction of # to a sub-a-algebra .do C 04 is approximated by a certain 
compact class/Co C Ao. 

With every measure/~, one associates the spaces LP(#), 1 _< p <_ oo, which, in the case of an alternating 

measure coincide, by definition, with LP([#[). These spaces endowed with their natura l  orderings ( f  _> g 

means that  f ( z )  >_ g(z)  a.e.) are known to be complete lattices (i.e., every set bounded from above possesses 

a lattice supremum, see [139, Theorem IV.11.6]). Moreover, these lattices have the following useful property 

[139, Corollary IV.11.7]: 

L e m m a  1.1.14. Every set M bounded in the lattice LP(#) contains an at most countable subset t3o pos- 
sessing the same lattice supremum. 

Some a x i oms  c o n n e c t e d  w i t h  m e a s u r e s .  There are several formulations of the cont inuum hypothesis 
(CH). Usually it is formulated as the coincidence of wl, which is the first uncountable ordinal,  with the ordinal 

c (which corresponds to the cardinality of the reals). 
Recall that a topological space X is said to satisfy the countable chain condition if each disjoint family 

of its open subsets is at most countable. 
Martin's axiom (MA) can be introduced as the assumption that in every nonempty  compact  space that 

satisfies the countable chain condition, the intersection of fewer than c open dense sets is nonempty. 
Note that CH is equivalent to the same assumption without the restriction to the compacta  with the 

countable chain condition. Therefore, CH implies MA. It is known that every one of the axioms CH, MA, and 
MA-CH (Martin's axiom with the negation of the continuum hypothesis) is consistent with ZFC (i.e., if ZFC 
is consistent, then it remains consistent after the addition of any one of these three axioms). In the sequel, 
none of these axioms is exploited in the main theorems; however, they become relevant when one verifies the 
validity of some results in their maximal generality. 
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Recall that  a cardinal ~ is real-valued measurable if there exist a discrete space of cardinality ~ and a 
probability measure u, which is defined on the family of all its subsets and vanishes on all singletons. 

If u assumes only two values, 0 and l, then ~ is 2-valued measurable. 
It is known that  c is not 2-valued measurable. Martin's axiom implies that c is not real-valued measurable. 

If c is not real-valued measurable, then the real-valued and 2-valued measurable cardinals coincide. The 
following theorems (see [238]) sum up basic facts about measurable cardinals. 

T h e o r e m  1.1.15. It is consistent with ZFC to assume that measurable cardinals do not ezist. In addition, 

if one of the following statements is consistent with ZFC, then so are the others: 
(i) 2-valued measurable cardinals ezist, 

(ii) real-valued measurable cardinals exist, 

(iii) the cardinal c is real-valued measurable, 

(iv) Lebesgue measure can be eztended to a measure on the a-algebra of all subsets of [0, 1]. 

Additional information about measurable cardinals can be found in [174], [238], [557]. 

C o n d i t i o n a l  e x p e c t a t i o n s .  Let (fl,.,4,>) be a measurable space and let /3 C .,4 be a sub-~-algebra. In 

this case there exists a continuous linear operator E S : L ~ ( # , A )  --, L1(#,/3) such that  for every element 

J" E LI(#,.A) and every bounded/3-measurable function ~o one has 

f f 
fl fl 

This operator is called the conditional expectation with respect to/3.  It is known that  E B is an orthogonal 

projection into L2(#) and a contraction on all L ' (#) ,  p >_ 1 (see [366]). In particular, for every set A E .2,, 

the function #(A lea) := ESIA(r is/3-measurable. A natural question arises whether it is possible to choose 

a modification of p ( A I w )  for every A in order to get a measure for every (or almost every) fixed co. An 

example constructed by Dieudonnfi [121] shows that, in general, the answer is negative even if both .A and/3  

are countably generated (see, e.g., [219], Sec. 21.1). In Chapter 6, we shall discuss some sufficient conditions 
for the existence of conditional measures with the above-mentioned property. 

1.2. Topologica l  C o n c e p t s  

1.2.1. Some classes of  t opo log ica l  spaces.  Our standard references for basic definiti,Jns and facts from 
general topology are [15] and [147]. We confine ourselves to considering only Hausdorff spaces, having in mind 
the discussion of the central ideas of the theory of measures on topological spaces rather than aiming to cover 
the maximal generality. 

Def in i t ion  1.2.1. (i) A space X is said to be regular if, for every x E X and every closed set F which does 
not contain z, there exist disjoint open sets U and V such that x E U, F C V. 

(ii) A space X is said to be completely regular (or Tychonoff) if, for every point z E X and every closed 

set F which does not contain x, there exists a continuous function f :  X, ~ [0, 1] such that  f ( x )  = 0 and f = 1 
on F. 

(iii) A space X is said to be normal if, for every pair of its disjoint closed subsets A and B,  there exist 
disjoint open sets U and V such that A C U, B C V. 

(iv) A space X is said to be paracompact if every open cover {U~} of X admi;s a locally finite refinement 

(if this property holds true for countable covers, then X is countably paracompact). 

(v) A regular space X is called LindelSf if every open cover of X contains at most a countable subcover. 

It is known that  the classes of spaces (i)-(v) are arranged in decreasing order. If, in the definition of the 
Lindelgfness, one drops the regularity condition, then the resulting spaces are said to be finally compact. 
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A somewhat more special concept is that of 0-refinable spaces: these are spaces X such that  for every 
open cover 7 of X, there exists a countable family {^1,} of open covers of X which are contained in 3' and 

possess the following property: for every point z E X there exists n such that  x belongs only to a finite 
number of elements of 7n- If 3', are not required to cover the whole space X, then we get the concept of a 
weakly 0-refinable space. 

A space X is said to be of a countable type if every compact subset K of X is contained in the compact  set 

5' which possesses a countable fundamental  system {U s } of neighborhoods in X (i.e., every open neighborhood 

of S contains one of the U,). 

D e f i n i t i o n  1.2.2.  Sets of the form f - l ( 0 ) ,  where f :  X ---* 1r 1 is a continuous function, are called zero sets. 

Their complements are called cozero sets (clearly, f can be assumed to be bounded).  

Recall that a completely regular space is completely normal (or perfectly normal) if every  one of its closed 

subsets is G, (i.e., a countable intersection of open sets). This is equivalent to the fact tha t  every closed set 

is zero (see [1471). 

D e f i n i t i o n  1.2.3.  A space X is called 

(i) a kn-space if any function on X which is continuous on every compact subset is also continuous on 
the whole space, 

(ii) a k-space if any subset of X which has closed intersections with all compact  subsets is closed, 

(iii) (~ech-complete if it is completely-regular and is a G6-set in its Stone-(~ech compact i f ica t ion/3X.  

D e f in i t i on  1.2.4.  A space X is called 
(i) pseudocompact if X is completely regular and every continuous function on X is bounded,  

(ii) hemicompact if it has a countable fundamental family {K,} of compact  sets (i.e., every compact 

subset of X is contained in at least one of the K,~'s), 

(iii) a-compact  if it is a union of a countable family of compact sets. 

There exist noncompact  pseudocompact spaces; hemicompact spaces are a -compact ,  but  not vice versa; 
finally, a-compact  kR-spaces are completely regular (this can be easily seen from the definition and from the 

fact that a continuous function on a closed subset of a compact space admits a continuous extension to the 

whole space with the same maximum),  and, hence, a-compact kn-spaces are normal (see [147, Theorem 5.1.2 

and Theorem 5.1.5]). 
Recall that the union of an increasing sequence of topological spaces X,, with continuous natural  embed- 

dings X ,  ~ X,+s is said to be the inductive limit of the X, ' s  if its topology consists of all sets which have 
open intersections with each X, .  
1.2.2. L o c a l l y  c o n v e x  spaces .  Here we recall some standard facts from the theory of locally convex spaces 
(see [146] or [451]). 

Recall that a real vector space X is a locally convex space if there exists a family of seminorms 79 = (pc,)c~eA 

on X which separates the points (i.e., for every nonzero element x E X there exists an index a E A such that 

p~,(x) > 0). The topology on X generated by this family P consists of all 'open sets which are unions of the 
basic neighborhoods of the form 

U{:lc . . . . . . . . . .  t . . . . . . .  (a) = {X: p~,(Z -- a) < Si, i = 1 , . . . , n } ,  a ,  E A ,  a E X .  

Clearly, a family of seminorms defining the topology of a locally convex space is not unique. 

A normed space is a special case of a locally convex space (in this case the family 79 contain.s only one 
element). 

The topological dual (the space of all continuous linear functionals) of a locally convex space X is denoted 
by X ' .  
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A typical example of a locally convex space arising in the theor y, of random processes is the space R r 
of all real functions on the nonempty set T endowed with the topology of a pointwise convergence. In other 

words, the topology is defined by the family of seminorms p,(x) = [x(t)], t C T. The  dual of >T coincides 

with the linear span of the functionals x ~-+ x(t), t E T. The space IR T is called the product  of T copies of 

IR ~. In particular, if T is the set of natural numbers H, then the corresponding space is denoted by IR ~176 This 
space, consisting of all real sequences, is very important for applications to random processes. 

A set A in a locally convex space is said to be symmetric if A = - A .  A convex set A is said to be 

absolutely convex (or convex, balanced) if AA C A for every scalar k such that  iX[ _< 1. Clearly, this is the 

same as saying that  A is convex and symmetric. By the absolutely convex (closed) hull of a set A we mean 

the minimal absolutely convex (closed) set containing A. 
Let X be a locally convex space and let B C X be a bounded absolutely convex sequentially closed set. 

We denote by Re the linear span of B. The gauge function pa of B, defined by 

pB(x) = inf{t > 0: x E tB}, 

is a norm on EB. The natural  embedding of (EB, PB) into X is continuous. If, in addition, B is sequentially 

complete, then E8 is a Banach space (see [146, Lemma 6.5.2]). In particular, this is the case if B is an 
absolutely convex closed hull of a compact subset in a sequentially complete locally convex space. 

A continuous linear mapping P from the locally convex space X into IR '~ is called a finite-dimensional 
projection. Clearly, this map can be written as 

. Px = f~(x)e, + . . .  + f~(x)e,~, 

where fi E X* and e l , - - . ,  e,~ is a basis in II~ ~. 
A function f on a locally convex space X is cylindrical if there exist a projection P:  X --~ I~ '~ and a Borel 

function • on ill n such that  f (x )  = qa(Px). 
If E is a linear space and F is some linear space of linear functionals on E which separates the points of 

E, then a(E, ~ ) denotes the weakest locally convex topology on E such that all elements of F are continuous. 

This is the topology of pointwise convergence on F. The corresponding family of seminorms, which defines 
the topology, is given by 

p~(x) = , l f (x) l ,  f E F. 

The typical examples are the weak topology q(X, X ' )  on a locally convex space X and the *-weak topology 

a(X*, X) on its dual. An important  property of the topology a(E, F) is that  the dual of (E, a(E, F)i coincides 

(as a linear space) with F.  In particular, any continuous linear functional F on the space X" with the topology 

a ( X ' ,  X) has the form F ( f )  = f ( a )  for some a ~ X. 
The Mackey topology r(X,  X ' )  on a locally convex space X is the topology of uniform convergence on all 

absolutely convex cr(X',  X)-compact  subsets of X ' .  The corresponding family of seminorms is described by 
the relation 

pQ(x) = sup If(x)l,  Q ~ Q, 
feQ 

where Q stands for the collection of all absolutely convex a(X*,X)-compact subsets of X*. This is the 

strongest locally convex topology on X such that X" remains the dttal (see [451], Corollary 1 of Theorem 

IV.3.2). 

In a similar way one defines the Mackey topology r (X ' ,  X) on X" by means of the seminorms 

PK(f) = sup [f(z)l ,  K E/C, 
a:EK 

where K7 stands for the collection of all absolutely convex r165 subsets of X. According to 

the classical result (see [451]), any linear functional F on the space X ' ,  which is continuous in the topology 

r ( X ' , X ) ,  has the form F( f )  = f(a) for some a E X. 
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A locally convex space X equipped with its blackey topology is denoted by Xr similarly, the dual of X 
endowed with the topology r(X' ,  X) is denoted by X~. 

Another important topology on the dual X" of a locally convex space X is the topology f l (X ' ,  X) defined 

as the topology of the uniform convergence on bounded subsets of X (recall that the subset A of X is bounded 
if it is bounded with respect to every seminorm from the family of seminorms defining the topology of X; 
equivalently, for any nonempty neighborhood of zero V C X there is c > 0 such that  A C cV). The space X" 

with the topology/3(X' ,  X) is denoted by X~. A locally convex space X is said to be semireflexive if (X~)" 

coincides with X as a linear space. If, in addition, their topologies coincide, then X is reflexive. For normed 
spaces, the semireflexivity is equivalent to the reflexivity (and coincides with the ordinary reflexivity in the 
sense of Banach spaces). 

A net {z~} in a locally convex space X is said to be fundamental (or a Cauchy net) if it is fundamental 
with respect to any seminorm pc, from a certain family which defines the topology of X. We say that  X is 
complete if every fundamental  net in X is convergent. We say that X is sequentially complete if this holds 
for any countable fundamental  sequence in X. 

Recall that a topological space T is metrizable if the topology of T is generated by a metric on T. 
A complete metrizable locally convex space is called a Fr&het space. 
The typical examples are: 
(1) all Banach spaces, 

(2) the countable product of lines IR ~, 

(3) the Schwartz space S(R") of rapidly decreasing infinitely differentiable functions on IR", 
(4) the space C~(U)  of functions l~ossessing bounded derivatives in a domain U equipped with the 

seminorms 

p,~(f) = sup If~")(z)l, 
U 

(5) the subspace Dm(R n) in G~'(R") formed by all the functions with supports in the ball of radius m 
centered at the origin. 

Below we shall deal with such Banach spaces as C[a, b], L2[a, hi, I p, and Co (the space of all real sequences 

tending to zero) with their natural norms. Note that the spaces mentioned in (2)-(5), are nonnormable. 
Important examples of spaces which do not belong to the class of Frdchet spaces are: infinite-dimensional 
normed spaces with the weak topology, duals of nonnormable Frdchet spaces, the Schwartz space 7)(1R '~) of 
smooth compactly supported functions on IR a with the topology of the inductive limit of the spaces 79,,,(R"), 
and the space of distributions 7Y(IR'~). 

R e m a r k  1.2.5. Here are some comments concerning the space Z)(IR ~) in which the convergence of sequences 
is defined in a very simple way, but whose topology is very complicated. This space is equipped with the 
toPology of the inductive limit (in the category of locally convex spaces) of the sequence of Frdchet spaces 

D=(~"),  which means that  this is the strongest locally convex topology on D(R ") such that  all embeddings 
D,~(R '~) ~ D(IR") are continuous. In other words, convex neighborhoods of the origin are all convex sets 
which give open intersections with every D,,,(~"). It is possible to write explicitly ~ family of seminorms 
which defines this topology. For example, in the case of n = 1, for every, sequence a = (ak) of n6nnegative 
integers c~k, we set 

p=(f) --- ~ aksup{lf(Jl(z)l,  k < Ixl < k +  1, j < ,~}. 

It is known that  every compact subset (in particular, every convergent sequence) of D(R") is contained in 

one of the spaces DIn(R"). In addition, a linear functional on D(~") is continuous provided that  its restriction 
to each D,,(R") is continuous (in the topology of D,~(~")). 

It is rather surprising that (contrary to what is claimed in some textbooks) this topology is not the same 
as the topology of the inductive limit in the category of topological spaces. In other words, there exist sets 
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M C Z)(R ~) which are not closed but have closed intersections M C'I 79,~(IR") for all rn. Moreover, there exist 
[473] linear sets with such a property (thus, in the definition given above one cannot define convex closed sets 
as those having closed intersections with all Dm(IR~)). Let us consider a simple example which shows that 

79(~ ~) is not a kn-space (hence, is not an inductive limit in the category of topological spaces). Indeed, the 

function F(~)  = ~,oo__~ w(n)w(")(0) is continuous on every ~ ,~ ( ~ )  but is discontinuous on the whole space, 
since one can easily verify that  for every seminorm p~ of the type indicated above and every r > 0, there 

exists ~o E 79(I~ ~) with p~(~o) < e and F(~)  > 1. 

Recall that every locally convex space X is completely regular (see [146, p. 32]). In particular. (see [146, 

p. 19]), for any compact set K C X and any open set U which contains K,  there exists a continuous function 

f :  X ~ [0, 1], such that  f = 1 on K and f = 0 outside of U. Another useful property of these spaces is that 
any continuous function on K admits a continuous extension to X with the same sup-norm. Recall that  the 
weak topology coincides with the initial one on every compact set K C X. If the space X is complete, then 
the closed convex hull of K is also compact (see [451]). 

L e m m a  1.2.6. Let K be a metrizable compact in a locally convex space X .  Then its absolutely convex 

closed hull K is metrizable. K is a compact if X is sequentially complete. 

For the proof, see [422]. A short proof is given in [63]. 
Finally, let us note that  not all linear spaces encountered in measure theory are locally convex. For 

example, for every nonnegative measure /~, the space L~ of/~-measurable functions (identified mod 0) 
equipped with the topology of convergence in measure turns out to be a topological vector space metrizable 
by the metric 

e ( f ,g )  = [ I f ( z ) -  g(x)l(1 + [f(x) - g ( x ) l ) - '  I~(dx). 
x 

However, in typical cases (e.g., in the case where /~ is Lebesgue measure on [0, 1]) there are no nontrivial 

continuous linear functionals on this space. It is worth mentioning that there is no topology on L~ 1] (or, 

even on C[0, 1]) the convergence in which would be equivalent to the convergence almost everywhere. 
1.2.3. E x a m p l e s .  

E x a m p l e  1.2.7. The Sorgenfrey line Z is defined as the'real line equipped with the topology generated by 
the basis consisting of all intervals [x,r), where x is a real number, r is a rational number, and x < r. The 

Sorgenfrey interval [0, 1) is equipped with the same topology. Similarly, the Sorgenfrey plane Z 2 is a plane 

equipped with the topology generated by the rectangles [a, b) x [c, d). The Sorgenfrey l i fe  is first countable, 
LindelSf, paracompact, hence, completely normal; Z is not second countable; every compact subset of Z is at 
most countable. 

E x a m p l e  1.2.8. Let X = C o U C ~  CIR 2 , w h e r e C 0 =  { ( 2 , 0 ) : 0 < x <  1} and C~ = {(x, 1 ) : 0 < x  < 1}. Let 
us equip X with the topology generated by the basis consisting of all sets of the following two types: 

{(x,i) E X: z 0 -  1/k < x < 20, i --- 0,1} U {(x0,0)}, 

w h e r e 0 < x 0 _ <  1, k E N ,  and 

{(x,i) e X: x0 < 2  < x 0 +  t /k ,  i =0 ,1}  U {(Xo, 1)}, 

where 0 _ 20 < l, k E N. The space X is known as "two arrows of P. S. Alexandroff" (or "two arrows"). 
This space has the following properties: 

(i) X is a compact space, 

(ii) X is perfectly normal and hereditarily finally compact, 

(iii) X is a separable, first countability space which is not metrizable. Moreover, every metrizable subset 
of X is at most countable, 

(iv) the natural projection of .\" onto [0, 1] (with the ordinarv topology) is a perfect mapping. 
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For the proof see, e.g., [147t or [15, pp. 1-16, 1901. 

E x a m p l e  1.2.9.  (i) Let wl be the first uncountable ordinal and let w0 be the first infinite ordinal. The 
Tychonoff plank T is defined to be [0,Wl] x [0,w0], where both ordinal spaces are given the interval topology. 
The subspace To = T\(w~, Wo) is called the deleted Tychonoff plank. 

(ii) The Dieudonn6 plank O is the defined to be the set [0,wl] x [0,cz]\(w~,Wo) (the deleted Tychonoff 

plank) with the topology r generated by declaring open each point of [0,wl) x [0,w0) together with the sets 

U~(/3) -- {(/3,7)1 ~ < 3' _< Wo} and V~(/3) = {(%/3)1 a < 7 -< ~ 

Some topological properties of these spaces are discussed in [488]. 
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Chapter 2 

V A R I O U S  a - F I E L D S  I N  T O P O L O G I C A L  S P A C E S  

2.1. Borel  and  Ba i re  Sets  

One of the most frequently used a-fields on a topological space X is-the Borel a-field generated by all 
open sets and denoted by B(X).  Clearly, B(X)  is generated by all closed sets. 

Another important a-field is generated by all the sets of the form 

{x x: f(x) > 0}, 

where f is a continuous function on X. This a-field is called Baire and is denoted by Ba(X).  Clearly, this is 
the smallest a-field with respect to which all continuous functions on X are measurable. The same a-field is 
generated by the class of all bounded continuous functions. 

Baire and Borel sets owe their names to classical works of Baire [34] and Borel [66]. 
It is easy to see that  every Baire set is determined by a certain finite or countable collection of functions, 

i.e., has the form 

{x: (fl(x),f~(x),...,f~(x),...) E B}, 

where fi are continuous functions and B is a Borel set in R ~176 
The following is straightforward. 

L e m m a  2.1.1. Let X be a topological space and Y C X .  Then 

/3(Y) = {B M Y, B E B(X)}. 

In particular, 13(Y) = {B E B(X),  B C Y} whenever Y E 13(X). 

The situation with the Baire structure is different. 

E x a m p l e  2.1.2. There exist a Hausdorff space X, its closed Baire subset X0, and a Baire subset B of Xo 
(with the induced topology) which is not the intersection of a Baire set in X with Xo. Moreover, a zero set 
in X0 can be chosen as such a subset. 

Proof .  Let X be the Sorgenfrey plane and X0 be the straight line jn the plane defined by the equation 
z + y = 0. It is obvious that  X0 is a zero subset of X, since the function (x,y)  ~ x + y is continuous on 

X. For any real number x, the open set [z,x + I) • [ - z , - z  + 1) cuts X0 exactly at the point ( x , - z )  E 3/o. 
Thus, every point of X0 is open in the induced topology, and therefore so is every subset of X0. Therefore, 
all subsets of Xo are Baire subsets. It remains to note that X is separable, and, hence, has only c Baire sets, 
whence follows the existence of a subset B of X0 which is not a Baire subset in X. [] 

The next result follows directly from definitions. Nevertheless, it often becomes useful for applications, 
since completely normal spaces form a rather wide class. Some examples are given below. 

P r o p o s i t i o n  2.1.3. Let X be a completely normal space. Then/3(X) = 13a(X). 

3045 



C o r o l l a r y  2.1.4.  The equality given above holds in either of the following cases: 
(i) X is a metric space, 

(it) X is a regular space such that for every family of its open subsets one can choose a countable subfamily 

with the same union (such a space is said to be hereditarily Lindelb'f). 

The next result contains an assertion which is inverse in a sense (see [343]). 

P r o p o s i t i o n  2.1.5.  Let X be a Baire space (i.e., the intersection of every sequence of open dense sets is 
dense). Then the equality B ( X )  = Ba(X)  is equivalent to the complete normality of X .  

C o r o l l a r y  2.1.6 ([434]) .  I f  X is a compact, then the coincidence of the Baire and Borel r in X is 
equivalent to the complete normality of X .  

T h e o r e m  2.1.7.  (i) A Baire set in a compact space is a Lindelb'f set, 

(it) a compact (even pseudocompact) Baire set is a zero set, 

(iii) let X be a compact and let B E Ba(X). If  A c B and A E Ba(B),  then a E B a ( X ) .  

For a proof and the related references, see [99]. 
In applications one often encounters spaces with distinct collections of Borel and Baire sets. 

E x a m p l e s  2.1.8.  Let X be either of the following spaces: (i) an uncountable product  of closed intervals 
(which is a compact  space), (it) the space of all functions on an interval with the topology of pointwise 
convergence (in other words, the product -IRc of the continuum of copies of the real line), (iii) the subspace of 
R c consisting of all bounded functions. Then Ba(X)  is smaller than 13(X). 

To carry out the proof, it suffices to apply the following important result (see [147, Theorem 2.7.12(c)]) 
which describes the structure of Baire sets in product spaces. 

T h e o r e m  2.1.9.  Let X, ,  s E S, be a family of separable spaces and let Y be a separable metric space. Then, 
for every continuous mapping F: l'Les Xs ~ Y,  there exist a finite or countable set So C S and a continuous 
mapping Fo: I-I,eso Xs ---* Y,  such that F = Fo o to, where 7to: l-Les X,  ~ I-Leso X~ is a natural projection. In 

particular, Ba(l-Les Xs) is generated by the coordinate mappings I-I,es X ,  ~ (X,,  Ba(X , )  ). 

The next result gives information concerning the behavior of Borel and Baire s t ructures  under taking 
topological products. Proofs can be found in [527]. 

P r o p o s i t i o n  2.1 .10.  Let (X~,), ~ E A, be a family of spaces, X = [-L X~. 
(i) The relation 

•a(X) = | (2.1.1) 
Cc 

holds in each of the following cases: 
(a) each finite subproduct is Lindelb'f (e.g., each X~ is either a compact or a separable metric space), 
(b) A = {1,2} and either X,  or X2 is a separable metric space, 

(c) A = {1,2}, X~ is a-compact and locally compact, X2 is separable; 

(it) relation (2.1.1) may fail even i rA  = {1,2}, Xt is discrete, and X~ is separable compact; 

(iii) let X be a topological space whose cardinality is larger than the continuum. Then B ( X )  | B (X)  is 
strictly smaller than B ( X  x X )  (more precisely, the diagonal of X x X does not belong to B ( X )  x I3(X)). In 
particular, there exist two compact spaces X and Y such that B (X)  | 13(Y) is strictly smaller than 13(X • Y). 

For the proof of (i) and (ii), see [262]; (iii) is proved in [527], and an example of two compact  spaces in 
(iii) was constructed in [168]. It is an open question whether Ba(X • Y) = 13a(X) | 13a(Y) for all separable 
spaces. 

Let us discuss some basic properties of measurable mappings for Borel and Baire a-algebras.  
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P r o p o s i t i o n  2.1 .11.  Suppose that (f/, A) is a measurable space, T is a topological space, and let a mapping 

f: f~ ~ T be the pointwise limit of a sequence of measurable mappings f , :  (f~, A) ---* (T, Ba(T)) .  Then f is 

measurable with respect to A and 13a(T). 

C o r o l l a r y  2 .1 .12.  Suppose that T is a metric space (or, more generally, a completely normal space), (f~, al) 
is a measurable space, and let a mapping f: f~ ~ T be the pointwise limit of a sequence of measurable mappings 
f ,:  (~,.A) --~ (T, B(T)) .  Then f is measurable with respect to el and B(T) .  

C o r o l l a r y  2 .1 .13.  The statement of the preceding corollary holds true if f~ is a topological space with the 
Borel or the Baire a-field and the mappings f ,  are continuous. 

The last corollary may fail for arbitrary completely regular spaces T. Let us consider the following 
example suggested by R. M. Dudley. 

E x a m p l e  2 .1 .14.  Let T be the space of all functions f:[0,1] --, [0, 1] equipped with the topology of 
pointwise convergence. According to Tychonoff's theorem, T is compact. Let us take for f~ the interval [0, 1] 
with the Borel a-field. Let us define the mappings f~: f~ ~ T by the relation 

f~(w)(s) = max(1 - nlw - tl, 0), w ~ f~, s ~ [0, 1]. 

The mappings f ,  converge pointwise to the map f : w  ~ I{~}, i.e., f (w)(s )  = 1 if s = w and f (w) (s )  = 0 if 
s r w. Each of the maps f,, is continuous and, hence, measurable if T is endowed with the Borel a-field, but 
f is not measurable. Indeed, for every subset C C it, the set Uc = U~ec{x E T: z(w) > 0} is open in T and 

f - l (Uc)  = C. Therefore, taking a non-Borel set for C, we get the set Uc with a nonmeasurable preimage. 

The following useful result was observed in [223] for Souslin spaces (for separable Banach spaces this was 
also noted in [8] and [a861). 

P r o p o s i t i o n  2 .1 .15.  Let .U be a certain family of continuous numerical functions that separates the points 
in the space X such that X x X is LindelSf. Then iF has a finite or countable subfamily which also separates 
the points in X .  In particular, this holds true if X is a separable metric space or a Souslin space. 

Proof .  For every f C ~', let U(f )  = {(z,y)  e X x X : f ( z )  r f (y)} .  The sets U(f )  form an open cover 
of the space X x X,  and therefore, one can find a finite or countable subfamily {U(f,,)} with I.J,,{U(f~)} = 
UleT{U(f)} .  Clearly, the collection of functions f ,  separates the points in X. C] 

It is worth noting that sometimes the Baire a-field is generated by a considerably smaller family of 
functions than the whole class C(X) .  The next proposition (part (i) of which is due to Edgar [142, 143], part 
(ii) of which follows from Theorem 2.1.15, and part (iii) of which is due to Sazonov, see [527, Proposition 
1.1.6]) contains several results of this kind. 

P r o p o s i t i o n  2 .1 .16.  (i) Let X be 

with the topology a(X,  X ' )  coincides 

product of straight lines ~.n coincides 
(ii) Let X be homeomorphic to 

a locally convex space. Then the Baire a-field of the space X equipped 

with the a-field generated by X*. In particular, the Baire a-field of any 

with the a-field generated by the coordinate functions. 
a complete separable metric space and let F be a family of continuous 

functions separating the points in'X. Then B(X)  = Ba(X)  = C(X, F). 
(iii) Let X be a a-compact topological space and let F be a family of continuous functions separating the 

points in X .  Then Ba(X)  = C(X, V). 

In various problems some other a-fields of subsets of the topological space X may be useful. Here are a 
few of them which are most frequently used: 

K:(X) = a{compact subset of X},  
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~ f ' ( X )  = a{closed G6-sets}, 

/,/(X) = a{balls in the metric space X}. 

A simple example of a metric space X with different a-fields B(X)  and U(X) is any  uncountable discrete 

space in which the balls are single points and the whole space (e.g., let all nonzero mutual  distances be 1). 
Then U(X) coincides with the a-field of all sets which either are at most countable or have at most countable 
complements. 

There exist Banach spaces with the same property (see [171]). However, there also exist nonseparable 
metric spaces with B( X)  = ld( X). 

Some additional information can be found in [76, 223, 227, 229, 236, 265, 266, 343, 344]. 

2.2. A - O p e r a t i o n  

Let B be a Borel set in the plane and A be its projection onto one of the axes. Is A again a Borel 
set? One can hardly believe that the right answer to this question is negative. This answer was found due 
to the efforts of several eminent mathematicians who investigated the structure of Borel sets. A result of 
these investigations was the creation of the descriptive set theory, and, in particular, the invention of the 
A-operation. It was discovered that  the continuous images of Borel sets coincide with the result of applying 
the A-operation to closed sets. For this reason, at present one often defines Souslin sets in a Polish space X 
as projections of closed sets into X x N ~176 Nevertheless, we shall start  with the A-operat ion which does not 
need any topologies, and then we shall see that the two approaches are equivalent in the  topological setting. 

Def in i t ion  2.2.1. Let X be a nonempty set and g be a certain class of its subsets. By a Souslin scheme (or 
a table of sets) A on X with values in g we shall mean a mapping such that to every ordered set of natural 
numbers (n~ , . . . , nk )  there corresponds a set A ( n b . . .  ,nk) E g. The A-operation (or the Souslin operation) 
over the class g is a mapping which puts every Souslin scheme A with values in g into correspondence with 
the set 

S ( A ) =  U 5 A(n , , . . . , nk ) .  
( , , i ) e ~  k=l 

Sets of the form described above are known as g-Souslin or C-analytic. The collection of all sets of this kind 
is denoted by S(g). 

E x a m p l e  2.2.2. Countable unions and countable intersections of elements from g are representable as the 
results of applying the A-operation. 

Proof .  Indeed, in the first case, it suffices to set A ( n t , . . . ,  nk) = A,~,, and in the second one, A(n~ , . . . ,  nk) = 
Ak. [] 

A Souslin scheme is said to be monotone (or regular) if 

A(nl , . . . ,nk ,nk+, )  C A(n , , . . . , nk ) .  , 

Any Souslin scheme can be replaced by a monotone one giving the same result of the A-operation. Indeed, 
we se t  

A' (n , , .  . . ,nk) = A(n,) N A(n,,n~) N . . . a A(n, , .  . . ,nk) .  

The next theorems show how to define Souslin sets without the A-operation. Recall that  the symbols gr s 
s162 denote, respectively, the classes of countable unions, countable intersections, and countable intersections 
of countable unions of elements of the class s We denote by .IV" the class of cylinders in t:t ~176 i.e., the class of 
sets of the form 

c(v,,...  = e = v , , . . .  = 
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Th eo rem 2.2.3. Assume that a class C of the subsets of X contains an empty set, X ,  and admits finite 
intersections. Then the following conditions are equivalent: 

(i) A S(E), 
(it) A is the projection to X of some (s x Ai')a6-set in X x rq ~,  

(iii) there ezists a space Y with some compact class of subsets )C such that A is the projection to X of 

some (g x IC)~6-set in X x Y ,  

(iv) there exists a space Y with some compact class of subsets IC such that A is the projection to X of 

some set from S(• x ~) .  

Corol lary  2.2.4. I f  a class g contains an empty set, X ,  and admits finite intersections, then 

s ( s ( E ) )  = s(E) ,  
(ii) the class S(s  admits countable unions and intersections. 

Proofs can be found, e.g., in [95, 117, 430, 43I]. 
The class S(~) need not be closed under taking complements, even in the case where ~r is a a-algebra. 

As we shall see later, this happens, for instance, in the case E = B(IRx). 

Defini t ion 2.2.5. Let X be a topological space and ~" be the class of all its closed subsets. The sets from 
S(~') are said to be Y'-Souslin in X. 

P ropos i t ion  2.2.6. A set A in a topological space X is 9r-Souslin precisely when it coincides with the image 
of a closed subset of X • I~ ~176 under projection to X .  

The A-operation was used by Alexandroff [11] as a tool for the study of the cardinality of Borel sets (see 
also Hausdorff [213]). Non-Borel A-sets were discovered by Souslin [482], whence the name "Souslin sets" 
widely used in the literature. Another frequently used name is "analytic sets" (cf. [320]). The measurability of 
A-sets was proved by Lusin [319]. In fact, the whole class of measurable sets is preserved by the A-operation. 
Saks [440, Th~:orem 5.5, Chapter 1I] gives a proof for measures on metric spaces. The following general result, 

found earlier by Szpilrajn-Marczewski (see [300, Chapter 1, w 11], can be applied to arbitrary meazures. 

T h e o r e m  2.2.7. Let S be a family of subsets of a set X such that S is closed with respect to complements 

and countable unions. Assume that for any set A C X there ezis'ts a set ft E S ,  that contains A, with the 

property that if A C B E S and C C f~\B, then C E S.  Then S(A)  E S for every A E S .  

Corol lary  2.2.8. Let (X, 13,#) be a measurable space. Then S(A)  E 13~ for every A C Bu. 

Proof .  We set S = B~ in Theorem 2.2.7. For every set A C X, there exist sets A,~ E /3, that contain A, 

such that I~l(m~) _< I#I'(A) + n - t  Let ~ = 0.%x A.. If A C B E Bu, then I#I(A\B) = 0. Hence, C ~ t3. for 

every C C A,\B. [] 
It is obvious from the proof that this result can be extended to more general set functions. A short proof 

(applicable to general capacities) is sketched in [366, Theorem 1.5.4]. A similar proof is given in [85] (where 
# is assumed to be a Radon measure, which is inessential for the proof). Along the same lines, one can prove 
the following modification of the result given above (see [185, Theorem, 10.8]): 

T h e o r e m  2.2.9. Let t~ be a measure on a a-field M and E be a family which is closed with respect to finite 
unions and countable intersections. Then 

[#['(A) = sup{l#[(E): E C A, E E L'} 

for each C-Souslin set A. In particular, every E-Souslin set is t-measurable. 

A powerful method for proving these results was developed by Choquet (see [91-93] and Theorem 2.4.17 
below). 

For related problems, see also [468]. About other operations preserving measurability, see, e.g., [321]. 
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2.3. Lusin  Sets  

Def in i t ion  2.3.1. A space is said to be Polish if it is homeomorphic to a complete separable metric space. 

Clearly, closed subsets and countable products of Polish spaces are Polish. This immediately implies that 
the intersection of a countable family of Polish subspaces of any topological space is Polish. 

T h e o r e m  2.3.2. (i) A subspace of a Polish space is Polish if and only if  it is a G~-set. In particular, open 

sets in Polish spaces are also Polish (with induced topology). 

(ii) A space is Polish precisely when it is homeomorphic to a G~-subset of [0, 1] ~. 

For the proofs, see [300, w 36] or [147, Chapter 4]. It is known (see [300, w 36] or [147, Chapter  4]) that 

every Polish space is a continuous image of the set 7~ of irrational numbers from the interval (0, 1) and is 
homeomorphic to a subset of 7~. 

Def in i t ion  2.3.3.  A subset of a Hausdorff space is called a Lusin space if it is the image of a Polish space 
under an injective continuous mapping. 

E x a m p l e  2.3.4. A Lusin space need not be Polish: consider the space of rational numbers with its standard 
topology. 

T h e o r e m  2.3.5. (i) Let {X,~},~eN be a sequence of Lusin spaces. Then their topological product and topo- 
logical sum are also Lusin spaces. 

(ii) Every disjoint countable union of Lusin subspaces of a Lusin space is Lusin. 

(iii) The intersection of a countable family of Lusin subspaces in any gausdorff  space is Lusin. 

The following concept is a powerful tool for studying Lusin and Souslin spaces. 

Def in i t ion  2.3.6.  Let X be a Hausdorff space. Assume that for every integer n > 0 there exist a countable 

set E,,, a map p,, of E,,+I onto E,,, and a one-to-one mapping qo,,: E,, ~ 2 x. Then the collection F,~ := 

~ ( E , , )  C 2 x is said to be a subdivision of X if conditions (i)-(iii) are satisfied and it is said to be a strict 

subdivision if, in addition, condition (iv) is satisfied: 
(i) ~o,~+l(a) C ~o,(p,~(a)) for all n _> 0 and a E E,+I,  

(ii) T,,(a) = {Uqo,,+~(b): b e p~X(En)} and X = UceE0 T0(c) for all n __> 0 and a e E,,, 

(iii) if {an}, an E En, is a sequence such that c,,_~ = p,-l(c~) for all n > 1, then the sequence of sets 
{~o,~(c~)} converges to an element of X such that the limit is contained in each qv,~(c,~), 

(iv) for every n _> 0, the collection F,, C 2 x consists of mutually disjoint sets. 

P r o p o s i t i o n  2.3.7. A Hausdorff space X is a Lusin space if and only if it admits a strict subdivision. 

(i) Every Borel subset of a Lusin space is Lusin with the induced topology. 

Hausdorff space. Then every subspace of X which is Lusin with the induced topology is a 

T h e o r e m  2.3.8. 
(ii) Let X be a 

Borel set in X .  

Coro l l a ry  2.3.9. (i) A subspace of a Lusin space is Lusin if and only if it is a Borel subset. 

(ii) The union of any sequence of Lusin subspaces of a Hausdorff space is Lusin. 

(iii) Let X be a Lusin space, Y be a Hausdorff space, and let f: X ~ Y be a continuous injection. Then 

f ( B )  is Lusin and Borel in Y for every Borel set B in X .  

P r o p o s i t i o n  2.3.10. Let f: X --* Y be an injective map such that its graph is a Lusin set in X x Y .  Then 
f ( B )  is Borel and Lusin in Y for every Borel subset B of X .  

E x a m p l e  2.3.11. (i) Let E be the inductive limit of an increasing sequence of separable Frdchet spaces. 
Then E is a Lusin space. 

(ii) The following spaces are Lusin spaces: S'(R"), D,~(R"), D(R"). 
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2.4. Sousl in  Sets  

Def in i t i on  2.4.1.  The image of a Polish space under a continuous mapping to a Hausdorff space is called 

a Souslin set (or a Souslin space). 

It follows from what has been said above about Polish spaces that the Souslin sets could be defined as 

the continuous images of the space 7r of the irrational numbers in (0, 1) or as the continuous images of G6-sets 

in [0, 1] ~. 
Note that another  frequently used term for Souslin sets is analytic sets. If X is a Polish space, then 

the class of its Souslin subsets coincides with the class S(jr) ,  where j r  is the family of its closed subsets (see 

Definition 2.2.5 and Proposition 2.2.6). Therefore, Theorem 2.2.3 gives some equivalent characterizations. In 

general, the class S(9 r) contains Souslin subsets of X, but this inclusion can be strict (for instance, if X is not 

a Souslin space). The  following result links the topological and set-theoretic approaches to the Souslin sets. 

Proofs can be found in [457] and in w 2.2 of [156], where, however, a more general definition (not equivalent 

to our definition) is used; namely, Souslin sets are defined as the projections of the closed subsets in X x Roo 

(in other words, as the sets obtained from closed subsets of X by means of the .A-operation). 

T h e o r e m  2.4.2. (i) In any Hausdorff space the class of Souslin sets is stable under the .A-operation and is 
contained in the class S(jr), obtained by applying the .A-operation to the class jr  of closed sets. 

(ii) If X is a Polish space, then the Souslin sets are precisely the projections of the closed subsets of 

X x R ~176 (equivalently, the sets obtained by applying the A-operation to the closed sets). 

(iii) If X is a metric space, then all Borel sets are in the class S(jr) obtained by applying the .A-operation 

to the class jr  of closed sets. 

C o r o l l a r y  2.4.3.  Countable unions and countable intersections of Souslin sets are Souslin. In addition, 
countable products of Souslin spaces are Souslin in the product topology. 

Def in i t i on  2.4.4.  Polish spaces with the property that each point has a basis of neighborhoods which 
are both open and closed are called dispersed spaces. Continuous images of dispersed spaces are said to be 
dispersible. 

E x a m p l e  2.4.5.  Polish and Lusin spaces are dispersible. 

T h e o r e m  2.4.6.  A space X is Souslin if and only if it admits a subdivision. An equiralent condition: X 
is dispersible. 

An important  property of Souslin sets is that a complement of a Souslin set may not be Souslin. This 
follows from the existence of a non-Borel Souslin set on the straight line and Corollary 2.4.10 given below. 

As was mentioned above, the orthogonal projection of a Borel subset of I1~ 2 onto II~ 1 need not be Borel. This 
means that the image of a Borel set on a line under a continuous function may not be Borel. The following 

striking example is given in [112]. 

E x a m p l e  2.4.7.  There  exist an infinitely differentiable function f :  ~1 __. ~1 and a Borel set B C I~ 1 such 

that f (B )  is not Borel. 

Note also that  the set B - B need not be Borel for a Borel set B C ~ (see [429]). 

T h e o r e m  2.4.8.  Borel sets in Souslin spaces are Souslin with the induced topology. 

T h e o r e m  2.4.9.  Let {A,} be a sequence of mutually disjoint Souslin subspaces of the Hausdorff space X. 
Then there ezists a sequence of mutually disjoint Borel subsets B, of X such that A~ C B,  for each n. 
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Coro l l a ry  2.4.10. If A is a Souslin subset of X such tb,,t XXA is also Souslin, then both are Borel. 
Moreover, if X is a union of mutually disjoint Souslin subsets, then all of them are Borel. 

C o r o l l a r y  2.4.11. Let rl and r2 be two comparable Souslin topologies on a set X .  Then the corresponding 
Borel a-fields coincide. 

Some useful properties of Souslin spaces are collected in the following theorems (see, e.g., [457, Chapter 

II]}. 

T h e o r e m  2.4.12. (i) Any regular Souslin space is a hereditarily LindelSf space and is completely normal; 

an arbitrary Souslin space is hereditarily finally compact. 
(ii) Any compact Souslin space is metrizable (in particular, compact subsets of Souslin spaces are metri- 

zable). 

(iii) The Borel a-algebra of a Souslin space is countably generated. 

(iv) A sequentially closed subset of a Souslin space is Borel. 

C o r o l l a r y  2.4.13. Let f be a sequentially continuous mapping from a Souslin space X into a Hausdorff 
space Y. Then f is a Borel mapping. 

Note that a sequentially closed subset of a Souslin (even Lusin) space need not be closed (see Remark 

1.2.5). 

T h e o r e m  2.4.14. (i) Let f: X ~ Y be a mapping between Hausdorff spaces such that its graph is a So ' f i n  
set. Then f is Borel and X is a Souslin space. 

(ii) Let X and Y be two Souslin spaces. Then the mapping f: X ~ Y is Borel if and only if its graph G f 
is a Souslin set. An equivalent condition: G 1 is a Borel subset of X x Y.  

(iii) Let f: X ~ Y be a mapping such that its graph is either Borel in X x Y or Souslin. If X is a Souslin 

space, then f -x (S)  is Souslin for every Souslin set S C Y. If Y is a Souslin space, then f ( A )  is Souslin for 
every Souslin subset A C X .  

C o r o l l a r y  2.4.15. If X and Y are two Souslin spaces and f : X  --* Y is Borel, then f - x ( S )  and f (A )  are 
Souslin sets for any Souslin sets S C Y and A C X.  

Some additional information about mappings with measurable graphs can be found in [95]. 

Answering the questions posed by Schwartz in [457], Valdivia [530] showed tha t  the spaces E | F,  
E | F ,  and Lc(E, F) need not be Souslin for Souslin locally convex spaces E and F.  Similar negative results 
were obtained for the class of Lusin spaces. 

Here are a few more remarks concerning some related classes of spaces. Let X be a topological space. 
The map K from I~ ~ into the class/C(X) of compact subsets of X is said to be upper-semicontinuous if, for 

every w E 1~ ~ and every open set G C X with K(w) C G, there exists an open neighborhood U of w such 
that K(u) C G for all u E U. 

A space X is )(:-analytic if there exists an upper-semicontinuous mapping K:I~I ~176 ---* /C(X) with X = 

It is easy to see that  every Souslin space is M-analytic, since, given a continuous surjection a': I~l ~176 --+ X, we 
can set K(w) = {7r(w)}. Every M-analytic space is finally compact. It is known that  if X is/C-analytic, then, 
for every space Y containing X,  it is 9r(Y)-Souslin. If X belongs to the class of sets obta ined by applying the 

A-operation to/C(X),  then X is/C-analytic. Note also that regular/C-analytic spaces are normal. These and 
other results concerning/C-analytic spaces can be found in [185, 428]. Note that  in [457] /C-analytic spaces 
are defined as continuous images of K~s-sets in compact spaces. 

An important property of Souslin sets is their capacitability with respect to every Choquet  capacity. Let 
us recall the corresponding notions. 
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Def in i t ion  2 .4 .16.  A nonnegative function C defined on the family of all subsets of a topological space X 
is called a Choquet capacity if the following conditions are satisfied: 

(i) c ( a )  < C(B)  whenever a C B; 
(ii) C(U, ,~ A, )  = sup,  C(A,~) for every increasing sequence of sets a,,; 
(iii) C(f3~=~Kn) = inf,  C(K,~) for every decreasing sequence of compact sets K,~. 

A capacity C is said to be upper semicontinuous if for each set A C X 

C(A) = inf{C(U), A C U, U is open}. 

Note that condition (iii) is implied by the upper semicontinuity and condition (i). Indeed, if an open set 
U contains f'l~_x K,~, then there is i with Ki C U. 

A set A is said to be capacitable with respect to capacity C if 

C(A) = sup{C(K),  K C A, K is compact}. 

A typical example of a capacity is the outer measure generated by a nonnegative Borel measure. For a 
regular measure, such a capacity is upper semicontinuous. 

The following is one of the central results in Choquet's theory. 

T h e o r e m  2.4.17.  Every Souslin set in a topological space X is capacitable with respect to every upper 
semicontinuous Choquet capacity on X .  

P r o o f .  According to [72, Theorem 5 in w 6 Chapter IX], this claim is true for relatively compact  Souslin 
subsets of metrizable spaces. Thus, we confine ourselves by reducing the general case to the one considered in 
the book cited. Let A be a Souslin set in X and ~0: 7~ --* A a continuous surjection, where 7~ is the set of all 
irrationals in [0, 1]. By virtue of [72, Proposition 15, w 6, Chapter IX], the relation C~(E) = C(~(E)) defines a 
Choquet capacity on 7~, and for every set M that is capacitable with respect to G~, the set ~o(M) is capacitable 
with respect to 6". By the continuity of % the capacity 6"~ is upper semicontinuous. This capacity can be 

extended to the whole segment by setting C2(B) = G~,(A Cl ~).  Clearly, this extension satisfies conditions (i) 

and (ii) in Definition 2.4.16 and is upper semicontinuous. As noted above, then condition (ili) holds true as 
well, i.e., G'2 is also a Choquet  capacity. According to Theorem 5 cited above, the set 77. is capacitable with 
respect to C2, hence, also with respect to 6"~,. As noted above, this means that A = qo(7~) is capacitable with 
respect to C. [] 

Additional information about  capacities can be found in [347]. 
A detailed discussion of analytic sets, Lusin and Souslin spaces, and further references can be found in 

[92, 117, 118, 156, 177, 223, 236, 320, 347, 430, 431,457, 518, 519]. 
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Chapter 3 

R E G U L A R I T Y  P R O P E R T I E S  OF M E A S U R E S  

3.1.  B a i r e ,  Bore l ,  a n d  R a d o n  M e a s u r e s  

In the classical measure theory, when dealing with measures, one usually has some fixed domain on 
which the measure is defined (say, the a-field of all measurable sets). This domain is assumed to be given a 

priori or results from some extension procedure (for example, Caratheodory's  extension).  However, for many 

applications, as we shall see below, the choice of the domain of definition of a measure turns out to be a very 
delicate question, and the problem of extending to a larger domain cannot always be solved trivially by taking 
the completion. 

Typical examples of such a situation are connected with measures on topological spaces or on spaces 
equipped with filtrations. Problems of this kind arise in investigations of the distributions of random processes 
in functional spaces. It is clear from what has been said that,  in particular, the use of a convenient terminology 
is essential for these matters .  Unfortunately, the reader should be warned that the terminology used in the 
existing extensive l i terature on measure theory on topological spaces is not always consistent.  For this reason, 
not aiming at establishing terminological standards, the author has decided to choose the terms and names 
from a variety of those existing in the li terature which would be more convenient for subsequent  references. 

Among other  things, we shall discuss Borel and Baire measures, and their regulari ty properties such as 
tightness, r-regularity, etc. We shall see that any Baire measure is regular. On the o ther  hand, we shall find 
examples of Borel measures which are neither regular nor tight and examples of Borel measures on compact 
spaces which are not Radon (although they are tight). It turns out that there exist Baire  measures which have 
no countably additive extensions to the Borel a-field. This picture will be complemented by the statement 
that every tight Baire measure can be extended to a Borel measure, and, in addition, it has a unique extension 
to a Radon measure. In particular, any Baire measure on the compact space X can be (uniquely) extended 

to a Radon measure on X (although other, non-Radon, extensions t o /3 (X )  may exist a., well). 

De f in i t i on  3.1.1.  (i) A numerical countably additive measure on a Borel a-field 13(X) of the topological 
space X is called a Borel measure. 

(ii) A numerical countably additive measure on the Baire a-field Ba(X) of X is called a Baire measure 
on Z .  

Def in i t i on  3.1.2.  A Borel measure A on the topological space X is a Radon measure if, for every A E B(X) 
and every e > 0, there exists a compact  set K, C_ A such that  [AI(A\K, ) < r 

Radon measures const i tute a class of Borel measures very important  for applications. As we shall see 

later, on many spaces (including complete separable metric spaces) all Borel measures are Radon. However, 

we shall first consider an example constructed by Dieudonn~ [121] which shows that  even on a compact  space 
a Borel measure may fail to be a Radon measure. 

E x a m p l e  3.1.3.  There  exists a compact topological space X with a Borel measure # which takes on only 
two values, 1 and 0, but is not a Radon measure. 
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Proof' .  Let X be an uncountable completely ordered set possessing the maximal element wl with the 
following property: for cz ~ wl the set {x: x _< ~} is at most countable. For example, one can take for X the 

set of all ordinals not exceeding the first uncountable ordinal. We equip X with the order topology, i.e., for 
a base of this topology we take all finite intersections of sets of the form {x < ~} and {x > a},  c~ E X.  It is 

known (see [147]) that  X is compact for this topology. Let X0 = X\{w~} .  We denote  by .T0 the class of all 

uncountable closed subsets of the space X0 equipped with induced topology. Let us define the measure # on 
B ( X )  by #(B)  = 1 if B contains a subset from ~-0 and #(B)  = 0 otherwise. Let us verify that  it is.countably 

additive. To this end, let us introduce the class g of sets E C X such that either E or X \ E  contains an 
element from ~'0- The  class g is a a-field. Indeed, it is preserved by complements and countable intersections 
since (1,, F ,  E .T0 if F,~ E ~'o- In addition, the class g contains B ( X ) .  Indeed, if A is closed and uncountable, 

then A N X0 is closed in Xo and uncountable. If A is at most countable, then its complement  contains an 
element from 9% since for every countable set {a,~} there exists an element ~ < col such that  a,~ < c~ for all n. 

Now, let {B,~} be a sequence of disjoint Borel sets in X. Then at most one of them can contain an element 

from ~'0 since the complement of any neighborhood of wl is at most countable by vir tue of the choice of wl 

and the topology in X.  Therefore # is countably additive. Note tha t  #({wx}) = 0 whereas wl belongs to 

every closed set of a full measure. On the other hand, every point x different from Wl has a neighborhood of 
measure zero. Thus, /~ is not a Radon measure (and has no support). [] 

Thus, for the Radon property of a measure it is not sufficient to be able to approximate  its value on the 
whole space by the values on compacta. The latter property has a special name, "the tightness of a measure." 

Def in i t ion  3.1.4.  The  set function/~ defined on a certain system .A of subsets of a topological space X is 

said to be tight on A if, for every e > 0, there exists a compact set K,  in X such that  ]~I(A) < e for each 

element A in A disjoint with K,.  
A measure/~ on a topological space X is said to be tight if # is a Baire measure which is tight on B a ( X ) .  

What is missing for a tight measure to be a Radon measure? 

Def in i t ion  3.1.5.  A set function # defined on a certain system .,4 of subsets of a topological space is regular 

if, for every A in .A and every e > 0, there exists a closed set F~ E .,4 such that F~ E A and ]#I(A\F,)  < s. 

By definition, any Radon measure is regular and tight. Clearly, if a Borel measure is regular and tight, 
then it is a Radon measure. However, a regular Borel measure need not be tight. Let us consider an example. 

E x a m p l e  3.1.6.  Let M be a nonmeasurable subset in [0, 1] M t h  inner measure zero and positive outer 

measure. We shall consider M with its natural metric as an independent metric space. Then  any Borel subset 

of this space has the form M VI B, where B is a Borel subset in [0, 1]. Let us define a measure on M by 

the relat ion/~(M gl B) = )~(B), where ,~ is Lebesgue measure. Since Lebesgue measure is regular (see, e.g., 

Theorem 3.1.7), the measure # is also regular. However, it is not tight since every compact  K in the space 

M is compact in [0, 11. Hence, by construction, it has Lebesgue measure zero, whence # ( K )  = 0. 

The following fact is fundamental for the theory of Baire measures; its proof can be found in many sources 
(see, e.g., [5321 or [527, Lemma 1.3.11). 

T h e o r e m  3.1.7.  Any  Baire measure I~ on a topological space X is regular. Moreover, for  every Baire set 

E and every e > 0 there exists a continuous function f on X such that f - ' (O)  C E and I # l ( E \ f - l ( 0 ) )  < e. 
More generally, for  any family F of continuous functions on a topological space X ,  every measure # on 

the a-algebra ar generated by F is regular. 

C o r o l l a r y  3.1.8.  Any Borel measure on a completely normal space is regular. In particular, every Borel 
measure on a metric space is regular. 

The following result is a corollary of Theorem 2.2.9. 
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P r o p o s i t i o n  3.1.9.  I f  every open set in a topological space X is .T-Souslin (where 2F is the class of all 

closed sets in X ) ,  then every Borel measure on X is regular. 

The example of a nontight Borel measure on a separable metric space constructed above may seem to 
be artificial because of the choice of a rather exotic space M, and it might be tempt ing to find some more 
constructive space for M. In the subsequent sections we shall see that exotic spaces are inevitable in these 
examples, and this circumstance has deep set-theoretic reasons. In particular, the following Ulam theorem 
[5251 shows that  one cannot take for M a Boret set in [0, 1]. 

Theorem 3.1.10.  Every Borel measure on a complete separable metric space is a Radon  measure. 

There is one more important regularity property which is intermediate between the ordinary regularity 
and the Radon property. 

Def in i t ion  3.1.11.  A Borel measure on a topological space X is said to be r -addi t ive  (or r-regular or 

r-smooth) if, for every increasing net of open sets (U~)~e^, one has 

I~,l QUA ua ) = lira ,~](Ux). 

If the property mentioned above holds for all nets with Ua Ux = X, then # is said to be to-additive (or weakly 

r-additive). 

One can verify that  any regular r0-additive Borel measure is r-additive. On the other hand, there are 
examples of r0-additive measures which are not r-additive. 

P r o p o s i t i o n  3.1.12.  (i) Every Radon measure is r-additive. 

(ii) Every r-additive measure on a regular space is regular. 

(iii) Every Borel measure on a separable metric space X is r-additive. Moreover, the same is true if X 

is hereditarily LindelSf (e.g., is second countable). 

The proofs are straightforward (and can be found, e.g., in [5271). 
Note that Example 3.1.6 gives a r-additive but not Radon measure. Here is another  example. 

E x a m p l e  3.1.13. Let X = [0, 1) be the Sorgenfrey interval with the topology generaSed by the intervals 

[a, b) C X .  Then X is hereditarily Lindelgf, and the Borel sets in X are the same as for the ordinary topology 
of an interval. The s tandard Lebesgue measure on this space is regular and r-addit ive,  but is not a Radon 
measure since compact subsets in X are at most countable. 

As was noticed in [3], assertion (ii) of Proposition 3.1.12 may fail for nonregular spaces. Let us consider 
the corresponding example. 

E x a m p l e  3.1.14. Let S be a subset of [0, l] with ,X.(S') = 0 < M(S), 'where )~ is Lebesgue measure. Let 
X be [0, 1] with a topology generated by the ordinary topology of [0, 1] together with the set S. Clearly, 

X is second countable, but not regular. Let # be the image of ,ks (see Definition 1.1.10) under t[ae natural 
embedding S --* X (which is continuous). Then # is r-additive by Proposition 3.1.12, part (iii). However, it 

is not regular since #(S) > 0 whereas #(F)  = 0 for every set F C S which is closed in X since such a set is 

compact in the ordinary topology of [0, 1], and, hence, ,~(F) = 0 by our choice of S. 

R e m a r k  3.1.15. (i) Note that,  by definition, a measure/~ is a Radon measure if and only if I#l is a Radon 

measure (in particular, both #+ and #-  are Radon measures). 
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(if) It is easy to see that for a r-addit ive measure/~ one has 

v(U) = lim#(U~) (3.1.1) 

for every increasing net {Us} of open sets. Equivalently, 

# (Z)  = lim#(Z~) (3.1.2) 

for every decreasing net {Z~} of closed sets, which, in turn, for regular # is equivalent to 

u ( z )  = lim ,(z ) (3.1.3) 

for every decreasing net {Z~} of closed sets with f')~ Z~ = o. Indeed, (3.1.3) holds true for lul replacing #. 

Therefore, a regular measure g is r-additive precisely in the case where both #+ and # -  are r -addi t ive  (hence, 

this equivalence holds true for all measures on regular spaces). 

If a signed measure # satisfies (3.1.1) (or, equivalently, (3.1.2)) and is regular; then (3.1.3) is fulfilled for 

kt + and # - ,  and, hence, for [#1. Thus, for regular signed measures (3.1.1) is equivalent to the r-addit ivi ty.  

Obviously, if a measure # is tight (or Radon), then so is any measure that  is absolutely continuous with 
respect to #. The  product  of a sequence of tight probability measures is tight. However, for uncountable 
products this is false. For instance, if {#~} is an uncountable family of Baird probabil i ty measures without 

compact subsets of full outer  measure, . then |  = 0 for any compact set K in the product  space. 

The proof of the following result can be found, for instance, in [527, Proposit ion 3.2] for nonnegative 
measures; the general case follows from Remark 3.1.15. Recall that  the function f on the topological space 

X is said to be lower semicontinuous if the set {z: f ( z )  > c} is open for every c E ~t x. Clearly, these functions 
are Borelean. Note that  the pointwise limit of an increasing net of lower semicontinuous functions is lower 
semicontinuo'ls as well. 

L e m m a  3.1.16.  Let # be a regular r-additive (say, Radon) measure on a topological space X and let {f~,} 
be an increasin 9 net of lower semicontinuous nonnegative functions such that the function f = lirn~ f,, is 
bounded. Then 

J" = f 
X X 

Lemma 6.3.15 below contains a related result for not necessarily lower semicontinuous functions belonging 
to the range of the lifting for an arbitrary measure #. 

R e m a r k  3 .1 .17.  When studying the regularity properties of a measure/.t on a completely regular topolog- 

ical space X, it is often useful to extend # to the Stone-(~ech compactification 3 X .  This is possible for Borel 
or Baire measures. However, the set X may fail to be measurable with respect to the extension #~ of #. Then 

one of the following extra  assumptions may be useful: (1) X is a Baire subset of f iX,  (2) X is a Borel subset 

of 3X,  (3) X is measurable with respect to every Radon measure on/~X,  (4) X is measurable with respect 
to every Borel measure on X. Below we shall find some applications of these conditions. 

E x a m p l e  3 .1 .18 .  Let X be a completely regular space. Every r-additive measure on X is a Radon measure 

if and only if X is measurable with respect to every Radon measure on 3 X  (i.e., is universally Radon 

measurable in X) .  

P r o o L  One implication in this result (obtained in [279]) follows from the facts tha t  every r-addit ive 
measure on a regular space is regular and that /~a is a Radon measure. To get a different implication, it 

suffices to consider the case where v is a Radon measure on 3 X  such that X is a set of full u-measure. Then 
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the measure/* on X defined by #(B fq X) = u(B) ,  B E B(flX), is r-additive. By assumption,  it is a Radon 
measure on X, whence follows the measurability of X with respect to u. [] 

We close this section with the following notation. 
N o t a t i o n .  For the topological space X, 

.A48(X) is the space of all Borel measures on X, 
Ad~(X) is the space of all BaDe measures on X, 
.Mr(X) is the space of all tight Baire measures on X, 

.A4,(X) is the space of all r-additive Borel measures on X. 

The symbols .ad+(X), .ad+(X), sI4+(X), .M+(X) stand, respectively, for the correspondingclasses of 
nonnegative measures. Finally, the symbol 7 ~ will be used to specify probability measures from the corre- 
sponding classes. 

For additional information concerning basic regularity properties of measures, see [4, 13, 14, 31, 184, 185, 

193, 239, 258, 265, 267, 275, 336, 382, 389, 416, 509, 515, 516, 517, 5601 

3.2. S u p p o r t s  of  M e a s u r e s  

An important application of the property of r-regularity is connected with the concept of support of a 
Borel measure. For every Borel measure/~ one can form the closed set S u which is the intersection of all closed 

sets of the full/~-measure. If this set also has a full measure, then it is called th support  of/~ (in this case the 

measure/~ is said to have support). The measure/~ on a compact constructed in Example 3.1.3 has no support 

(for this measure Su = {wl}). Some authors call the set Su the support of/~ if ]/~](Su) > 0 (but it does not 

necessarily have a full measure). Then the measures concentrated on S~, are said to be support-concentrated. 

P r o p o s i t i o n  3.2.1.  Every r-additive measure has a support. In particular, every Radon measure has a 
support and every Borel measure on a separable metric space has a support. 

Proof' .  It suffices to note that  the union of any family of open sets of measure zero has measure zero by 
virtue of the r-additivity. [] 

In certain spaces Radon measures are concentrated on subspaces with nice properties. Recall that  spaces 
homeomorphic to weakly compact sets in Banach spaces are called Eberlein compacta. The next result is due 
to Grothendieck (it also follows from [457]). 

T h e o r e m  3.2.2. Every Radon measure on an Eberlein compact has a metrizable suppo:'t. 

The following two questions arise in connection with supports of measures: (a) the existence of a nontrivial 
nonatomic Borel measure # on the given space X, (b) the existence of # with the additional property supp # = 
X. 

The following result was obtained in [278]. 

T h e o r e m  3.2.3. (i) I f  X is Cech-complete and has no isolated points, then there ezists a nontrivial, 

nonatomic, regular Borel measure on X .  

(ii) I f  every subset of  X contains an isolated point and X is Borel measure-complete (see Definition 5.1.7), 
then there is no nontrivial, nonatomic, regular Borel measure on X .  

According to [20], assertion (i) is not true for arbitrary completely regular spaces. In [217],'necessary 
and sufficient conditions for the existence of the Radon measure/~ with full support in a compact space are 
given. However, such a measure may be atomic. As is shown in [217], if X is compact  and first countable, 
with no isolated points, then the existence of the Radon measure # with the support X implies the existence 
of the nonatomic Radon measure u with the same property. In particular, such a measure u exists if X is 
a separable, first countable, compact space without isolated points. Interesting examples of compact spaces 
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without strictly positive measures (i.e., having full supports) are constructed in [553]. A detailed discussion 
of connections between strictly positive measures on a compact space X, strictly convex renormings of C ( X ) ,  

and chain condition can be found in [554, Chapter VI]. 
Various additional set-theoretic assumptions may prove to be important for these issues. For example, 

P r o p o s i t i o n  3.2.4.  Assuming CH, 
(i) there exists a compact, first countable, hereditarily Lindelb'f, nonseparable space X which supports a 

Radon measure #; 
(ii) there exists a hereditarily LindelSf, compact space X and a Radon measure # on X which has no 

metrizable-like support. In particular, # is not supported by a Souslin subset. 
On the other hand, assuming MA and the negation of CH, spaces of this kind do not exist. 

Part (i) is due to [215] and [298] (where a hereditarily LindelSf space X was constructed which also 

works in part (ii)); the results under MA and the negation of CH were obtained by Juhasz [252] and Fremlin, 

respectively (see [184, See. 141). 
Here the existence of a metrizable-like support means the existence of a sequence {K,~} of compact parts 

of X such that  for every open set U C X and e > 0, there exists n with /in C U and ]#](U\K,,) < ~ (this 
property is stronger than the separability of #, see [184, See. 24]). 

Note that  the existence of a metrizable-like support follows from the existence of a sequence of metrizable 
compacta K,, with I#[(X) = [#I(U,K,);  however, it is weaker than the latter condition (Example 7.2.6 below 

distinguishes the two properties). In this connection, it is worth noting that,  according to Theorem 5.1.1 
below, every Borel measure /~ on a Souslin space X is concentrated on a countable union of metrizable 
compacta. 

In Chapter 9, we shall discuss supports of measures on linear spaces and make some comments on 
measures on Banach spaces equipped with the weak topology. 

Some additional information about supports of measures can be found in [3, 20, 184, 185, 217, 265, 266, 
368, 393, 463, 531]. 

3.3. E x t e n s i o n s  of  M e a s u r e s  

Before proving theorems on extensions of tight measures, let us consider the following simple example of 
a tight Baire measure for which a Radon extension to the Borel a-field cannot be obtained by the Lebesgue 
completion of B a ( X ) .  

E x a m p l e  3.3.1.  Let X = ]~T, where T is an uncountable set. Suppose that  x0 is any element in X (e.g., 
an identically zero function) and A is a measure on B e ( X )  defined by the relation A(B) = 1 if Xo E /3 and 
A(B) = 0 otherwise (i.e., A is Dirac's measure at Xo). Clearly, this measure is tight and can be extended 
by the same relation to B(X).  However, the single-point set x0 is nonmeasurable with respect the Lebesgue 
completion of the measure A on I3a(X). Indeed, otherwise this set would be the union of a set from B a ( X )  and 

a certain set of the outer measure zero with respect to A on Ba(X), which is impossible since no single-point 
set is Baire in our space whereas the point x0 has the outer measure 1. 

The next theorem and its corollaries are very useful in applications. Detailed proofs can be found in 
[527]. Part (i) goes back to [340] and [408]. Part (ii) is essentially due to [279]. 

T h e o r e m  3.3.2.  Let ,4 be an algebra of subsets of a topological space X ,  containing a basis of the topology, 
and let # be a measure on ,4. 

(i) Assume that # is regular and tight. Then it admits a unique extension to a Radon measure on X .  

(ii) Assume that .u is regular and that for any increasing net {U~} of open .sets from .A with X = [.)~ U~ 

one has lul(X) = lim~ I#l(U~). Then tt admits a unique eztension to a T-additive measure on B(X.). 
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In both cases, i f  It is nonnegative , then the corresponding cztensions are given by the relation 

I t(B) = inf{It.(U): U is open in )( and B C U} VB �9 B ( X ) .  (3.3.4) 

C o r o l l a r y  3.3.3. Every tight Baire measure It on a completely regular space X admi ts  a unique- extension 

to a Radon measure. 

C o r o l l a r y  3.3.4. Let X be a completely regular space. Every Baire measure It which is to-additive on 

B a ( X )  admits a unique extension to a r-additive measure on B ( X ) .  

C o r o l l a r y  3.3.5. Every Baire measure on a a-compact completely regular space X admits  a unique exten- 
sion to a Radon measure on X .  

C o r o l l a r y  3.3.6. Let X be a completely regular space and F be a family of cont inuous funct ions on X 
separatin 9 the points of  X .  Then every tight measure It on ar admits a unique extension to a Radon measure 

on X .  

C o r o l l a r y  3.3.7. Let X be a locally convex space and let I ~ be a tight measure on the a-field a ( X )  generated 

by X*.  Then I j has a unique extension to a Radon measure on X .  

R e m a r k  3.3.8. The preceding results enable us to identify, for completely regular spaces, tight Baire 

measures with their (unique) Radon extensions. In this case, we use the notation M r ( X )  and at4+(X) for 
Radon measures as well. 

It should be noted that  the Lebesgue extension may not be sufficient for obtaining the extension which 
is guaranteed by the theorem above (see Example 3.3.1). 

Finally, there exist Baire measures which have no Borel extensions at all. 

E x a m p l e  3.3.9. There exist a completely regular space X and a Baire measure on X which has no count- 
ably additive extensions to the Borel a-field (for instance, one can take the Dieudonne~ plank for X). 

Proof .  In order to construct such an example, it suffices to have a Baire measure # on X possessing a full 
measure discrete Baire set T of cardinality c and vanishing on all singletons. Then the  Borel extension of # 
would pro.duce a measure which is defined on all subsets of T and vanishes on all singletons. [] 

Examples of this kind were considered in [536, 537, 370]. In [370], a general result was obtained which 

yields a lot of other examples with additional interesting properties. In particular, accordi:lg to [370, Example 
3.5], there exists a countably paracompact space X with a Baire measure # without Borel extensions. We 
shall return to these matters  in the section dealing with Mah'k spaces, where we shall see that  the last example 
marks the bound for negative results in this direction. 

R e m a r k  3.3.10. In the classical book [211], Baire sets are defined as the sets from the a-field generated by 
compact Gs-sets whereas Borel sets are the elements of K:(X). For this reason, the assertion of Theorem 54D 
of this book concerning the existence of Borel extensions of Baire measures does not hold for our terminology. 

E x t e n s i o n s  of  p r o d u c t s .  Let (Xi ,# i ,Ai) ,  i = 1,2, be two measurable spaces. The product-measure 
It = It1 | #2 is defined on the a-field A1 | ,42 generated by the rectangles A = A1 x A2, A~ E A~, by setting 
t~(A) = #1(Ai)#2(A2).  The measure # is a-additive and can be extended to the #-completion of Jr1 | .A2 

(normally, by the product-measure one understands this extension). In the case where each of the Xi's is 

a topological space with one of our standard a-fields (say, Borel or Baire), the product-space X is also a 

topological space and can be endowed with the corresponding a-field. Clearly, B ( X t )  | B (X2)  C B ( X )  and 

Ba(X1) | Ba(X2) C B a ( X ) ,  but, as we already know, these inclusions may be strict. Thus, the question 
arises as to the extensions of # to these larger a-fields. 
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R e m a r k  8.3.11. There are trivial cases where # is defined on B ( X )  or 13a(X). For example, if the spaces Xi 

have countable bases, then B(X) = B(Xi ) |  and if both X, and X2 are compact, then B a ( X 1 ) |  

(see Proposition 2.1.10). 

According to [168], #x | #2 need not be defined on B(XI  x X2) even if both measures #I and #2 are 
completion regular (see Definition a.4.8 below) Radon measures on compact spaces. However, in this case 
the product-measure admits a Radon extension. It is an open question whether the product of two Borel 
measures on topological spaces can be extended to a Borel measure (this problem is not solved even for purely 
atomic measures on compact spaces). Below we discuss some related positive results. 

For the set A C X, x X2, let A=, = {x~ E )(2: (z:, z2) E A} and A= 2 = {xl G X , : ( x l , z s )  E A s- 

T h e o r e m  3.3.12. (i) Assume that #l and #2 are r-additive measures. Then the measure t~ = I~1 x #2 

admits a unique extension to a r-additive measure on 13(X~ x X2) and for  every B E B(X1 x X2) one has 

. (B)  = [ = / (3.3.5) 
X] Xl 

where the functions xa ~-~ #~(B~:~) and x I ~ #2(Bxl) are measurable with respect to the corresponding mea- 

sures. In addition, i f  B is open and # is nonnegative, then these two functions are lower semicontinuous. I f  

both I~1 and I~ are Radon measures, then the extension given above is also Radon. 

(ii) Assume that for  every n E B~, there exists a Radon probability measure I& on a space X,, .  Then the 
product # = | oo . ,=ll*,, on X = I-I,=l X ,  admits a unique extension to a Radon probability measure. 

The proofs can be found in [527, Chapter I] (part (i) is a special case of the result in [54], part (ii) was 
noticed by many authors and follows directly from Theorem 3.3.2). 

It is an open question whether there can also be non-Radon Borel extensions of the product of two Radon 
measures on compact spaces. 

The next result shows that  the conditions of Theorem 3.3.12 can be weakened. 

T h e o r e m  3.3.13. Let 1*1 and #2 be two Borel measures on topological spaces X1 and X2, respectively. Then 

the product-measure I* = l*: | t*2 can be extended to a Borel measure on X = Xx x X~ in either of  the following 
cases: 

(i) either I*1 or #2 is Radon, 

(ii) either #1 or #2 is r-additive, 

(iii) either X1 or X~ is first countable, 

(iv) X l  is of countable tightness and #2 is purely atomic. 

For proofs, see [244, 245, 246, 247]. As was noted by Johnson (see [184, Sec. 26]), in the case (i) there 
may be two different Borel extensions of #1 | #~. Some additional results on products of Borel measures are 
given below in connection with completion regular measures (see Definition 3.4.8). 

An interesting example concerning the measurability on products was constructed in [135, 136], namely, 

a probability space (f~, P)  and a sequence {G,~} of standard independent Gaussian random variables were 

constructed such that  the process L(x ,  w) = ~, ,  x ,G, , (w) ,  x E H = l ~, is.jointly measurable, but the evaluation 

map (x, f )  ~-* f ( x ) ,  f E R H, is not # | P-measurable on the space H • R H, where # is the centered Gaussian 

measure on H induced by the sequence & of independent centered Gaussian variables with covariances n -3/~. 
Mafqk spaces .  

T h e o r e m  3.3.14. I f  X is normal and countably paracompact, then every Baire measure # on X has a 
regular Borel extension u, which satisfies the condition 

lul(U) = sup{l#l(F): F C U, F = f-~(0), f E Cb(X)} 

for every open set U C X .  
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This nice result obtained in [340] gave rise to the problem of characterizing topological spaces with 
MaHk's property. We already know that not all completely regular spaces are MaHk. Other  examples are 
mentioned below. 

Def in i t ion  3.3 .15.  (i) A completely regular space A" is said to be a MaHk space if every Baire measure on 
X admits an extension to a regular Borel measure. 

(ii) A completely regular space X is said to be a quasi-Ma~fk space if every Baire measure on X admits 
an extension to a Borel measure (not necessarily regular). 

We shall present the main results in this direction following [542] and [370]. By Theorem 3.3.14, every 
normal countably paracompact  space is MaHk. Trivial examples of MaHk spaces are compac ta  and perfectly 
normal spaces. In Chapter  5, we shall discuss measure-compact spaces, i.e., completely regular spaces on which 
every Baire measure is T-additive (see Definition 5.1.6). Clearly, by Theorem 3.3.2(ii), measure-compact  spaces 
are MaHk. As shown by Fremlin [170], assuming Martin's axiom and the negation of the cont inuum hypothesis, 
the space W" is measure-compact (hence, MaHk), but is neither normal nor countably paracompact  (see [488, 

p. 123, p. 190] and the Tamano-Mori ta  result cited on p. !73 in [488]). 

R e m a r k  3.3.16.  A space X is normal and countably paracompact if and only if X x [0, 1]'is normal 
(see [147, Theorem 5.2.8]). Recall that paracompact spaces are normal (see [147, Theorem 5.1.5]) and that 
completely normal spaces are countably paracompact (see [147, Corollary 5.2.5]). On the other hand, there 
exist normal countably paracompact spaces which are not completely normal (e.g., [0, 1]~; more generally, all 
compact spaces which are not completely normal). It is known that there exist countably paracompact  spaces 
which are not normal and there exist normal spaces which are not countably paracompact  (an example of 
this kind found by M. Rudin in 1971 gave a solution to a difficult problem of general topology; in particular, 
such an example was not available at the time when Mai~ ' s  paper appeared). 

A space X is said to be cozero-dominated if for every decreasing sequence {F,~} of closed sets in X with 
an empty intersection, there exists a sequence {U,} of cozero sets in X such that F,, C U,~ for every n and 
f-~ U,, = o. If cozero sets Un are relaxed to Baire sets, then X is said to be Baire-dominated. Then one has 
the following implications for completely regular spaces: 

(1) normal, countably paracompact =a (2) cozero-dominated ~ (3) Baire-dominated ::~ (4) M a ~ ' s ,  

( la)  countably compact ~ (2) cozero-dominated :* (4) Mah'k's, 
( lb)  measure-compact =a (4) Ma~fk. 

The implication (1) ::~ (2) can be found, for instance, in [147]. The implications (2) ~- (4) and (3) =~ (4) 
are due, respectively, to [31] and [5]. The implications (la)=~ (2) and (lb)=a (4 )a re  obvious. 

The following result from [370] clarifies the relations between the properties in these implications (and 
answers several questions posed in [541,542]). 

T h e o r e m  3.3.17.  (i) There exists a countably paracompact space which is not a quasi-MafnTr space (and, 

hence, is not a Mafn7r space). 
(ii) There exists a locally compact, measure-compact (hence, Ma§ space which is neither normal nor 

paracompact. 
(iii) There exists a locally compact, measure-compact (hence, Ma§ space which is not Baire-dominated. 

It seems to be unknown whether there exists a quasi-Ma2fk space which is not M a ~ .  
Here are several additional results from [370]. 

T h e o r e m  3.3.18.  The product of any family of metric spaces is a quasi-MafnT~ space. 

It is an open question whether these products are Ma~ik spaces (in particular, whether  every power of 1~ 
is a MaHk space). 
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In general, the closed subset X0 of the .Maf/k space X need not be Maf/k even if it is C-embedded (see 

[541,542] and [370]). The point is that if one extends the Baire measure # on X0 to /3a (X)  and considers its 
extension ~x to 13(X), then the resulting measure/q  may not be an extension of t~ since some Baire subsets 
of X0 may fail to be Borel in X. 

P r o p o s i t i o n  3.3.19. Let X be a Ma§ space and let Y be its subspace. Then Y is a Ma(~Tr space in either 

of the following cases: 
(i) Y is Baire-embedded (i.e., each of its Baire subsets is the intersection of a Baire set in X with Y )  

and, in addition, is a generalized Baire subset of X (i.e., for each open set U such that U C Y there exists a 

set B E / 3 a ( X )  with U C B C Y) .  In particular, this holds if Y is a cozero set in X .  

(ii) X is Baire-separated (i.e., for each pair of its disjoint closed subsets F1 and F2 there exists a set 

B E /3a ( X)  such that F~ C B,  F: C X \ B )  and Y is a generalized Baire subset of  X .  In particular,, this holds 

if X is Baire separable and Y is either a Baire set or an F~-set. 

In [370], the question is raised whether one can drop the condition that Y is Baire-embedded in statement 

(i). 

As is shown in [370, Theorem 2.5], Michael's product space M x P (see [147]) is not Baire-dominated; it 
is also known to be not normal. However, assuming that c is not real-measurable, it was proved in [354] that 
M x P is measure-compact (hence, M a ~ ) .  

According to Example 3.16 in [370], the union of two Maf~  
if one of them is a cozero-set and the other is a zero-set. It is not 
Y is a Makl"k space and K is compact, must be a Mah'k space. 
Y x K must be a Mah'k space. The next result from [370] gives 

spaces may not be a quasi-Ma~'~ space even 
known whether the union X = Yt_J K,  where 
It is not known either whether the product 
some related information. 

P r o p o s i t i o n  3.3.20. (i) Let X = U,~176 1 X , ,  where each X ,  is a MafnTc space and a Baire-embedded, gener- 

alized Baire subset of X .  Then X is a Mafn'k space ( X  is quasi-MafnT~ even without the assumption that all 

X,, are generalized Baire sets). In particular, this holds true i f  X is Baire separable and each X,, is a MafnT~ 
space which is either a closed set or a Baire subset of X .  

(ii) Let X be a Baire-separated Mafn7r space and let K be a compact space. Then X • K is a Mafa7~ space. 

P r o p o s i t i o n  3.3.21. (i) Let f be an open perfect map from a Mafn7r space X onto a space Y .  Then Y is 
a Ma~nTr space. 

(ii) Let f be a closed continuous map from a space X onto a Ba:, e-separated Ma~n7~ .~pace Y such that, 

[or every y E Y ,  /-X(y) is countably compact. Then X is a ma~7~ space. In particular, the absolute E ( f )  of 
Y is a Ma(;7~ space. 

Note that in the last proposition one cannot remove the assumption that Y" is Baire-separated (see [370]). 
The relations between the Ma~ik property for a space X and its absolute E ( X )  are studied in [370, 540]. 

For other results concerning extensions of measures, see [31, 32, 149, 150, 152, 166, 208, 285, 305, 306, 
308, 317, 494, 521,552]. 

3.4. O t h e r  R e g u l a r i t y  P r o p e r t i e s  of  M e a s u r e s  

Separab le  m e a s u r e s .  In applications it is often desirable to deal with separable measures. By definition, a 
measure/~ on (X,/3) is separable if there is an at most countable family g C/3 such that  for every B E/3 and 
every ~ > 0 there exists an element G E C with Itt](B/XC) < e (in other words, the countable set C is dense in 
the measure algebra associated with #). One can readily verify that/~ is separable if and only if all the spaces 

LP(~), p > 0, are separable (in fact, the separability of one of these spaces is sufficient). There is no strong 
connection between the separability of a measure and its topological regularity properties. For example, the 
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product # of the continuum of copies of Lebesgue measure on I = [0, 1] is a nonseparable Radon measure on 

the separable compact space I c (note that the distances in L2(it) between the coordinate functions are equal 

positive aumbers). On the other hand, let us consider an example of a Radon measure It on a compact space 

X which vanishes on every metrizable compact (hence, on every Souslin set in X), but possesses a separable 

r '(it).  

E x a m p l e  3.4.1.  Let X be "two arrows of P. Alexandroff" (see Example 1.2.8). The space X has the 
following properties: 

(i) it is compact, separable, completely normal, hereditarily finally compact, satisfies the first axiom of 
countability, but any metrizable subspace of X is at most countable, 

(ii) the natural projection of X onto the intei'val [0, 1] is a perfect map, and there exists a Borel probability 

measure It on X such that  its image under this projection coincides with Lebesgue measure on [0, 1], 

(iii) the measure It vanishes on all countable sets, and, hence, on all metrizable subspaces in X (it also 
vanishes on all Souslin subsets in X), 

(iv) all spaces L"(it) are separable (i.e., It is separable). Moreover, every Borel measure on X is separable. 

P roof .  Property (i) was mentioned in Example 1.2.8. Claim (ii) follows from a result in Chapter  6, although 
in this special case the measure It can be easily defined directly as the linear Lebesgue measure on the union 
of two closed intervals (restricted to B(X)).  Note that  B(X)  is contained in the Borel a-algebra generated by 

the Euclidean topology of/R 2. Indeed, since X is hereditarily LindelSf, every open set is an at  most countable 
union of the elements of the base. 

By construction,/~ vanishes on all countable sets, and, hence, by property (i), on all metrizable subsets 

(and this means that  it is zero on all Souslin subsets of X, see Chapter 5). 
Since B ( X )  is countably generated, we have (iv). [] 
The next result gives some simple sufficient conditions for the separability. 

P r o p o s i t i o n  3.4.2.  Eiiher of the following conditions is sufficient for the separability of the Borel measure 
It on the space X: 

(i) X is a hereditarily Lindelgf space and there exists a countable family of measurable sets which approx- 
imates, in the It-measure, every member of some basis of topology; 

(ii) for every c > 0 there exists a metrizable compact K, such that IIt l(x\K,)  < ~. 

E x a m p l e  3.4.3. Assume that  the compact subsets of X are metriza~!e. Then every Radon measure on X 
is separable. 

R e m a r k  3.4.4. A simple necessary and sufficient condition for the metrizability of a compact space K is 
the existence of a countable family of continuous functions that separate the points of K.  Note that  in this 
statement one cannot replace continuous functions by Baire functions (see Example 1.2.8). 

Separability of Radon measures on compact spaces has been studied in [299], [555], [561], where additional 
references can be found. In particular, it has been shown that  the existence of a first countable Corson 
compact space carrying a non-separable Radon measure is undecidable in Z-FC (under one extra  set-theoretical 
assumption such a space is constructed in [299], while the nonexistence of such spaces is proved in [561] under 
the negation of that  extra assumption). 
Dif fused a n d  a t o m l e s s  m e a s u r e s .  

Def in i t ion  3.4.5.  A Borel measure is diffused if it vanishes on all single-point sets. 

Def in i t ion  3.4.6.  Let (M, sg[, It) be a space with a nonnegative measure. An element A C M is called an 

atom of measure It if It(A) > 0 and each element B in st'[, which is contained in A, has a measure either zero 
or It(A). A measure without atoms is said to be atomless. 
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Clearly, an atomless Borel measure is diffused. The following is straightforward. 

L e m m a  3.4.7. Any diffused r-regular (e.g., Radon) measure is atomless. 

There exist diffused Borel measures with atoms. An example is the Dieudonn~ measure (see Example 
3.1.3) for which the whole space is an atom (since this measure has only two values). 
C o m p l e t i o n  r e g u l a r  m e a s u r e s .  

Def in i t ion  3.4.8. (i) A Baire measure is said to be completion regular (or extension regular) if its Lebesgue 
extension contains a Borel a-field. A Borel measure is completion regular (or extension regular) if its restriction 
to a Baire a-field is completion regular (in other words, for each B E 13(X) there exist B~, B2 E B a ( X )  such 

that B~ C B C B~ and I#I(B~\B~) = 0). 
(ii) A Baire measure is said to be monogenic if it has a unique regular Borel extension. A Borel measure 

is monogenic if so is its Baire restriction. 

T h e o r e m  3.4.9.  ( i )  There exists a Radon measure on a Radon space (i.e., a space on which every Borel 

measure is Radon) which is not completion regular. 

(ii) Any completion regular measure is monogenic, but the converse is not true. 

(iii) On a space X ,  every Baire measure is monogenic precisely when every Borel measure on X is regular. 

For proofs and related references, see [184, Sec. 21]. 
Recall that  a space X is said to be dyadic if it is the image under a continuous mapping of the space 

{0, 1} t for some I. The following spaces are dyadic: (i) metric compacta, (ii) finite unions and arbitrary 
products of dyadic spaces, (iii) zero sets in dyadic spaces, (iv) compact topological groups. In [176], a wider 
class of quasidyadic spaces is defined: these are continuous images of arbitrary products of separable metric 
spaces. According to [176, Proposition 3], continuous images, arbitrary products and countable unions of 
quasidyadic ~paces are also quasidyadic. In addition, the elements of the Baire a-algebra of a quasidyadic 
space are quasidyadic. The following important results obtained in [176] improve many previously known 
statements. 

T h e o r e m  3.4.10.  Let X be a quasidyadic space with a completion regular Borel probability m. easure #. 
Then It is v-additive. 

T h e o r e m  3.4.11.  Let tt be a completion regular Borel probability measure on a quasidyadic space X and 
let u be a r-additive Borel probability measure on a space Y .  Then every open subset of X • Y is measurable 
with respect to the Lebesgue extension of the product-measure # | u. 

Coro l l a ry  3.4.12.  Let X~, a E A, be a family of quasidyadic spaces equipped with completion regular Borel 
probability measures It~. Suppose that all but countably many measures of the #~, are strictly positive. Then 
the Lebesgue extension of the product-measure | on [I X~ is also a completion regular Borel measure. 

In this connection it is worth mentioning that according to [207], if It~ are r-additive Borel measures 
such that all r-additive finite subproducts are completion regular and,all but countably many measures #~ 
are strictly positive, then the r-additive product-measure # on I-I X= is also completion regular, and therefore 
coincides with the Lebesgue extension of the product-measure. 

It is not clear whether there is an example in ZFC of a completion regular measure on a completely 
regular space which is not r-additive. 

In [353], there is an example of a Baire measure on I~ c which is not r-additive, but this measure is not 

completion regular. 
For other results connected with completion regular measures, see also [25, 27, 206]. 
Wheeler [5421 posed the question of whether, for any finite r-smooth Baire measure # on a completely 

regular space X, there exists a LindelSf subset of X with a full It-outer measure. If such a set exists, (X, #) 
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is said to have the L-property. In [9], the Sorgenfrey plane X with Lebesgue measure A is investigated from 
the viewpoint of the above question. It is shown that (i) there exists a model of ZF where (X,A) lacks the 
L-property, (ii) (X, A) has the L-property under ZFC+CH, (iii) the existence of a r - smooth  measure without 
the L-property is consistent with ZFC. Thus, Wheeler's question has no positive answer in ZFC. 

Various results concerning the connection between measure and category on topological spaces and further 
references can be found in [374, 183]. 

R e m a r k  3.4.13. The classical Lusin's theorem says that a measurable function f on X = [0, 1] is almost 

continuous in the sense that,  given r > 0, there exists a compact set K,  such that  ),([0, 1] \ K,)  < r and f 
is continuous on K~. There are a number of generalizations of this theorem, namely, to  more general spaces 
X or to more general target spaces Y (or both). It is easy to construct an example of a Borel mapping 
onto X = [O, t] with values in a compact space Y which fails to have the property with respect to Lebesgue 
measure. A standard generalization covers the case where X is a space with a Radon measure # and Y is a 
separable metric space. If, in addition, X is completely regular, then, just as in Lusin's classical theorem, for 
every ~ > 0 there exists a continuous mapping f , :  X --* Y with I/~](f r f , )  < ~. 

Further generalizations are due to [172] and [292], where it is proved that,  for every Radon measure 
# on a topological space X and every p-measurable map f from X into a metric space Y, there exists a 
separable subspace Y0 of Y such that  f ( x )  E Yo for/~-a.a, z (in [292] multivalued mappings are considered). 
For Lebesgue measure #, this result was proved by R. Solovay. Thus, for any Radon measure # on X, every 
/J-measurable mapping f from X into a metric space Y is almost continuous. It is worth noting that  for 
Y = [0,wl] this is also true under Martin's axiom. However, without additional assumptions this is an open 
question in the case where X = [0, 1] with" Lebesgue measure. For related results see also [80]. 

Various related problems were investigated in [2, 20, 22, 24, 35, 42, 338, 119, 140, 158, 165, t67, 178, 
197, 199, 202, 203, 241,318, 381,425, 426, 427, 439, 466, 467, 502, 540, 559]. 

Problems related to Hausdorff measures and geometric measure theory are discussed in [156, 428]. 

3.5. Pe r fec t  M e a s u r e s  

An important and interesting class of measures (perfect measures) with a certain specific regularity 
property was introduced in the classical book of Gnedenko and Kolmogorov [192]. This class of measures 
was investigated in detail by Sazonov [446]. Closely related objects were introduced by Marczewski [335] and 
Ryll-Nardzewski [437]. In this section, we give an exposition of the basic facts concerninr~ perfect measures 
following mainly [446]. For a related discussion see also [219,286, 414, 415] (unfortunately, the detailed survey 

[414, 415] is hardly available; the reader is advised to consult Pachl's review [379]). To simplify the notation, 
we consider uonnegative measures. 

Def in i t ion  3.5.1. Let ( X , S )  be a measurable space. A nonnegative measure # on S is said to be perfect 

if, for every S-measurable real function f and every set E C ~ such that f - ~ ( E )  E S,  there exists a Borel set 

B C ~ such that B C E and # ( f - ' ( B ) )  = # ( f - t ( E ) ) .  

P r o p o s i t i o n  3.5.2.  A measure # on ( X , S )  is perfect if  and only if  for each S-measurable real function f 

there ezists a Borel set B C R such that B C f ( X )  and # ( f -~ (B) )  = # (X) .  

Here are a number of elementary properties of perfect measures. 

P r o p o s i t i o n  3.5.3.  (i) A measure # is perfect if and only if  so is its completion. 

(ii) The restriction of a perfect measure to any measurable subset and any sub-a-algebra of measurable 
sets is again a perfect measure. 

(iii) Let ( X , S , # )  be a space with a perfect measure and f: X ---* ( Y , A )  a measurable map. Then the 

induced measure p o f - l  on .,4 is perfect. 
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Note that the image of a space with a complete perfect measure under a measurable map to a space with 
a complete perfect measure need not be measurable. 

E x a m p l e  3.5.4.  Let X be the product of the continuum of segments equipped with the Dirac measure # 

at zero regarded on the #-completion of B(X)  and let Y be the same space regarded with the / , -comple t ion  

of the Baire a-algebra Ba(X) .  Then in either case measure # is perfect, the identity map is measurable, but 
the point zero is not in I3a(X),,. 

The previous example also shows that the restriction of a perfect measure to a nonmeasurable set may 
be a perfect measure. 

T h e o r e m  3.5.5.  Let (Xi,81,/*;), i E I, be an arbitrary family of measurable spaces with perfect probability 

measures, X = I-Ii X;, rq: X -+ Xi the natural projections, and .4 the algebra generated by the sets rq-l(Ai), 

Ai E Si. Assume that u is a finitely additive nonnegative set function on .,4 such that its image under the 
projection 7q coincides with #i for every i E I. Then u is countably additive and its countably additive 
extension to ,~ = | is a perfect measure. In particular, any product of perfect probability measures is 
perfect. 

As one can see from the theorem below, the class of perfect measures is very large. This theorem describes 
also the close connection between perfect and compact measures. 

T h e o r e m  3.5 .6 .  (i) Every compact measure is perfect. 

(ii) A measure p is perfect if  and only if  it is compact on every countably generated sub--a-algebra "5"i C S.  

(iii) A measure/* on ( X , S )  is perfect if and only if for each sequence {Ai} C 5̀̀  and each ~ > 0 there is 

a set A E 5̀̀  such that u(A)  > u ( X )  - ~ and the sequence {A M A;} is a compact class. 

Obviously, it can happen that  on a given a-algebra there exist perfect and nonperfect  measures. The 
next result deals with situations where all measures on a given a-field are perfect. 

T h e o r e m  3.5 .r .  (i) Let X C R. Every Borel measure on 8 ( X )  is perfect if and only if X is universally 
measurable. 

(ii) Let ( X , S )  be a measurable space. If for any S-measurable function f the set f ( X )  C ~ is universally 
measurable, then every measure on any a-algebra Sx C 5̀̀  is perfect. Conversely, if  every measure on every 
countably generated a-algebra "5"1 C 5̀̀  is perfect, then for each S-measurable function f the set f ( X )  C ~ is 
universally measurable. 

E x a m p l e  3.5.8.  Under the continuum hypothesis, there exists a measurable space (X,,5') such that  every 

measure on 5̀̀  is perfect, but there exists a a-algebra S~ C ,5" on which not every measure is perfect (see [446]). 

T h e o r e m  3.5.9.  (i) Any tight measure (in particular, any Radon measure) is perfect. 

(ii) A Borel measure on a separable metric space is perfect if and only if  it is tight. The same is true for 
any metric space in which there is no disjoint collection of nonempty open sets of cardinality more than the 
continuum. 

(iii) A Borel measure in a metric space is tight if  and only if it is perfect and r-additive. 

E x a m p l e  3 .5 .10.  (i) There  exists a r-additive nonperfect Borel measure on a separable metric space. 

(ii) There exists a compact  perfect measure on a locally compact space which is not r-additive.  

(iii) There exists a perfect r-additive Borel measure (which is even compact)  which is not tight. 

P roo f .  To prove (i), it suffices to take a nonmeasurable subset of X in [0, 1] with the Lebesgue outer 

measure 1 and set # (B  M X) = A(B) for 13orel subsets of [0, 1], where A is Lebesgue measure. In order to 

construct (ii), let X be the space X0 considered in Example 3.1.3 (the space of countable ordinals) and set 
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# equal to 1 on countable sets and to zero on their complements (these sets exhaust  all Borel sets in X). 

One can verify that  # is not r-additive but possesses a compact approximating class (namely, the empty set 

and all sets of measure one). Finally, Lebesgue measure on the Sorgenfrey interval can be taken in (iii). For 
details, see [446]. [] 

Perfect measures are also discussed in [6, 111,219,286, 288, 360, 361,412, 420]. Some additional remarks 
concerning perfect measures are given below in connection with the Lebesgue spaces. 
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Chapter  4 

M E A S U R E S  AS F U N C T I O N A L S  

4.1. R e g u l a r i t y  of  M e a s u r e s  in T e r m s  of  F u n c t i o n a l s  

In this chapter, we consider only completely regular spaces (although for some of the results given below 
it would be sufficient to assume that continuous functions separate the points). 

Although we do not discuss uncountably additive measures, for the material presented in this section it 
seems to be useful to recall some basic concepts related to additive set functions. It should be noted that in 
most of the literature, additive set functions are also called measures. However, following our earlier conven- 
tion, we keep the term "measure" only for countably additive set functions. Now let X be a completely regular 
topological space with the algebra Bao(X) generated by all zero sets. We say that  a function m: Bao(X) ---* 
is an additive regular set function if it is (i) additive, (ii) uniformly bounded, and (iii) for any A E 13ao(X) a n d  

> 0 there exists a zero set F such that  F C A and ]m(B)l < e for all B C A \ F ,  B E Bao(X). It is known 
that any function m of this kind can be represented as the difference of two nonnegative additive regular 
set functions m + and m - ,  where m+(A) = sup{re(B): B �9 Bao(X), B C A}, re-(A) = - i n f { r n ( B ) :  B �9 

Bao(X),B C A} (see, e.g., [532], Part  1, Theorem 1). We set Ilm[I = m+(X) + re- (X) .  By analogy with 
the Riemann integration, we can define the integral f f ( z )m(dz )  of a bounded continuous function f on X 

with respect to an additive regular set function m (see [139]). The importance of additive set functions can 
be seen from the following fundamental result due to A. Alexandroff [10]. 

T h e o r e m  4.1.1. For any additive regular set function m the integral f ~ f f ( z ) m ( d x )  is a bounded linear 
functional on Cb(X) with norm Ilmll. Conversely, for any bounded linear functional L on Cb(X) t.here ezists 
an additive regular set function m with limit = tlZtl such that L(f)  = f f ( x ) m ( d z )  for all f �9 Cb(X). In 
addition, rn is nonnegative precisely when so is L. 

Obviously, in general, the set functions mentioned above need not be countably additive. The following 
result due to A. Alexandroff [10] and Glicksberg [191] describes the spaces for which all additive regular set 
functions are countably additive on 13ao(X) (and thus admit unique extensions to Baire measures). Note that 

in the case of signed measures, the assumption of the boundedness of m on Bao(X) is essential for the validity 

of this assertion (since a signed countably additive set function on an algebra may not be uniformly bounded 
in contrast to the case of a a-algebra). 

T h e o r e m  4.1.2. A space X is pseudocompact if and only if every additive regular set function on X is 
countably additive on Bao(X). 

Def in i t ion  4.1.3. Let L �9 Cb(X)'. 

(i) L is said to be a-smooth if, for any sequence {f~} C Cb(X), the condition f~ t 0 implies L(f~) ~ 0; 
(ii) L is said to be r-smooth if for any net {f~} C Cb(X), f~ ~ 0 implies L(f~) ---, 0; 

(iii) L is said to be tight if for any net {f~} C Cb(X) such that IILII _< 1 and f= --, 0 uniformly on 
compact subsets of X, one has L(f~,) ---* O. 

Let A/in(X), .A/IT(X), .M,(X) denote the spaces of a-smooth, r-smooth, and tight functionals, respec- 
tively. 
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In order to give an idea of some standard techniques involved in the proofs of these results, we include 
the proof of the following theorem. 

T h e o r e m  4.1.4. Any element L E C b ( X ) "  can be written as L = L + -  L-, whereL + >0,  L- >0 ,  
any f E Oh(X) such that f >_ 0 one has 

L+f = sup L(g), L - I  = -  inf n(9). (4.t.1) 
0<g</ o<g<] 

In addition, setting ]LI := L + + L- ,  one has 

] n I ( f ) =  sup In(g)h [ I L I I = L + ( 1 ) + L - ( 1 ) .  
o<_lgt<y 

Proof .  Note that  for every two nonnegative functions f and g from Cb(X) and arty function h E Cb(X) 
such that 0 < h < f + 9, one can write h = h~ + h2, where hx, h2 E Cb(X), 0 < hx <__ f ,  0 < h2 < g. Indeed, 

we set h~ = rain(f  ,h) ,  h~ = h - hi. Then hi, h~ E Cb(X), 0 < hi < f and h2 > 0. Finally, h2 < g. Indeed, 
if hi(x) = h(x), then h~(x) = 0, and if hi(x) = f (x) ,  then h2(x) = h(x) - f (x)  < g(x) since h _< g + f .  

Let L + be defined as in (4.1.1). Note that L+(f) is finite, since IL(h)l _< IlZll Ilhll ___ IlZl[ Ilfll. Clearly, 
L+(tf) = tL+(f) for all nonnegative reals t and f > 0. Let f > 0 and 9 > 0 belong to Cb(X). Using the 
notation above, we get 

L+(f + g )  = sup{L(h): 0 < h < f + g }  

= sup{L(hl) + L(h~): 0 < h, < f ,  0 < h2 < g} = L+(f) + L+(g). 

Now, for any f E Cb(X) we set L + = L+f + - L + f  -,  where f+  = max(f ,  0), f -  = - r a i n ( f ,  0). Clearly, 

L+(tf) = tL+(f) for all t E II~ a and f E Cb(X). In order to see that L + is additive, it suffices (by virtue 

of the additivity on nonnegative functions), for given f and g, to write f+  = f l  + f2, f -  = ]'3 + f4, g+ = 

gl + g:, g-  = gz + g4, where the fi 's  (respectively, the gi's) have disjoint supports in the  closures of the sets 

{f  > 0} O {g > 0}, { f  > 0} n {g < 0}, etc. By definition, L+(f) > L(f)  for nonnegative f ,  and, hence, 

L-  := L + - L is nonnegative. It is easy to see that  L-  is given by the announced relation. 

Finally, IILII < IIL+II + IIL-II = L+(1) + Z- ( l ) .  On the other hand, 

L+(1) + L-(1)  = 2L+(1) - L(1) = sup{L(2~v- 1): 0 _< qv < 1} 

< sup{L(h): -1  < h < 1} < llLII. [] 

T h e o r e m  4.1.5. The following properties are equivalent: 
(i) L E A4~(X), 

(ii) L + and L-  are in A4~(X), 

(iii) ILl ~ M~(X) .  

T h e o r e m  4.1.6. The following properties are equivalent: 
(i) L E A//~(X), 
(ii) L + and L-  are in .Mr(X), 
(iii) ILl ~ M~(X).  

T h e o r e m  4.1.7. The following properties are equivalent: 
(i) L e A/ft(X), 

(ii) L + and L-  are in .Mr(X), 

(iii) IL I E .Mr(X). 

The proofs can be found in [532] (see also [5421). 
In the next section, we shall see that the functionals from the classes mentioned in the last three theorems 

are in a one-to-one correspondence with Baire, r-additive, and Radon measures, respectively. 

and for 
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4.2. R i e s z - M a r k o v  T h e o r e m s  

Every Baire measure )~ defines a continuous linear functional on the Banach space Cb(X) by the relation 

f ~ f f ( x )  )~(dz). (4.2.2) 
X 

In this section, we shall discuss what functionals can be obtained in this way and what can be said about  the 
properties of the measure (such as the tightness) in terms of the corresponding functional. 

T h e o r e m  4.2.1.  Let X be a completely regular topological space. The relation 

n ( f )  = f f (~)  A(dx) (4.2.3) 
x 

establishes a one-to-one correspondence between Baire measures • on X and continuous linear functionals L 
on Cb(X) with the property 

lim L(f~) = 0 

whenever the sequence f,~ decreases monotonically to zero at every point. 

R e m a r k  4.2.2.  Any nonnegative linear functional on Cb(X) (i.e., nonnegative on nonnegative functions) 
is continuous automatically,  since it satisfies the estimate 

IL(f)l < L(1)sup ffl. 

Certainly, not every continuous linear functional satisfies the condition of Theorem 4.2.1. 

E x a m p l e  4.2.3.  Let X = N with the ordinary topology. On the space C0(N) of functions f on I~ having 

the finite limit lin~-.oo f (n ) ,  we define the linear functional L I M  as the value of this limit. Th e  functional 

L I M  is continuous on C0(N) since ]LIM(f)I  < sup ]f]. According to the Hahn-Banach  theorem, L I M  can 

be extended to a continuous linear functional on the space C'b(N). Obviously, even on the subspace Co(N) the 
functional L I M  cannot  be represented as the integral over a countably additive measure on 1% 

Such a situation cannot arise for compact spaces. 

T h e o r e m  4.2.4.  Let K be a compact topological space. Then for every continuous linear functional L on 
the Banach space Cb( K),  there exists a unique Radon measure ,~ such that 

L( f )  = f f ( z )  A(dx). 
X 

P r o o f .  According to Dini's theorem, the sequence of continuous functions decreasing to zero mon.otonically 
on a compact set converges to zero uniformly (see [147]). Hence, in our situation every continuous linear 
functional satisfies the condition of Theorem 4.2.1. It remains to note that  every Baire measure on a compact 
space admits a unique extension to a Radon measure (Theorem 3.3.2). 13 

C o r o l l a r y  4.2.5.  For every compact space X relation (4.2.3) establishes a one-to-one correspondence be- 
tween nonnegative linear functionals on C( X)  and nonnegative Radon measures on X .  

The next two theorems describe functionals generated by r-additive and Radon measures. 

T h e o r e m  4.2 .6 .  Let X be completely regular. Relation (4.2.3) establishes a one-to-one correspondence 
between Radon measures )~ on X and continuous linear functionals L on Cb(X) satisfying the following 
condition: for every ~ > 0 there is a compact set K, such that if f E Cb(X) and f ]K  = O, then 

tL(f)l  <_ Csup l ft .  
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Proof i  If ,~ is a Radon measure, this condition is satisfied. Let us prove the converse. Let {f,~} be a 
sequence of bounded continuous functions which decreases monotonically to zero. Let us verify that  the 
conditicns of Theorem 4.2.1 are fulfilled. We can assume that I]f~]l < I. Let us fix e E (0, i) and choose the 
corresponding compact set K,.  By virtue of Dini's theorem, there is a number no such that  supK If~l < ~ for 

all n > no. For every n _> no we choose a function g~ C Cb(X) such that g,  = f~ on K,  and Ig-I -< e. Then 

I/(g~)l -< c. By condition, IL(f,, - g,,)l <- 2~, whence IL(f~)l _< 3e. Therefore, L is generated by a Baire 
measure ,~, and it is easy to see that  ,k is tight. [] 

In a similar way, one proves the next result. 

T h e o r e m  4.2.7.  Let X be completely regular. Relation (4.2.3) establishes a one-to-one correspondence 

between r-additive measures A on X and continuous linear functionals L on Cb(X) satisfying the following 

condition: if a net (f,:,} of bounded continuous functions decreases to zero pointwise, then L(f~)  --~ O. 

Thus, the classes of functionals .M,(X) ,  .A,4,(X), and M r ( X )  can be identified wi th  the corresponding 
classes of measures. 

Finally, let us mention the following decomposition theorem (see [279]). 

T h e o r e m  4.2.8.  Every finitely-additive nonnegative set function m on the Baire o-field of a completely 
regular space X can be uniquely represented in the form m = m~ + rn, + rn~, + m~, where rn~ is the compactly 
inner regular measure, m ,  is a purely r-additive measure, m~ is the purely countably additive measure, and 
m,  is the purely finitely-additive measure on Ba(X) .  An analogous result holds true for  signed additive se't 
functions of bounded variation. 

This result is also true for Borel measures, except possibly for the m,-component .  
Historical comments on Theorem 4.2.4 can be found in [139, Chapter IV]. For metrizable compacts this 

result was proved by Banach and Saks. Markov [342] obtained related results for more general normal spaces 
using finitely additive measures. For general compact spaces, Theoreni 4.2.4 was s ta ted  explicitly and proved 
in [2541. These problems were investigated in detail by Alexandroff [I0] and continued by Varadarajan [532]. 
As one can see from Theorem 4.1.2, if X is not pseudocompact, there exist continuous linear functionals on 
Cb(X) that do not correspond to countably additive measures. 

Various results related to integral representations and strict topologies are discussed in [13, 14, 28, 30, 
98, 164, 166, 167, 186, 221,313, 341,358, 378, 400, 450, 456, 465] 
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Chap te r  5 

I M P O R T A N T  C L A S S E S  OF M E A S U R A B L E  S P A C E S  

5.1. R a d o n  Spaces  and  R e l a t e d  C o n c e p t s  

The results presented in Chapter 2 enable one to derive nice measurability properties of Lusin and Souslin 
spaces. 

T h e o r e m  5.1.1.  (i) Every Souslin set in a Hausdorff space X is measurable with respect to every Borel 
m e a s u r e  o n  X .  

(ii) On a Souslin space, every Borel measure (hence, every Baire measure if X is regular) is Radon. In 
addition, for every p-measurable set A one has 

[p[(a) = sup{[p[(K), K C a is metrizable compact}. (5.1.1) 

C o r o l l a r y  5.1.2.  A continuous image of a Souslin space is measurable with respect to every Borel measure. 
If X and Y are Souslin spaces and f: X ---+ Y is a Borel mapping, then, for every Souslin set A C X,  the set 
f (A)  is measurable with respect to every Borel measure on Y. 

As noted in [457], where one can find proofs of the results given above, assertion (ii) in the general case 
was obtained first by P. Meyer. This asserton follows from Choquet's theorem [91] on capacities (see Theorem 
2.2.9 or Theorem 2.4.17) and the metrizability of compact Souslin spaces. For instance, it suffices to take for 
s in Theorem 2.2.9 the class of all closed sets or to put C(A) = [#[ ' (a)  in Theorem 2.4.17. Assertion (i) is 
in fact a corollary of (ii) (see Proposition 5.1.5 given below). 

It is known that the existence of a set E C IR 1 complementary to an analytic set and possessing the 
nonmeasurable image under a certain continuous function f :  IRa --+ IR 1 does not contradict ZFC. This fact was 
noted by K. G6del, and P. S. Novikov constructed the corresponding example assuming the constructability 
axiom V = L (see the discussion and references in [85, w 31]). 

Souslin spaces are often used in applications, in particular, in stochastic analysis (see, e.g., [323]). 

Def in i t ion  5.1.3.  A space X is said to be Radon if every Borel measure on X is Radon. 

T h e o r e m  5.1.4.  The class of Radon spaces contains all Souslin spaces and is closed for 
(i) countable topological sums, 

(ii) countable unions, 

(iii) countable intersections, 

(iv) universally Borel measurable subspaees, 

(v) countable products of spdces in which every compact subset is metrizable. 

However, the class of Radon spaces is not closed for weakening of topology, continuous (even injective) 
images, and, assuming the continuum hypothesis, a product of two compact Radon spaces may not be a 
Radon space (see [537]). Note that the product of the continuum of straight lines is a non-Radon space. 
Indeed, according to Example 3.1.14, the product of the continuum of standard Gaussian measures on the 
straight line has no Radon extension; however, as shown by Talagrand [5001, it is a r-addit ive Baire measure, 
and, hence, admits a r-addit ive Borel extension. 
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P r o p o s i t i o n  5.1.5. Let X be a Radon space continuously embedded into a topological space Y.  Then X is 
measurable with respect to every Borel measure on Y. 

Proof .  Let /~ be a Borel measure on Y. We may assume that it is nonnegative. Let X be a set from 
B(Y) which is a measurable envelope of X and let #x be the restriction of # to X in the sense of Definition 
1.1.10. By condition, #x is a Radon measure on B(X), and, hence, # ' ( X )  = # x ( X )  = sup/~x(K),  where K 

is compact in X. Since # x ( K )  = / ~ ( K  (~ X) = #(K) ,  we have the measurability of X. [] 
Note that if every open set in X is/C-analytic, then X is Radon (see [431, 185]). 
The considerable interest in the literature to Radon spaces seems to be misplaced, especially taking into 

account that they behave badly under operations and that compact spaces may not be Radon. In applications, 
it is often much more useful to know whether every Baire measure on a given space is t ight (and thus admits 

a unique Radon extension). 

Def in i t ion  5.1.6. (i) A completely regular space X is measure:compact (or almost Lindel6f) if every Baire 
measure on X is r-additive. 

(ii) A completely regular space X is strongly measure-compact if every Baire measure on X is tight. 

All LindelSf spaces are measure-compact (since Baire measures on Lindel6f spaces are r0-additive, they 
admit unique extensions to T-additive Borel measures) and all measure-compact spaces are real-compact, but 

neither converse holds. It is known (see, e.g,, [21,184, 271,354, 356]) that  the elements of the Baire a-algebra 
in a measure-compact space are measure-compact and the union of a measure-compact space and a compact 
space is measure-compact. 

It is shown in [179] that  (1) F~ subsets of measure-compact spaces are measure-compact,  (2) perfect 
preimages of measure-compact spaces are measure-compact. Answering questions posed by Kirk [271] and 

Wheeler [542], S. L. Gale constructed a locally compact, real-compact space which is not measure-compact, 
and a locally compact measure-compact space which is not paracompact. 

Moran [353] observed that  1R c is not measure-compact (according to Example 3.1.14, 11~ c is not strongly 

measure-compact); Kemperman and Maharam [264] proved that neither is 1~ c. Under CH the spaces I~ ~'~ and 
1~ ~x are not measure-compact. It is worth mentioning that this is consistent with ZFC. On the other hand, 
R ~1 and i~ ~'1 are measure-compact under Martin's axiom and the negation of the cont inuum hypothesis. See 
[170; 185, Sec. 15; 289] for a related discussion. 

T h e o r e m  5.1.7. The class of strongly measure-compact spaces includes 
(i) a-compact spaces, 
(ii) SousIin spaces, 

(iii) Cech complete LindelS'f spaces, 

(iv) spaces which are either completely metrizable or paracompact locally compact, and, in addition, have 
the property that cardinals of all their discrete closed subsets are not real-measurable. 

T h e o r e m  5.1.8. The class of strongly measure-compact spaces is preserved by 
(i) closed subsets, 

(ii) subsets from the Baire a-algebra, 
(ill) countable products and countable intersections. 
In addition, the product of a strongly measure-compact space and a measure-compact space is measure- 

compact. Finally, a space which is the union of a sequence of its Baire-embedded strongly measure-compact 
subspaces is strongly measure compact. 

For the proofs, see [355]. Obviously, an uncountable product of strongly measure-compact spaces may 
not be even measure-compact (e.g., ~ ) .  An intermediate class o~" spaces called lifting-compact spaces was 
introduced in [39]. 

Analogous definitions have sense for Bore[ measures. 
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Defin i t ion  5.1.9.  (i) A space X is Borel measure-compact if every regular Borel measure on X is r-additive. 
(ii) A space X is Borel measure-complete if every Borel measure on X is r-additive. 
(iii) A space X is weakly Borel measure-complete if every Borel measure on X is r0-additive. 

It follows immediately from the regularity of r-additive measures in regular spaces that if X is regular 
and Borel measure-complete,  then every Borel measure on X is regular. The next results are due to [183]. 

P r o p o s i t i o n  5 .1 .10.  Let X be weakly O-refinable and have no discrete subspaces of real-valued measurable 
power. Then X is weakly Borel measure-complete. If, in addition, X is regular and hereditarily weakly 
O-refinable, then every Borel measure on X is regular. 

T h e o r e m  5.1.11.  A space X is Borel measure-compact if and only if  every nonzero regular Borel measure 
on X is not locally zero. 

The same characterization is true for weakly Borel measure-complete spaces provided the condition given 
above is satisfied for all Borel measures on X. 

Def in i t ion  5.1 .12 .  A space X is said to be universally Radon measurable (or absolutely Borel measurable) 

in its Stone-(~ech compactification fiX if it is #-measurable for every Radon measure on fiX. 

From Example 3.1.18 one gets 

T h e o r e m  5.1.13.  A space X is Radon if  and only if it is Borel measure-complete and universally Radon 
measurable in f iX .  

Taking into account Proposition 5.1.10, we get the following general result for deciding whether a space 
is Radon (see [185, Theorem 11.9]). 

P r o p o s i t i o n  5.1 .14.  We assume that X is hereditarily weakly O-refinable, has no discrete subspaces of 
real-valued measurable power, and is universally Radon measurable in f iX .  Then X is a Radon space. 

For additional results of set-theoretic character, see [184, Secs. 7 and 18]. 
Item (i) of the next result was proved by Schachermayer [449], and item (ii) is due to [154]; both statements 

follow from the result in [549], which says that Eberlein compacta are hereditarily cr-metacompact (hence, 
weakly 0-refinable) and Corson compacta are hereditarily metalindelSf. 

T h e o r e m  5.1 .15.  (i) We assume that X is an Eberlein compact which has no discrete subspaces of real- 
valued measurable power. Then X is a Radon space. 

(ii) Let X be a Corson compact which has no discrete subspaces of real-valued measurable power. Then 
X is a Radon space under MA and the negation of CH. 

Under CH, there is a non-Radon compact,  first countable space without discrete subspaces of real-valued 
measurable power (see [253]). 

Without any additional set-theoretic assumptions (i.e., in ZFC), there is an example (due to D. Fremlin) 
of a compact, first countable space which is not Radon (see examples of this kind constructed in [185, Sec. 11] 

assuming the continuum hypothesis). 
An additional discussion of these concepts can be found in [41, 337, 339, 179, 214, 249, 369, 394, 495, 

55ol. 
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5.2. D i s t r i b u t i o n s  of  R a n d o m  Processes  

Recall that a random process ~ = (~t, t �9 T) on a nonempty set T is a collection of random variables on 

some probability space (f~, 5 v, P). Then for every Borel set B 6 B(~ ") and all t ~ , . . . ,  t,~ �9 T the set (called a 
cylindrical set) 

c ,  . . . . . .  , . . B  = �9 B} 

is in 5 r .  Let Cyl(~ r) be the algebra generated by the cylindrical sets. Thus, we can define a measure on 
Cyl(gt r) by 

= P(,.,: �9 B). 

This measure is automatically countably additive and hence is uniquely extended to a countably additive 

measure on cr(/l~T). Its extension is denoted by the same symbol #r and is called the distr ibution of ~ in the 

function space (or the measure, generated by ~). Conversely, every probability measure/~  on a(~  T) is the 

distribution of the random process ~,(w) = w(t) if one sets ~ = R T, P = U- 
Note that for every finite collection t l , . . . ,  t,, �9 T the relation given above defines t he  probability measure 

Pq,...,t. on /~ '  which is called the finite-dimensional distribution of ~. Clearly, the image of Pt~ ..... t.,t.+~ under 

the natural projection ~"+~ ---* I~" coincides with Pq.....t.- The famous Kolmogorov theorem (see [28"0]) asserts 
that the converse is also true. 

T h e o r e m  5.2.1. (i) Assume that for every (not arranged) collection of points t l , . . . , t , ,  �9 T there is a 
probability measure Pq....,t, on R" such that the property mentioned above holds. Then there exists a probability 
measure P whose finite-dimensional projections are the Pq,...,~. 's. 

(ii) More generally, let {P,,,...,,,} be a family of probability measures defined on the finite products 
of measurable spaces from a certain family {(12,,A,)}, t �9 T, such that for every pair of finite subsets 

(tx, . . . . .  ,tk) C (tl, . , t , )  o f T ,  the image of Pt,,...,t. under the natural projection I-Ii=t" f~t, --* I-Ii=lk Qt~ coincides 
with Pq,...,tk. Assume that for  every t, there ezists a compact class ]Ct C .At approzimatin 9 the measure Pt. 
Then there ezists a probability measure P on (I-It f~f, | such that its images under the natural projections 
to l-I'~=x f~ti are the measures Pt,,...,t.. 

For a proof, see [366, Sec. III.3], where an example is also given showing that  one cannot omit the 
existence of compact classes. Apparently, the first examples of this kind were constructed in [486] and [211] 
(the first edition). 

More generally, a random process defined on a nonempty set T and taking values in r. measurable space 
(E, ~') is a collection ~ = (~t), t E T, of measurable mappings from a certain probability space (f2,/~, P)  to E. 

In the space E T of all mappings from T to E the process ~ induces the measure #~, called the distribution 

of ~ and defined on the a-field a(ET),  generated by the coordinate functions x ~ z( t) .  This measure is first 
defined on the cylindrical sets of the form 

V =  { z � 9  U :  ( z ( t , ) , . . . , x ( t , ) ) � 9  B}, t , � 9  B � 9  

by the relation 

,~(V) = P(w: ( ( , , (w) , . . .  ,~,.(~,)) �9 B), 

and then (under suitable conditions) can be extended by Kolmogorov's theorem to the a-field generated 

by such cylindrical sets. Typically, E is a metric or topological space and thus E r is equipped with the 

topology of the pointwise convergence. However, many subsets important for applications in E T turn out to 

be nonmeasurable with respect to the Lebesgue extension #e. For example, if T = [0, 1], E = IR T, and all (or 

almost all) paths of the process { are continuous, it would be natural to consider the distr ibution of such a 
process on the space of continuous trajectories. However, the set C[0, 1] is nonmeasurable with respect to the 

Lebesgue extension of #~ to a(R T) (since C[0, 1] has outer measure 1, but contains no sets from o(R T) and, 
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hence, has inner measure zero). The situation with the set of bounded functions is similar. In such situations 

one often uses the following technique. First the measure #e is extended to a Borel (or even Radon) measure 

on E T, then one checks the measurability of the set in question with respect to the Lebesgu~" completion of 
the extended measure. In this procedure two questions turn out to be essential: the existence of a Radon 

extension of #e (which is equivalent to the tightness of #e on E T) and the universal measurabili ty of certain 

special subsets in E T. The next theorem enables us in many cases to answer the first question. 

T h e o r e m  5.2.2. The measure #~ is tight on a( E T) precisely when there is a sequence of nonnegative func- 

tions qo, on T with the following property: the set {z E Er :  Iz(t)l _< ~o,,(t)} has outer #e-measure at least 

1 - 1In for each n. 

C o r o l l a r y  5.2.3. If all paths of the process ~ are bounded, then the measure #e is tight. I f  the process ~ is 
separable, then the same is true provided almost all paths are bounded. 

Here is another technique frequently used in constructing measures on functional spaces. Assume that 

a certain space of functions F with topology 7" has outer measure 1 with respect to the d is t r ibut ion/f l  of a 

random process ~ (the measure/zr is defined on the space of all paths E T with the topology of pointwise conver- 
gence). Then one can introduce on F the a-field a(F, T), consisting of the intersections of F with the elements 

of the a-field a(E T) and consider on it the induced measure u ~ by means of the relation u~(P n B) = #~(B). 
Then the finite-dimensional projections of this induced measure given by the mappings z ~ (z ( tx ) , . . . ,  z(t,,)) 
coincide with the corresponding finite-dimensional distributions of the process {. It is reasonable to use this 

construction if F is measurable with respect to some Radon extension of / f l  to E T. 
For related discussions, see [153, 155, 190,229,399, 461]. 

5.3. S k o r o h o d  T o p o l o g y  

Many concrete processes arising in applications do not have continuous paths (say, processes with jumps), 

but still possess some regularity of the trajectories like right-continuity. Skorohod [471] invented the topology 
on such path spaces for studying the weak convergence. The Skorohod topology turned out to be very 
convenient, and this section is devoted to its principal properties. Our exposition follows mainly [234]. 

Let ( E , r )  be a completely regular topological space. Denote by DI(E) := D([0,1] ,E)  the space of 

mappings z: [0, 1] -+ E which are right-continuous and admit left-hand limits for every t > 0. 

If E is metrizable, then every element in DI(E) has at most countably many discontinuities. It is easy 

to see that this is not true for more general spaces [234]. Indeed, let E = IRc. Then the mapping qo defined by 

qo(t)(u) = If,hi(t) is in D1(E), but is discontinuous at every point of (0, 1). Nevertheless, paths from DI(E) 
have some boundedness properties. 

L e m m a  5.3.1. For every x E DI(E) the closure of the set {x(t),t  E [0,1]} in E is compact and equals 

{x ( t ) ,  t [0,111 u - 0), t [ 0 , 1 t 1  

It is known that  there is a family of pseudometrics {d~}~ea on E such that: 

(i) this family separates the points in E, 

(ii) for every a , /3  E A there exists "7 E A with max(do, d~) <_ d,, 

and open balls in these pseudometrics form a basis for the topology in E (see [147, Example 8.1.19]). Now 
one can define a completely regular topology on D1(E), called the Skorohod topology, generated by the 
pseudometrlcs 

r~,(x,y)= inf max( sup IA( t ) - t [ ,  maxd~(zoA(t ) ,yoA( t ) ) ) ,  a E A, 
~ca te[0al te(0al " 
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where A is the set of all strictly increasing continuous functions ,~ from [0, 1] onto [0, 1]. Note that the 
pseudometrics r~ satisfy conditions (i) and (ii), so that they generate a completely regular topology. One can 
check (see Theorem 1.3 in [234]) that the Skorohod topology depends only on the topology in E, i.e., any 
other family of pseudometrics with the properties (i) and (ii) generating the topology of E leads to the same 
Skorohod topology on D~(E). Note that in the case E = ~, one gets a metric on D~(N). A detailed discussion 
of this case can be found in [46]. Clearly, for every metric space E, the topology of D~(E) is generated by 
the metric corresponding to that of E. The following result from [2341 describes some elementary properties 
of the Skorohod topology. 

Proposi t ion  5.3.2. (i) The set of continuous mappings C([0, 1],E) is closed in DI(E) and the Skorohod 
topology coincides on this set with the ordinary compact-open topology. 

(it) Da(E) is separable if  and only if E is separable. 
(iii) D~( E) is metrizable if and only if E is metrizable. 
(iv) For any subset Eo of E with the induced topology, the Skorohod topology oft Da(Eo) is induced by 

that of D1 (E). 
(v) For any open (closed) subset U of E, DI(U) is open (respectively, closed) in Dx(E). 
(vi) For every compact subset IC of D~(E) there exists a compact set K C E such that E C D~(K). 
(vii) All compact subsets of D~(E) are metrizable if and only if E has this property. 

It should be noted that the space DI(IR l) with the metric d constructed as described above is not complete 

(see w 14 in [46]). However, there exists an equivalent metric do making D~ (R ~) into a complete spac.e (see [46, 
Theorem 14.2]). To this end, for each A E A put 

HAll = sup I log 
tCs 

Then do is defined as 

- 

t s "  

do(x,y) = in f {e  > 0: 3A e A: IIAI] _< e, sup[z(t) - y o ,~(t) [  _ e} .  
t 

According to [46, Theorem 14.1], the metrics d and do are equivalent. Similarly, one can modify the pseudo- 
metrics discussed above. 

Corol lary  5.3.3. If  E is a Polish space, then DI(E) is a Polish space. 

T h e o r e m  5.3.4. Let jz  be a family of continuous functions on E such that it generates the topology of E 
and f + g E .T for all f ,  g E ~ .  Then the Skorohod topology of D~ (E) is generated by the family of mappings 

f: D,(E) ~ D,(~), where f ( z ) ( t )  = f(x(t)),  f e .T. 

R e m a r k  5.3.5. (i) It would be interesting to investigate the question whether DI(E) is Souslin for a Souslin 
space E. As shown in [457], the space DI(E) equipped with the topology of pointwise convergence is Souslin. 
However, this topology differs from the Skorohod topology being considered. 

(it) If E is a locally convex space, then DI(E) is a linear space, but it is not a topological vector space 
(more precisely, the space D~(R ~) is not a topological group). 

Spaces Dl(E) can be equipped with Borel and Baire a-algebras. Their functional structure enables one 
to define two cylindrical a-fields associated, respectively, with Borel and Baire a-algebras of E. Namely, let 
C(DI(E)) be the a-field generated by the mappings 

..... , . :  D , ( E )  x ( x ( t , ) , . . . , x ( t , ) ) ,  t, e [0, 1], 
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and let Co(D~(E)) be the a-field generated by the mappings 

a',, ..... t.: D,(E) ~ (E",Ba(E)| z ~ (x(ta), . . . ,x(t , ,)) ,  ti E [0, 11. 

Clearly, Co(D~(E)) C C(D~(E)). Note that unlike the case of the pointwise convergence topology, the 
projections 7rt on DI(E)  are not continuous except for the cases t = 0 and t = 1. For this reason, the relations 
between C(DI(E)) and B(D,(E))  are not obvious. In particular, the following theorem (see [46, Theorem 
14.5]) is not straightforward. 

T h e o r e m  5.3.6. B(D, (~ ' ) )  = Ba(DI(~')) = C(D:(~:)) = Co(DI(IIr 

C o r o l l a r y  5.3.7. For every completely regular space E one has 

Co(D,(E)) C Ba(D,(E)).  (5.3.2) 

Proof .  It suffices to check that  for every t and  every continuous function f on E, the composition f o ~r, 

is Baire measurable. Note that  f o 7rt = f o  ~',, where .f: DI(E) --* D:(~t ~) is given by f (x)(s)  = f(.x(s)), and 

~'t is the projection on D:( :0) .  By Theorem 5.3.6, ff't is Baire measurable. Since )7 is continuous by virtue of 
Theorem 5.3.4, the mapping f o ~rt is Baire measurable. [] 

Thus, we get the following inclusions: 

Co(D,(E)) C Ba(D,(E)) C B(D,(E)) and Co(D,(E)) C C(D,(E)) .  

Generally, these inclusions may be strict. For example, let E be [0, 1] with the discrete metric. Then 

B(E) | B(E) is smaller than B(E2), and, hence, C(D~(E)) does not coincide with B(Dx(E)) = Ba(D~(E)). 
Indeed, the mapping 7r:x ~ (x(0),x(1)), D~(E) ~ E ~, is continuous, hence, Baire measurable. Let B E 

B(E2)\B(E) | B(E).  Then a ' -I(B) E Ba(D~(E)), but this set is not in C(Da(E)) (it suffices to note that  it 

cannot have the form 7r-1(C), where C E B(E) | B(E)). 

P r o p o s i t i o n  5.3.8. (i) Assume that B(E) = Ba(E). Then 

C(DI(E)) C B(Dl(E)).  

(ii) Assume that 13a(E") = Ba(E) ~" for all n. Then 

Co(Dx(E)) = Ba(D:(E)). 

(iii) Assume that 13(E) = Ba(E) and I3(E") = 13(E) | (which is equivalent to Ba(E n) = Ba(E) | for 
all n. Then 

Co(D,(E)) = C(D:(E)) = Ba(D,(E)) C I3(D,(E)). 

Proof .  In case (i), we get Co(Dx(E)) = C(DI(E)). Hence, the claim follows from (5.3.2). 

In case (ii), we haveC(Dl(E)) = Co(DI(E)) C Ba(D~(E)). To prove the converse, let T,~: DI(E) ---, DI(E) 
be defined as follows: T,,x(t) = x(k2-")  if t E [k2-",(k + 1)2-"), k = 0 , . . . , 2  '~ - 1, and T,,x(1) = x(1). 

One can check (see [234, Lemma 1.4]) that T,,x converges to x for every z E DI(E) and that  T,,(DI(E)) is 
homeomorphie to E "  with m = 2" + 1 by means of the natural homeomorphism hn. Now let f be a continuous 
function on DI(E). Since f (x)  = lim, f (T , (z) ) ,  it suffices to verify that the functions f o T,, are measurable 
with respect to Co(D~(E)). We have 

foT,~ = f o  h: I o 7r,, 

where ~r,~(x) = (z(O),x(2-1, . . . ,x(1)) .  It remains to note that f o h - ' : E  '~ ---* ~1 is continuous, and 

~r,~: (D:(E),Co(D,(E))) ~ (Em,Ba(Em)) is measurable by virtue of the relation 13a(E m) = 13a(E)*'L 
Claim (iii) is a combination of (i) and (ii). [] 
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C o r o l l a r y  5.3.9.  If E is a regular Souslin space, then 

Co(D,(E)) = C(D,(E)) = 13a(D,(E)) C B(D,(E)). 

If X is a separable metric space, then all four a-fields coincide. 

Proof .  Note that if E is either Souslin or separable metric, then 13(E") = t3a(E) |  | Ba(E), and that 
Dr(E) is a metric space in the second case. O 

R e m a r k  5.3.10.  The equality Ba(E '~) = Ba(E) | for all n is necessary for the equality Co(DI(E)) = 
Ba(D,(E)). Similarly, the equality C(D,(E)) = B(D,(E)) implies that B(E") = B(E)  | for all n. 

Assertion (i) of the next result is proved in [234], and assertion (ii) is a modification of Corollary 2.6 from 
[234]. 

T h e o r e m  5.3.11.  Either of the followin 9 conditions is sufficient for the equality 

C(D,(E)) : (5 .3 .3 )  

(i) E = I-[iZ, Ei, where every finite product of the Ei's satisfies (5.3.3). 
(ii) The space E is the union of the sequence {E,,} of its Polish subspaces such that every compact in E 

is contained in at least one of the E,, 's. 
Finally, every subspace of E satisfying equality (5.3.3) also satisfies this equality. 

Proof .  The proof of assertion (ii) is amodification of the arguments given in [234]. First of all, note that 
E is Lusin, hence Souslin. In particular, the sets E ,  are Baire in E and the conditions of Proposition 5.3.8 
are satisfied. By assumption, Di(E) = U,,~=, Dr(E,). Hence, Dt(E) is Lusin and its Borel a-field coincides 
with the Baire a-field. [] 

Analogous results are proved in [234] for the space D(E) of all right-continuous paths z: [0, ~z) ~ E 
possessing left limits at every t > 0. The corresponding pseudometrics can be introduced as follows. 

Let d be any pseudometric on E and let d" be the associated pseudometric on D,(E)  defined as above 
with [0, s] replacing [0, 1]. Let q,: D ( E ) ~  D,+~(E) be defined by 

z(t) i f t < s ,  
q~(z)(t) = z(s) i f s < t < s + l .  

Finally, let us introduce a pseudometric on D(E) by 

~d(x, y) = f e-" rain{ 1, dS+i(qs(x), qs(y))} ds. 
0 

According to [234, Proposition 4.4], if E is a topological vector space such that C(D,(E))  = 13(Dt(E)), 
then C( D( E) ) = B( D( E) ). 

For applications, it is important to have characterizations of the compactness in D I ( E )  and D(E) and 
conditions for the uniform tightness of probability measures on such spaces. Various results in this direction 
and further references can be found in [46, 234, 349]. The next result is l~roved in [234, Theorem 3.1]. 

T h e o r e m  5.3.12.  Let E be a completely regular space with the metrizable compacta and let .T" be a family 
of continuous functions on E that separates the points and is closed under addition. Then a family {kt~} of 
Borel probability measures on D,(E) is uniformly tight if and only if for every ~ > 0 there is a compact set 
K~ C E with 

and for every f E :F the family {#~ o f - l }  of probability measures on Dl(~') is uniformly tight, where 

f(z)= foz. 
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E x a m p l e  5 .3 .13.  Let X~, be a family of stochastic processes on a probability space (f~, P)  taking values 
in a space E and having distributions #~. 

(i) Let E be a separable Banach space. Then the family {#~} is uniformly tight if and only if the scalar 

processes l(X~,) have uniformly tight distributions for every fixed l E E" and for every l > 0 and e > 0 there 
is a finite-dimensional linear space F C E with 

P(X~, E Dt(F~)) > 1 - e  V&, 

where F~ is the e-neighborhood of F. 
(ii) Let E be either the dual to a nuclear Fr6chet space ~ or the dual to the strict inductive limit �9 of a 

sequence of nuclear Fr6chet spaces ~n. Then the family {#~} is uniformly tight if and only if for every l E E" 

the family of the distributions of the scalar processes {I(X~)} is uniformly tight. 

Note that  in (ii) in both cases the space r is reflexive, hence it coincides with the dual to E.  One can 

check that D(E) is Souslin in both cases. 

Additional information can be found in [190, 232]. 
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C h a p t e r  6 

T R A N S F O R M A T I O N S  OF M E A S U R E S  

6.1. Images of  Measures 

Let # be a Borel measure on a topological space X and let f be a p-measurable mapping from X to a 

topological space Y. By  definition, one gets the Borel measure u = # o f -1  on Y. If the  mapping f is Baire 

measurable (e.g., continuous), then the image is defined also for every Baire measure # (then # o f -~  is a 

Baire measure on Y). We shall discuss the behavior of the regularity properties of measures under mappings 

and the properties of the induced mapping # ~ p o f -1 .  

T h e o r e m  6.1.1.  (i) Let  f :  X ~ Y be a continuous mapping. I f  a measure I.t on X is  Radon  (respectively, 

tight or r-addi t ive) ,  then tz o f - 1  is also such a measure, respectively. 

(ii) Let Y be a Sousl in  space (e.g., complete separable metric)  and let f be a Bore l  mapping.  Then the 

image of  every Borel  measure # on X is a Radon measure on Y .  

Proo f .  Assertion (i) follows directly from the definitions. Claim (ii) follows from the fact that every Borel 
measure on Y is Radon. I::] 

The next example shows that  assertion (ii) may fail if Y is not Souslin, even if X is Souslin. 

E x a m p l e  6.1.2.  There  exists a one-to-one Borel mapping of the segment [0, 1] with the s tandard topology 
and Lebesgue measure to a hereditarily LindelSf topological space Y such that  the image of Lebesgue measure 
is not a Radon measure. 

P r o o L  In fact, we have already encountered such an example: let us take for Y the  Sorgenfrey interval 
[0, 1) (see Chapter  1) joined with the point 2. The Borel cr-field of Y coincides with tne ordinary Borel 

~r-algebra of this set on the straight line, but the image of Lebesgue measure under the mapping  f :  [0, 1] ---, Y ,  

t ~ t, 1 ~ 2, is not a Radon measure on Y since in Y compact subsets are at most countable  (see [147]). 

Another example: "two arrows" with its natural Lebesgue measure A taken for Y is the Bore1 image of 

the same set with the Euclidean topology and the linear Lebesgue measure. Clearly, A on Y is not tight (see 

Example 3.4.1). [] 

Let ( X , B , # )  be a measurable space and let f : X  ---, X be a measurable mapping. It is sometimes of 
interest to know whether f takes measurable sets to measurable sets. Clearly, this is not  always the case even 
for homeomorphisms of a segment with Lebesgue measure. Recall that a mapping F:  Xo C X + X is said 
to satisfy Lusin's condition (N) on X0 if for every set Z C M0 such that Z E B and I# l (z )  = o, one has 

F(Z) ~ 13. and t~ l ( f (Z))  = 0. Lusin's condition (N) can be characterized as follows. 

Let S C R l be a measurable set with Lebesgue measure /~ and let F be a measurable  function on S. 

The following conditions are equivalent: (i) F satisfies Lusin's condition (N); (ii) F takes every Lebesgue 
measurable subset of S to a measurable set. 

The necessity part of this result is due to Rademacher [562, Satz VII, p. 196] (who proved the sumciency 

part for continuous functions, see Satz VIII on p. 200 in the paper cited). The general case was considered 

by Ellis [556]. The proofs given in the papers cited are applicable in a much more general case. Obviously, 
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the Rademacher-Ellis theorem is valid for any measurable space S that is isomorphic mod 0 (see the next 

chapter) to a measurable set S C ~l with Lebesgue measure. In particular, it is valid if S is a Souslin space 

with an atomless Borel measure # replacing Lebesgue measure (which was noted in [547]). 

Note that Lusin's condition (N) implies that the restriction of # to the set F ( X )  is absolutely continuous 

with respect to U o F -~ provided F is injective, measurable and F(B)  E B~, (since F - ' ( F ( B ) )  = B for all 

B C F ( X ) ) .  Obviously, for bijective measurable mappings F,  the condition # << /~ o F -1 is equivalent to 

Lusin's condition (N) provided that F has a modification/~ with F(B)  C BuoF-,). Indeed, since a = {F  r  

has measure zero, we have # o F -~ = # o F-~,  and the equality #(B)  = 0, B C/3, implies # o F-I(/~'  (B))  = 0, 

whence # ( F ( B ) )  = 0, in particular, #( !~(a))  = 0. Then I~(F(B)) = 0, since the set F ( A )  = X \ F ( X \ A )  = 

X \ F ( X \ A )  has measure zero with respect to # o/~-~, hence, with respect to #. Note that  the condition 

F(/3) C/3  u is fulfilled for measurable mappings on Souslin spaces with Borel measures. 

Extending a result of Lusin, it was shown in [409], that for a Borel mapping F defined on a Borel subset 

X of a Polish space and taking values in a Polish space Y, the following are equivalent: 
(i) F ( B )  is Borel in Y fer every Borel set B C X; 

(ii) the set of all values y such that F-~(y)  is uncountable is at most countable. 

Let us now discuss the mapping of the spaces of measures on X and Y generated by the mapping 
f :  X ~ Y. Even if f is continuous and one-to-one, the corresponding mapping from .M(X)  to ski(Y) in 
general is neither injective nor surjective. We shall consider an example of this sort, assuming the continuum 
hypothesis. 

E x a m p l e  6.1.3.  (CH). There  exists a one-to-one and continuous mapping f of a complete metric space M 

onto the segment [0, 1] such that Lebesgue measure is the image of no Borel measure on M. 

P roo f .  We equip the segment with the discrete metric. Then all subsets of this space M are closed and 
the natural mapping of M to the segment with the standard topology is continuous. We assume that  there 

is a measure # on B ( M )  with the image equal to Lebesgue measure. This means that  it is possible to extend 
Lebesgue measure to an atomless measure on the ~-algebra of all subsets of the segment, which contradicts the 
continuum-hypothesis (see [49]). In fact, we only need that the cardinal corresponding to c is nonmeasurable. [] 

It is clear from this example that Radon and Bake measures may fail to have preimages under continuous 
mappings. 

It may also happen that  a Radon measure has a Borel preimage under a continuous mapping, but  has 
no Radon preimage. To see this, it suffices to reverse the roles of [0, 1] and Y in Example  6.1.3: Lebesgue 

measure on [0,1] becomes the image of a Borel measure on Y (its image under the project ing of [0, 1] onto 

Y), but it has no Radon preimage, since, as noted above, all Radon measures on Y are purely atomic. 

Obviously, a necessary condition for the existence of a Radon preimage of a Borel measure u is the 
existence for every r > 0 of a compact set K~ in X such that lu]*(f(K~)) > Ilull - ~. 

It turns out that for continuous f this condition is also sufficient. 

T h e o r e m  6.1.4.  Let f be a Borel mapping from a topological space X to a topological space Y with a Radon 
measure u. We assume that there is a sequence of compact sets K .  c ' X  such that f is continuous on every 
K,~ and 

J i m  [ , l ( f ( K , ) )  = ]lull. 

Then there is a Radon measure # on X with # o f - i  = u. In addition, this measure can be taken with the 

property [[u]] = Hpl]. 

Proof .  First we assume that u is a nonnegative measure on Y such that u ( Y \ Q )  = O, where Q = f ( K )  

and K C X is a compact.  On the subspace of thc space C(K)  consisting of the functions of the form ~ o f ,  
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~o E Cb(Y), we define a linear functional L by the relation 

L(~ o f )  = f ~(y) u(dy). 
Q 

This functional is continuous and by the Hahn-Banach theorem it can be extended (without  increasing its 

norm) to the whole space C ( K ) .  According to the Riesz theorem, there is a Radon measure  # on K with 

J" = X  (dy) 
Q 

Clearly, # o f -~  = u and I#[ = [ul. Since u(B) = 0 whenever # ( f - ~ ( B ) )  = 0, it is easily seen that  the 
claim extends to signed measures on Q. 

Let us consider the general case. One can assume that K ,  C K,,+I. The sets Q,, = f(K,~) are compact.  

Put S,, = Q,\Q, , -1 ,  Q0 = 9. Applying the previous case to the restrictions v, of the measure v to S,,, we 

get the measures #,~ on K,, such that  v,, = #,, o f - x .  In addition, by the construction presented above, the 

measures/~,, are concentrated on the disjoint sets f -~(S, , )  and IIt-[ = ]v-[ �9 Consequently,  the series Z,,~~ It, 
converges and defines a measure/~ with the required properties. [] 

An analogous result was proved in [175]. Clearly, the measure It given above is not  unique. However, it 
is unique if f is injective. 

In [305, 309], a Borel measurable mapping F: X ~ Y between topological spaces is said to be conservative 

if every nonnegative Radon measure U on-Y, such that # * ( C N f ( X ) )  = #(C)  for every compact  C C Y, has a 

Radon preimage on X (in fact, in these two papers unbounded measures are allowed). Such a mapping is said 

to be strongly conservative if a preimage exists provided the set Y \ f ( X )  is #-negligible. According to [309, 

Theorem 3.3], a continuous mapping f is strongly conservative provided f -~ (C)  is contained in a/C-analytic 
subset of X for every compact set C C Y, and f is conservative provided the same is t rue for all compact 
sets C C f ( X ) .  In particular,  this gives the following result (proved, for instance, in [73, Chapter  IX, w 
Proposition 9]): 

C o r o l l a r y  6.1.5.  Let X be a Souslin space and let f : X ---* Y be a continuous surjection. Then for every 

Borel measure v on Y there exists a Radon measure It on X such that u = # o f - 1 .  

For the proof it suffices to apply Theorem 2.4.17 to the capacity A ~-~ lu[*(f(A)) in order to verify the 
conditions of the previous theorem. 

P r o j e c t i v e  s y s t e m s  o f  m e a s u r e s .  In the previous theorems we discussed the images and preimages of 
measures in the situation where there is a single transformation. Now we are going to consider analogous 
questions for families of transformations. A particularly important case is connected with the so-called 
projective systems of measures. 

Let A be a directed set and let {X~}~ea be a projective system of spaces with mappings 7r~: X~, ~ X~ 

when ~ < /3 (i.e., a',= = Id  and a '~  o 7r~ = a'~z if a < /3 _< 7). Let X be the inverse limit of the spaces 

X~ and let 7r~: X ~ X~ be the natural projection. We assume that the X~'s are equipped with a-f ields/3,  
and measures It~ on B~ such that  the mappings 7r,~ are measurable. Tylqically (but not  necessarily) X ,  are 

topological spaces with their Borel a-algebras, and ~r~ are continuous (and thus Borel measurable).  The 

problem is whether there is a measure It on X such that 

It o ~r~ -~ = Ito for all a. (6.1.1) 

Certainly, a necessary condition is that X is nonempty, which we always assume below. Another  necessary 
condition is 

7r,~a(#a) := #a o rr-~ = U~ whenever c~ _< ~3. (6.1.2) 

So, we shall discuss problem (6.1.1) under condition (6.1.2) (and the assumption tha t  X is nonempty) .  
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An important example of such a situation (and the starting point of the related investigations) is the case 

where X is the space of all mappings x: [0, 11 --* E, where E is a topological space, A is the collection of all 

finite subsets of [0, 1] with its natural partial ordering by inclusion, .k'~ = {z E X: ( z ( t t ) , . . . ,  z(t,~)) e E"} ,  

where ~ = { t l , . . . ,  tn}, and 7r~z is the natural projection if cr C 13. Thus, we have the situation discussed in 
the section about distributions of random processes. As was noted there, one cannot always find a measure 
satisfying (6.1.1). We present some sufficient conditions for the existence of a solution which cover many 
cases important for applications. It should be noted that the idea of considering projective systems is due to 
A. N. Kolmogorov, S. Bochner, and Yu. V. Prohorov. Most of the work is this direction was done in order to 
obtain suitable generalizations of Kolmogorov's theorem mentioned in Chapter 5. The following fufidamental 
result goes back to Yu. V. Prohorov. 

T h e o r e m  6.1.6. Suppose that every #~ is a Radon probability measure. A necessary and sufficient condition 

for the existence of a Radon measure # on X satisfying (6.1.1) is that, given e > O, there exists a compact 

K C X such that #~(Tr,,(K)) > 1 - e. 

The following generalization to signed measures was obtained in [175], where a collection of completely 
regular topological spaces {X~}~ea with Radon measures #~, and mappings rr~Z satisfying (6.1.2) was consid- 
ered. 

T h e o r e m  6.1.7. We assume that X is a topological space such that there exist continuous mappings 
r~,: X ~ X,, such that rr,~ = r~ a o r a if c~ < 13. A necessary and sufficient condition for  the existence of 

a Radon measure t~ on X satisfying (6.1.1) is that sups, 11 =fl < ~ and for every e > 0 there is a compact 

set K,  C X such that lU~l(X~\rr~(K,))  < e for all ~. I f  the mappings rr~ separate the points of X ,  then I~ is 
unique. 

Similarly to Theorem 5.2.1, the assumption that the measures #,, are Radon can be replaced by the 
condition of the existence of suitable compact classes. See also [86, 362,377,418, 516]. 

The existence of simultaneous preimages for a family of measures /~, on X~, and the given mapping 
f~,:X ---, X~ was investigated in [305, 306, 309] and in the papers cited therein. Related problems were 
considered in [149, 150, 151, 152, 154], where a general approach to stochastic equations was developed as 
the problem of finding preimages of measures under measurable mappings. 

An associated problem is to find a measure with given marginals (projections to separate factors). See 
[263,470,492, 493]. 

6.2. I n v a r i a n t  M e a s u r e s  of  T r a n s f o r m a t i o n s  

Let f be a Borel mapping of a topological space X into itself. A Borel measure # is called the invariant 

measure of the transformation f if g o f-1 =/~. The problem of existence of invariant measures of transforma- 
tions arises in probability theory, ergodic theory, nonlinear analysis, the theory of representations of groups, 
statistical physics, and many other branches of mathematics and physics. The following fundamental  result 
goes back to N. N. Bogolubov and N. M. Krylov [65]. 

T h e o r e m  6.2.1. Let {T~,} be a family of commuting continuous mappings of a compact space X into itself. 
Then there exists a Radon probability measure 2~ on X which is invariant for all To. 

Proof .  According to the Riesz theorem, the space C(X)"  can be identified with the space of-all Radon 

measures on X. Every continuous mapping T : X  ~ X induces a linear mapping T : C( X) "  ~ C(X) ' ,  

,~ ~ ,~ o T - i ,  which is continuous provided C(X)"  is equipped with the *-weak topology. Indeed, the 
preimage of every neighborhood of zero of the form 

{ A : - e < f f , ( x ) A ( d x ) < e , i = l , . . . , n } ,  fi E C(X) ,  
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contains a neighborhood of zero 

{m:-e<ff, o T ( z ) m ( d z )  < e, i=  l,...,n} 
since f f o T(z)m(dz) = f f(z):F(m)(dx). By virtue of the Banach-Alaoglu theorem,  the closed unit  ball in 

C(X)" is compact for the *-weak topology. Its subset P consisting of the functionals L such that  L(1) = 1 

and L(f) > 0 for f _> 0 (i.e., the ones corresponding to probability measures) is closed and convex, and, 

hence, it is a convex compact.  Continuous linear mappings T~ send P into P and commute .  According to 
the welt-known Markov-Kakutani  theorem (see [146, Theorem 3.2.1]), there exists a point ,~ E P such that 

T~(1) = ,~ for all ~. Thus, the measure I is a common invariant measure of the t ransformat ions To. [] 

C o r o l l a r y  6.2.2.  For every continuous mapping of a compact into itself there ezists an invarihnt Radon 
probability measure. 

A direct corollary of Theorem 6.2.1 is the existence of a Haar measure on any Abelian compact  topological 
group, i.e., of a Radon probabili ty measure which is invariant under shifts. Below there  is a remark about 
Haar measures in more general situations. 

In applications, one has to deal with transformations of noncompact spaces, where some other  additional 
conditions can ensure the existence of invariant measures. In [62], an example is const ructed of a mapping 

f of the closed unit ball U in 12 into itself such that f is a diffeomorphism (i.e., a diffeomorphism of some 

neighborhoods of U and a homeomorphism of U), and, in addition, is a second-order polynomial  (i.e., f (z)  = 
B(z, z) + A(z) + c, where B is bilinear, A is linear, c E U), but has no invariant measures.  It would be 

interesting to find conditions on smooth mappings (other than compactness) which ensure the existence of 
invariant measures. 

For some applications, a weaker property of quasi-invariance turns out to be useful. For example,  there is 
no invariant Haar measure on a noncompact topological group. We say that # is a quasi-invariant measure for 

a family of transformations {T~} if #oT~ "I << # for all a.  Clearly, for a single t ransformation T one can always 

find a quasi-invariant measure: put # = ~ ,~2-"#  o (Tn) -x, where # is any probabil i ty  measure. However, 

in general, this is often a difficult problem. Certainly, there are families which do not  admit  quasi-invariant 
measures at all. A nontrivial example is the additive group of an infinite-dimensional Banach spa+e: it does 
not admit nonzero quasi-invariant Borel measures. 

Note that the concepts of invariance and quasi-invariance have sense for t ransformations of the space of 
measures on X not necessarily generated by transformations of the space X. For example,  invariant measures 
of a stochastic process on a topological space X having the transition semigroup {Tt} on tl-.e space of bounded 

Borel functions are defined as invariant measures of the associated operators Tt* on Ad (X).  

6.3.  L i f t i ngs  a n d  C o n d i t i o n a l  M e a s u r e s  

In Chapter  i ,  we have already encountered the concept of a conditional measure. There  we discussed the 

following situation. Let # be a measure on (X, B) and let C be a sub-a-field of /3 .  We shall always assume 

that C is generated by a measurable mapping ~r from X to a measurable space (Y, g).  As we know, for every 
B E/3 there exists a function #( -, B) measurable with respect to C such that 

#(B r] C) = f #(z, B) #(dx), C e C. 
C 

Since #(x, B) = #(Tr(z), B) almost everywhere, this relation can be rewritten as follows, denoting the measure 
#o~r -1 by u: 

# (B  n ~ - ' ( E ) )  = f , ( x ,  B) u(dx), E e g .  
E 
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We also know that  one cannot always achieve the situation where for almost all x the set function p.(x, B) is a 
countably additive measure, but as the following results show, this becomes possible under certain additional 
conditions of a set-theoretic character. 

The first results on conditional measures were obtained by A. N. Kolmogorov and J. Doob (see [280, 

123]). Below we present extensions and generalizations of these results found in [424, 242,243] and developed 
further by many authors. 

Recall that  given a a-field "A and its sub-a-field B, a conditional measure #B(.  I ' )  := #(" 1") is said to 

be regular if for every x the function A ~ / ~ ( A  Ix) is a measure on "A. The following classical result can be 

found, e.g., in [219, Sec. 21.1]. 

T h e o r e m  6 .3 .1 .  Assume that a a-field .,4 is countably generated and that tt is compact on .A. Then for 
every sub-a-field 13 C "A there exists a regular conditional measure #8 on .A. 

More generally, let .Ao be a sub-a-field of a a-field "A such that there exists a countable algebra lg generating 
.Ao. Assume, in addition, that bt can be approximated with respect to tt and .4 by a certain compact class. 
Then for every sub-a-field B C ,4 there exists a regular conditional measure #B on .Ao. 

E x a m p l e  6.3.2.  Let X be a perfectly normal space and let tt be a tight Borel measure on X.  Then for 
every sub-a-field 13 C B(X)  and every countably generated sub-a-field .Ao C B(X) ,  there exists a regular 

conditional measure/~B on Ao. In particular, this holds true with 04o = B(X) if X is a metric spac;e and # is 
tight. 

Let us consider the following special case: 12 = X x Y, where (X, Bx) and (Y, Bv) are two measurable 
spaces, "A = Bx | Br.  Denote by "Ax and "At the sub-a-fields of "A formed, respectively, by the sets A x Y, 
A E Bx, and X x A, A E Br. 

T h e o r e m  6 .3 .3 .  We assume that "Ay is countably generated and that # on .At has a compact approximating 
class. Denote by I~x the image of ~ under the natural projection to X .  Then for every x E X ,  there exists a 
measure ~( . ,  x) on .4 such that the function x ~-* it(A, x) is #x-measurable for every A E ,4 and 

u ( a n ( B  x Y) )=  f u(a=,~)ux(d~), A e .A, B e Bx, (6.3.3) 
B 

where A= = {w = (x, y) E A}. In addition, for every .A-measurable u-integrable function f we have 

] f(w)#(dw) = f f f ( z ,y )#(dy ,  z)#x(dz).  (6.3.4) 
fl X 

E x a m p l e  6 .3 .4 .  Let 9t = X x Y, where (X, Bx)  is a measurable space, Y is a Polish space equipped with 
its Borel a-field, "A = Bx | B(Y). Then the assertion of Theorem 6.3.3 holds true. 

E x a m p l e  6 .3 .5 .  Let f~ be a locally convex space, .4 = a(f~), Y = Rh, where h E f t ,  and let X be a closed 

hyperplane in f~ such that  Ft = X @ Y (e.g., let Y = I-1(0), where l E X" is such that  l(h) = 1). Put  

Bx = a(X) ,  By = B(Y).  Then the assertion of Theorem 6.3.3 holds true for any measure # on a(f2). If, in 

addition, # is a Radon measure, then equality (6.3.3) holds true for every set A from the completion of B(fl)  

with respect to /z  (in particular, the function x ~ #(As ,x)  is #x-measurable).  In this case, for any z E X, 

the measure # ( . ,  z) is concentrated on the set x + Rh. Moreover, the same i~ true if Y is a separable Fr&het 
space and X is a closed linear subspace such that f~ is the direct topological sum of X and Y. 

The role of the compactness condition in the existence of disintegrations in the case of a product-space 
with projections was investigated by Pachl [376]. Let (X,'A, #) and (Y, B, u) be two probability spaces and 

let )~ be a probabili ty measure on "A | B such that ,k o 7rx L = # and A o 7r~ l = u, where 7r x and 7rr are the 

projections of X x Y to X and l" respectively. A family {'Au,/~u}, y E Y, is called a u-disintegration if 
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(1) for every y E Y, Au is a a-field on X and #9 is a probability measure on A~; 

(2) for every A C A there exists Z C/3  such that v(Z) = O, A E A u for all y E Y \ Z ,  and the function 

y ~ #~(A) on ( Y k Z ,  B ) i s  measurable; 

(3) for all A E A and B E B we have 

f ~,~(A)v(dy) = A(A • B). 
B 

The following result ([376, Theorem 3.5]) improves Theorem 6.3.3. 

T h e o r e m  6.3.6. Suppose that (13, v) is complete and that # has a compact approzimating class 16. C .4. 

Then there ezists a v-disintegration {.2w,#u}, y E Y,  such that E C A u for all y. I f  lC is closed under finite 

unions and finite intersections, then such a disintegration can be taken with the additional property that IC 
approzimates #u for every y. 

Note that in [376] it was assumed that K: is closed under finite unions and finite intersections, but by 

virtue of Lemma 1.1.2, this assumption can be dropped. According to the next impor tan t  result from [376], 
the existence of a compact approximating class is necessary for the existence of the disintegrations for all 
possible ~. 

T h e o r e m  6.3.7. Assume that (X, A,  #) has the following property: for every complete probability space 

(Y, B, v) and every measure )~ on .A | B with ,~ o ~rx I = # and ~ o r y  I = v, there is a v-disintegration. Then 
# has a compact approzimating class 1C C A.  

According to [446, Theorem 7], analogous results hold true for perfect measures. 

T h e o r e m  6.3.8.  Let P be a perfect measure on a space (X, S) and let S1, S~ be two a-algebras of measurable 

sets such that Sa is countably generated. Then there ezists a function P ( . ,  �9 ): St • X ---, [0, 1] such that: 

(i) x ~ p(E,  z)  is S2-measurable for every E E S, ,  

(ii) E ~ p(E,  z)  is a perfect probability measure for each x E X ,  

(iii) for all E E St and B E $2 one has 

P(E c B) = f p(F , P(dx5 
B 

It was pointed out in [413] that an example constructed in [376] solves the problem posed by V. V. Sazonov 
in [446], i.e., there exist a perfect probability space and a a-algebra which admit  no regular conditional 
probability in Doob's sense. 

However, for measures on general topological spaces the countability as in Theorem 6.3.1 or Theorem 
6.3.8 turns out to be too restrictive and, in addition, it is not a topological condition. According to the 
preceding considerations it is natural to expect that an adequate topological condition is the Radon property 
of the measure/~. 

First, we formulate the problem in the terms of measurable mappings instead of a-fields. 
Let (f~,.,4, #) be a measurable space and let 7r: f~ -* (S,/3) be a measurable mapping with values in a 

measurable space (S,/3). 

Def in i t ion  6.3.9. We say that there is a regular conditional measure for # and 7r if there exists a mapping 
#(- ,  . ) : ,4  • S ~ I~ such that,  for v = # o rr -1, we have 

(i) a ~ #(A, s) is a measure on (12, A) for every s E S, 

(ii) the function s ~-~ #(A, s) is v-measurable for every A E A, 
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(iii) for all /3 E/3,  A E A one has 

i~(a M 7r- '(B)) = f I~(A,s) u(ds). 
B 

(6.3.5) 

A regular conditional measure/~( . ,  �9 ) is said to be proper if, in addition, for every s E 7r(12), the measure 

/~(. ,s) is concentrated on the set rr-l(s). 

The problem of finding regular conditional measures turns out to be strongly related with the existence 
of liftings with certain properties. Let us recall here the corresponding concepts. 

Def in i t ion  6.3.10.  Let (f~,.4, #) be a measurable space with a nonnegative measure #. A mapping L which 
associates to each element f E L~176 a bounded function L f  from the equivalence class of f is called a lifting 

if 
(i) L ( f ) =  1 if f = 1 #-a.e., 
(ii) L ( a f  + ~g) = a L ( f )  + 13L(g) for all f , g  E L~(#)  and a,/3 E ~, 
(iii) L( fg )  = L ( f ) L ( g )  for all f , g  E L~176 

(iv) L( f )  < L ( 9 )  i f f < g # - a . e .  

In other words, a lifting is a lattice homomorphism from L~176 into the algebra of bounded measurable 

functions on X which, in addition, has the property L( f )  ,,, f .  

A detailed discussion of liftings can be found in [231], including the proof of the next theorem (proved 
for Lebesgue measure by J. von Neumann [364] and in the general case by D. Maharam [329]) and related 

references. A shorter proof of this result was suggested in [524]. 

T h e o r e m  6.3.11.  For any nonnegative measure iJ there ezists a lifting. 

Def in i t ion  6.3 .12.  Let X be a topological space and let /J  be a Borel (or Baire) measure on X.such that 
supp ~ = X. We say that L is a strong lifting of L~176 if L is a lifting with the following property: L ( f )  = f 

for all f E c b ( g ) .  

It is known that a strong lifting exists if X is a compact metric space. It was open for a long time 
whether the metrizability assumption could be dropped. Surprisingly enough, the answer is negative. In 
[314], V. Losert constructed his famous counterexample. 

T h e o r e m  6.3.13.  There is a Radon probability measure l~ on a compact space X with s u p p #  = X which 
has no strong lifting. 

As shown by D. Fremtin, if/~ admits a strong Baire lifting, then/~ is completion regular. 
The following result (see [231, Theorem 3, p. 138] exhibits a close connection between strong liftings and 

proper regular conditional measures. 

T h e o r e m  6.3.14.  Let T be a compact space and let I~ be a positive Radon measure on T with supp # = T. 
Then the following assertions are equivalent: 

(i) there ezists a strong lifting for #, 

(ii) for every {S, u, r} ,  where S is a compact space with a positive Radon measure u, and 7r: S --~ T is a 

continuous mapping of S onto T such that ~ = u o r  - t ,  there ezists a mapping )~: t ~ )~t o f T  into 79t(S) such 
that 

(a) u = fT ~, p(dt) ,  

(b) supp )~t C rr- ' ( t)  for every l E T. 
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Now we can state and prove one of the key results on the existence of regular conditional, measures 
obtained in [224]. Following [224], we start with the following lemma. Let (X, B, Iz) be a measurable space 

and let L be the corresponding lifting on L~(/~). Denote by / :  the image of L~(p) under L. Then / ;  becomes 
also a complete vector lattice. Let M be a subset of/1 bounded from above. Denote by V(M) the lattice 
supremum of M (which exists since s is complete) and put sup(M)(z) = sup{f (z), f �9 M}. 

L e m m a  6.3.15. (i) Let M be a subset of s bounded from above. Then sup(M) is a measurable function, 
sup(M) = V(M) a.e., and sup(M) _< V(M) everywhere. 

(ii) Let {f~} be a bounded increasing net in s l f  l~ is nonnegative, then 

sup f~(x) #(dx) = sup / f~(z) #(dr). 
Q 

x x 

Proof .  Obviously, sup(M) _< V(M) everywhere. By Lemma 1.1.14, there is a sequence {.f~} C M such 

that V(M) = V{f,}.  Le t  f = sup, f , .  Then f is/,-measurable and f <_ sup(M) < V(M) everywhere. On 
the other hand, f > f ,  for each n, whence by the definition of a lifting, L f  >_ f,, everywhere. Therefore, 
L f  > V{f.} = V(M), whence f > V(M) a.e. 

To get (ii), it suffices to put M = {f~} and choose a sequence {A} as given above. By assertion (i), we may 

assume that {f.} is nondecreasing (passing to the sequence {max,'=1 f;}). Then sup(M) = sup. f . ' =  lim. f .  
a.e., whence 

/ = Jim ] l~(dx), 
x x 

which is majorized by sup= f x  f~(z)I~(dx). The converse inequality is trivial. [] 

T h e o r e m  6.3.16. Let # be a Radon measure on a topological space X and let 7r be a measurable mapping 
from X to a measurable space (Y, g). Then there ezists a mapping Q: B (X)  • Y ---* R with the following 
properties: 

(1) for every y �9 Y the set function Q(., y) is a Radon measure on X;  

(2) for every B �9 B (X)  the function Q(B, . )  is e-measu,'able; 

(3) for all B �9 B (X)  and E 6 g 

f Q(B,y)  v(dy) = #(B N 7r-'(E)), (6.3.6) 
E 

where v = I#l  o 7r -1. 

Proof .  Assume first that # is a probability measure and X is a compact. For every ~ 6 C ( X )  put 

f %0(z) u(dz), E 6 g. #~o(E) 
~-~ (E) 

Then the measure #~ is absolutely continuous with respect to v, the mapping %0 ~ / %  is linear, and one has 
the estimate 

I#~I(E) <_ ll%011~v(E). 

Denote by p(% .) the Radon-Nikodym density of the measure #~, with respect to v. By the estimate given 

above, the norm of p(qa,-) in L~(v)  is majorized by II~lt~- According to Theorem 6.3.11, there exists a lifting 

L of the space L~~ and we can put 

r(%0, . )=  L(p(%0, .)). 
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By the definition of the Radon-Nikodym density and the properties of liftings, one gets that  for every y E Y 
the mapping ~ ~ r ( % y ) i s  a positive linear functional on C(X), r(1,y) = 1, and tr(~a,y)l <_ sup I:(~)l- 

According to the Riesz theorem, there exists a Radon probability measure Q(., y) on the compact space X 
such that 

/ ~(x) Q(dx, y) = r(~o, Y). 
X 

Recall that the function r(~,  .) represents the equivalence class of the density of the m e a s u r e / ~  with respect 
to u. 

Let us check that  the family of measures Q(., y) has the desired properties. Let us denote by a ~" the class 

of all bounded Boret functions ~a on X for which the function y ~-~ fx ~a(x) Q(dx, y) on Y is measurable with 

respect to the Lebesgue completion of u and for every E E s relation (6.3.6) holds true. By construction, 
this class contains C(X). In addition, it is a linear space which is closed under the pointwise convergence of 

uniformly hounded sequences (i.e., if ~a,~ E ~', I~o,] _< C, ~a(x) = limn-oo ~a,~(x), then ~a E ~-). Let us check 
that the indicator functions of open sets belong to ~ .  Let U be open in X. Set 

qs = {0 E C(X):  0 _< r < Iu}, k0* = {r(r  r E k0}. 

The subset q)* in the lattice s = L(L~(v)) is bounded above by the unit function. Note that  for every y E Y, 
by virtue of the Radon property of Q(., y), one has 

Q(U,y) = sup{r(~/,,y), r e ~P}. (6.3.7) 

Indeed, given ~ > 0, there exists a compact set K in U with Q(U\K, y) < ~. Since X is completely regular, 
there exists a continuous function r X --* [0, 1] equal to 1 on K and 0 outside U. By the definition of the 
measure  Q( - , - ) ,  we  have  

[ r y) >_ Q(K,y) >_ Q(U,y) - 
X 

Since r(r <_ Q(U,y), we arrive at (6.3.7). According to Lemma 6.3.15 (or Lemma 3.1.16), the function 
y ~-~ Q(U,y) is measurable with respect to the Lebesgue completion of u. Let us fix a set E E s and verify 

the validity of relation (6.3.6). By the Radon property of the measure I.-~(E)/~, 

#(Un:r-'(E))=sup{flEOr-'(z))r e E ~}, 
X 

which equals 

s u p { / I E ( y ) r ( r  ~ E if1} 
Y 

since (r -~ = r ( r  �9 )u. On the other hand, applying Lemma 6.3.15 to the family of functions {r(r  r E 

~P} on the space Y with the measure I~u, we get 

Y Y 

Hence, (6.3.6) is verified. By Theorem 1.1.7, the class ~" coincides with the collection of all bounded Borel 
functions. In particular, for every B E B(X) the functions Q(B, y) are u-measurable. 

Note that if # is nonnegative, but not a probability measure, then applying the construction described 
above to its normalization we get the desired decomposition where the conditional measures are still proba- 
bilities. 

Now let us consider the case where the measure # is still probability, but the space X is arbitrary. Let us 
choose an increasing sequence of compacta K,  with/~(K,)  -* 1 and apply the result obtained above to each 
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of the sets S ,  = K,,kK,,_I, $1 = KI. Denote the corresponding conditional measures by Q,,. Let #,, = #Is. 

and let gn be the Radon-Nikodym density of #~ o rr -l with respect to # o rr, -~. Note that  E,,=l~176 CO,, is in Ll(v) 
since ~%1 #,,(S~) = / ~ ( X )  < co. Letting Q(B,y) = ~,oo=, o,~(y)Qn(B,y), we get (6.3.6). 

In the general case, it suffices to apply the considerations described above to the measures #+ and 
# -  leading to two families of conditional probability measures Q ~ ( . , .  ) and Q 2 ( ' , "  ), respectively. Let co+ 

and co- be the Radon-Nikodym densities of #+ o rr -1 and /~- o r - i  with respect to v = I#l o r: -1. Putt ing 

Q(B,y) = co+(y)Q,(B, y) + co-(y)Q~(B,y), we arrive at the desired representation. [] 

C o r o l l a r y  6 .3 .17.  If under the conditions of Theorem 6.3.16 one has 

{ (x , f ( x ) ) , x  �9 X}  �9 B(X)  • s 

then the conditional probability Q has the following property: for v-almost each y �9 Y the measure Q(., y) is 
concentrated on the set (and all such sets are BoreO. 

Related results were obtained in [458, 529], and [141], where the disintegrations on product-spaces were 

considered. In [141, 458, 460] the study of disintegrations is based on vector-valued measures and Radon-  

Nikodym theorems for such measures (instead of liftings). Disintegrations of unbounded measures are studied 
in [438]. 

Concerning the disintegration of tight Baire measures, see also [28] and [218]. 
The existence of a strong lifting on a space implies the existence of a certain type of  measurable selections 

for mappings into that space. Regarding naeasurable selections, see [310] and [538]; related questions (such as 
measurable modifications) are discussed in [97, 344]. 

In the case of a complete separable metric space, the existence of regular conditional measures can be 
established using elementary discussions which are based on the Radon-Nikodym theorem (see [383, 472]). 

Conditional measures and related problems from the theory of liftings are discussed in [26, 51, 52, 53, 
81, 82, 194, 195, 202, 203, 219, 248, 297, 314, 316, 322, 324, 325, 326, 327, 334, 360, 367, 376, 384, 411,413, 
417, 420, 441,460, 482]. 
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Chapter  7 

I S O M O R P H I S M S  OF M E A S U R A B L E  S P A C E S  

7.1. I s o m o r p h i s m s  of  A lgeb ra s  w i t h  M e a s u r e s  

Let (~,.A,/~) be a measurable space with a nonnegative measure such that the a-field .,4 is complete 
with respect to #. In this case, we call .,4 a measure algebra and denote it by Eu in order to indicate the 
measure. The elements of this algebra are equivalence classes of/~-measurable sets equipped with the metric 
~(A, B) = p ( A ~ B ) .  Thus, Eu is a complete metric space. 

Def in i t ion  7.1.1. Two measure algebras Eu, and Eu= associated with the spaces (f~t, -A,, #t) and (f12, A2, ~=) 

are said to be isomorphic if there exists a measure-preserving one-to-one mapping J: .At  --+ .A2 (called a 
Boolean isomorphism) such that  J ( f l t \ a )  = ~2 \ J (A)  and J ( a  U B) = a (a )  U J (B )  (then also J ( a  n 13) = 

J (a)  n J(B)) .  

For any set A of positive measure, the restriction #A defines a new measure algebra Eu,A. A measure 

algebra Eu is said to be homogeneous if all metric spaces E,,,A (where # (a )  > 0) have equal weight (recall 

that the weight of a metric space is the minimal cardinality of the bases of its topology). 

The following fundamental  result is due to Maharam [328]. It holds true even in a more general setting 
of Boolean algebras (see [535]). 

T h e o r e m  7.1.2. (i) Every nonatomic measure algebra is a direct sum of at most countably many homoge- 
neous measure algebras. 

(ii) Every nonatomic homogeneous measure algebra corresponding to a probability measure is isomorphic 
to the measure algebra corresponding to the product of a certain number of copies of the unit se9ment with 
Lebesgue measure. 

(iii) Every separable nonatomic measure algebra is isomorphic to the measure algebra of a certain segment 
with Lebesgue measure. 

A discussion of measure algebras and further references can be found in [558]. 

7.2. P o i n t  I s o m o r p h i s m s  and  A l m o s t  H o m e o m o r p h i s m s  

In this section, we consider only nonnegative measures. 

Def in i t ion  7.2.1. Let (X,A,I~) and (Y ,B,v)  be two measurable spaces. 

(i) A point isomorphism T from X to Y is a one-to-one mapping of X onto Y such that/~ o T -I  = v and 
vo(T-')-' = ~ .  

(ii) X and Y are said to be isomorphic mod zero if there exist sets N C X, N'  C Y with/~(N) = v(N')  = 
0, and a point isomorphism T: X \ N  ---* Y \N ' .  

(iii) If X and Y are topological spaces and the mapping T in (ii) is a homeomorphism, then (X,-A,p) 

and (Y,/3, v) are said to be almost homeomorphic, tf (X, A, #) is almost homeomorphic to a segment with 
Lebesgue measure, then # is called topologically Lebesgue. 

3093 



In the case where (X, .4,  #) = (Y, B, v), isomorphisms of the types described above are called automor- 
phisms. 

Clearly, any point isomorphism rood 0 induces a Boolean isomorphism. As Example  7.2.6 shows, the 
converse is not true. However, a classical result due to yon Neumann [365] affirms tha t  any Boolean auto- 
morphism of the measure algebra generated by a segment with a Borel measure is induced by a point Borel 
measurable automorphism. Analogous arguments lead to the following assertion. 

T h e o r e m  7.2.2.  Let (X,  it) be a Souslin (e.g., complete separable metric) space urith a Borel measure It. 

Then (X, it) is isomorphic rood 0 to the space ([0, 1], u), where u is a Borel measure. 1 f i t  is nonatomic, then 
one can take Lebesgue measure for u. Both statements hold true for Radon measures on metric spaces. 

Since measures on Souslin spaces are concentrated on countable unions of metr izable compacta,  the main 
step of the proof reduces to the case where X is a metrizable compact. For details see, e.g., [383, Chapter 

III]. Clearly, it suffices in Theorem 7.2.2 to require that a Souslin set of full #-measure  exist. 

C o r o l l a r y  7.2.3.  Let (X,  it) and (Y,u) be two Souslin spaces with Borel probability measures. I f  the corre- 
sponding measure algebras E,, and E~ are Boolean isomorphic, then there ezists a point isomorphism mod 0 
between these two spaces. In particular, this is the case if both measures are nonatomic. 

For products of compact metrizable spaces, yon Neumann's classical result was generalized in [90] (see 

also [88]) as follows. 

T h e o r e m  7.2.4.  Let X~, a E A, be compact metric spaces, X = I-I X,,, and let It and u be two Radon 
c, E A  

probability measures on X .  If the associated measure algebras E~, and E~ are Boolean isomorphic, then It and 

u are completion Baire isomorphic, i.e., there ezists a point isomorphism of the spaces (X,  B a ( X ) u , #  ) and 

(X, Ba( X)~, u). In particular, if  A is at most countable, then there ezists a point isomorphism o f ( X ,  B( X ) , ,  It) 

and ,,). 

It should be noted that for uncountable products of unit intervals the last claim of  Theorem 7.2.4 is not 
true, as shown in [380, Sec. 5, Example (c)]. 

As shown in [534], two infinite products (of the same cardinality) of nonatomic Lebesgue spaces are point 
isomorphic provided they have equal metric structures. In addition, every power E" of  nonatomic Lebesgue 
spaces which is a homogeneous measure algebra of metric weight r ,  is point isomorphic to [0, 1] ~. 

E x a m p l e  7.2.5.  Let It be a nonnegative Radon measure on a space X. The following two assertions are 
equivalent: 

(a) there exists a nonnegative Radon measure u on a compact space Y such that the spaces (X, It) and 
(Y, v) are isomorphic mod 0; 

(b) It(B) = sup{It(K),  K is metrizable compact}. 

P r o o f .  If condition (a) is satisfied, then we may assume that Y = [a, b]. Note that  if a function f :  X --~ [a, b] 
is injective and continuous on a compact set K C X, then K is metrizable. According to Lusin's theorem on 
the almost continuity of measurable numeric functions on X, we get (b). 

If (b) is satisfied, then (a) follows from Theorem 7.2.2.13 

E x a m p l e  7.2.6.  Let X be the "two arrows of P. S. Alexandroff" space (which is compact )  with its natural 
measure A (see Example 3.4.1). Then the corresponding measure algebra is nonatomic and separable, hence 
is Boolean isomorphic to the measure algebra of the unit interval. However, there is no isomorphism mod 0 
between these two spaces. 

P r o o f  follows from Example 7.2.5, taking into account that metrizable subsets of X are at most countable. 13 
The following results (taken from [145] and [172]; see also [551]) give some weaker forms of point mappings. 
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T h e o r e m  7.2.7. Let (X,  o4, it) be a complete measure space. Then: 

(i) I f #  is atomless, then there ezists a measurable mapping T: X --* [0, #(X)], where [0, #(X)] is equipped 

with Lebesgue measure A, such that # ( T - 1 B )  = A(B) for any measurable set B C [0,#(X)].  
(ii) Let ( Y , B ( Y ) , ,  u) be a topological space with a Radon measure u such that u ( Y )  = Iz(X)'. Assume 

that there ezists a measure-preserving mapping d2 of the measure algebra E ,  into El,. Then tp is induced by 

a measurable mapping T: X ~ Y such that # (T -~(B) )  = u(B)  for every B E B ( Y ) , .  

Coro l l a ry  7.2.8.  Let ( Y , B ( Y ) v , u )  be a topological space with a Radon probability measure u. Then there 

is a cardinal x such that there ezists a measurable mapping T from X to {0, 1 }~ equipped with the product u 

of standard Bernoulli probability measures such that IJ(T-~( B))  = u( B)  for every B E B({0, 1}~)v. 

The following result is due to Oxtoby [373]. 

T h e o r e m  7.2.9.  Any compact metric space with a nonatomic Radon probability measure is almost homeo- 
morphic to the unit interval with Lebesgue measure. 

The following interesting example has been constructed by Fremlin [169]. 

E x a m p l e  7.2.10.  There exists a Radon probability measure It on a compact space X which is isomorphic 
mod 0 to [0, 1] with Lebesgue measure, but is not almost homeomorphic to [0, i] (and, hence, to any compact 
metric space). 

The following result giving a criterion of the existence of an almost homeomorphism was proved in [23]. 

T h e o r e m  7.2.11.  Let tt be a Radon probability measure on a compact space X such that ( X , # )  is isomor- 

phic rood 0 to [0, 1] with Lebesgue measure. Then # is topologically Lebesgue if  and only if  it is completion 
regular on its support. 

Finally, let us make several remarks about usual homeomorphisms of topological spaces with measures. 
For further information, including references and proofs, see [401]. 

T h e o r e m  7.2.12.  (i) A Borel probability measure It on the cube [0, 1]" is homeomorphic to Lebesgue measure 

)~ on [0, 1]" if and only if  it satisfies the following conditions: 

(a) # is nonatomic, 

(b) It is positive on all nonvoid open sets in [0, 1]", 
(c) # is zero on the boundary of [0, 11". 

(ii) A Borel probability measure # on tO, 1] ~~ is homeomorphic to the product of  Lebesgue measures on 

[0, 1] ~176 if and only if  it is nonatomic and positive on all nonvoid open sets in [0, 1] ~176 
(iii) Any two nonatomic Borel probability measures on l ~ which are positive on all nonvoid open sets are 

homeomorphic. 

The following corollary answers the question posed in [491]. 

Coro l l a ry  7.2.13.  Let X be a separable metric space with a nonatomic Borel measure #. Then there exists 
a measure-preserving embedding of the space (X,  13(X),,  #) into [0, 1] ~ with the product of Lebesgue measures 

if  and only if  either (a) /~(X) < 1 or (b) /~(X) = 1, # is positive on all nonvoid open sets, and X is 

homeomorphic to a dense subset of [0, 1] ~~ 

A detailed discussion of metric properties of measure-preserving homeomorphisms can be found in [259]. 
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7.3. Lebesgue Spaces 

We have seen above that certain measurable spaces with quite different topological properties may have 
identical measurable structures. In this sense, an arbitrary complete separable metric space without isolated 
points does not differ from a segment of the real tlne. Moreover, a nonmetrizable compact topological space 
X was constructed ("two arrows" of P. S. Alexandroff), which with every Borel measure is isomorphic (as 

a measurable space) to the segment with a Borel measure. In addition, there are a lot of measures on X 

without metrizable supports (moreover, all atomless measures on X vanish on metrizable sets). It is quite 
natural to ask what characteristics in terms of the measurable structure distinguish the class of measurable 
spaces that can be identified with a segment equipped with a Borel measure (or, as one can say, that are 

standard measurable spaces). It might seem that the desired characteristic is the separability of the measure: 
according to Theorem 7.1.2, every separable measure algebra is isomorphic to a segment with some Borel 
measure. However, as we already know (see Example 7.2.6), such an isomorphism cannot always be generated 
by a point isomorphism of the corresponding measurable spaces, and therefore the separability does not give 
a full characterization. The notion of Lebesgue spaces provides a constructive criterion of the existence of 
an isomorphism with a standard Borel structure. This notion has proved to be rather convenient since it 
enables us, by means of a few simply stated and natural axioms, to describe a variety of objects with a rich 
structure including measurable spaces most frequently used in applications. Basic applications of the ideas 
and constructions from the theory of Lebesgue spaces are connected with the theory of dynamical systems 
and probability theory. This direction in measure theory was considerably influenced by the work of many 
authors, including A. N. Kolmogorov, J. yon Neumann, P. Halmos, and, particularly, V. A. Rohlin, whose 
fundamental paper [424] is the main soui'ce of the results presented below. At the beginning of the 1940s, 
P. Halmos and J. yon Neumann [212], motivated by their investigations in the ergodic theory, introduced 
"normal spaces with measures" and proved that their concept is a full characterization of abstract measurable 
spaces which are point isomorphic to segments with Lebesgue measure. Independently, in 1940 V. A. Rokhlin 
developed an analogous theory which was published several years later in [424]. Basic definitions in both 
papers are quite similar and differ only in technical details, but Rokhlin's approach has proved to be more 
convenient. However, the essence of R.okhlin's work was the concept of a measurable partition (the idea 
of which he attributed to A. N. Kolmogorov). Sometimes Lebesgue spaces are called the Lebesgue-Rohlin 
spaces. In the remainder of this section we consider only nonnegative measures. 

Definit ion 7.3.1. A countable system of measurable sets {B,,} is called a basis of a measurable space 
(M, M,  #) if the following conditions are satisfied: 

(i) for every A E .A4 there exists an element B from the cr-field generated by {B,,} such that # ( A A B )  = O, 
(ii) the family {B,,} separates the points in X. 

Let {B,} be a basis of m.  For every a E m denote by An(a) the one of the two sets B,, and M \ B , ,  
which contains a. 

Definition 7.3.2. A measurable space M is said to be complete with respect to its basis {B,,} if for every 

point a E M the equality N,,A,,(a) = a holds. The space M is said to be complete (rood0) if the equality 
given above holds true for #-almost all points a. 

Example  7.3.3. Let M be a complete separable metric space with a Borel measure # and let {B,,} be 
some basis of the topology in M. Then {Bn} is a basis with respect to which M is complete. Indeed, as we 
have seen above, {B,,} generates B ( M ) .  

Definition 7.3.4. A measurable space (M, M,  #) with a countable basis with respect to which it is complete 
(rood 0) is called a Lebesgue space. 

Remark  7.3.5. Halmos and von Neumann [212] suggested calling a complete nonatomic measurable space 

(X,/3, #) normal if it possesses a countable separating sequence of measurable sets, is properly separable (i.e., 
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has a countably generated sub-o'-algebra s which approximates/3 from inside), and for every B-measurable 
injective function f ,  there exists a set X0 of/~-measure zero such that f ( X \ X 0 )  is Borel (i.e., # is perfect on 

/3). 

If a space M with a distinguished basis B is not complete, then it can be completed by means of the 
following procedure. 

We say that a space (.M, s~ ,  fi) with a distinguished basis /3, with respect to which it is complete, is a 

completion of M with respect to B if M is contained in M and has full outer fi-measure, while the basis B 

and the or-algebra .A,4 are induced by /~  and &r respectively (by taking intersections with M). 

P r o p o s i t i o n  7.3.6. A completion of any space M described in Definition 7.3.1 exists and is unique in the 
A 

following sense: if (M, B) and (M #, B #) are two such completions, then there exists an isomorphism of 

measurable spaces M and M ~ which maps B onto B # with M fixed. 

The property to be complete (mod 0) with respect to a basis does not in fact depend on a basis, i.e., it is 
an invariant of a measurable space. The precise meaning of this comes from the following two propositions. 

P r o p o s i t i o n  7.3.7. If M is complete (mod0) with respect to a certain basis, then it is complete (rood0) 
with respect to each basis. 

Let us discuss the case where a subset M0 of a Lebesgue space M becomes a Lebesgue space with the 
induced a-field .A,40 = {a  fq Mo, A E st4} and induced measure tz(a fq M0) = u(A). 

P r o p o s i t i o n  7.3.8. Let (M,.A4,1~) be a Lebesgue space. A set Mo C M is a Lebesgue space with the induced 
structure if and only if it is measurable with respect to #. 

Coro l l a ry  7.3.9.  Any Lebesgue space is measurable in every measurable space with a countable basis (in 

the sense of Definition 7.3.1) containing it, provided its measurable structure is induced by this bigger space. 

It should be noted that  the previous corollary does not guarantee the measurability of a Lebesgue space 
under a measurable embedding into an arbitrary separable measurable space since the condition that  its 
measurable structure is induced by that  bigger space may be violated. However, such an unpleasant situation 
cannot happen for mappings to nice (e.g., Lebesgue) spaces. 

T h e o r e m  7.3.10.  Any Lebesgue space (M,M,I~) is isomorphic to a segment with sorae Borel measure u. 
If I~ is atomless, one can take Lebesgue measure for u. 

T h e o r e m  7.3.11. Let (MI,.A~i,/J1) and (M~,A4~,#2) be two Lebesgue spaces. Then any isometry of the 
corresponding metric spaces E m and Eu2 is generated by a point isomorphism of measurable spaces M1 and 
Ms. 

Let us discuss the concept of a measurable partition, which is one of the key tools in the theory of 
Lebesgue spaces and its applications. 

The partitions ~ of a space M are the representations of M as unions of disjoint sets, called the elements of 
the partition. An arbitrary system of subsets {S~} generates the partition ~(S~) which consists, by definition, 
of all possible intersections of the form C = N,,R~,, where R~, is either S~ or its complement. Clearly, two 
different elements of such a form are disjoint since at least for one index they belong to nonintersecting sets. 
The elements of a partition can be considered as the points of a new space, denoted by M / (  and called the 
factor-space with respect to the partition ~. If M is given a a-algebra M and a measure #, then the natural 
projection r : M  ~ m / ( ,  x ~-~ C 9 x, generates on M/~ the a-algebra .M~ = {E:Tr-~(E) 6 M }  with the 
measure # 0 71" -1. 
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Def in i t ion  7.3.12. A partition of a space (M,.Ad,#) is said to be measurable if it coincides with tile 
partition into preimages of the points under some measurable mapping ~: M ---* [0, 1]. 

Clearly, one gets an equivalent definition if instead of the segment one admits arbi t rary complete separable 
metric spaces (since any such space can be embedded into a segment by a Borel mapping).  

Another equivalent definition: a partition ~" is measurable if there exists a countable system of measurable 
sets Fn such that ~ = ~(Fn). 

P r o p o s i t i o n  7.3.13. Let (M, fld,/~) be a Lebesgue space and let ~ be its measurable partition. Then the 

space (M/(,./tdr o rr -~) is a Lebesgue space. 

Let ~ be a measurable partition of a Lebesgue space M such that the elements C C ~ are equipped with 
measures Pc" defined on certain a-fields ac. We say that the system {#c} is a canonical system of conditional 
measures for ~ if 

(1) for almost all points C in the factor space M/~ the space (C, ac ,#c)  is a Lebesgue space, 

(2) for every A E .~4 the set A M C is in ac  for almost all C E ~, the function C ~ #c(A  M C) is 
measurable on M/~, and 

/~(A) = f #c(A M C) # o r-I(dC).  
M/~ 

It follows from the results presented above that every measurable partition of a Lebesgue space possesses 
a canonical system of conditional measures (which is unique up to a set of measure zero in M/~). It is worth 
noting that a/though the results given above can be derived from the analogous results for Souslin spaces and 
Theorem 7.3.10 on isomorphisms, the main advantage of the concept of Lebesgue spaces is that  it enables one 
to ignore topological notions when they are irrelevant. 

For a discussion of Lebesgue spaces, see also [209, 436, 534]. A related class of spaces was introduced by 

Blackwell [50]. As noted in [445] (see also [331]), a co-analytic set may not be a Blackwell space. 

Relations between Lebesgue spaces and perfect measures are explained in [446]. Let us formulate the 
main result. 

T h e o r e m  7.3.14. (i) Every measurable space ( X,S,I~) with a complete perfect measure possessing a count- 
able collection of measurable sets separating the points of X is a Lebesgue space. 

(ii) Let (X, S, l~) be a measurable space with a complete measure possessing a countable collection {A~} of 
measurable sets which separate the points of X such that the #-completion of a( {A~}) coincides with S. Then 
the measure iz is perfect i f  and only if (X, 8, Iz) is a Lebesgue space. 

(iii) A complete measure (X,S ,  #) is perfect if and only if its factor measure with respect to every mea- 
surable partition is Lebesgue measure. 

Recall that in Example 7.2.6 we encountered a separable Radon (hence, perfect) measure on a sepa- 
rable compact space which is Boolean isomorphic to Lebesgue measure on a segment,  but admits  no point 
isomorphism mod 0 with a standard Borel space and, hence, does not lead to a Lebesgue space. 
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Chapter  8 

W E A K  C O N V E R G E N C E  OF M E A S U R E S  

8.1. Definit ions and Characterizations 

Let {#~,} be a net (e.g., a sequence) of measures defined on the Baire a-algebra B a ( X )  of a topological 

space X. 

D e f i n i t i on  8.1.1.  The net {/z~} is said to be weakly convergent to a measure/~ defined on 13d(X) if for 

each bounded continuous function f on X one has 

lim f f (x)i~=(dx) = / f ( x ) , ( d x ) .  (8.1.1) 
x x 

This kind of convergence can be topologized. 

D e f in i t i on  8.1.2.  Let X be a topological space. The weak topology on the space M ~ ( X )  of BaDe measures 

on X is the topology a( .M~(X),  Cb(X)).  

The weak topology is in fact the *-weak topology in the terminology of locally convex spaces (however, 

following tradition we call it "weak topology"). The convergence in this topology is called also the w'- 
convergence. 

It is reasonable to introduce this topology for completely regular spaces. Below some comments are made 
on alternative possibilities in the case of a general space X. 

If a net of measures converges in variation (or set-wise and is bounded), then it converges weakly. However, 
the weak convergence does not imply the convergence even on open Baire sets. 

E x a m p l e  8.1.3.  Let p be a probability density (say, Gaussian) and let u, be probabil i ty measures defined 

by the densities p,~(t) = np(nt) .  Then the measures u, converge weakly to the Dirac measure 5 at the origin, 

but there is no convergence on I~\{0}. Indeed, if f E Cb(R), then 

ff(t)p (t)dt = ffo/=)p(s)ds ff(O)pO)ds =f(O). 

Note that the closed set {0} has measure zero with respect to every measure u~,, but it is a full measure 

set for 5, while the situation w i t h t h e  open set I~\{0} is inverse. Thus, there is no set-wise convergence, but 

for any Borel set B whose boundary does not contain zero, one has u , (B)  ~ 5(B) .  As we shall see below, 

this example is rather typical. Having this example in mind, one can easily reconstruct  the formulation of 

the following classical result which goes back to [10] (for the proof see, e.g., [528]). 

T h e o r e m  8.1.4.  Let X be a topological space, {#~,} a net of probability measures on 13a(X), and # a 
probability measure on 13a(X). Then the followin 9 conditions are equivalent: 

(i) the net { ~ }  converges ~,eakl u to U, 
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(ii) for every closed set F of the form F = f- ' (O),  where f E C(X) ,  one has 

limsupit,~(F) < it(F),  (8.1.2) 

(iii) for every open set U of the form U = {f  > 0}, where f E C(X) ,  one has 

liminfito(u) > it(u). (8.1.3) 

In particular, if X is metrizable or perfectly normal, then condition (i) is equivalent to the validity of 
condition (ii) for every closed set F and condition (iii) for every open set U. 

Since a Baire measure may not have Borel extensions (or can ha-ca several different Borel extensions), the 

discussion of the validity of relationships (8.1.2), (8.1.3) for arbitrary closed sets F and open sets U requires 
additional conditions. 

C o r o l l a r y  8.1.5.  Assume that X is completely regular, that the measures #~ are Borel, and that the measure 
it is r-additive (e.g., .is Radon). Then condition (i) implies (ii) for every closed set f and condition (iii) for 
every open set U. 

One can see from the proof of Theorem 8.1.4 that the weak convergence insures the convergence on 
certain "sufficiently regular" sets. Let us discuss this in more detail. Let it be a Borel measure on a space X. 
Denote by Fu the class of Borel sets E C X whose boundaries have p-measure zero ( the boundary  OE of a 

set E is defined as the closure of E without its interior and hence is Borel for any set E).  

P r o p o s i t i o n  8 .1 .6 .  (i) F u is a subalgebra in B(X) .  

(ii) If  X is completely regular, then Fu contains a base of the topology of X .  

P r o o f .  Assertion (i) follows from the fact that E and X k E  have one and the same boundary,  and the 
boundary of the union of two sets is contained in the union of their boundaries. To prove (ii) for every 
bounded continuous function f on X we put V(f ,  c) = {x: f ( x )  > c} and note that  the  set 

M f = U{c E ~: i t (og( f ,c ) )  > 0} 

is at most countable since OU(f,c) C f-a(c) and the measure it o f - a  has at most countably many atoms. 
The sets U(f, c), c E n~\M S, are contained in the class r , .  Since X is completely regular, these sets form a 
base of the topology. Indeed, for any point x and any open set U containing x, there is a continuous function 
f:  X --* [0, 1] with f ( x )  = 1 which equals 0 outside U. Hence, U contains the set U(f ,  c) for some c E R \ M  S. [] 

T h e o r e m  8.1.7.  Let {its} be a net of Borel probability measures on a topological space X and let # be a 
Borel probability measure on X .  Then: 

(i) if 
limit,~(E) = it(E) for all E E F, ,  (8.1.4) 

then the net {#~} converges weakly to It, 

(ii) let X be completely regular. If the net {its} converges weakly toqz and # is r-additive, then (8.1.4) 
holds true ( if X is perfectly normal, then the r-additivity of It is not required). 

C o r o l l a r y  8.1.8.  Let X be metrizable (or perfectly normal). Then the following conditions are equivalent: 

(i) a net {#=} of Borel probability measures converges weakly to a Borel probability measure #, 
(ii) limsup~ #~(F )  < I t(F) for every closed set F, 
(iii) l iminf=it~(U) > p(U) for every open set U, 

(iv) lirn~/t~(E) = # (E)  for all E E Fu. 
These conditions remain equivalent for an arbitrary completely regular space X if the measure # is r- 

additive (e.g., is Radon). 
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C o r o l l a r y  8 .1 .9 .  A net {its} of probability measures on the real line converges weakly to a probability 

measure It if and only if the corresponding distribution functions Fu~ converge to the distribution function F. 

of It in the points of the continuity of F u. 

Let us consider the behavior of the weak convergence under the restriction of measures to a subset 
(obviously, in general there is no convergence of the restricted measures). The next  result follows from 

Corollary 8.1.8, condition (iii). 

P r o p o s i t i o n  8 .1 .10 .  Assume that a net {#~} of Borel probability measures on a completely regular space 

X converges weakly to a r-additive Borel probability measure It and let Xo C X be equipped with the induced 

topology. Then the induced measures Ito on Xo converge weakly to the measure Ito induced by It in either of 
the following cases: 

(i) Xo is a set of full outer measure for all of the measures It~ and It; 

(ii) Xo is either open or closed and lirn~ It~(X0) = It(Xo). 

R e m a r k  8 . 1 . 1 1 .  The previous results hold true for nonnegative measures which are not necessarily prob- 
abilities, provided in the corresponding formulations one adds the condition 

lim. (X) = It(X). 

The situation with the weak convergence of signed measures is more complicated. It is easy to see that 
in general the weak convergence is not preserved by the elements of the Hahn-Jordan  decomposit ion.  The 
following example due to L. LeCam exhibits another interesting aspect of this phenomenon.  

E x a m p l e  8 .1 .12.  Let X be a subset of [0, 1] containing the dyadic numbers and having the inner Lebesgue 
measure zero and outer  measure 1. Let X be equipped with the induced topology and let/~ be the restriction 
of Lebesgue measure A to X (see Definition 1.1.10). Put  v~(k2-") = 2-"  for k = 1 , . . . , 2 " ,  #,~ = v,,+l - v n .  

The sequence {#,, } of Radon measures converges weakly to zero, while the sequence { ]/~,,I} = {v,~+~ } converges 
weakly to the measure # which is r-addit ive but not Radon. 

The next result from [532] (Part  2, Theorem 3) is useful for the study of the weak convergence of signed 
measures. 

T h e o r e m  8 .1 .13 .  Assume that a net {#~} of Baire measures converges weakly to a Baire measure #. Then 
for any cozero set U one has 

l iminf [#~,I(U) _> I#I(U). 

In this case, the net {]#~t} converges weakly to I#t if  and only if [#~,l(X) --~ IItl(X)- 

E x a m p l e  8 .1 .14.  Let X be a locally convex space which is the strong inductive limit of an increasing 
sequence of its closed subspaces X, .  If a sequence {its} of nonnegative r-addit ive (e.g., Radon) measures on 

X converges weakly to a r -addi t ive measure It, then for every e > 0 there exists n E N such that  I t i ( X k X , )  < e 
for all i E N. 

Moreover, for any family {its} of nonnegative r-additive measures on X which is relatively weakly 

compact in the space A~, (X)  and every e > 0, there exists n E N such that I t~ (X \X , , )  < e for all a .  

P r o o f .  Without  loss of generality, we may assume that the Iti's and It are probability measures (if Iti(X) 

0 the claim is trivial). If the claim is false, then for every n E N there exists i(n) E ~] with It~(,0(X,) < 1 - e. 

Let us choose m 6 N such that  It(X,,) > 1 - e/2. By induction, we find a sequence {V,,}, n _> m, of convex 
balanced neighborhoods of zero in the spaces X ,  such that: 

(1) v.  n x . _ ,  = v ._ , ,  ~ = x . . ,  

(2) Iti(j)(Vj) < 1 - ~, j --- m + 1 , . . . , n  - 1. 
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Indeed, if V,~,. . . ,  Vn are constructed, one can find a convex balanced neighborhood of zero Wn+l C Xn+l 
such that W,+~ NX,, = V, (see [451, Lemma in Sec. II.6.4]). Now it suffices to take a convex balanced open set 
U,+l C X,,+1 containing .V, such that/zi(n+l)(U,+l) < 1--e and put V~+l = W,+l nU,,+l. Such a set U~+x exists 
since, by the Hahn-Banach theorem, the subspace X,  is the intersection of all closed hyperplanes containing 

it. By the r-additivity of/zi( ,+0, there is a closed hyperplane L containing X,, such tha t  IZi(n+l)(L) < 1 - ~. 

Then L = 1-1(0) for some nonzero l E X ' ,  and the set I-~(-5,5) can be taken for U,~+I for sufficiently small 
5 > 0 .  

By definition, the set V = U,,~__,~ V, is a neighborhood of zero in X. By construction, for every j > m one 

has #;(j)(V) = lim,,_oo #~(j)(V,,) < 1 - c, which contradicts the weak convergence (see Corollary 8.1.8) since 
> 

In the case of a relatively weakly compact family {/~,}, the reasoning is similar. We choose a sequence 
{/&,(,,)} as above and denote by # its weak limit point. The choice of V as given above leads again to a 

contradiction with Corollary 8.1.8 since there is a subnet {to} in {#~(,,)} convergent weakly to/~. [] 

R e m a r k  8.1.15. According to Theorem 8.1.4, for every metric space X, the weak convergence of a net 
{/t~} of nonnegative measures to a measure # is equivalent to the convergence of the integrals f f ( z )  #~(dz) to 

f f ( z )  #(dz) for all bounded uniformly continuous functions f on X (this is true also for uniform spaces, and, 
hence, for completely regular spaces equipped with suitable uniformities, see [509]). However, this assertion 

is true for signed measures only in the case where X is compact (see [532], Part 2, Theorem 4). See also 
Remark 8.2.5 given below. 

R e m a r k  8.1.16. If, in Theorem 8.1.4, the limiting measure /~ is r0-additive, then condition (i) implies 

condition (ii) for all closed sets F E Ba(X)  and condition (iii) for all open sets U E Ba(X) .  In particular, this 
is true if/J is tight (it suffices to apply Theorem 3.3.2 on the existence of a r-additive extension and Corollary 

8.1.5). 

In connection with the foregoing it is natural to ask which classes of sets g are the convergence classes 
in the sense that  the set-wise convergence of probability measures on the elements of ~r implies the weak 
convergence. The following result is due to [284]. It can be deduced from Theorem 8.1.4 (see, e.g., [528, 

p. 47]). 

T h e o r e m  8.1.17. Let {/J~,} be a net of Borel probability measures on a completely regular space X and let 
# be a T-additive probability measure on X .  If the relationship lirn~ #=(U) = #(U) holds for all elements U of 
some base of the topology O, which is closed under finite intersections, then {#~,} converges weakly to #. 

Convergence classes for probability measures have been investigated by several authors. It has been 
proved that 

(i) the class G of all open sets is a convergence class for tight Borel measures on Hausdorff spaces and 
r-additive measures on regular spaces, 

(ii) the class G0 of all cozero sets is a convergence class for Baire measures on Hausdorff spaces, for 
r-additive measures on completely regular spaces, and for regular Borel measures on normal spaces, 

(iii) the class ~, of all regular open sets is a convergence class for T-additive measures on regular spaces 
and for regular Borel measures on normal spaces. 

The proofs and additional references can be found in [7]. 

For the proof of the following resultr which is due to R. Ranga Rao [419], see, e.g., [528, p. 49]. 

T h e o r e m  8.1.18. Assume that a net {#c,} of Borel probability measures on a completely regular Lindel6f 

space X (e.g., on a separable metric space) converges weakly to a Borel probability measure #. If F C Cb(X) 
is a uniformly bounded and pointwise equicontinuous family of functions, then 

limsup [ f ( x ) # ~ ( d x ) -  f f ( x ) # ( d x )  O. 
c~ / E F  IXJ X 
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Uniformity in the weak convergence was studied in [48]. 

R e m a r k  8 .1 .19.  (i) A net {z~} of the elements of a completely regular space X converges to an element 
z (5 X if and only if the measures 6, .  converge weakly to 6,. 

(ii) Let X be a metric space and let {z,} be a sequence in X such that the sequence of measures ~,. is 

weakly fundamental.  Then the sequence {x,} converges in X. 

(iii) There exist examples showing that assertion (ii) may fail without the metrizabil i ty assumption�9 

(iv) A subset K of a metric space X is relatively compact if and only if the family of measures {~,, 

x E K} is relatively compact.  

A useful property of weakly convergent sequences is described by the following simple lemma (a version 

of which with a similar proof was used, e.g., in [175]). 

L e m m a  8.1 .20.  Let {#,~} be a sequence of Baire measures on a completely regular space X which is fun- 
damental in the weak topology. Then for any locally finite sequence of mutually disjoint cozero sets Ui, i E N, 
o n e  h a s  

0 =o. 

If g,, are Radon measures, the same is true for arbitrary disjoint open sets U,, such that {U,~} is locally finite. 

P r o o f .  If the claim fails, there is e > 0 for which one can find two increasing sequences of indices {k,,} and 

{i,,} such that 
/ k n +  1 - 1 

Hk.+,-1 Ui" Then W,, Dealing further  with the sequence {tzl.}, we may assume that i,~ = n. Put  W,~ = ~i=k. 

are disjoint cozero sets and the sequence {W,,} is locally finite. 

For every n E 1~, there exists a function f~ E Cb(X) with If~[ <-- 1 such that  f,~ = 0 on X \ W , , ' a n d  

f f,~(z) ,,,(dx) > e. (8.1.6) 
X 

Indeed, let W + and W~ be two disjoint Baire sets from the Hahn decomposition of ~t,, on Wn. According to 

Proposition 3.1.7, there exist two disjoint zero sets Z + C W + and Zg C W~- such that  

I . . l ( W . \ ( z .  + u z ; ) ) l  < 

Then we can find two cozero sets V + and V~ such that 

c + c w . \ z ; ,  z :  c v# c 

Finally, there exist two continuous functions qo,~ and r with values in [0, 1] such that  qo~ = 1 on Z +, qo,, = 0 on 

X \ V  +, and ~b. = - 1  on Z~-', r  = 0 on X\V~" ( i f X \ V  + = {7/= O} and Z + = {r = 0}, where r/,(" E Cb(X) 
=_m_ put f,, qo. + r  take values in [0, 1], then ~ .  n+r Thus, we can = 

Put 

f f,( ) ( d )  
i 

a n ~ X ]$n X . 

X 

l 2 = Ei=~Aifl is Then a ,  = (a,~, a , , , . . . )  E l 1, since ~i If, I < 1. For every ,~ = (,~i) E l ~ ,  the function fx o~ 

continuous on X (since {W,,} is locally finite) and If~l _< sup, IA, t. Since the sequence 

a~,) = [ fa(x) l,,~(dx) 
X 
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converges, we get that the sequence {a~} is fundamental in the topology cr(l ~,l~176 By a classical result 

(see [139, Theorem IV.8.6 and Corollary Iv.8.14]), the sequence {a,,} is norm-convergent in l ~. Hence, 
lim,_oo a~ = 0, which contradicts (8.1.6). In the case where # ,  are Radon measures and the U,, are not 
assumed to be cozero, the reasoning is similar. [] 

R e m a r k  8.1.21. In [480, Lemma 3; 109, Lemma 2.1 in Chapter Ill] and [110] it is mistakenly claimed that 
for any disjoint sequence of compacta K,~ possessing disjoint open neighborhoods and any weakly convergent 
sequence {#,} of Radon measures one has lim, sup i ]#;I(K~) = 0. Obviously, this is wrong, e.g., if the K , ' s  
are the points 1/n in [0, 1] and the/~, ' s  are the Dirac measures at these points. Unfortunately,  the proofs of 
the results on the weak convergence in the papers cited used essentially this claim. However, most of those 
results were proved earlier by other authors (the corresponding results and references are mentioned below). 

R e m a r k  8.1.22.  tf a sequence X,, of random variables converges almost surely to a measurable variable 
Xo, then the laws of X,, converge weakly. Skorohod [471] found a very useful converse statement:  given 
a sequence of Borel probability measures on a separable complete metric space X weakly convergent to a 
Borel probability measure #, there exist a probability space (f/, s P) and a sequence of ( B ( X ) ,  g)-measurable 

mappings X,,: f~ ~ X, n = 0 ,1 , . . . ,  such that #,~ = P o X g  l, # = P o X f f  l, for all n, and X,, --* )Co almost 

everywhere. Further generalization is due to [543], where the following result was proved. Let {P~} be a net 
of Borel probability measures on a complete metric space X which converges weakly to a Borel probability 
measure # with separable support. Then there exist a probability space (fl, g, P)  and a net of (B(X),  s 

measurable mappings Xo, X~:f l  ~ X,  such t h a t / ~  = P o X Z  l, I~ = P o X o  1, for all a ,  and X~ -* X0 almost 
uniformly. 

Ressel [421] investigated the continuity and measurability of the operations of taking products of measures 
and evaluations. Here are some of his results. 

T h e o r e m  8.1.23. Let X be a Souslin space and let A C X be a Souslin subset. Then the function ~A: ~ 

#(A)  on .A4+(X) with the weak topology is an S-function, i.e., the sets {qaa > t} are Souslin for  all t E ~1. 
I f  A is a set measurable with respect to the cr-field ,4 generated by the Souslin sets, then ~a is .A-measurable. 

T h e o r e m  
measurable 
measurable 

8.1.24.  Let ( X , B )  be a measurable space and let A C X be a universally measurable set (i.e., 
with respect to the completion of every measure on E-). TSen the funct ion ~A is universally 

on (./td+(X, 13), g), where g is the a-field generated by the functions qaB, B E rj. 

T h e o r e m  8.1.25.  (i) Let X ,  Y ,  Z be Souslin spaces and let f: X x Y ~ Z be a universally measurable 

mapping. Let F:c~4+(X) x Y --~ A~+(Z) be defined by (Iz,y) ~ i zl~, where fu(x)  = f ( z , y ) .  Then F is 
universally measurable. I f  f is .A-measurable or Borel or continuous, then so is F.  

(ii) If, in addition, Z = ~ and f is bounded, then the function 

�9 : M + ( X )  x Y ~ ~1, ( # , y ) ~ - - ~ f f ( x , y ~ # ( d x ) ,  
X 

is universally measurable. I f  f is .A-measurable (or an S-function, or Borel, or upper semicontinuous, or 
continuous), then so is ~ .  

T h e o r e m  8.1.26. Let {/~} and {us} be two nets of r-additive probability measures on completely regular 

spaces X and Y convergent weakly to r-additive measures # and u, respectively. Then the net {#~ | us} of 
the r-additive eztensions of  the product-measures converges weakly to the r-additive eztension of the measure 
l~| 
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R e m a r k  8.1.27.  F. Ggtze raised the question about the continuity of the multiplication of measures in the 
set-wise convergence topology, in particular, about the continuity of taking powers. The question is whether 
the mapping (#, v) ~ # |  is continuous for every measurable set B for the set-wise convergence topology 
r, on measures. By the Nikodym theorem and the Lebesgue theorem, this mapping is sequentially continuous. 
One can check that  (say, for measures on [0, 1]) this mapping is not continuous at zero. However, it is not clear 
what is the situation with the restriction of this mapping to the space of probability measures. Apparently, 
the answer is negative. 

8.2. W e a k  C o m p a c t n e s s  

Conditions for weak compactness of families of measures (i.e., compactness in the topology a(A,4, Cb(X))) 
are of great importance for many applications. In this section, we discuss several principal results in this 
direction. The following fundamental result goes back to [407]. 

T h e o r e m  8.2.1. Let  K C M r ( X )  be a uniformly bounded and uniformly tight family of Radon measures 
on a completely regular space X .  Then K is relatively compact in the topology a ( M ,  Cb(X)). If, in addition, 
all compact subsets of X are metrizable, then K is sequentially compact in the topology a(.hd, Cb(X) ). 

The condition cited above is not necessary: we shall see in the next section (see Example 8.3.12) that 
even on a countable set a weakly convergent sequence of probability measures may not be uniformly tight. 

A useful technical result characterizing the weak compactness of nonnegative measures was obtained by 
TopsOe [511]. 

T h e o r e m  8.2.2. Let X be a completely regular space and let M C ]t4+(X). Then M is relatively w'- 
compact if and only if 

(i) M is uniformly bounded, 

(ii) for every ~ > 0 and every family U of open sets such that every compact set is contained in a member 
of U, there ezist U1, . . . , U,, E U such that 

inf{#(X\Ui):  l < i < n } < e  V # E M .  

Corollary 8.2 .Z.  Let g C X be closed and let M C .M+(X) be relatively w'-compact in .M+(X). Then 
the collection of the restrictions of the elements of M to Y is relatively w*-compact in .M+(Y). 

This corollary is rather unexpected since the weak convergence does not imply the con cergence on closed 
sets. In particular, the limit of the restrictions of measures from a weakly convergent sequence to a'closed set 
may not coincide with the restriction of the limit of this sequence. 

The situation is different for signed measures. 

E x a m p l e  8.2.4. Let X = [0, wi] x [0,w0]\(wl,w0), Y = {(w1,2n)}7=l, and let M = {8(wt,2n + 1)} U {0}. 

The set M is weakly compact in f l i t (X) ,  while the restrictions of the elements of M to Y form a discrete set 
in .M,(Y). 

R e m a r k  8.2.5. In [378], in the case where X is a complete metric space, the duality between .s 

and Cb~(X), the bounded uniformly continuous real-valued functions on X,  is studied. It is proved that 

(flit, a(flit, Cb,,)) is sequentially complete and that a norm-bounded subset of f l i t  is relatively a ( f l i t ,  Cb~)- 
compact (or countably compact) if and only if its restriction to the class L ip l (X)  of all functions on X 
with Lipschitz constant 1, with the topology of pointwise convergence, is equicontinuous. Generalizations to 
uniform measures on uniform spaces are obtained as corollaries. 

Concerning weak convergence of measures and weak compactness, see [1, 7, 43, 44, 47, 71, 76, 103, 104, 
107, 131-134, 137, 161-163, 180-182, 187, 188, 214, 226, 240, 274, 350-352, 363, 396-398, ,106, 464, 509-512, 
545]. 
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8.3. P r o h o r o v  Spaces 

Def in i t ion  8.3.1. A space X is called a Prohorov space if every set M C .M+(X)  compact in the weak 
topology is uniformly tight. A space X is said to be sequentially Prohorov if every sequence of nonnegative 
tight measures weakly convergent to a tight measure is uniformly tight. 

This class of spaces originates from Prohorov's theorem obtained in his famous work [407]. 

T h e o r e m  8.3.2. Every complete separable metric space is a Prohorov space. 

Clearly, Prohorov spaces are sequentially Prohorov. We shall see below that  the space Q of rational 
numbers is sequentially Prohorov, but not Prohorov. Note that the sequential property mentioned above is 
weaker than the claim that  a weakly convergent sequence of tight measures must be uniformly tight (since its 
limit may not be a tight measure). 

If, in the definition of a Prohorov space, one admits signed measures, then we say that  X is strongly Pro- 
horov (respectively, strongly sequentially Prohorov). Some comments concerning various related possibilities 
are made below. 

Another classical result is due to LeCam [303]. 

T h e o r e m  8.3.3. Every metric space X is sequentially Prohorov. I f  X is complete, then every weakly 
fundamental sequence of tight measures on X is uniformly tight. 

Proof .  The proof of the first claim can be found, e.g., in [46]. 

Now assume that  X is complete and let {/~,,} C .M,(X) be a weakly fundamental sequence. Let ~a be the 

metric in X. If {/~,,} is not uniformly tight, then there exists e > 0 with the following property: for every 
compact set K C X one can find j = j (K)  E ~ such that 

I m l ( X \ K ' )  > e, (8.3.7) 

where K ~ = {x E X: ~0(x, K)  < ~}. Indeed, otherwise for every c > 0 there exists a compact  K(e) C X such 
that 

l m l ( X \ K ( r  < E Yj E 1~. 

For an arbitrary 5 > 0, we let K~ = K(52-")  62-" and get the set K = [-I~~176 K~, which is relatively compact 
and 

I#j[(X\K) < ~ tt, i I(X\K,,)  <_ 5 Vj E N, 

which is a contradiction. 
Now let ~ > 0 be chosen according to (8.3.7). By induction, we find a sequence {K,,} of compact subsets 

of X and a sequence {j,~} of integers such that 

K,+~ C X K~ , I#j.I(K,,) > ~. 

To this end, we take a compact K~ C X and j l  with I/L;,I(Ka) > e. Then using (8.3.7), we find j~ with 

I/~j2 I(X\K~) > e and choose a compact K2 C X \ K ~  such that t#h [(K2) > e and so on. Finally, we construct 

a sequence {U,,} of open subsets of X such that K,~ C U,, C K~/2. By virtue of Lemma 8,1.20, we arrive at a 
contradiction. [] 

Fremlin, Garling, and Haydon [175] extended this result to compact families of signed measures (see their 
Theorems 4 and 5). 

T h e o r e m  8.3.4. Let X be either a complete metric space or a hemicompact k-space. Then every relatively 
weakly compact set M C Mr(X)  is uniformly tight. In particular, X is strongly Prohorov. 
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T h e o r e m  8.3.5.  The class of Prohorov spaces includes all Cech complete spaces (hence, all locally compact 
spaces and all complete metric spaces) and all hemicompact kn-spaces. 

T h e o r e m  8.3.6.  The class of Prohorov spaces is preserved by 
(i) countable products, 
(ii) countable intersections, 
(iii) closed subspaces and open subspaces, and, hence, G6-subsets. 
In addition, a space is Prohorov provided every point has a neighborhood which is Prohorov (e.g., admits 

a locally finite cover by closed Prohorov subspaces). 

The proofs can be found in [225, 356, 511]. We shall see in Example 8.3.12 that  the union of two Prohorov 
subspaces, one of which is even a single point, may not be Prohorov. Moreover, the countable union of closed 
Prohorov subspaces is not always Prohorov. 

Topsoe [511] raised the question whether the image of a Prohorov space under a continuous open mapping 

is Prohorov and proved the following result (see [511, Corollary 6.2]. 

P r o p o s i t i o n  8.3.7.  Let 7r:X ~ Y be a perfect surjection. Then X is Prohorov if  and only if  so is Y .  

Let us give some examples which enable one to construct large classes of Prohorov and sequentially 
Prohorov spaces by means of the operations mentioned in Theorem 8.3.6. 

E x a m p l e  8.3.8.  Let X be a completely regular space possessing a countabIe family of its closed subspaces 
X,~ with the following property:  a function on X is continuous if and only if its restriction on every X,, is 
continuous. 

(i) Assume that  each Xn is Prohorov. Then so is X. If, in addition, X is normal,  then every weakly 

fundamental sequence {#~} C .M+(X) is uniformly tight (and, hence, converges weakly to a tight measure). 

(ii) Assume that  each X,, is either metrizable or compact. Then every weakly fundamental  sequence in 

Mr(X)  is uniformly tight. In particular, X is a sequentially Prohorov space. 

P roo f .  We may assume that  X,, C X,+I considering a new system X" = Ui~I Xi. Let Y = U,,~176 1 X,~. It 

follows from our assumption that every function on X \ Y  is continuous. Hence, X \ Y  is a discrete space and 

its compact subsets are finite. Moreover, every subset of X \ Y  is Baire in X. 

Let {#,~} be a weakly fundamental sequence in M,(X) .  Then it converges weakly to a Baire measure 

/~. All the measures #,, are purely atomic on X \ Y .  Let A = {a,,} be the family of ~11 their atoms in 

X \ Y .  Since every subset of A is Baire in X, the restrictions of/~,~ to A form a weakly fundamental  sequence 

which is uniformly tight by Theorem 8.3.3. Moreover, [#[(X\(Y U A)) = 0. Indeed, otherwise there is a set 

B C X \ ( Y  U A) on which # is either strictly positive or strictly negative. Then the function In is continuous 

on X and has zero integrals with respect to all the measures # , ,  but its integral with respect to # is not zero, 
which is a contradiction. Thus,  we need not bother about the convergence on X \ Y  and may assume that 
X = Y .  

In this case, for every r > 0 there is a number n = n(E) such that ]#I](X\X,,) <_ r for all i. Indeed, 

otherwise for every n there is a measure #i. such that [/.q,](X\X,~) > r Passing to subsequences, we can 
assume that 

tui. l(XXXj.) > ~, I~i . l ( .u < ~/8. 

Let us find a number m such that ]#[(X\X,,) < r For every n, there is a compact  set K,, C .Xj.+, \X j .  

such that #,.  is either nonnegative or nonpositive on K ,  and ]#~.(K,)[ _> 3e/8. Let r = sign/~.(K,~). We 
may assume that j l  > m. 

In the cases where the X,,'s are either normal (e.g., metrizable) or compact,  we can extend the function f 

defined by f = 0 on Xm and f = r on K~ to a continuous function on Xjl with values in [ -1 ,  I]. Continuing 

by induction and using our assumption, we get a continuous function f :  X ---* [ -1 ,1]  such that f = ~ on 
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K,  for all n. Then f f #  < e/10, while ffl~i. >_ e/8. This contradiction shows that  there is n = n(e) such 
that Iml (x \x , )  < e for all i. Clearly, if we know in advance that /~ is tight, then the situation becomes 
especially simple, since it suffices to find a compact set K C Xm with # (Xm\K)  < e/4.  Then the existence 

of a continuous function f :  X ~ [0, 1] which equals 0 on K and 1 outside the open set X\X,~ leads to the 
same contradiction. 

In case (i), by virtue of Corollary 8.2.3, the sequence {#~} restricted to X,~ is relatively weakly compact. 
Hence, by the Prohorov property for X, ,  it is uniformly tight. 

In the case where the Xn's are compact the proof is complete. If the Xn's are metrizable, the claim 
follows by an obvious modification of the proof of Theorem 8.3.3, taking into account that  every continuous 
function f :  Xn --* I~ extends to a continuous function on X with the same supremum (this follows from our 
assumption since every X i is closed in Xj+I, hence continuous functions from X i can be extended to Xj+I 
and so on). [] 

E x a m p l e  8.3.9. Every weakly fundamental sequence of tight measures on X is uniformly tight in either 
of the following cases: 

(i) X is a kR-space possessing a fundamental sequence of compacta X,~ (i.e., any compact  subset of X is 

contained in one of the K,~'s). 
(ii) X is a locally convex space which is the inductive limit of an increasing sequence of locally convex 

spaces E,~ such that  the embedding of each E,~ into E,~+I is a compact operator. 

P roo f .  Claim (i) follows trivially from Example 8.3.8. In order to get (ii), it suffices to apply the result 
from [410] according to which X is the inductive limit of an increasing sequence of separable Banach spaces E,~ 
with compact embeddings E ,  -+ E,~+I, and, consequently, is a k-space possessing the fundamental  sequence 
of compacta (for such compacta one can choose any increasing sequence of closed balls Un in the spaces E,~ 

with U,~U,, = X). [] 

E x a m p l e  8.3.10. Let X be a locally convex space which is the strict inductive limit of an increasing 
sequence of its closed subspaces X,~. Then X is a Prohorov space, provided all the spaces X,~ are Prohorov. 
In particular, if X ,  are separable Frfichet spaces, then every weakly fundamental sequence of nonnegative 
Baire measures on X is uniformly tight. 

P roo f .  According to Example 8.1.14, for every ~ > 0, the measures from any relatively weakly compact 
family M of nonnegative Radon measures on X are e-concentrated on some X,~. By Corollary 8.2.3, the 
restrictions of the measures from M to X,~ form a relatively weakly compact family. 

To get the last claim, it suffices to recall that  the union of a sequence of separable Frfichet spaces is 
Souslin, and, hence, every Baire measure on such a space is Radon. [] 

Note that the last claim of Example 8.3.10 was announced in [480] (for signed measures) and repeated 

in [109]; however, its proof was based on the erroneous Lemma 3 from [480] (see Remark 8.1.21), so that  it is 
not clear whether it remains true for signed measures. 

Obviously, one can multiply these examples taking countable products and closed subsets. Note that  
many classical spaces of functional analysis such as D(I~a), 7Y(I~a), S(tt~d),'S'(R a) are Prohorov. 

R e m a r k  8.3.11. The space D(I~') is Prohorov, but is neither a kn-space (see Remark 1.2.5), nor hemicom- 

pact (in addition, it is not a-compact). The absence of a countable family of compact sets, which is either 

fundamental or exhaustive, follows from the Baire theorem applied to D,(I~ 1) and the fa~ct that  every compact 

set in D(R ~) is contained in one of D,(I~I). 

No topological characterization of Prohorov spaces is known. The following two examples show that  the 
class of Prohorov spaces is not stable under taking countable unions. The first of them is due to [532]. 
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E x a m p l e  8 .3 .12.  Let X = [qU {c~z} with the neighborhoods of cxz of the form UU {cxa}, where U is a subset 
of N with density 1. Then the countable space X is hemicompact, Baire, and is an F~-set in the Prohorov 

space /3X, but is not Prohorov. Indeed, the sequence n -~ ~]i~=~ 5(i) converges weakly to 5(vo), but  is not 
uniformly tight. 

The second example is due to [402]. This deep and difficult theorem is a fundamental  achievement of 
measure theory. 

E x a m p l e  8 .3 .13 .  The space of rational numbers Q with its usual topology is not Prohorov. 

Recall that  by Theorem 8.3.3, Q is a sequentially Prohorov space. 
Note that the first examples of separable metric non-Prohorov spaces are due to [94] and [115]. A 

simplified proof of Example 8.3.13 was given in [511]. 

As noted in [159], the space l 2 with its weak topology is not Prohorov (e.g., the sequence #,, = 

-a'--'"3 ~,,~, where {e;} is the standard orthonormal basis of 12, converges weakly to Dirac's measure at 7?, Z~i=l 

the origin, but  obviously is not tight). The space 12 with the weak topology provides an example of a hemi- 
compact a-compact  space which is not Prohorov. In [175], this example was generalized as follows. 

E x a m p l e  8 .3 .14.  Let X be an infinite-dimensional Banach space. Then the spaces ( X , a ( X , X * ) )  and 
(X ' ,  a (X ' ,  X ) )  are not Prohorov. 

According to [159], the strong duar of a Fr~chet-Montel locally convex space X is Prohorov. In particular, 
for X = R~, its dual R~', which is a countable union of finite-dimensional subspaces, is Prohorov. Thus, a 
nonmetrizable Prohorov space may not be Baire. 

T h e o r e m  8 .3 .15 .  If  X is of countable type, then every weak*-compact, scattered subset of cgl+(X) is uni- 
formly tight. 

Since every countable compact set is scattered, this theorem, obtained in [226], implies the following 
result obtained earlier by Choquet [94] and Fremlin, Garling, and Haydon [175]. 

C o r o l l a r y  8 .3 .16.  Let X be a metric space. Every countable weak'-compact set in ,M+(X)  is uniformly 
tight. 

In turn, the latter improves Theorem 8.3.3. 
Finally, let us mention the following important result due to Preiss [402]. 

T h e o r e m  8.3 .17.  (i) A first category metric space cannot be Prohorov (in contrast to the space R~ men- 
tioned above). 

(ii) Let X be a separable co-analytic metric space. Then X is Prohorov if and only if X is completely 
metrizable. An equivalent condition: X contains no countable G6-subset dense in itself. 

(iii) Under the continuum hypothesis, there is a separable metric Prohorov space which admits no complete 
metric. 

Since every countable space dense in itself is homeomorphic to Q, assertion (ii), in particular, explains 
the role of Q in Example 8.3.13. 

Under some additional set-theoretic assumptions, there is a Souslin Prohorov subset of [0, 1] which is 
not Polish (see [106, 184]). It is an open question whether it is consistent with ZFC that every universally 
measurable Prohorov space X C [0, I] is topologically complete (i.e., Polish). 

It is worth mentioning that in the literature one can find several different notions of a "Prohorov space." 
Indeed, if one wishes to generalize Prohorov's theorem, there are at least the following options: 
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(1) to consider 
given above), 

(2) to consider 

(3) to consider 
(4) to consider 

compact families of tight nonnegative Baire measures (which is the case in the definition 

compact families of not necessarily tight nonnegative Baire measures, 

weakly convergent sequences of tight nonnegative Baire measures with tight limits, 

countable compact families of type (1) or (2), 
(5) to consider in (1)-(4) completely bounded (i.e., precompact) families instead of compact ones, 

(6) to deal with .M, instead of Adt +. 
Certainly, there is a lot of other reasonable options. Since every weakly fundamental sequence of Baire 

measures has a limit, which is a Baire measure, the modification of (3) indicated in (5) consists of considering 
weakly fundamental sequences of tight Baire measures. Thus, the difference is that the limit is not required 
to be tight by definition. Obviously, assertions based on (5) and implying uniform tightness are stronger 

than those based on (1)-(4). However, such an approach seems to be less natural. For example, the only 

difference between (3) and its analog given by (5) lies in the possible nonsequential completeness of .M+(X) 
with the weak topology (it is easy to see that .A4+(X) is weakly sequentially complete, provided every weak 
Cauchy sequence is uniformly tight). It seems to be more convenient to separate the Prohorov property and 
the weak sequential completeness of .Me(X), discussed below. In a similar way, option (2) (or its modification 
mentioned in (4)) is merely the requirement that every Baire measure on X be tight. Thereby, it seems to 
be reasonable to separate this property from the Prohorov property. A possible technical advantage of such 
a separation is to ease operations with the Prohorov property. In applications, these minor differences play 
no role because for typical spaces X all Baire measures are tight and Mr(X) is weakly sequentially complete, 
while the Prohorov property is not so common. The situation with signed measures is less studied. 

Let us make some remarks concerning the weak sequential completeness of the space Adt(X). First of 
all, there are two trivial observations: 

Example  8.3.18. Let X be completely regular. Mr(X) is weakly sequentially complete, provided either 
X is a strongly measure-compact space or every weak Cauchy sequence in Me(X) is uniformly tight. 

Proof .  It suffices to use the weak sequential completeness of M~,(X) and Theorem 8.2.1, respectively. [] 

Example  8.3.19. For any a-compact completely regular space X, the space .Adt(X) is weakly sequentially 
complete. 

P r o o f  follows from the weak sequential completeness of .M,,(X) since every Baire measure on X is tight. [] 

The following result originates in [175] (a special case of it can be also found in [480, Theorem 3, w 5], 
but the proof given there is erroneous; see Remark 8.1.21). 

Example  8.3.20. Let X be a completely regular space such that there exists a sequence of its compact 
subspaces K,~ such that any function on X continuous on every K, is also continuous on the whole space X. 
Then the space .Aft(X) is weakly sequentially complete. 

Proof .  It suffices to apply Example 8.3.8 (item (ii)) and Example 8.3.'18. [] 

Example  8.3.:21. Let X be a completely regular space such that there exists a sequence of its closed 
measure-compact subspaces X,, such that any function on X continuous on every X,, is also continuous on 
the whole space X. Assume that the Baire subsets of X,  are also Baire in X. Then the space .A4t(X) is 
weakly sequentially complete. 

Proof .  As in Example 8.3.8, the complement of the set Y = U~~ l X, is discrete, and each of its subsets 
is Baire in X. We can replace the measures #,  by their (unique) Radon extensions. All the measures # ,  are 
purely atomic on X \ Y ,  and the collection of all their atoms in X\Y is an at most countable discrete subset 
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A of X. As in the proof of Example 8.3.8, ]#[(X\(Y U A)) = 0. In particular, the limit Baire measure # is 
tight on X \ Y .  It follows from the assumptions that the restriction of # (which is well defined by- the Baire 
embedding of X,,) is tight on each Xm. Consequently,/~ is tight on Y, whence its tightness on X. U 

The following result is due to Moran [355]. 

T h e o r e m  8.3.22. Let X be a Cech complete and metacompact normal space. Then the spaces .A4,(X) and 

.A4~(X) are weakly sequentially complete. 

Various problems related to Prohorov's theorem are also discussed in [290, 291,509, 457, 528]. 

8.4. O the r  Types  of Convergence  

In applications, one has to deal with various kinds of convergence of measures. Weak convergence is most 
strongly linked with the topology of state space, and for this reason it has been discussed in more detail. 
Now let us briefly discuss two other natural types of convergence: convergence in variation and set-wise 
convergence. Obviously, both depend actually on the measurable structure of state space. 

Let (X,B) be a measurable space. The space .M := M 8  of all measures on B with the variation norm 
is clearly a Banach space (typically, nonseparable). The following result gives some information about the 

weak topology a(.M, Ad') of this Banach space. In the case where X is a topological space and B = 13a(X), 

this topology should not be confused with the weak topology considered in the previous section" (which is 
w'-topology in the terminology of locally convex spaces). Clearly, in nontrivial cases, the topology a(.A4, .M') 
is strictly stronger than the topology a(.h4, Cb(X)). 

T h e o r e m  8.4.1. A set M C .M is relatively compact in the weak topology a(.M, .hal') if  and only if it is 
bounded in the variation norm and there exists a probability measure A on B such that lima(E)~0/z(E) = 0 

uniformly in I~ E M (in this case # << A for all t~ E M). 

For proofs, see [139, Theorem IV.9.2] or [366, Corollary of Proposition IV.2.3], where there is some 

additional information. In [128-130], the existence of a measure A with the property mentioned above is 
shown to be equivalent to the uniform countable additivity of M. Related aspects are discussed in [210]. 

Recall that the weak topology of a Banach space X has the following useful property, expressed by 

the Eberlein-Smuljan theorem: the weak compactness of a set K C X is equivalent to its sequential weak 
compactness (and also to its countable weak compactness). Therefore, any sequence in a weakly compact set 
has a weakly convergent subsequence, which is the property missed, in general, for the w'-topology. By a 
classical result, any weakly bounded set in .M is norm bounded. The following fundamental result, which is 
due to Nikodym (see [139, Theorem IV.9.8]) gives a much more powerful boundedness condition which reflects 
some specific features of .hal. 

T h e o r e m  8.4.2. Let M C M be such that for every B �9 B there exists c(B) such that I#(B)I < c(B) for 

all ~ �9 M. Then supueM t1#11 < ~ .  

Another important result, which is also due to Nikodym, gives,the following characterization of the 
convergence in the topology ~ (M,  M ' )  for sequences (see [139, Theorem IV.9.5]). 

T h e o r e m  8.4.3. A sequence {/z~} C A4 is fundamental in the weak topology a(A4,A4*) if and only if for 
every B �9 13 there exists lirn~_~ •,,(B) (then this limit defines a measure). 

The second natural topology we discuss is the set-wise convergence topology. The space Ad becomes 
a locally convex space endowed with the family of seminorms ps(#) = I#(B)[, B �9 /3. We denote this 
topology by 7",. Clearly, this topology is weaker than cr(A4,3d ~ (typically, strictly weaker). In particular, 
a(.A4,3d~ sets are r,-compact. However, Theorem 8.4.3 implies 
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C o r o l l a r y  8.4.4.  The topologies cr(.M,3~l') and r, have equal collections of convergent sequences. 

Typically, the collections of convergent nets are different for these two topologies. The dual to st4 with 
the topology a( .M,  891") coincides with .M" (and, hence, contains all bounded B-measurable  functions), while 
the dual for the topology r, consists of the linear combinations of the functionals g ~ # (B) ,  B E B (see 
[451, Theorem IV.1.2]), i.e., can be identified with the space of all B-measurable functions having only finitely 
many values. 

The topologies r, and cr(.M,Cb(X)) are quite different; however, a sequence which converges set-wise, 
converges also in ~r(A/l, Cb(X)) (this follows from Theorem 8.4.3). According to Theorem 8.1.4, a net {#~} 
of nonnegative measures converging to a measure/z set-wise, converges also in the topology ~r(.A,,t, C'b(X)); 
however, this is not true for signed measures. 

In [510], the weak and set-wise convergence topologies were studied in the case where X is an abstract 
space with a certain compact  paving. Let us formulate a result from [510] adopted to Radon measures. 

T h e o r e m  8.4.5.  (i) A set M E ]Vt+(X) is relatively compact in the topology r, if and only if it is uniformly 
bounded and for every sequence {U,} of mutually disjoint open sets one has l im,-oo supue M #(U, )  = 0. 

(ii) A set M E Adt(X) is relatively compact in the topology r, if and only if the following three conditions 
hold true: 

(a) M is uniformly bounded, 
(b) l i m , ~ o  suP,eM I~I(B.) -- 0 for every sequence {B.} of mutually disjoint Borel sets, 

(c) for every compact set K and every Borel set B one has 

inf{ sup I~,I(U\K), G D K is open} = o 
u6M 

and 
inf{sup I~I(B\S), S c B is compact} = O. 

uEM 

An analogous result was proved in [510] for nets of measures. 

T h e o r e m  8.4.6.  Let a family {,u~,} C M+(X) be uniformly bounded. 
equivalent: 

(i) {~,o} is relatively r,-compact, 
(ii) for every compact set K and every Borel set B one has 

Then the following conditions are 

and 

i n f{ l imsup#~(U\K) ,  G D K is open} = 0 

inf{sup [#I(B\S),  S C B is compact} = O, 

(iii) for every compact set K 

and 

inf{l imsupg~,(U\K),  G D K is open} ~0 

inf{l imsup#~,(X\S) ,  S is compact} = O, 

(iv) for every compact set K 

and 

inf{limsup#~(U\K), G D K is open} -- 0 

{#~} is relatively weakly compact. 
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As shown in [122], a family of Radon measures on a compact space is uniformly bounded, provided it is 
bounded on every open set. There are a lot of papers devoted to generalizations of this result to more general 
spaces and more general classes of set functions (not necessarily scalar-valued and not necessarily additive, 
see, e.g., [125, 126, 277, 444] and the references therein). We confine ourselves to quoting the following result 

from [490]. 

T h e o r e m  8.4.7. Let X be a regular space and let a family M C .hat(X) be such that for each open set U 

one hassup{llz(U)l:Iz C M} < 0o. Then sup{l]#[[:# ~ M} < 0o. 

A related problem concerns the convergence on open seas. The following theorem from [180] extends 

earlier results obtained in [205] and [539] for compact spaces. For related results, see [181,387, 432, 270, 7]. 
This result also has a lot of generalizations to nonscalar set functions. 

T h e o r e m  8.4.8. Let {/,,} be a sequence of Radon measures on a regular space X such that {#,(U)} is 

convergent for every open set U. Then {/t,(B)} is convergent for every Borel set B (hence, the limit is a 
Radon measure). 

As shown in [432], if X is normal, then the Radon property of the measures can be replaced by the 
regularity and it suffices to have the convergence mentioned above on regular open sets. 

Some additional information can be found in [71,100-102, 261,464, 487]. 

8.5. P r o p e r t i e s  of  Spaces  of  M e a s u r e s  

In this section, we discuss some topological properties of spaces of measures on a topological space X 
and possible relations between properties of X and the corresponding properties of spaces of measures. To 
start with, note that ,  given a space X, one can study the spaces of signed measures M , ( X ) ,  M~.(X), M r ( X ) ,  

their subspaces M + ( X ) ,  M + ( X ) ,  M + ( X )  consisting of the nonnegative measures, and even smaller subspaces 

7~(X), P~(X), Pt (X)  consisting of the probability measures. Thus, we get at least 9 spaces (and three more 
come from considering the class .A4~(X) of the compactly supported measures) whose topological properties 
are quite different even for nice spaces X. Obviously, this survey is not the right place for a detailed discussion 
of such matters. We present only a few principal results in this direction, leaving aside those problems which 
are closer to general topology than to measure theory. 

The most natural links with the topological set arise when spaces of measures are equipped with the 
weak topology. In various applications the following problems relating to spaces of measures are especially 
important: 

(1) completeness and sequential completeness, 
(2) compactness conditions, 

(3) metrizability and separability, 

(4) additional properties such as membership in the classes of Souslin spaces, perfectly normal spaces, 
strong measure-compact spaces, and so on. 

Since we are interested in the weak topology, it is reasonable to discuss completely regular spaces. Let 
us start with compact spaces. 

T h e o r e m  8.5.1. Let X be a compact space. Then the space P ( X )  = 79~(X) = 7)t(X) is compact for the 
weak topology. This space is metrizable if and only if so is X.  

The space X is homeomorphic to the space of Dirac measures on X, which is closed in A/I+(X) or .g4+(X) 

(but not necessarily in .g4+(X)). In addition, X ~ is also homeomorphic to a closed subspace of .A4+(X) or 

.Ad+(X) ([204]; see a short proof in [287]). Therefore, any topological property, which is hereditary on closed 
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sets but is not preserved by countable products, cannot devolve from X to .A4+(X), .A,4+(X). Normality and 

Lindelrfness are examples of this kind. For the same reason, .A,4+(X) and .A4+(X) may not be Radon spaces 
for a Radon space X (even for a compact one). 

The following important result is due to [532] (for a shorter proof, see [196]). 

T h e o r e m  8.5.2. Let X be a completely regular space. The space .A4+r(X) is metrizable if  and only if so 
is X .  .A4+(X) is separably (respectively, completely) metrizable if and only if X is separably (respectively, 
completely) metrizable. 

Note that if X is a metric space, then the weak topology on the space "P,(X) of r-additive probability 
measures on X is metrizable with the Prohorov metric 

d(p,u) = inf{e > 0: #(B) _< ~(B')  + e, B e B(X)}, 

where B" is the open e-neighborhood of B in X. It is easy to check that in the definition of metric d one 
could take inf over the class of all closed sets in X. 

Clearly, in nontrivial cases the spaces Jgfr(X), .Adt(X), and "A4(X) are not metrizable for the weak 
topology. For example, if X is an infinite metric compact, then these three spaces coincide with C(X)*, 
which is not metrizable in the topology a(C(X)*, C(X))  (by the Bake theorem), although its closed balls are 
metrizable compacta. 

Schwartz [457] proved that, for a Souslin space X, the spaces 79t(X) and 391+(X) are also Souslin. 
Further results (in particular, answering several questions posed in [457]) were obtained in [371, 372]. The 
final situation is as follows. 

Th eo rem 8.5.3. (i) If  X is Souslin (or Lusin), then so are A4t(X),  2d+(X),  and 7)t(X) in the weak 
topology. Conversely, if  one of the spaces M , ( X ) ,  .A4+(X), or TOt(X) is Souslin (or Lusin), then so is X .  

(ii) If X is Polish, then so are AJ+(X) and 7at(X). 

If X is not completely regular, there is another possibility of topologizing the space of nonnegative 
measures. Let {7 be the class of all open sets in X. The A-topology on .A4+(X) is defined by means of 
neighborhoods of the form 

u ( . ,  a ,  e) = < + e}, 

where # e Jgt+(X), G E G, e > 0. A net {/~} converges in this topology to # E A,4+(X) if and only if 
/~(X) ~ /~(X) and liminf~ #~(G) > #(G) for each G E ~. It follows from the discuss%n presented above 
that for completely regular spaces this is equivalent to the weak convergence. Certainly, in general, the 
A-topology is stronger than the weak topology (which may be trivial if there are no nontrivial continuous 
functions on X). Another possible advantage of the A-topology is that it is applicable to Borel measures, while 
the weak topology is naturally connected with Baire measures (it can be non-Hausdorff on Borel measures). 

For this topology there are analogous results (see, e.g., [509]). 

T h e o r e m  8.5.4. The space .A4S(X ) with the A-topology is regular, completely re qular, or second countable 
if and only if X is such, respectively. 

A continuous mapping f: X --~ Y generates the mapping f.:.A4t(X) ~ "A4t(Y), I~ ~ # o f -~  which is 
continuous in the weak topology. Clearly, we also have the mappings f.: .M~(X) ---, A.4~(Y), f.: "A4o(X) 
"A4~(Y), between the corresponding spaces of nonnegative or probability measures. Even if f is injective, f .  
may not be so (see [542, Sec. 14]). If f is a homeomorphic embedding, then f.: .A4T(X) --+ .M~(Y) is injective, 

and f.:.A4+(X) --+ .a,4+(Y) is a homeomorphic embedding. However, as noted by Choquet [94], this may fail 
for the whole space "A4T(X) (e.g., in the case Y = [0, 11, X = Q f'l [0, 1]). 

Perfect mappings between spaces generate perfect mappings on spaces of measures ([287, Theorem 2.1]): 
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T h e o r e m  8.5.5.  Let f:  X ~ Y be a continuous surjection. Then, for s = t or s = r,  the induced mapping 
+ �9 f . : .M~ (.~ ) ---, AzI+(Y), # ~-~ # o f - l ,  is perfect if and only if f is perfect. 

As noted in [287], this statement may fail for s = cr and for the spaces of signed measures. 

Using Theorem 8.5.5 and Frolik's result that a space X is Lindelhf and Cech complete if and only if it 
admits a perfect surjection onto a separable complete metric space, Koumoullis [287] obtained 

C o r o l l a r y  8.5.6.  The space Ad+(X) ,  where s = t or s = r, is Lindelb'f and Cech complete i f  and only if 

so is X .  The same equivalence holds true for the property of being paracompact and Cech complete. 

Separability properties of spaces of measures were studied in [294, 395, 499]. Note that  the linear space 
generated by Dirac measures is dense in .Mr(X) in the weak topology. Hence, if X is separable, then so is 
.A4t(X) (in the weak topology). The converse is not true, even for compact spaces (see [499]). As shown in 
[499], under CH, there is a compact space K such that the space .Mr(K) is separable in the weak topology, 
but its unit ball is not. Moreover, the separability of the unit ball of .Adt(K) in the weak topology may be 
much weaker than the metrizability of K: according to [499] (again under CH), it can even happen that no 
separable measure with support  K exists. 

Let us say that  a set of measures M C .s is countably separated if there is a sequence {f~} C Cb(X) 

such that for every # and v in M, the equality f f ,~(z ) Iz (dx)  = f f , , ( z ) u ( d z ) ,  Vn E N, implies that  # = u. 
A subset M C . M , ( X )  is said to be countably determined in M ~ ( X )  if there is a sequence {f,~} C Cb(X) 

such that for every / ,  E M and v e M , ( X ) ,  the equality f f ~ ( x ) t z ( d z )  = f f , ( x ) u ( d x ) ,  Vn E N, implies that 
z, E M. In a similar way, one defines the property to be countably determined in .M+(X) .  

It is easy to see that,  for a compact space X, M + ( X )  is countably separated if and only if Cb(X) is 
norm-separable, which, in turn, is equivalent to the metrizability of X. 

The following simple lernma from [287] is useful in these considerations. 

L e m m a  8.5.7.  For every countable family H of Baire functions on a topological space X ,  there is a count- 
able set K C Cb(X)  such that, for  every pair of Baire measures I~ and ~, on X ,  the equality f ~ (x )  #(dx)  = 

f qo(z) u(dx), Vqv E K ,  implies that f h(z)l~(dx) = f h (x )v (dx ) ,  Vh E H. 

It is clear from this lemma that in the definitions of the countably separated and countably determined 
sets one could consider bounded Baire functions (or even sequences of Baire sets). 

Since a compact space K is metrizable if and only if it possesses a countable family of continuous functions 
separating the points of K,  it is clear that a compact (for the weak topology) set M C M ~ ( X )  is countably 
separated if and only if it is metrizable. According to [294, Proposition 2.3], a compact  set M C .A,4,(X) is 

countably determined if and only if it is a G6 subset of M , ( X )  (and similarly for sets in .x4+(X)).  Obviously, 

these statements may fail for noncompact sets (e.g., typically M , ( X )  is not metrizable for the weak topology). 
The following result (see [294, Theorem 4.1]) describes the situation for the whole space of measures. Recall 
that a space Y is said to be separably submetrizable if there is a sequence of continuous functions separating 
the points of Y (in other words, a continuous injection Y --+ IR~176 

T h e o r e m  8.5.8.  Let X be a topological space and let s stand for one of the symbols ~r, r,  or t. The following 
assertions are equivalent: 

(i) .A43(X) is countably separated, 

(ii) 3,4+(X) is countably separated, 

(iii) Cb(X) is separable in the topology a(Cb(X), A d , ( X ) ) ,  

(iv) 2td,(X) is separably submetrizable, 

(v) every point in M , ( X )  is a 06 set. 
In addition, for  s = t, conditions (i)-(v) are equivalent to the following: X is separably submetrizable. 

Additional results and references can be found in [36, 75, 100-102, 157, 272, 273, 287, 421,452-455,499,  
Ssll. 
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Chapter 9 

M E A S U R E S  O N  L O C A L L Y  C O N V E X  S P A C E S  A N D  G R O U P S  

9.1. Basic  No t i o n s  

From the topological point of view, algebraic structures on spaces with measures do not bring significant 
specific features into general theory with respect to such issues as, e.g., regularity pi 'operties. However, such 
structures become important  for constructing measures. In addition, they lead to new objects and problems 
of a topological character. The present chapter is an introduction to this circle of problems. Let us mention 
a few general references on this subject: [33, 76, 484, 528]. 

We shall concentrate mainly on the case of a locally convex space. There exists extensive literature on 
integration on topological groups. The reader can consult, e.g., [222, 447]. 

In the case of a locally convex space X, in addition to our standard a-algebras of Borel and Baire 
sets, there is the c~-field a ( X )  generated by the dual X*. In subsequent sections, we discuss several objects 
determined by the behavior of a measure on this a-field. Sets of the form 

c = e x :  e B}, l, �9 x ' ,  B �9 

are called cylindrical (or cylinders) in X. The collection of all such sets is an algebra C y l ( X ,  X*).  

Applying general results from Chapter 3 to measures on a(X) ,  we see that  every measure # on a ( X )  

is regular: for every A E g(X)  and e >  0 there is a closed set F E a ( X )  with F C A and [it[(A\F) < ~. 
Theorem 3.3.2 applied to Cyl (X ,  X ' )  (or a ( X ) )  yields 

T h e o r e m  9.1.1. Every tight measure it on a ( X )  (or, more 9enerally, a ti9ht bounded additive set function 
on Cyl (X,  X ' ) )  admits a unique extension to a Radon measure on X .  

The following result shows that  any Radon measure on a locally convex space car. be specified by its 
values on a(X) .  

P r o p o s i t i o n  9.1.2. Let it be a Radon measure on a locally convex space X .  Then for any It-measurable 
set A there is a set B E a ( X )  such that 

it( A A B )  = O. 

Moreover, if G C X"  is an arbitrary linear subspace separating the points of X ,  then such a set B can be 
chosen in ac. 

Coro l l a ry  9.1.3. Let it be a Radon measure on a locally convex space X .  Then the class of all bounded 
cylindrical functions on X is dense in LP(it) for any p > O. The same is true for the linear space T formed 

by the functions exp(if) ,  f E X ' .  Moreover, this assertion is valid if  one replaces X"  by any linear subspace 
G C X" which separates the points of X .  

Finally, let us make a remark about random vectors. Let (12,.T', P) be a probability space and X a 

locally convex space. A measurable mapping {: ~ --~ (X, a(X))  is called a random vector in X. The measure 

Pr = P({-~(C))  is called the distribution (the law) of {. Clearly, each probability measure on a (X)  can 
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be obtained in this form (with the identical mapping ~(z) = z). If we have a family of probabili ty measures 
g ,  on X, then there is a family of independent random vectors ~, on one and the same probabil i ty space 9/ 

such that P~. = #~ (take f2 = I-In X, ,  X ,  = X, P = |  ~,(w) = w,). 

Regarding measurability in locally convex and Banach spaces, see also [142, 143, 189, 501]. 

9.2. F o u r i e r  T r a n s f o r m  an d  C o n v o l u t i o n s  

Def in i t i on  9.2.1.  Let E be a linear space and let F be a linear subspace in E*. An addit ive numeric 

function v defined on the algebra Cyl(E, F) of F-cylindrical sets in E is called a cylindrical quasimeasure 

if all finite-dimensional projections of v are countably additive (in other words, the restriction of u to the 

a-algebra of cylinders with bases in any fixed finite-dimensional subspace is countabty additive).  

Clearly, any measure on Cyl(E, F) is a cylindrical quasimeasure, but the converse is not true. Let us 

consider the following simple example. Let E = 12, F = E" = 12, and let "y b e  the quasimeasure defined 

as follows: if C = P - 1 B ,  where P is an orthogonal projection to some linear subspace L of dimension n 

and B is a Borel set in L, then 7(C) = 7 , (B) ,  where 7,, is the standard Gaussian measure on L (with 

density (27r)-"/~e -11~:112/2 with respect to Lebesgue measure on L generated by the inner product  from E). 
If the measure 7 were countably additive on the algebra of cylinders, it would admit a unique extension to 

a countably additive measure on the a-field generated by the cylinders (which is the Borel a-field of E). 
However, direct calculations show that in this case every ball has measure zero, which is a contradiction.  

The Fourier transform of a cylindrical quasimeasure v is the function qo: F --* C 1 given Def in i t i on  9 . 2 . 2 .  

by 

:(f) = fexp(it).o S-1(dt). 

Fourier transforms of measures on infinite-dimensional spaces were introduced by Kolmogorov [281] (later 

this object was also considered by LeCam [302]). 

Note that if # is nonnegative, then ~ is positive-definite. If, in addition, /t is symmetric ,  i.e., #(A) = 

/ J ( -A)  for every set A E Cyl(E, F), then ~p is real. 
The Fourier transform of a probability measure is often called its characteristic functional. The  Fourier 

transform is one of the most powerful tools in measure theory on linear spaces (as well as characteristic 

functionals in probabili ty theory).  Similarly to the linear case, one defines Fourier transfor ns on groups. Let 

G be a group, F be a certain set of its continuous characters (homomorphisms to the circle S1), and let , be 
a measure defined on the a-field generated by F.  Then the Fourier transform of u is given by 

~(~) =fexp(i~(g)).(dg). 
G 

It is easy to see that two measures on a(X)  with equal Fourier transforms coincide. According to 

Corollary 9.1.3, the same is true for any Radon measures. 
Clearly, Fourier transforms are sequentially continuous. In general, the Fourier transform of a Radon 

measure is not a ( X ' ,  X)-continuous. For example, if X is an infinite-dimensional locally convex space, then 

is a(X ' ,  X)-continuous only in the case where # is concentrated on the union of finite-dimensional subspaces. 
Note the following trivial sufficient condition for the continuity of Fourier transforms. 

P r o p o s i t i o n  9 .2 .3 .  Let I ~ be a Radon measure on a locally convez space X.  Then ~ is uniformly continuous 
in the Mackey topology 7-(X', X) .  In particular, i f#  is a measure on the dual X" of a barrelled locally convez 
space X which is Radon in the *-weak topology , then ~ is uniformly continuous on X .  Moreover, Fourier 
transforms of uniformly tight bounded families of Radon measures are uniformly equicontinuous in either of 
the two cases given above. 
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One might ask under what conditions is a function ~ :X"  ~ C the Fourier t ransform of a (Radon) 
measure on X. In the case of nonnegative measures on ~", the classical Bochner theorem says so if and only if 

is continuous and positive-definite (see [528, Theorem IV.4.1]). In general, this is false in infinite dimensions 
(for example, as we have seen, no Borel measure on an infinite-dimensional Hilbert space has the function 
exp( - (z ,  x)) for its Fourier transform). Sazonov's theorem [445] asserts that a function T on a Hilbert space 
X is the Fourier transform of a nonnegative Borel measure on X if and only if it is positive-definite and 
continuous in the topology generated by all seminorms of the form x ~ IITzl[, where T is a Hilbert-Schmidt 
operator on X.  If X is the dual to a barrelled nuclear space Y, then the same is true for the Mackey topology 
of X. This is, in fact, Minlos's theorem [348]. The role of Hilbert-Schmidt operators in both theorems 

was clarified by Kolmogorov [282]. Additional references can be found in [359, 479, 481, 504-506, 528]. For 

practical purposes, it is important  that  analogs of Bochner's theorem hold true in such spaces as ~ ,  S(~n), 

S'(~"),  Z~(~"), ZY(~"). 
Let us denote by f-.S(X', X)  the class of all operators R: X" ~ X having the form R = ASA' ,  where 

S is a symmetric nonnegative nuclear operator on a Hilbert space H and A: H ---* X" is a continuous linear 

operator. Let T ( X * , X )  be the locally convex topology on X" generated by the seminorms y ~ ~/(y, Ry), 

n e CS(X', X). 
In a similar way, one defines the topology T ( X ,  X*) on X. 

T h e o r e m  9.2.4. Let X be a locally convex space and let ~o be a positive-definite function on X" continuous 
in the topology T ( X ' ,  X )  with ~(0) = I. Then ~ is the Fourier transform of a probability measure on X 
which is Radon in the strong topology t3(X, X*). 

If X is a Hilbert space, then the theorem cited above is Sazonov's theorem, and the condition of this 
theorem is also necessary. In general Banach spaces this condition is not necessary (see exampl.es in [528, 
359]). Moreover, in this case, Radon measures/~ with 7"(X' ,X)-continuous Fourier transforms are exactly 
the measures concentrated on continuously embedded separable Hilbert spaces. In order  to get the Minlos 
theorem, one should consider the case where X is the dual of a nuclear space Y. 

T h e o r e m  9.2.5. Let Y be a nuclear locally convez space and X = Y ' .  Then: 
(i) Suppose that ~o is a positive-definite function on Y, ~(0) = 1, continuous in the topology T ( X ,  X ' ) .  

Then ~ is the Fourier transform of a probability measure on X = Y* which is Radou in the strong topology 
/3(Y', Y). 

(ii) If X is metrizable or barrelled, then the Fourier transform of every probability measure on Y" which is 
Radon in the *-weak topology a(Y*, Y) (e.g., is Radon in the strong topology f l(Y' ,  Y))  sa'isfies the conditions 
in (i). 

Recall that  if X is barrelled, nuclear, and quasi-complete, then X is a Montel space, in particular, it is 
reflexive. 

The main step in the proofs of Theorems 9.2.4 and 9.2.5 is to check that  for every s > 0 there exists a 
neighborhood of zero V C X" and a compact ellipsoid K C X such that  I~(X\K) < e, provided I1 - ~(l)] <_ 
for all l E V. This observation yields 

Coro l l a ry  9.2.6. (i) In the situation of Theorem 9.2.4, a family M of probability measures on X is uni- 
formly tight (and, hence, relatively weakly compact), provided the family of their Fourier transforms is equicon- 
tinuous at the point 0 in the topology T ( X ' ,  X).  

(ii) In the situation of Theorem 9.2.5 (where X is barrelled and nuclear), the family of Fourier transforms 
of every uniformly tight family of Radon (in the topology a(Y ' ,  Y)) probability measures on Y" is equicontin- 
uous at 0 in the topology of Y.  

There is a lot of literature on the so-called sufficient topologies on locally convex spaces (i.e., the topologies 
r on X" such that the continuity in r of the Fourier transforms of nonnegative cylindrical quasimeasures u 
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on X implies the tightness of v) and necessary topologies (respectively, the topologies r on X" in which the 

Fourier transforms of tight nonnegative cylindrical quasimeasures on X are continuous).  See, for example, 

[528] and [359]. An important  result due to Tarieladze [505, 506] is that any sufficient topology is also 

sufficient for signed measures in the following sense: let r be a sufficient topology on X" and let qo be the 

Fourier transform of a signed cylindrical quasimeasure # on C y l ( X , X ' )  of bounded variation. Then  It is 
countably additive and tight. However, in this statement, one cannot replace the boundedness of variation 

by the boundedness of I~pl (see Remark 4.2 in [64]). 
C o n v o l u t i o n s .  Note that  if It and v are two measures defined on a ( X )  in a locally convex space X,  then 

their product # • v is a measure on cr(X x X).  In general, the product of two Borel measures may be defined 

on a a-field smaller than B ( X  x X ) .  But, as follows from Theorem 3.3.2, if # and v are Radon (or r-additive) 

measures, then their product  # x v admits a unique extension to a Radon (respectively, r -addi t ive)  measure 
on X • X.  The same is t rue if X is a Hausdorff topological vector space. By a product  of Radon measures 
we always mean this extension. 

Def in i t ion  9.2.7.  Let It and v be Radon (or r-additive) measures on a locally izonvex (or Hausdorff topo- 

logical vector) space X.  Their  convolution It * v is defined as the image of the measure # | v on the space 

X x X under the mapping X x X --~ X, (x ,y)  ~ x + y .  

T h e o r e m  9.2.8.  Let It and v be Radon measures on a locally convez space X .  Then  f o r  any Borel  set 

B C X the func t ion  x ~ # ( B  - z )  is v-measurable and 

u * v(B) = [ It(B - x) v(dx). 
x 

In addition, It * v = v * It and ~ = ~ff . 

In this article, we do not discuss cylindrical measures (not necessarily a-additive);  however, it should be 
noted that the corresponding concept is useful even for the study of Radon measures. 

P r o p o s i t i o n  9.2.9.  Let It and • be two Radon probability measures on a locally convex space X .  A s s u m e  
that there ezists  a posit ive-defini te funct ion  ~: X "  ~ C such that 

Then there ezists  a Radon  probability measure v on X such that "ff = qo. In addition, )~ = v * It. 

P r o p o s i t i o n  9.2.10.  Let #t  and It2 be two nonnegative cylindrical quasimeasures  on tk.e algebra o f  cylin- 

drical sets C y l ( X ,  X ' )  such that Itl is symmetr ic .  I f  It = It1 * It2 admits  a Radon ez tens ion,  then both #1 and 

It2 admit  Radon extensions.  

One cannot drop the assumption that It1 is symmetric. Indeed, let l be a discontinuous linear functional on 
X* (which exists, e.g., if X is an infinite-dimensional Banach space). Then the functionals exp(il)  and e x p ( - i l )  

are the Fourier transforms of two cylindrical quasimeasures on C y l ( X , X * )  without  Radon extensions, but 

their convolution is Dirac's measure 6. This example is typical: according to [433], if # and v are nonnegative 

cylindrical quasimeasures on C y l ( X ,  X ' )  such that It * v is tight, then there exists an element l from the 

algebraic dual of X" such that  the cylindrical quasimeasures It * 6t and v * 6-t (where 6t and 6_t are the 

cylindrical quasimeasures with Fourier transforms exp(il) and ex p ( - i l ) ,  respectively) are tight on X (and, 

hence, have Radon extensions). These results can be generalized to families of measures as follows (see [528, 

Proposition 1.4.8]). 

P r o p o s i t i o n  9 .2 .11.  Let {#~} and {vx} be two famil ies  of  r-addit ive probability measures  on a Hausdor f f  

topological vector space X .  A s s u m e  that {itx * v~} is uni formly tight. Then there exists  a f ami l y  {xx} of  points 

o f  X such that {#~ , 3~x} is un i formly  tight. If, in addition, the measures #~ are s y m m e t r i c ,  then both fami l ies  

{ita} and {va} are un i formly  tight. 

3119 



In a similar way, one defines convolutions of measures on topological groups. Namely, let (G,/3) be a 

measurable group (i.e., the mappings x ~ - x  and (z ,y )  ~ x + y are measurable with respect to /3 and 

/3 |  respectively). Let # and v be two measures on B. The image of the measure # | v on G x G' under 

the mapping O: (x, y) ~-+ x + y is called the convolution of/~ and v and is denoted by # * v. 
One can check that  for every B � 9  

p , . (8)= f # ( 8 -  x)v(dx)= fv(-x + B)#(ax). 
G G 

(9.2.1) 

If G is commutative,  then the convolution is such a one. 
Let G be a topological group. Then, as we have seen above in the case of a locally convex space, G may 

not be a measurable group with B = B(G). However, if # and v are r-addit ive or Radon, then # | v admits 

a r-additive (respectively, Radon) extension to G x G. Hence, in this case the convolution can be defined as 

the image of this extension under the mapping ~o which is continuous. Then equality (9.2.1) remains valid for 

B � 9  

With the operation of convolution the space of Radon (or r-additive) probability measures on a topological 

group G becomes a topological semigroup; its neutral elemeat is Dirac's measure at the neutral  element of G. 
Extending the results of [433] cited above and Proposition 9.2.11, it was shown in [528, Corollary of 

Lemma 1.4.3] that  if {/~} and {va} are two families of r-addit ive probability measures on a topological group 

G such that  the family {'#x �9 v~} is uniformly tight, then there is a family xa of elements of G such that  the 

family {#a �9 a=~ } is uniformly tight. 

According to [528, Proposition 1.4.6], if/* and v are r-additive probability measures on a topological 
group G, then the support  of ju �9 v coincides with the closure of the set S t + S~. This implies that  the Dirac 

measures a,,  x �9 G, are the only invertible elements in the topological semigroup ~ ( G ) .  
Finally, note that  if X is a Hausdorff topological vector space and # and v are two Radon probabilities 

with # =/~ * v, then v is Dirac's measure at the origin (see [528, Proposition 1.4.7]). 

9.3.  S u p p o r t s  o f  M e a s u r e s  on L o c a l l y  C o n v e x  S p a c e s  

De f in i t i on  9.3.1.  A Borel measure # on a locally convex space X is said to have a separable Hilbert 
(Banach, Frdchet) support  if there is a separable Hilbert (respecti~/ely, banach,  Fr@chet) sp~ce E continuously 

embedded into X such that  ]#](XkE) = 0. 

Note that typically supports in the sense indicated above are not topological supports:  the space E is 
not assumed to be closed in X. 

We shall see below that  in many cases measures on locally convex spaces are concentra ted on subspaces 

with certain nice properties (e.g., have Hilbert supports). However, the following result (proved in [357] and 

[443] for Banach spaces and extended to Frdchet spaces in [269]) shows that supports cannot  be always found. 

T h e o r e m  9.3.2.  Let X be a separable Fr&het space such that every Borel measure on X has a Hilbert 
support. Then X is linearly homeomorphic to a Hilbert space. 

As noted above, the existence of a Hilbert support of a Radon measure on a Banach space is equivalent to 

the continuity of fi in the topology T ( X ' ,  X )  (see [359l or [528, Theorem VI. 1.3]). Hence, for every non-Hilbert 

Banach space X there exists a Radon measure/~ such that its Fourier transform is not T ( X ' ,  X)-continuous. 

The following result on the existence of separable reflexive Banach supports was proved in [77] (or Banach 

spaces (earlier weaker results were found in [296] and [442]). We present here a shorter  proof, suggested in 

[59] for Frdchet spaces and based on an idea from [77}. 
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Theorem 9.3.3.  Let # be a Radon measure on a Frgchet space X .  Then there ezists a separable reflezive 
Banach space B such that: 

(i) B is embedded in X by a compact linear operator, 

(ii) I#[ (X\B)  = O. 

In addition, such a space B can be taken common for any uniformly tight family of Radon measures on 
X .  

P r o o f .  Clearly, we may assume that  # is nonnegative. For any n, there exists a compact  set K,, with 
# ( X \ K , )  < 1/n. We can take c, > 0 such that the set c,K,, is contained in the ball (with respect to a metric 

generating the topology of X)  of radius 1In around the origla. The set U~=lc~K,~ has a compact  closure K. 

Indeed, for any sequence {x,,} in this set, either its infinite subsequence is contained in one of the c,,K,'s 

or the whole sequence converges to zero. According to Lemma 9.6.4 in [146], there is an absolutely convex 

compact set A such that  K is compact  as a subset of the Banach space EA. Applying this lemma again, we 
find a bigger absolutely convex compact set C such that A is compact as a subset of the Banach space Ec. 
According to [120, lemma on p. 160], there exists the third Banach space B3 with EA C B3 C Ec which is 
reflexive, continuously embedded in Ec and, in addition, the unit ball A of EA is bounded in B3. Let B be 
the closure of EA in /33. Clearly, B is a separable reflexive Banach space, has full measure, and its closed 
unit ball UB is bounded in Ec,  and, hence, is relatively compact in X. Since UB is weakly compact in B, it 
is compact in X. The last claim is seen from our proof. [] 

Theorem 9.3.4.  Let X be a Banach space with a Radon probability measure # possessing a strong moment 
of order p. Then there is a linear subspace E of X with the following properties: 

(i) E with a certain norm [[ �9 lIE is a separable reflezive Banach space whose unit ball is compact in X ,  

(ii) # (E)  -- 1 and fE I[zll~#(dz) < oo. 

I f #  is pre-Gaussian (see Definition 9.5.1), then E can be chosen so that # remains pre-Gaussian on E. 
Finally, if  # has all strong moments on X ,  then E can be chosen with the same property. 

P r o o f .  We need the following technical result. Let ~o be a decreasing nonnegative function on [0, oo) such 

that ~ , ~ l  ~,0(n) < oo. Then  there exists a sequence of positive numbers a,, decreasing to zero such that 

~,oo=x q0(a,~n) < oo. Indeed, there exists a sequence of natural numbers C,  increasing to infinity such that  the 

series ZC-qo(n)  converges. Put  S,  = Z j~ICJ ,  So = 0, 13, = S , / ( n + l ) .  Let a /  = /3~ -1 i f S ,  _< j < S,+I. 

Then/3 ,  -+ oo since C,, --+ oo. Hence, a ,  --+ 0. In addition, 

~(ajj)  ~_~ Z ~(otjS.) : Z ~o(n 2v 1) ~ C.+l~o(n n k 1). 
S. <j<S.+ ~ S. <_j<S.+ ~ S. <_j<S.+ ~ 

This estimate implies the convergence of the series ~ .  T(a.n) .  

Note that the linear span of V has full measure, since it contains the sets a~/Pt(, and by construction 

#(a~/PK.) -* 1 due to the fact that the balls a~/PU, have radii a~/Pn x/p ~ oo (it is easily seen from our 
construction of a,, that  a . n  ~ oo). 

Let us return to the proof of our main claim. Let ~(R) = #(x: Ix] > R'/P). By the integrability of H �9 ][P, 

we get the convergence of the series ~ .  #(z: Ix t > n~/P). As we proved above, there is a sequence of positive 

numbers a .  decreasing to zero such that  the series ~ .  ~(a,~n) converges. For every n, let us choose a compact 

set K .  in the centered ball U,~ of radius n lip such that 

#(at,/PK,) _> #(a~,,/PU,) - 2-". 

The set K = U,~176 l c~l~n-l lpK,  is relatively compact. Denote by V its closed balanced convex hull. Let pv 

be the corresponding gauge functional. We shall verify the inclusion pv E LP(#) (note that  the functional pv 

is measurable since {pc <_ c} = cV for c > 0). The set {z :pv(z)  <_ n ~/p} = n~/PV contains nt/PK, hence, 
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it contains also cr~/PK,. Therefore, #(l~v > n) < qo(a,n), whence P~z E L ' (#) .  T h e  same reasoning as in 
Theorem 9.3.3 shows the existence of a separable reflexive Banach space E compactly embedded  into X and 
containing V as a bounded set. This means that on the linear span of V the norm l[ " IIz is majorized by 

const pv, whence property (ii). 

If # has all strong moments, then it suffices to take a ,  = log(n + 1) in the construct ion presented above 

in the case p = 1. 
Finally, if tz is pre-Gaussian, then in order to preserve this property on E it suffices to apply the con- 

struction described above to the measure (/z + 3')/2, where 7 is the corresponding Gaussian measure on 
X . U  

As shown by M. Talagrand, a Banach space with its weak topology may not be a Radon space even if it 
has no discrete subspaces of measurable cardinality. A. Tortrat  proved that any Banach space X with its weak 

topology is measurable with respect to every Radon measure on f iX (i.e., is absolutely Radon measurable).  
In connection with the study of supports of measures on Banach spaces, several deep results obtained by 

A. Ionescu Tulcea, A. Tortrat ,  and G. A. Edgar concerning the pointwise convergence topology of measurable 

functions turned out to be very efficient. We refer the reader to [144]. Here we only note  that  if X is a normed 

space and tt is a probabili ty measure on a ( X )  not concentrated on a proper closed linear subspace, then the 

topology a ( X ' ,  X )  on the closed unit ball of X" coincides with the topology of convergence in measure/~.  
This implies that every measure that  is r-addit ive in the weak topology of a Banach space X admits  a Radon 
extension in the norm topology. In particular, if X is reflexive, then every measure on or(X) admits  a (unique) 
Radon extension in the norm topology. 

9.4.  C o v a r i a n c e  O p e r a t o r s  an d  M e a n s  

Throughout  this section, X is assumed to be a locally convex space and the measures we consider are 
assumed to be nonnegative. 

D e f i n i t i on  9 . 4 . 1 .  A measure/~ on a ( X )  is said to have weak moments of order r > 0 (or to be of weak 
order r) if X" C L"(#). 

De f in i t i on  9.4.2.  A measure # on Ba(X)  is said to have strong moment of order r > 0 (or to be of strong 

order r) if p E L ' (# )  for every continuous seminorm p on X. 

For the proofs of the results presented in this section, see [527]. 

P r o p o s i t i o n  9 .4 .3 .  Let X be a normed space and let r > O. If every discrete measure on X of weak order 
r has strong order r, then X is finite-dimensional. 

Def in i t i on  9.4.4.  Let /~ be a measure on X of weak order 1. We say that # has the  mean rn u E X if for 
every l E X" one has 

t(m ) = [ t(x) 
X 

For any measure # of weak order p we get the operator T~,: X" ~ L~(#) of natural  embedding.  The 

following two results describe its continuity properties. 

P r o p o s i t i o n  9.4.5.  Let # be a measure on X possessing weak order p. Then: 
(i) For every neighborhood of zero V in X ,  the set Tu(V ~ is bounded in L"(#). 

(ii) If X is quasi-barrelled (i.e., every lower semicontinuous seminorm bounded on the bounded sets is 

continuous), then T,: X~ ~ LP(g) is a bounded operator. In particular, if )(~ is bornological , then Tu: X ;  --* 

L"(#) is continuous. 
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T h e o r e m  9.4.6.  Let # be a measure on X possessing weak order p. Then: 

(i) If X is complete and I~ has strong first moment and possesses a separable linear subspace of full 

measure, then 7",:.u ~ L~(#) is continuous. In particular, T~,(L~(#)) C X .  

(ii) If X is complete, p > 1, and # has a separable linear subspace of full measure, then 71,: X :  ---* LP(#) 
is continuous. In particular, T~(Lq(#)) C X, where q = p/(p - 1). 

(iii) If X is a complete nuclear space and p > 1, then T~,: X;  --~ LP(#) is continuous. 

(iv) If  # ( X \ K )  = O, where K is convex and compact in the weak topology, then Tu:X~ ~ LP(#) is 
continuous. If X is quasi-complete, the convexity of K may be dropped. 

(v) If X is sequentially complete, p > 1, and # ( X \  U,~ K,,) = O, where Kn are convex weakly compact sets 

measurable with respect to p, then Tu: X~ ~ LP(p) is continuous. [f X is quasi-complete, the convexity of Kn 
may be dropped. 

(vi) If X = ( Y ' ,  a ( Y ' ,  Y) ) ,  where Y is a sequentially complete bornological space, then T,: X~ ~ LP(#) 
is continuous. 

C o r o l l a r y  9 . 4 . 7 .  Let p be a natural number. The form 

( l l , . . . ,  lp) ~ / l l (x ) . . ,  lp(x) g(dx) 
x 

is continuous on X ;  x . . .  x X ;  under either of conditions (i)-(v) of the theorem formulated above. 

In general, the existence of weak orders does not guarantee the existence of means. For example, let/~ 
be defined on Co by p({2"e,,}) = 2-",  where the e, 's  are the elements of the standard basis in Co. Then # has 
weak first order, but has no mean. It is interesting to note that such an example is impossible in the spaces 
not containing Co. 

P r o p o s i t i o n  9.4.8.  l f  a complete metrizable locally convex space X has no subspaces linearly homeomorphic 
to Co, then every Radon measure p on X having weak order 1 has mean m~,. 

Def in i t ion  9.4.9.  Let # be a measure having weak order 2. Its covariance Cu: X* x X" --* IP. is defined by 

C.(l,,l,) = f l:(x)12(x)#(dx) - f l,(x)#(dx)f l,(x)#(dx). 
x x x 

The covariance operator R .  from X" to the algebraic dual of X" is defined by 

Ru(f) (9  ) = Cu(f ,g  ). 

Clearly, any covariance operator R has the following properties: (1) it is linear, (2) nonnegative, i.e., 

( f , R ( f ) )  >_ 0 for all f E X ' ,  (3) symmetric, i.e., (R( f ) ,9 )  = (R(g) , f )  for all f , 9  E X ' .  
Under wide conditions, covariance operators take values in such subspaces of the algebraic dual to X" as 

X'"  or X and turn out to be continuous in reasonable topologies. 

P r o p o s i t i o n  9.4 .10.  Assume that X is quasi-barrelled and that X~ i~ bornological. Then for every measure 

p on X with weak second order, one has the inclusion Ru(X ' )  C X " .  

T h e o r e m  9.4.11.  Let # be a measure on X having weak second order. Then Ru(X" ) C X in either of the 
following cases: 

(i) X is complete and # has a separable linear subspace of full measure. 
(ii) X is a complete nuclear space. 

(iii) # ( X \ K )  = O, where K is convex and compact in the weak topology (if  X is quasi-complete, the 
convexity of K may be dropped). 
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(iv) X is sequentially complete, l~ is Borel, and # ( X \  U, K , )  = O, where Kn are convez weakly compact 

sets ( if X is quasi-complete, the convezity of K ,  may be dropped). 
(v) X = (Y', a(Y' ,  Y)), where Y is a sequentially complete bornological space. 

(vi) X is a semireflezive quasi-barrelled space such that X~ is bornological. 
(vii) X is complete, metrizable, and reflezive. 
Under these conditions, R u admits the representation in the form of a Pettis integral 

R u f  = j f ( x ) x  #(dx) - f ( m u ) m  u. 
x 

The previous theorem and the following general result enable one to get the continuity of R u. 

L e m m a  9.4.12. Let X be a locally convez space and let R: X" ~ X be a symmetric linear operator. Then 
R: X~ --~ X is continuous, lf, in addition, X is sequentially complete and R is nonnegative, then there exists 
a Hilbert space H and a continuous linear operator A: X~ ---* H such that R = A ' A .  

Corol lary  9.4.13. Let X be a sequentially complete locally convez space such that X~ is separable and let 

R: X" --* X be a linear operator which is nonnegative and symmetric. Then there ezists a topologically free 
sequence {z,} C X such that R f  = ~ = l  ( f ,  x,~)z,, for every f E X ' ,  where the series converges uncondition- 

ally. 

T h e o r e m  9.4.14. Let X be a separable Frgchet space. Then the class of covariance operators of measures 
of weak second order coincides with the class of all symmetric nonnegative operators from X"  to X .  

Typically, the class of covariance operators of measures of strong second order is smaller. The following 
results specify some additional properties of such operators. 

Proposi t ion  9.4.15. Let p be a measure having strong moment of order r. Then: 

(i) I f #  has a separable linear subspace of full measure, then for any neighborhood of zero V C X the set 

Tu(V ~ is compact in Lr(Iz). 

(ii) If  X is barrelled, then Tu: X~ ~ Lr(#) is an absolutely summing mapping. 

(iii) [f X is barrelled, r = 2, # has mean zero, and Ru: X" ~ X ,  then Ru: X ~ ~ Lr(#) is a 1-absolutely 
summing operator. 

Proposi t ion  9.4.16. Let H be a separable Hilbert space and let # be a measure of wcak order 2. Then # 
has strong second moment i f  and only if  its covariance operator R u is nuclear. 

In non-Hilbert spaces covariance operators do not characterize the existence of strong moments. 

T h e o r e m  9.4.17. Let X be a Banach space. The following two conditions are equivalent: 
(i) X is linearly homeomorphic to a Hilbert space. 

(ii) For any two measures # and v with R u = R~, the ezistence of strong second moment  o f #  implies the 
ezistence of strong second moment of v. 

There exists an extensive literature on covariance operators of Gaussian measures (see references in [60, 
527, 5281). 
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9.5.  S o m e  Spec ia l  Classes  of  M e a s u r e s  

Several special classes of measures on linear spaces (and, more generally, on groups) proved to be especially 

important for various applicat ions (such as limit theorems). One could mention here Gaussian measures,  stable 

measures, semi-stable and operator-s table  measures, infinitely divisible measures,  and so on. A detailed 
discussion of such classes deserves a separate survey. We confine ourselves to basic definitions and some 

selected results directly associated with the discussion presented above. For further information,  see [58,216, 

295, 359, 520, 528]. 
Gaussian measures on infinite-dimensional spaces play a vital role in the limit theorems for infinite- 

dimensional random elements.  Further information about this important  field can be found in [40, 227, 295, 

304, 528]. We shall make  several remarks  associated with the central limit theorem. 
In this section, we consider only Radon probability measures # which have weak second moments .  
Let X be a locally convex space and let X ,  be a sequence of X-valued independent  centered random 

vectors with one and the same Radon distribution #. Set 

XI + . . .  + X~ 
5'.= 

Note that  the distr ibution of X ,  coincides with the measure #*", defined by 

#*"(a) = (It * . . .  * It)(n-' /2a),  

where the convolution is n-fold. 
The central l imit problem studies the following two questions: 

(1) Does the sequence of random vectors 5", converge (in a suitable sense)? 

(2) If it converges to some random element Y, then what is the rate of convergence on a certain class of 
sets? 

Both problems have topological and analytical aspects. We do not touch upon the second problem (see 

[40]) and make a few comments  on the first one in connection with its topological aspects.  
In order to formulate  some related results, we introduce the following notions. 

De f in i t i on  9.5.1.  (i) We say that  a probability measure 3' defined on the a-field a ( X )  in a locally convex 

space X is Gaussian if for each l E X" the measure 3' o 1-1 is Gaussian on the straight  line, i.e., ei ther it has 

density (27ra)-X/2exp(- (2a)-x( t -  m) 2) or it is Dirac's measure at some point m. 

(ii) We say that  a probabil i ty  measure it with mean m on a locally convex space X is pre-Gaussian if it 
has weak second momen t  and there exists a Gaussian measure 3' with mean m on X such that  

Vf,9 E X ' .  
x x 

Note that  a probabi l i ty  measure 3' is Gaussian precisely if the equality 3' = 7"" holds true for all n (in 

fact, it suffices to have this equali ty for n = 2). 

In Example  9.5.9 given below, we shall encounter a probability me~sure which has a bounded support  in 
co, but is not pre-Gaussian.  

De f in i t i on  9.5.2.  We say that  a probabili ty measure # with zero mean on a locally convex space X satisfies 

the central limit theorem (CLT) if the sequence {~*"} is uniformly tight. A probabil i ty  measure  # with mean 
m is said to satisfy the CLT if the measure #_,~ with zero mean satisfies the CLT. 

Note that  a probabil i ty measure # satisfying the central limit theorem has weak second moment .  Indeed, 

for every continuous linear functional l on .\', the sequence of the measures # ' "  o 1-1 -- (p o l - l )  ' '  on ~) is 

uniformly tight, hence, a classical result applies  
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L e m m a  9.5.3. Let It be a probability measure with zero mean on a locally convex space X.  If the sequence 

{it.n} is uniformly light, then it converges weakly to some centered Radon Gaussian measure 7. In addition, 

It is pre-Gaussian. 

For the proof, see [59, 60]. 

Def in i t ion  9.5.4. A locally convex space X is said to have the central limit theorem property (the CLT 

property) if any measure/~ on X with strong second moment satisfies the CLT. X is said to have the strict 
CLT property if the CLT holds for any probability measure # on X which has mean zero and has a weak 
second moment. 

If X = I~", then any measure with weak second moment satisfies the CLT. Certainly, such a measure 
also has strong second moment (moreover, the existence of strong second moment follows from the uniform 

tightness of the sequence {#'"}). The situation is different in infinite dimensions. For the proofs of the 

following four statements,  see [304, 528]. 

P r o p o s i t i o n  9.5.5. (i) A Banach space X has the strict CLT property if  and only i f  d i m X  < ~ .  

(ii) The space C[0, 1] does not have the CLT property. Moreover, there exists a pre-Gaussian measure 

with bounded support in C[0, 1] that does not satisfy the CLT. 
(iii) There exists a measure with bounded support in C[0, 1] which is not pre-Gaussian. 

(iv) There exists a measure on C[0, 1] which satisfies the CLT, but 

f II ll it(d ) = oo. 
X 

P r o p o s i t i o n  9.5.6. Any  Hilbert space has the CLT property. 

Definitions of type and cotype of Banach spaces can be found, e.g., in [528, w 5 Chapter  5]. 

P r o p o s i t i o n  9.5.7. Let X be a Banach space. The following conditions are equivalent: 

(i) X has cotype 2. 

(ii) Any pre-Gaussian measure on X satisfies the CLT. 
(iii) For any pre-Gaussian measure I~ 

f ll ll  (d ) <oo. (9.5.2) 
x 

(iv) I f  a measure U satisfies the CLT, then (9.5.2) holds. 

T h e o r e m  9.5.8. A Banach space X has cotype 2 if  and only i f  the CLT holds for  any measure with strong 
second moment  and mean zero. 

It is worth mentioning that  in standard examples of measures on Banach spaces which are not pre- 
Gaussian these measures have the form 

# = ~ c~5a., c,, > O, a,, c X. 
rt.~l 

In these examples, it is easy to find a pre-Gaussian "part" u of #. As the following example [59, 60] shows, 
there are measures with compact supports without pre-Gaussian "parts." 

E x a m p l e  9.5.9.  Let X be a separable Banach space which contains a closed linear subspace linearly home- 
omorphic to the space Co. Then there exists a probability measure It on X with compact  support such that 
# is mutually singular with any pre-Gaussian measure on X. In particular, this holds for X = C[0, 1]. 
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Now we shall discuss some properties of locally convex spaces with the strict CLT property. The results 
presented below were proved in [59]. 

P r o p o s i t i o n  9.5.10.  Let X be the strict inductive limit of a sequence of locally convex spaces X,~ such that 
X ,  is closed in X,+I for every n. If It is a probability measure on X such that X"  C LP(It) for some p > 1, 
then there is an n such that 

#(X~) = 1 and X" C LP(It). 

T h e o r e m  9.5.11.  The strict CLT property is inherited by closed linear subspaces and is preserved in the 
formation of countable products, direct sums, and strict inductive limits of increasing sequences of locally 
convex spaces X,~ such that X ,  is closed in X,+I.  

P r o p o s i t i o n  9.5.12.  The strict CLT property is retained in the formation of countable projective limits. 

For uncountable products, Theorem 9.5.11 does not hold. Indeed, let It be the product of an uncountable 
number of copies of the measure u on the line which assigns 1/2 to the points - 1  and 1. Clearly, It admits 
a Radon extension to the Borel or-field of the corresponding product of lines. It is easy to see that  the only 
candidate for u weak limit point of the sequence {#'"} is the product of the s tandard Gaussian measures on 
the line which is not a tight measure, as we already know (see Example 3.1.18). 

T h e o r e m  9.5.13. Let X be the dual space to a complete nuclear barrelled locally convex space Y .  Then X 
equipped with the strong topology has the strict CLT property. 

Note that the space X itself may not have the CLT property. We have already encountered such an 
example: an uncountable product of lines (this is a complete nuclear barrelled space). 

Co ro l l a ry  9.5.14.  Let X be the dual space to a nuclear Frdchet space. Then X has the strict CLT property. 

P r o p o s i t i o n  9.5.15.  The following spaces have the strict CLT property: ~o~, s g,(~k), D[-n ,n] ,  
zr( k), 

T h e o r e m  9.5.16. Let X be the inductive limit of an increasing sequence of locally convex spaces X,, such 
that for any n the natural embedding of X ,  in X,,+l is compact. If a probability measure # on X satisfies the 
CLT, then there exists an n such that 

It(X,,) = 1 and X~ C L2(#). 

C o r o l l a r y  9.5.17.  Under the conditions of Theorem 9.5.16, for any measure # on X which satisfies the 
CLT there exists a separable Banach space B, compactly embedded in X ,  such that It(B) = 1. 

C o r o l l a r y  9.5.18.  If X is the dual to a nuclear Fr&het space, then for any measure # on X with weak 

second moment there exists a separable Hilbert space H, compactly embedded in X ,  such that # (H)  = i. 

Coro l l a ry  9.5.19.  The assertion of Corollary 9.5.18 holds for the following spaces: TY[-n,n] ,  S'(Rk), 

Regarding Gaussian and related measures, see [60, 68, 311,435, 493]. 

Convex measures are discussed in [61, 67, 78, 79, 304]. 

Stable and infinitely divisible measures were investigated in many papers; see, e.g., [58, 138, 160, 295, 
312, 520] and the references therein. 

There exists an extensive literature on limit theorems and martingales in infinite-dimensional spaces; see, 
e.g., [304, 462, 528, 548]. 
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9.6. A d d i t i o n a l  R e m a r k s  

In this section, we briefly comment on miscellaneous problems connected with the material presented 
above. 
M e a s u r a b l e  l i nea r  f u n c t i o n a l s .  There are several different concepts of a measurable linear fun'ctional on 
a linear space with measure. 

The first possibility is as follows. Let /~ be a Radon (or just Borel) measure on a locally convex space 
X. A/z-measurable linear functional on X is a linear function h X ~ ~ which is #-measurable.  We shall call 
such functionals "measurable proper linear." 

The second option is to define measurable linear functionals as the elements of the completion of X" in 
the topology of convergence in #-measure (thus, every such functional is the limit of a sequence {In} C X" 

which converges in #-measure). Since there is a subsequence {1,~} which converges almost everywhere, and 
the domain L of its convergence is automatically linear and measurable, we get a l inear modification of I 
extending l iml~ from L by linearity (by means of some Hamel basis in X). Thus, the first definition is wider. 

For some measures (such as Radon Gaussian measures), both definitions are equivalent (see, e.g., [60, 68]). 

However, in general this is not the case even for stable measures (see [256, 257, 476, 526]). See also Remark 
9.6.2 below. 

The following theorem says that it is not reasonable to consider linear functionals measurable with respect 
to every measure. 

T h e o r e m  9.6.1. (i) Let X be a Fr&het space. Assume that a linear functional l on X is measurable with 
respect to every Radon Gaussian measure on X .  Then I is continuous. In particular, every universally Radon 
measurable linear functional on X is continuous. 

(ii) Assuming Martin's axiom, there exists a separable Banach space containing a universally measurable 

hyperplane which is not closed. In particular, this hyperplane cannot be the kernel of a universally measurable 
linear functional. 

Assertion (i) is due to [68], where earlier results on the continuity of universally measurable linear function- 
ats were generalized (in turn, they extended Banach's theorem on the continuity of Borel linear functionals). 
For related results, see also [260]. Assertion (ii) is due to [498] (it gives a negative solution to a problem posed 
in [95]) 

R e m a r k  9.6.2. A linear functional f on a locally convex space X with a nonnegative Radon measure # 
is said to be Lusin if for any positive e there exists a convex compact set K~ with # ( X \ K ~ )  < e on which f 
is continuous. In fact, for sequentially complete spaces, this is equivalent to the fact that  f is the limit of a 
sequence of continuous linear functionals L converging in measure (see [526]). If each #-measurable linear 

functional is Lusin, then/~ is said to have the Riesz property (see [526]). Radon Gaussian measures have the 
Riesz property (see [60] for a related discussion). However, there are examples (see [256, 257, 476, 526]) of 
symmetric measures # on a separable Hilbert space and #-measurable linear functionals which are not Lusin. 

Def in i t ion  9.6.3.  Let X be a locally convex space and let # be a probability measure on a(X)." 

(i) The dual to E" endowed with the topology of convergence in measure # is called the kernel of #; it is 
denoted by H, .  

(ii) Let X be quasicomplete and let tz be Radon. An affine subspace E C X is called a #-Lusin affine 

subspace of X if for every ~ > 0 there exists a convex compact set K, C E wi th / l (K~)  > 1 - e. The Lusin 
affine kernel of # is the intersection of all #-Lusin at'fine subspaces. 

Kernels of measures and measurable linear functionals are discussed in [83, 84, 474-477, 496]. 
Misce l l anea .  M e a s u r e s  on balls a n d  d i f f e r en t i a t i on .  The behavior of measures on balls in metric 
spaces was investigated in many papers. Two different probability measures # and v, which agree on all balls 
in a compact metric space, were constructed in [114] (there is even a connected space with this property). 
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According to l113], one can even find mutually singular measures # and u with the property indicated above. 
On the other hand, it was shown in [405] that if two Radon measures on a Banach space X coincide on all 
balls, then they are equal. It is an open question what the situation is for Frfichet spaces. 

For details, see [69, 116, 346, 96, 403, 404,423]. 

The existence of the limit lim~_0 #(U(a, r))-' fu(~.r)f(x)#(dz), where # is a measure on a metric space 

X, f C LI(#), and U(a , r )  is the ball of radius r centered at a, was investigated in [96, 403, 404], where the 
reader can find interesting counterexamples for infinite-dimensional spaces and some positive results. 
Negl ig ib le  sets .  Due to the lack of any reasonable analog of Lebesgue measure or Haar measure in infinite 
dimensions, there is no canonical way of introducing a concept of measure zero sets. Various approaches are 
discussed in [17, 55-57, 60, 61, 95, 230, 391]. 
Z e r o - o n e  laws.  A zero-one law is a statement that certain sets can have measure either zero or one. A 
typical example: a linear subspace of a space with a Gaussian or product-measure. For further discussions, 
see [60, 138, 216, 228, 235, 478, 497]. 

Regarding measures on groups, see [16, 38, 201, 222, 248]. Probably, the most important  measure 
theoretic object relating to locally compact groups is a Haar measure. It is defined as a locally finite compact 
inner regular measure which is left (or right) invariant. It is known that on every locally compact group 
there exist left-invariant Haar measures and right-invariant Haar measures. On a compact group there is a 
finite left-invariant Haar measure (which is unique up to normalization). However, for noncompact groups 
Haar measures are never finite. For this reason, we do not discuss Haar measures in this survey. Sometimes 
invariant means turn out to be a good substitute for Haar measures (see [198]). Yet, it should be noted that 
recent investigations of measures on r/onlocally compact groups (such as groups of diffeomorphisms, loop- 
groups, and so on) lead to interesting classes of finite Radon measures on such groups which instead of left 

invariance (or quasi-invariance) are left quasi-invariant under actions of certain smaller subgroups (or under 

some more special transformations). Typical examples are the transition probabilities of diffusions on such 
groups. The difficulties encountered so far in studying concrete examples bear mainly analytical-character; 
however, further investigations may bring something that deserves the attention of topologists. 

In this survey we do not touch upon Hausdorff measures since they are typically unbounded. Basic theory 
can be found in [428]; for further references, see also [184, Sec. 33]. Infinite measures and their regularity 
properties (such as a-finiteness and suitably adopted versions of ordinary regularity properties) are discussed 
in Secs. 8, 9, 10, and 33 in [184] and in Secs. 12, 13 in [185]. In fact, in applications, the most frequently used 
examples of nonfinite measures are Haar measures on noncompact, locally compact groups and Hausdorff 
measures. 

For various related problems, see [462, 469, 472, 501,523, 533]. 
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