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Abstract

In the problems of large deflection of clamped circular plates under
uniformiy distributed loads, various perturbation paramcters relating to load,

deflection, slope of deflection, membrane force, etc, are studied, For a

general perturbation parameter, the variational principle is used for the
solution of such a problem. Thec applicable range of these perturbation
parameters are studied in detail, In the case of uniformly loaded plate,
perturbation paramecter relating to central deflection scems to be the best
among all others, The method of derermination of perturbation solution by
means of variational principle can be used to treat a variety of problems,

including the large deflection problems under combine loads.

[. Introduction

Prof., Chien Wei-zang (1947) taking the central deflection as the perturbation
parameter, made use of the regular perturbation method to handle the large deflection
problem of the circular plate under the action of the uniformly distributed load®:.
Later, a series of the large deflection problem of the circular, the ellipsoidal and the
rectangular plates are solved, with the help of utilizing the analogous perturbation
parameter (maximum large deflection)'!}”-*! The rigidity characteristics (the relation
between the maximum large deflection and the load) are obtained with this sort of
perturbation method which takes the deflection as the parameter, Its results conform
with the experimental data very well'®!, Another method of dealing with the large
deflection problem of the plate is to let the load be the perturbation parameter! but
the results are not ideal enough. In recent vears, R. Schmidt and D. A. DaDeppo
(1973) chose (1—v?) (v is Poisson coefficient) as the perturbation parameter to deal
with some problems of the membrane and the plate, After they made the comparison

among several perturbation solutions, they made the comment, up to now Chien

# This paper is completed under the guidance of Prof, Chien Wei-zang,
#¥ Communicated by Chien Wei-zang
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Wei-zang's solution is still considerably better than that of otherstto)» &)

However, just like what A. C. Boawbmup-*! pointed out when the deflection of
the deflection curve, which is plotted with Chien Wei-zang's method, is a little
bit larger, there exists the depression phenomenon in the central region (Fig.1a). But
this sort of phenomenon does nhot appeatr n the experiments, Moreover, Hu Hai-
chang also pointed out that when the central deflection is treated as the parameter,
the condition of the combined action of the central concentrated load and the
distributed load are not always proper. Because at this moment the central deflec-
tion may be equal to zero (Fig. 1b). In his paper®, he said that he did some
research work on this topic, but the problem has not yet been solved.

In order to solve the afore-said problem, a natural consequence is to seek for
another perturbation parameter, so as to look forward to a more proper solution,
i.e. to get better rigidity and deflection characteristics and at the same time to be
able to adapt to the condition of the more complicated load, Therefore, we made
the study of many kinds of parameters which are related to load, deflection, angle
of rotation and internal force. Furthermore, in handling the condition of the general
perturbation parameter, we got the sclution with the help of the variational prin-
ciple. This paper makes use of the rigidity and the deflection characteristics of the
solution which are obtained by the aid of the various kinds of perturbation parame-
ters. Moreover, we studied the applicable range of the solution, From the angle of

experimentation, we also discussed the possibility of the choice of the much better

parameter,
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Fig, 1

The discussion of this paper is limited to the uniformly distributed load condi-
tions, in considering two frequently used boundary conditions: the fixed clamp and
the movable clamp. It is not difficult to extend the analogous discussion to the

other conditions, concerning the load, the boundary and other conditions.
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[. The Fundamental Equation and the
Regular Perturbation Solution
We take the well-known Karmén (1910) equation as the fundamental equa-

tion, Facing the large deflection problem of the circular thin plate under the action

of the uniformly distributed load, Karman equation has the form:

a1 d dw \ dw 1 .
br dr r dr (’ dr >_rN"dT+—2v—qr
d 1 d ., 1 dw \?
" ar . ‘d’r*(r N.) =~ 9 Eh ('-dr‘) , 2.0
-_4d
Nl_ dr (rNr)
mn which
W transverse deflection
N, radial membrane force
N circumferential direction membrane force
r radial coordinate
g transverse uniform pressure

h——thickness of the plate

Ens3 . .
D= 191 - v*) bending rigidity
E elasticity coefficient
y———Poisson coefficient

we also have the central and boundary conditions,
In dealing with the condition of the fixed clamp of the boundary:

when r=90 w and N, finite, %:_l=0 ‘)
dw {
when r=a w=0, —ar =0 (2,20)

|

dn,
(1—V)N,+r dr =0 J

In dealing with the condition of the tightly movable clamp of the boundary:

when r=0 w and N, finite, %rl=07

d : .2b
when r=ga W:O’ _drl.=0r (22)
N, =0/

in which
a is the radius of the circular plate,
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Leading to the non-dimensionality

Y =W e AL 2y ar TTEY
- R \% 12(1—'0") P = Eh.l lz(l—v )\’ 3(1—-’1)")
_ a:N, R ) B a? .
S(‘—_ Ehs 1.‘(1“'0 ) Sr*_Wer‘lz(l—v ) ( (2.3)
__Tr. |
T a
Simplify exp. (2,1)
ay \ , dy
L(D-a;)—PD =8 "4 (2,4a3)
1 dy \?
L(pS,) = 5 (d—p“) (2,4b)
d
Si= 45 S, (2,4c¢)
in which
operator I (- ~p—(~1——1——d— .
P =P T de O

Simplify exps. (2,2a,2,2b)
when p=90 Yfinite.%=0, S, =0

, (2.5a)
dy ds, ‘ )
when 0= Y =0 dp =0 dp_”S'IO,

and dy ‘
when p=0 Y finite,d—p—=0, S, =0

: b

o i ) ay N (2,5b)
en p=| Y=0 dp =0 S,=0

In (2,5a), let v—>c>, then we obtain exp, (2 5b). Therefore, from now on we
only need to consider the fixed clamp condition, From the result we take T~>00,
so as to obtain the movable clamp solution.

Write down the perturbation parameter &, temporarily we do not make any
concrete formulation. They may be definite non-dimensionality of deflection,
angle of rotation, load or internal force. They also may have concrete physical
significance. But we assume that this parameter is changed in accordance with
the change of the nonlinear degree of the problem; especially when ¢ is a little
bit smaller and thus the problem is linear, Moreover, we assume that the various

magnitudes P, Y, §,; S, may be developed. Regarding the following asymptotic

series of e

P 3
-3—-2»=ale+ase + .- ‘
Y=Ympn+Yﬁpn3+w} (2.6)

S, =fa(pPyet+f (p)e \
S‘:gz(p)sz +g4(p)84
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in which ¢; is the undetermined constant, Y, (P), f;(P), g;(P) are the related undeter-
mined function of p, Substitute (2,6) into (2,4), (2.5), collect the similar terms
of the power order of g, so as to obtain a series of the linear differential equation

of the related a;, Y;(P), f;(#), 8 (pP), etc, and their corresponding conditions.
In dealing with ¢, and y,, wWe obtain

dy,\ _ .
L(P dp )—32a,0 2.7)
ay
when p=0 Y, finite,~—~-— dp =0
ay 2.7)
when p=1 Y, =0, _dT’_O
The solution of problem (2,7) is as follows:
Y, =a (PP -20*+1) (2,8)
Handling f, and g,, wWe obtain:
1 dy, N\
L(pfo) = 2( dp )
when p=0 f,=0 ‘\
_, 4f. N (2,9
when p=1 ap —fz—OJ
and ;
df,
The solutions of the problem (2.9) and (2,10) have the solutions
fa =—"6§—[p7 — 405 +60° = (4+ A)P] |
) (2.11)

2
g, = i’é—[?p“ ~200% +180% — (4 +A)]

in which A= }_J In dealing with the movable conditions, we should let v—co, but
+ vV

at this moment A= ~1,

Solve (2,8) and (2,11) thus give out the Ist term of series (2,6)., Generally

it is called the first term of power Series.

In dealing with e, and Y,, we obtain
dy . dy
(o5, )=s2ept = o=y r

=0 ) (2,12)

when p=0 Y, finite,

d
when p=a Y;=0 Ys =OJ
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Problem (2,12) has the solution

Yy=a,(P*-2p* +1)

1 1 5 10 + 4
sf _ 12 10 _ ]
”1( 2160 7 T 240 © T 288”7 T 216
4+ ., ST+204 ,  123+504
48 720 - 4320 )
Treating f, and g, we obtain
_dy, ay, \
Lo =4 " "ap ]
when p=0 f,=0 [\
- o
when p=1 ~ap ~ V=0 }
and
_df,
gt— dp
The solutions of problems (2,14), (2,15) are as follows:
1 . 4 5 4+2 N
e
af _ 1 1s 17 13 13 11
+ai( = T5035 "+ o120 * " 160" ‘
J15+a o 11s24 . 177504 |
720 © 216 © T 2160 * |
_ 574204 ,;  1242+7554+112A1 ) {
720 30240 \
7 20 _, 4+ A /
Bo=ay(— =Pt =0t Bt~ ) ’
e Y 221 12 143 10
~oi(~ %77 #* T120 °" Bi60" |
L 15%A o TT+14A . 1774504 _,
g0 * 216 © 7 a3y P
LS, 12425 TS 12"
240 30240

(2.13)

(2,14)

(2,15)

(2,16)

Solve (2,13) and (2,16), the 2nd term of the power series (2,6)1s derived. It

is often called the 2nd asymptotic solution., Both ,, ¢, in the two asymptotic

solutions are undetermined. The discussion concerning the perturbation parameters

in this paper is limited to the two preceding terms of the asymptotic power

series (2,6), Their solutions are the exps. (2,8), (2.11), (2,13) and (2,16).
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I, The Perturbation Parameters and

the Determination of a; a;

We substitute the solutions of (2,8), (2.11), (2.13), (2.16) into (2.,6) and
obtain

P . .
3y S@iETa,E 1
Y=a,A;(Pe+[a, A (P) +alA.(P)]e* | (3.1)
S.=aB,(Me+[20,a,B,(P) +Q;Bz<p)]SSJ )
S,=afcl(p)a+[2alaacl(p)+afC2(p)]33v

in which
A (P) =Pt —2P% +1

= ___1_.._ 12 L 10_L 8
A (0) 2160 ° T 240 ¥ " 288°
10+4 o 4+A ., 57+20A , 123+504
216 © 8 Pt 0 P 4320
_ 1 7 _ 2 5 3 _ +A
By (P) =P A 6
= - 1 15 }7 13__lg_‘. 11
B (" ==T5080 ¥ * 15120 © " 2160 °
15+4 5 11+24 .  177+504 ¢
720 ° 216 © T 2180 * ! (3.2)
_ 574204, 1242+7551+ 11247
720 30240
Cl(p) :_7__08__ 10 p4+3p2__u
6 6
1 221 12 _ 143 1
Ca® = =570 P+ 15120 ¥ ~ 2160 ©
L A5+ o TT+14A 0 177+504
T T
_ 574204, 1242+ 7550+ 11242
240 30240 /

The undetermined constants @, and ¢, in exp. (3,1) are habitually determined
through the concretely chose perturbation parameters, We studied the various para-
meters of the related load, deflection, angle of rotation and internal force as well
as their corresponding values of a,, @,. Now let us take several representative and
considerably valuable parameters as illustrative examples as follows: For the sake
of comparison, the central deflection and the load parameters are also shown con-
currently.

(1) Take the central deflection as the perturbation parameter, we have

£=Y(0) :\/_127‘1'37)’“%“— (3.3)
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The complementary equation may be derived from the 2nd expression of the exp.
(3.1). Let p=0, we obtain

8=01A1(0)8+[03A1(0>+013A2(0)]83 (3.4)

Compare the coefficient of the same power, through calculation we may obtain
a, =1 a; = (3.5)

This is just the resuit of Prof. Chien Wei-zang’s research work®),

(2) Take the load as the perturbation parameter, we have

€= ER®

ji_z_ES(]—vg)Ji' . _%'a (3.6)
32 R

The complementary equation may be derived from the 1st expression of exp, (3,1),
i.e.

g=a,e+a,¢et
Hence, we have

a, =1, a; =4y 3.7
In fact, it is the result of Vincent®],
(3) Take the mean square root of deflection as perturbation parameter; we-obtain

2 - ! 2 — 12(1__2)?.) ¢ s

Substitute the 2nd expression of exp. (3,1) into the above mentioned expression,
compare it with the same order power coefficient and eliminate the term which

contains €%, we obtain

ai= e oo
_(Af(p)dp
0
1
—a%jo A, (P) A, (0)dP
03 _- . . [

Substitute the related function into it, through calculation, we obtain

, 139934 + 585654 _,

315
. 315 _ 139934 + 585654 3.9
7 978 s 5250960 ai (3.9)

(4) Take the mean square root of the slope (angle of rotation) as the perturbation

parameter, instantly we obtain

gl :J':<%%>2dp= 1*2_(1;:2?.220‘]:( Z:v )zdr (3.10)
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Substitute the 2nd expression of exp. (3,1) into the afore-said expression, Compare
the same order power series of g, and eliminate the term which contain e®, We
obtain

at=— 1
| catyzap
0
1
agj Al ALpd
4]
a,=— 1
_[ (A?)2dp
g

Substitute the related function into the afore-said expression, through calculation
we obtain

105 8718+ 35754
128~

2= = o g3 Q
4= 28 = "308880 O (3,11

(5) Take edge circumferential membrane force as the perturbation parameter, we
obtain

a®«12(1-7v%H
£ =5,(1) = - E;f—a N.(@) (3.12)

Taking from the last expression of (3,1), let p=1, we obtain
et =aiC,(e*+[2a,a,C, (1) +a{C, (1]
Through calculation, we obtain

6 265+ 1124
2 = =" G &4
“ETToa #s= 10080 (3.1%)

Just like the two former parameters which were used in the history of mathe-
matics, in this paper we numerate three kinds of parameters, their physical signi-
ficance is very obvious, Their magnitude can reflect the nonlinear degree of the
problem, But the latter may not be limited by the load action condition. They have
general applicability. The analysis of the corresponding solutions of the above-

mentioned parameters will be proceeded afterwards.

V. Making Use of the Variational Principle to

Determine the Undetermined Constants

Through the method of determining the undetermined constants after the con-
crete choice of the perturbation parameter, it is simple and practical. But the
different choice of the parameters may lead to quite different results. Therefore,
if we want to obtain more proper solution, it is required that the research work-
ers should have profound experiences and deep recognition of the physical nature

in dealing with the problem. Right here, we suggest another way of approach, 1€,
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determine the undetermined constants basing on the Variational principle, and
thus determine the perturbation solutions. Although the calculation is guite a bit
more complicated, but there exists the comparatively general applicability,

Assume the perturbation parameter e to be the general parameter without phy-
sical significance, its solution is derived from exps. (3,1) and (3,2), First of all,
we go a step further to simplify the undetermined constants a,, a,.

In case we introduce

a.,
a=—" 4.1

aj

Then we can make use of a,, a to take place of ,, a,, so as to form a new set

of undetermined constants. Rewrite a,, e In terms of exp. (3,1) there exist
f§>>>:ale+a(als)3

Y=A (PDae+[aA, (M + A, (0) (8’ 4.2)

S.=B,(P) (a,&)* +[2aB, (M) + B, (M I@e* |

S.=C,(P)(a,e)*+[2aC, (P) +C, (MI(a,&)* .

in this expression the various functions are derived from exp. (3,2). It can be
seen from the above-mentioned expression that no matter which value (a,+#0),
is taken into consideration, there is no influence on the solution. In other words,
all the perturbation of the difference in a definite constant multiplier is derived
from the same value @. But these parameters must be looked as equivalent ones,
Moreover, it is possible to be represented by a parameter e=a e. € may be looked
as the perturbation parameter which obtains @, =1. Consequently the solution(4,2)

may be simplified by substituting ¢ into it

P )
—=¢e+ae’ '

32
Y=A, €+ (@A, + A,) €’ i (4.3)
S,=B,€* + (2¢B, + B,) ¢’
S‘:Clez + (ZGCL ’f’C:)GA‘ '

Thus, solution (4,3) is merely dependent upon an undetermined constant a. This
is a simple fact. But it should be pointed out that this is not unimportant, be-
cause in such a way, we may discuss the reasonable determination problem in
plain language. It is necessary to point out that the formal solution of exp. (4,3)
in terms of the general load and the general boundary condition are just like this,
It is only that the functions A; B; C; etc, in it and the concrete form of the

problem are related.
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Solution (4,3) is derived from the asymptotic linear differential equation step
by step. As for the fundamental equation (2,4) and the boundary conditions (2,5a),
(2,5b), they still satisfy the boundary conditions and concurrently satisfy the
3rd expression of (2,4), But they do not satisfy the balance equation (2,4a),
and the equation of compatibility (2,4b), In dealing with the complete functional
of the problem, all these conditions should be taken into consideration, But the
solution which we seek for is only the solution in terms of the asymptotic signi-
ficance, Therefore, when the functional is set up, relatively the higher order term,
which consists of ¢, may be eliminated, The calculation shows that after consi-
dering the term which is derived from the equation of compatibility (2,4b) is just
that which is belonged to the higher order term of ¢, Thereupon, we may re-
gard that solving (4,3) may asymptotically satisfy (2,4b), Consequently, we may
make use of the minimal total potential energy principle. According to paper[6],

from the condition of the first order variable=( of the total potential, we obtain

! dy dy . dy _

(G A S N A
Substitute (4,3) into the above—mentioned expression, with the variables against
a. Notice the corresponding equations which have satisfied the asymptotic solu-
tion. Consequently we eliminate the high order term of € and through calculation,
we obtain

1
[ (B.@al+ b + (208, + B ALTALdP =0 (4.5)
0

From which we solve a

I +1,
== 4,6)
a 31, (

. . . .
in which I, =J' B, (A])*dp |
0

i

I,

I;Bl -A{Agap{,L 4.7
I =| B.(aDzdp |

Exps. (4,6) and ({4,7) against the general load and the boundary conditions are

also set up. In the problems, which we tackle, from (3,2)... €Xps. A, A., B,, B,

are derived. Substituting them into (4,7), through calculation we obtaion,

10583 +87454+18484%

I = 748440 |
|, - 1058387454+ 18482 | s

: = 1496880 1

16+74 l

=g
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Substiute (4,8) into exp. (4,6), eventually we obtain

_ 10583 + 87454 + 184842
23760(16+74)

4.9

The result is quite simple. Substitute @ back into exp. (4.3). Instantly we obtain
the perturbation solution which is determined by the variational principle. At
this moment, ¢ does not have any concrete significance, It is merely a general

parameter.
V. Evaluation of the Perturbation Parameter

From the angle of the experimental facts, we make studies of the above-men-
tioned perturbation parameter (including the general parameter). Our purpose is
chiefly to examine the characteristics of the rigidity (relation between the load and
the central deflection) and the deflectoin of the corresponding solutions. We take
the formal solution of the (4,3), At this juncture, the ¢ value of the various
parameters is determined by (4,1), while the general parameter conditions are
determined by (4,9), First of all, we put forward the standard of several
experiments.

In (4,3) let p=0, we may obtain the relation between the load and the

central deflection, i.e. the rigidity characteristics,

P ey gt z
32 ‘ (5.1)
Yo=6+(a“ao)63 /(
in which 4  123+504 (5.2)
[+ .
4320

Under the action of the uniformly distributed load, the condition of the
circular plate is a simple experimental fact., Between P and Y, the unit
value are corresponding with each other, We consider that within a definite
range, this condition may be indicated as follows,

dio 2
“1o = —-,)Ef >
de 1+3(a 0) 0

L >3¢a,-a) . (5.3)

For the given perturbation parameter, in dealing with ¢ value, from exps. (5.1)
and (5.3), we obtain the satisfactory deflection range or the load range of
the unit value condition. When a>=a,, (5.,3) is set up constantly, i.e. the unit

value condition is always guaranteed.
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Another experimental fact is that in the process of deformation, the depression
phenomenon should not appear in the central region of the mid-plate. Thus, in
dealing with the shape of the deflection curve of the solution, there calls for a
demand. This point may indicate that against the angle of rotation, there should
have

dw
pr

=0

in the central region, especially when the neighborhood is set up 1n the center.
Because the depression phenomenon just indicates that the above—mentioned expres—

sion is destroyed. The dimensionless form of the above-—-mentioned expression is

dy
o <0

It is set up in the neighborhood of p=(. According to exp. (4,3), wWe obtain
ay , 3
—-EAIE-’_ (aA1+A2>e <O

As the above-mentioned expression is in the neighborhood of p =0, it may proceed

asymptotically.
Ale+ [aAY+ A]E<0 P=0)

After calculation, we obtain

= e ¢ (5.4)

In dealing with definite ¢ Vvalue, from the above-mentioned expression and exp.

(5.1), it may be estimated that the deflection or the load range may satisfy the

. 57 + .
undepressed condition of the central region. When a>f—9—§4—f(—)0i, condition (5,4)
is always guaranteed.
Sometimes, let us intoduce the parameter
a
/3_ a, (505)

It is much more convenient that in the expression, ¢ is defined by (4,1), and a,
is derived from (5,2) consequently. Exps. (5,1), (5,3), (5.,4) may be written

respectively as:

P
57~ €tRa.€ , (5.6)

Y, =€+ B-1)a,et
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and 1
ez =30, (1-8)

]
|
1 1714604 L) |
€ >”°( 123 + 504 ‘B)f

(5.7a,b)

Of course, to solve ({,3), it also can be indicated by 8, and it is solely deter-
mined by B.

With the exception of the condition (5,7), correspondingly, a definite per-
turbation parameter and the rigidity of solution as well as the deflection curve and
the experimental result must also be identical. If so, condition (5,7) is merely a
kind of qualitative demand. Then the latter is the quantitative standard. Due to
the lack of ample experimental material of the deflection curve, we merely examine
the rigidity characteristics.

Fig. 2 plots the actual value of the rigidity characteristics concerning the fix-
ed clamp boundary condition. Source of the data is paper [11]. Moreover, when
v=0,3, the curve concerned is plotted. The rigidity curve of the perturbation solu-
tion of the various values of 8 which takes the value (calculated according to exp.
(2,14)) are corresponding with each other. Thus we see that the variation of the
curve against 8 is very sensitive,especially when the deflection is comparatively
quite a bit larger, (—%—}2). It is only within the quite small range of B~1—1.02,
that the curve and the experiment are in considerably good concord with each other.

For the sake of intuition, we plot the condition (5,7) (v=0.3) (Fig. 3). The
two curves intersect each other at point ¢ in the subscript position. i.e. when B

is a little bit small, the condition (5,7a) is in action, When the two curves intercept

actual valuelll)]

T
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each other at point a in the superscript position, 8 is a little bit big, the condition

(5,7b) 1s in action., Regarding a definite 8 value, we may estimate the applicable

range of the parameter ¢, basing on the abscissa of the corresponding point on the

curve of Fig. 3. From exp. (5,6) we may obtain the corresponding deflection or

the load range.

Combine Fig. 2 and Fig. 3, we may review the various kinds of the pertur-

bation parameter, as well as the rigidity and

solutions.

we know that the characteristic of
the solution is solely dependent on 8.
Therefore, we tabulate the related per-
turbation and its corresponding B8 value ¢
in Table I, B value is defined by exp.
(5.5). The two conditions of the fixed 9.
clamp and the movable clamp are cal-
culated. At the same time the applicable
range of the deflection is determined

by Fig. 3.

3

2

1

3

4

the deflection specificity of their

(455 -~
b—_—-—)—_—_——a_— é-—'————_-
/// A ;
( lSa% |
/ ;
/| |
L/ l |

Fig. 3

Table I Perturbation Parameter and 8 Value

[ \ A= % '(%) applicable range
Name of | - s - —
l e= a fixed \ movable  fixeq : movable
Parameter | ‘ clamp clamp
i [ (=03 G=-D| clamp clamp
R . e —— e .
Central \ | 123 *30/1 ' | .
) 1 2.44 3.23
deflcctlon*} Y ‘ 4320 1 \
. — e ‘ e —
mean square | \y/)zdp 371@13”75" 0.9950 | 0,9853 . 2,38 3,09
root slope |V J, 308880 | ! !
A ) B 2" ] B o
general € 10583+874°&+—18}811 642 1 1,0200 ’ 2,31 3,42
parameter | 23760(16 +74) | § ‘
mean Sq“ml \/ yedo . 139834+ 585654 Ty 9479 | 0,9170 ' 1,93 2.58
root slope 5250960 ! ; !
_ - i _ i -
circumferen- '
el dreetion s 265+ 1122 0.9391 0.8982 1,86 2,47
membrane . 10080
force %
toaas* | P 0 00 0.52 | 0.90
|

* Chien Wei-zang (1947), ** Vincent (1831)
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Facing the fixed clamp boundary, we enumerate the 8, values of the two per-
turbation parameters and the applicable ranges which are quite near to each other.
Therefore, we may estimate that the solutions from which they are derived are
also quite near to each other. But the deflection applicable range which is derived
from the central deflection is most high. (w/ha~2,44), the mean square root of the
slope is pretty good. From Fig, 2 it may be seen that up to the vicinity of w/hx
2.3—2.1. They and the experiments are well conformed to each other. It may be
acknowledged that within this range, all of these parameters are considerably pro-
per perturbation parameters. The mean square root of the general parameter
deflection as well as the applicable range of the circumferential direction mem-
brane force is considerably small, Combine Table I and Fig. 2, it is possible to
recognize that the applicable range of their solutions is about w/h=1,8. The
applicable range of the load is pretty small. Its conformity with the experiments
is poor. This sort of parameter is not applicable.

As for the movable clamp boundary, the condition is fundamentally analogous.
But the applicable range of the various parameter ranges are generally bigger. It is
worthwhile to point out that regarding the general parameter, 81,02, is obtained
from the variational principle. Its applicable range is a little bit bigger than the
B value of the central deflection. This explains that it is possible that the result
of the variational perturbation method i1s not wrong., It is a pity, that we did
not have the experimental data of the movable clamp boundary, thus we could
not go a step further to evaluate the result.

Concurrently, it is necessary to point out that the calculation shows: when the

circumferential direction membrane force §,(1) and the mean square root slope
”l_*—_.—— . .

(‘/J‘ (Y/)Zpdp> are treated as the perturbation parameters, the result is completely
(]

identical with that which making the circumferential direction membrane force

. /() dY
S,(1) as the parameter making the average surface curvature (J —d'%pdp) and
1 0
the average angle of rotation ( %dﬂ) as well as the central deflection as
6

the parmeters, the result is completely identical with each other, etc. Henceforth,
several kinds of perturbation parameters, which are discussed in this paper, are
in fact the representations of considerably plenty of parameters.

If we want to improve the deflection characteristic of the solution, obviously,
from Fig. 3, it is shown that it is necessary to increase the B value greatly. For
example, if we hope that the applicable range to be w/hx~4. The calculation in-

dicates that the corresponding one is 8~1,09. But from Fig. 2 it may be seen
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that when Bx 1,09, the solution is greatly deviated from the actual value, Conver-
sely, if we hope that the deflection is a little bit bigger, the rigidity characteristic
of the solution and the experiment are well conformed with each other, This is just
what is discussed above, unless it is within the quite small range of 8x~1-1,02,
it is not proper. But like the contrast Fig. 3, it is known that compared with the
solution of the central deflection (B=1), its deflection characteristic has no
obvious improvement. Summing up the afore-said two results of the contradic-
tions, we may consider that it is only below w/h=x=2,5 (fixed clamp boundary),
that the perturbation solution of (4,3) form may concurrently meet the experi-
mental demands of the rigidity and the deflection,

V. Conclusion

in our discussion concerning the corresponding solution of the condition of
the uniformly distributed load and the mean square root of the slope, although
the afore-said solution and the solution of making the central deflection as the
parameter are considerably in concord with each other. But making the central
deflection as the parameter the result is better, because it is much simpler.
However, because the other parameter (not including the load), which are dis-
cussed in this paper. have the generally applicable characteistics. It is suggested
that we may make use of them to study the perturbation parameter of the
condition of the complicated load action condition. Of course, as the different
load conditions and the boundary conditons are different from each other, it is
possible that the merits and demerits of the various parameters are not completely
the same, We should have concrete analysis. But within a definite range all of
them are applicable. This paper in dealing with the general parameter conditions,
the method of determining the general perturbation conditions with the help of
the variational principle proves to be feasible. Thus it is worthwhile noticing.

Regarding the depression problem of the central region of the deflection
curve and compared with the fixed clamp boundary condition, the movable clamp
boundary condition is a little bit better, The analysis of this paper shows that
in making use of the perturbation process, which is described in this paper, and
the perturbation solution of the form of exp. (4,3). Let us go a step further, to
have an apparent enlargement of the applicable range of the present solution, it
is unable to get the valid result, Of course, in case the equation, the boundary,

the load and the perturbation process are different with each other, it is another
matter.
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