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Summary. The Helmholtz-Kirchhoff ODEs governing the planar motion of N point 
vortices in an ideal, incompressible fluid are extended to the case where the fluid 
has impurities. In this case the resulting ODEs have an additional inertia-type term, 
so the point vortices are termed massive. Using an electromagnetic analogy, these 
equations also determine the behavior of columns of charges in an external magnetic 
field. Using the symmetries, we reduce the four degrees of freedom system of two 
"massive" vortices to two degrees of freedom. We exhibit an integrable case and a 
nonintegrable one, according to choices of parameters. Nonintegrability is verified 
using a recent result obtained independently by Lerman and by Mielke, Holmes, and 
O'Reilly. Finally, we discuss the behavior of solutions as the masses of the vortices 
tend to zero, using for initial conditions a point of the trajectory of the Helmholtz-  
Kirchhoff equations. 

Key words: vortex dynamics, dynamics of particles in fluids, Hamiltonian systems, 
singular perturbations, transversal homoclinic orbits. 

1. Introduction and Physical Motivation 

The study of point vortices in a two-dimensional ideal flow began with Helmholtz 
(1858) and Kirchhoff (1876). A very good physical realization for their equations is 
liquid helium (Donnelly, 1967). Point vortices also provide insights for a variety of 
hydrodynamieal applications (Lugt, 1983). We refer the reader to the surveys by Aref 
(1983, 1986) and Marchioro and Pulvirenti (1983) as an introduction to the subject. 

In this paper we extend Helmholtz-Kirchhoff's equations to the situation in which 
all, or some of the vortices have mass. Impurities in an ideal planar flow (inviscid, 
incompressible, with vorticity concentrated on points) represent one basic physical 
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model. Fluid-particle systems have been studied under other conditions, distinct from 
ours (see, e.g., Nadim and Stone (1991), Papanicolau and Zhu (1991), Sulsky and 
Brackbill (1991) and Zhevandrov (1988)). Another motivation is the electromagnetic 
analogy described below. 

As a first motivation, consider one infinite cylinder of radius a interacting with 
a parallel vortex filament of intensity 17 in an incompressible and inviscid fluid in 
R 3 (Koiller (1987)). Due to its symmetry in the cylinder axial direction the system 
can be considered as the interaction of a usual point vortex with a disc of radius a 
in ~2. The flow must satisfy the boundary condition of zero normal velocity on the 
boundary of the disc. Thus an image vortex (under geometric inversion with respect 
to the center of the disc), with opposite intensity - F ,  must be introduced. Letting 
a ~ 0 and keeping the mass of the cylinder constant one gets a "massive point 
vortex" interacting with a massless one, the vorticities being opposite. In order to 
obtain the force on the cylinder, the pressure (given by Bernoulli's equation) should 
be integrated over its boundary. This tedious computation was done using residues 
(Koiller (1987)); the Hamiltonian and the symplectic structure were found by trial 
and error. Later it became clear that a simple shortcut to the calculations follows 
from a formula by Friedrichs. 

A second motivation comes from independent work by the other two authors 
(CGR and WMO) on an electromagnetic analogy to the point vortices model. The 
main difficulty follows from the fact that a vortex is usually taken as a massless sin- 
gularity, while physical charges have mass. They concluded that the "massive vortices 
model" corresponds to the well-known Hamiltonian system of columns of electric 
charges (with logarithmic potential) in a parallel magnetic field. The analogy be- 
tween massless point vortices and massless charged particles has been considered 
before (see, for instance, Hansen et al. (1985) and Leinaas (1990)). 

It is perhaps worth mentioning explicitly the differences between the hydrody- 
namical and the electromagnetic models. First, the role of vorticity in hydrodynamics 
is played by charge in electromagnetism. In both models it is usual to describe the 
underlying physical phenomenon using Continuous fields representing the density of 
vorticity (or charge) and the mass density, the latter characterizing the inertial proper- 
ties of the system. Also, in both cases, it is frequently important to work with singular 
densities of vorticity or charge. The difference between them is: in the electromag- 
netic case a singularity representing a concentrated distribution of charges is always 
associated to a point-mass singularity of the mass density (due to the mass of the 
charged particles), while in the hydrodynamical case most often the opposite is true, 
namely, point vortex singularities do not imply singularities on the mass density (the 
vortex singularity is viewed as a geometric object). In this context, the concept of 
"massive point vortices" (or just "massive vortices") is an idealization of impurities in 
a planar flow, i.e., they are concentrated masses (delta functions) superimposed on 
a background fluid of constant density. We remark that the term "massless vortex" 
does not mean, in any sense, the inertia of the fluid is neglected in any point. The 
inertial effect is implicit in the continuous mass density description. 

The organization of the paper is as follows. Section 2 has three parts. In Section 2.1 
we review Kirchhoff's point vortices model, including Lin's results (Lin (1941, 
1943)) about the Hamiltonian structure in the case of domains with boundaries. 
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In Section 2.2 appears the well-known Hamiltonian model for the dynamics of 
electric charges in a uniform magnetic field. In Section 2.3, from the equations of 
electric charges described in Section 2.2, and making the masses of the charges 
tend to zero, we formally obtain the Helmholtz-Kirchhoff point vortices equations. 
Section 3 is divided in two parts. In the first one we recall a result by Friedrichs 
(1966) giving the force acting on a massive vortex inside an ideal planar flow. This 
force is the same as the one obtained in the electromagnetic model of Section 2.2. 
We use the results therein to exhibit the Hamiltonian structure for the massive 
vortices system in bounded or unbounded domains. The symmetries of the system in 
the unbounded case are also discussed. Next we consider the equations of motion for 
one massive vortex in domains with simple geometry. These equations correspond to 
two degrees of freedom Hamiltonian systems and hence are usually nonintegrable 
(the case of a single massless vortex system is always integrable since it has just 
one degree of freedom). We study two integrable cases of domains with simple 
geometries, and suggest two nonintegrable ones. 

In the remaining sections we concentrate our attention on the two massive vortices 
problem in 1~ 2. In Section 4 we use the first integrals of this system to reduce it from 
four degrees of freedom to two degrees of freedom. The case in which the sum of 
the intensities of the vortices is zero is analyzed separately. In Section 5 We describe 
the dynamics of the two massive vortices system in the case where both vortices have 
the same mass/vorticity ratio, and in Section 6, the case where the masses are equal 
and the vorticities are opposite. We show that the former is integrable (a well-known 
fact in the electromagnetic context), whereas the latter is nonintegrable. 

Recall that systems of up to three massless vortices are Liouville integrable, and 
it is known that the minimum number of vortices required to obtain nonintegrability 
is four (see Ziglin (1980), Koiller and Carvalho (1989), Oliva (1991), and Castilla et 
al. (1993)). In order to analyze the question of integrability of the massive vortices 
system, we used a recent result by Lerman (1991) and Mielke, Holmes and O'Reilly 
(1992). They showed that, under generic conditions, a two degrees of freedom Hamil- 
tonian system with a homoclinic orbit to a saddle-center equilibrium point (an equi- 
librium with a pair of pure imaginary and a pair of real eigenvalues) is nonintegrable 
due to the presence of "Smale's horseshoes." We rephrase Lerman's condition to 
another that is very convenient for practical computations. We have to analyze the 
monodromy operator associated to the homoclinic orbit; this turns out to be a hard 
analytical task and we had to content ourselves with a numerical study. 

In Section 7 we present a preliminary study of the relationships between the 
classical vortex system (with all masses equal to zero) with the limit of the mass- 
vortex system as the masses tend to zero. Further work is necessary in order to clarify 
this issue. We also outline some other problems for future research in Section 8, 
which is a brief conclusion and outlook. 

2. The Analogy Vorticity × Charge 

We start by recalling two well~known physical models, one for the two-dimensional 
dynamics of point vortices in an ideal fluid, and the other for the two-dimensional 
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dynamics of charged particles in a magnetic field. In the last part we show how the 
two models are related. 

2.1. Point Vortices in an Ideal Fluid 

Consider the flow of an incompressible and inviscid two-dimensional fluid, with or 
without boundary. Suppose that the curl of the velocity field associated to this flow 
vanishes everywhere except at a discrete set of points where it assumes infinite values. 
We say that each one of these singular points is a vortex and the value of the circulation 
of the velocity field around a vortex is its intensity. Since the fluid is incompressible 
we introduce the scalar stream function ~P(ql, q2) such that the velocity field u is given 
by (the sign convention we use for @ agrees with the one used by Lin (1943)) 

u(q) ---- --V x (~r(q))e 3 = O@(q) -t- 0~(q)^  . . . . .  Oq2 el  Oq----(-e2. 

Here we use an orthonormal system (el, e2, e3) as a positively oriented reference 
frame, the vectors el, e2 being contained in the plane of the fluid and the symbol 
" x "  meaning the usual vector product• 

The velocity field in a neighborhood of a vortex of intensity Fo at the origin 
behaves as 

r0 re3 x q'~ u(q) = ~ \ H - ~ ]  +c(1)' 

which implies 
1-' o 

~P(q) = ~ log I[qlt + 0(1). 

For a system of N vortices, according to a well-known result of Helmholtz and 
Kirchhoff (see Friederichs (1966) and Chorin and Marsden (1979)), the velocity/lj 

of the j th  vortex is given by the regularized velocity field u~ ) at tb, 

- (0~PR/)(q) ~ (0~P(RJ)(q) ~ e2, (1) 
i l i = U ~ ) ( q / ) =  \ ~q2 ]q:q) el + \' ~ql /q=q, 

where 
and 

qj = qjlel +qj2e2 denotes the position vector of the vortex j ,  Fy its intensity 

(e3  x (q - qj) 

is associated with the regularized stream function 

= ¢(q) - 2~ log IIq - q21]. ~r(J) (q) 

It is a remarkable fact that vortex dynamics can be described by a Hamiltonian system 
of ordinary differential equations. The Hamiltonian function for general domains was 
first obtained by Lin (1941, 1943), using Koebe's approach for Riemann's conformal 
mapping theorem. In order to present this fundamental result let us introduce some 
notations. The domain R occupied by the fluid may have some internal piecewise 
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smooth boundaries Ck and is either bounded externally by a simple closed curve Co, or 
totally unbounded from outside, or  limited by curves Co extending to infinity. Koebe 
established the existence and uniqueness of a Green's function G(q, q0) defined by 
the following conditions: 

- g(q, qo) = G(q, qo) - (1/2n) log [Iq - qo[I is harmonic in R (including qo). 
- At each inner boundary Ck, G =constant  and 

aCds=0, 
k On 

where n denotes a variable normal to the boundary. 
- If R has a closed outer boundary C0, then G = 0 on Co. 
- If R has no outer boundaries, the asymptotic behavior of G on a circle of  radius 

r --+ eo is 

Os 

On -- 2rcr + ~ 

where n and s denote variables normal and tangential to the circle, respectively. 
- If R has boundaries Co extending to infinity, then G = 0 over Co and G = ~(1) 

as l[q[l--+ cx~. 

Remark. The Green's  function G satisfies the reciprocity property 

G(q, q0) = G(q0, q). 

Lin called attention to its importance in the proof of the following theorem. 

Theorem 1 (C. C. Lin). Let gr (q; q l . . . . .  q N )  be the stream function for the fluid motion 
on R determined by N vortices with intensities Pj at qj = qjlel +qjze2, j = 1, 2 . . . . .  N. 
Then 

N 

(i) q*(q; ql . . . . .  qN) = ~o(q) + ~ r iG(q ,  q~), 
j=1 

where $'o is a harmonic function on R (the stream function due to "external agents"). 

(ii) The motion of  the system o f  the N vortices in the domain R is governed by the 
Hamiltonian system (W, co) on ~2~¢, where 

N 1 N 1 N 
W(ql . . . . .  qu)  = Z PJ~r°(qJ ) + - ~7' r f ; G ( q :  qi) + ~ p 2 g ( q j ,  qj), 

2 ~ - ,  ' j = l  (i, j )= l  "= j : i  

N 

o~ = ~ _ r j d q j l  Adqj2, 
j = l  
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and (i, j)  denotes that the sum is considered over all pairs (i, j), i = 1, 2 . . . . .  N, 
j = 1 , 2  . . . . .  N, with i # j. 

Lin called W the Kirchhoff-Routh function. This theorem implies that the equa- 
tions of motion of the vortices are 

OW OW 
r j@l = O q j 2 '  ['j@2 - -  aqjl'  j = 1, 2 . . . . .  N. (2) 

We now give some examples. We are assuming that the fluid is at rest in the 
absence of the vortices, which implies that ~P0 = 0. The Green's functions (ii), (iii) 
and (iv) are obtained using the "method of images" (see Courant and Hilbert (1953)). 

(i) N vortices in ~2 with no boundaries: 

1 
G(q, qo) = ~ log ]lq - qoll, 

1 N (3) 
W = 4"--~ ~ F iF j log l lq j -q i [ [ .  

(i,j}=l 

(ii) N vortices in the upper half plane: 

G(q, q 0 ) =  ~ log { ( q l - q 0 1 )  z + ( q 2 -  q02)2~ 1/2 
\-~ql - q01) 2 + (-~2 ~ ]  ' 

1 N ( (q i  1 - -  qjl)2 + (qi2 - qj2) 2 '~ 1/2 

W = 4---£ 2 F i F j l ° g \ ( ~ i  1 -q~l)Z-+(qi2-+q~2)2] (4) 
(i, j}= 1 

N 
1 Z p2 log 2qj2, qj2 > 0, j = 1, 2 . . . . .  X. 

4rr j=l 

(iii) N vortices inside a circle of radius a: 

1 a[Iqollllq - qo'll 
a(q,  qo) -- log i i ,qol l2q-  a2qoll' ,qll, IIqoiL < a, 

1 N allqillllqj - q/il 
W = 4--~ 2 r , r j  log [ (5) 

(i, .])=1 

1 j~l  I[[¢]I£ a2[ a , j  1,2, ,N.  4zr Fj z- log , Ilcb'll < . . . .  
.= 

(iv) N vortices in the positive quadrant: 

1 log ( ((ql - qm) 2 + (q2 - qoe))2((ql + qm)2 + (q2 + qo2) 2) 
1/2 

G(q, qo) \ ( -~ l~q--~l )  2 + (q2 qo2)2)((ql - qol) 2 + (q2+~o2)2)] 
(6) 

1 g 1 N [Iqjl[ 
- -  - -  ~ F:}. log W = 4zr ~ r i r jG(qi ,  q j )  + 4n" J 

(i, j ) = l  . ,- ,  2qjl qj2 

q j t ,q j2>O,  j = l , 2  . . . . .  N. 
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(v) N vortices in a rectangular container. 

In this last example we illustrate another result by Lin (1943): if two domains D 
and R are related by a conformal mapping z ~ D -+ ~ ~ R ,  then the Kirchhoff-Routh 
functions W and ITV of the corresponding domains are related by 

N F 2 d ~  
: W + ~ ~ l o g  . (7) 

i=1 

In particular, the motions in each of the domains do not correspond directly (due to 
the extra term) under the conformal mapping. We change notations to ~, = w = q. In 
order to apply Lin's result we need a basic result from the theory of elliptic functions: 
the function z = sn(w, k) maps the upper half-plane D: I m z  > 0 over the rectangle 
R: - K  < u < K, 0 < v < K'. Here K = K(k) is the complete elliptic integral 

fo I dz 
K(k) = ~/(1 -- z2)(1 --  k2z  2) 

and K'  = K(k'), k' = ,/1 - k 2 . Using this, the function W given by (4) and relation 
(7), we get (we will omit the "tilde" on the new Kirchhoff-Routh function) 

1 N Izi - z j l  
w = 4--; E rirj  l o g -  

(i, j>=l Izi - -~jl 

4jrl ~ '~ r~  {logllm[sn(wj)]l - l o g  d[sn(wj)][dwj / '  (8) 
j= l  

[ee[wj] I < K, 0 < Im[wj] < K', j = 1 , 2  . . . . .  N, z j = s n ( w j ,  k). 

These Hamiltonian functions are quite different from the usual Hamiltonian func- 
tions of classical particle mechanics: they do not have a kinetic energy term that usu- 
ally allows us to distinguish the coordinates and the momenta. There is no difference 
here between "positions" and "momenta." Both are the position coordinates of the 
vortices. One of the main motivations that we had in the present work, since the 
beginning, was the search for the "lost" kinetic energy term, using electromagnetic 
analogies. 

2.2. Charged Particles in a Magnetic Field 

Let us consider a system of N "two-dimensional charges" (or simply charges) in 
some domain in the plane (as in Section 2.1) bounded by perfect neutral conductors. 
A two-dimensional charge can be viewed as the intersection of an infinite column 
of point charges with an orthogonal plane, so the electric potential is logarithmic. 
Good approximations of columns of charges have been experimentally obtained with 
pure electron plasma confined in cylindrical vessels (see Driscoll and Fine (1990) 
and references therein). Suppose that there is a uniform magnetic field parallel to 
the columns of charges (this is one of the ways of confining pure electron plasma 
in cylindrical vessels). We now present the equations of motion of this system in 
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both Lagrangian and Hamiltonian forms (see Goldstein (1980)). Using the CGS unit 
system and assuming that velocities and accelerations of the charges are not too large, 
in order to neglect relativistic and radiation effects, we have 

=o, 
dt aqji 

i = 1 , 2 ,  j = 1  . . . . .  N, 

N mj 
~(ql  . . . . .  qJv, ql . . . . .  q~v) = ~ -~-II¢[j [I 2 - U(ql . . . . .  qN, ql . . . . .  q)v), 

j=l (9) 
N Oj .  Aj(qj), 

U(ql . . . . .  qu, ¢11 . . . . .  q;v) = ~b(ql . . . . .  qN) -- Y~. -7-qj " 
j=l 

B 
Aj ---- -~(e3 x qj), 

where the multidot symbol " . "  means the usual inner product, N is the number of 
charges, Qj is the intensity of charge j ,  my is the mass of charge j ,  B = Be3 is the 
uniform magnetic field, A is the potential vector, B = V x A, c is the light velocity 
and ~p is the electrostatic energy of the system. Using the results of Section 2.1 we 
can explicitly write the function ~b. We just have to be aware of changing signs in 
"potentials ~"  and Green's functions of the preceding section in order to follow the 
usual conventions of electrostatics. If -gz0(q) denotes the electric potential due to 
external charges at the point q, then 

N 

q~(ql . . . . .  qN) = -- Z Qj~o(qj)  + q~l(ql . . . . .  qt¢), 
j= l  

where q~/denotes the electrostatic energy of the system of charges and its interaction 
with the boundary, q~I is given by (Panofsky and Phillips (1962), ch. 6.1) 

I ' N  
~I = ~ ~ .  Q, ~i, 

where gzi is the potential produced at the point qi by all other charges, including the 
effects of the boundaries of the domain. Using the Green's function of Section 2.1 
we get 

N Qi log [[q - q/t[ 
~/(q, ql . . . . .  qu) = -- E QjG(q,  qy) + 2:r 

j=l 

N 

= - ~ QjG(q,  %') - Qig(q, qi)- 
j¢i 

Therefore, 

1 N 
~ / ( q l  . . . . .  qN) = - - ~  

(i, j)=l 

1 N 
OjO~G(q:, qO - ~ ~.= O~g(qj, qj), 
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and making Qj = F j, j = 1 . . . . .  N,  we obtain 

¢ = - w ,  

where W is defined in Theorem 1. In the absence of boundaries or external charges, 
4~ is given by 

1 N 

~b(ql . . . . .  qN)=--2- ' -  ~- ~ Q i Q j l o g [ [ q j - q i l ] .  
<i, j>=l 

The Hamiltonian form of equations (9) is obtained through a Legendre transforma- 
tion: 

OH OH 
• , , i = 1,2, j =  1 ,2 ,3  . . . . .  

Pji --  Oqji @ i -  OPji 

N 1 PJ Qj 2 
H = E - c A J  + (lo) 

j= l  

U 1 PJ QjB  2 
=ZT-L-7~. - 2 c  ( e 3 x q s )  +~) '  .,.,,,j 

j = l  

where Qje 
pj = mj(tj + A j  = rnjqj -t- ~ (e3 x qj). 

2.3. Charges without Mass and the Point 

We now relate the equations of mot ion 
It is convenient to rewrite equations (9) as 

Vortices 

presented in Section 2.2 to the equations (2). 

mj{lji = --~ .Oqji 

Qj B Oq5 
= (@' X e 3 ) i  - -  - - ,  

C Oqji 

Now making mj = 0 we get 

i = l , 2 ,  j = l  . . . . .  N. (11) 

Q•B gtjl = 1, 2, j = . . . . .  N,  
0¢ Qj_B 0¢ 

--  0 7 2 '  c q j 2 -  Oqj l '  

I 

i 1 

which are exactly equations (2), except for a time rescaling (t = - t ' B / c ) ,  and with 
the identifications 

Qj <-+ Fj, (o + ~ - W .  

One concludes that the equations (2) for the usual Helmhol tz-Kirchhoff  point 
vortices model are the formal limit as mj -+ 0 of the equations for the two-dimensional 
charged particle dynamics in a uniform magnetic field. In both cases, charges with 
mass and charges without mass, the dynamics of the particle system is Hamiltonian.  
Besides the difference between dimensions, "momenta  and coordinates" in the second 
case are generated by the configuration space coordinates only. The propert ies  of  
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this limit pose interesting questions; we will come back to this point in Section 7. 
Another observation (for which we thank one of the referees) is that the momenta 
do not exactly go away as mj ~ O. The "mechanical" momenta are absent, but 
the electromagnetic contribution to the momenta is still there: pj = (Qy/2c)Aj = 
(QjB/2c)(e3 x q j). When the masses vanish the momenta become intermingled with 
the position coordinates. 

The results of this section suggest that it is reasonable to think about systems of 
vortices with mass, and also that a good candidate for the equations of motion in this 
case are equations (10). In the next section we will show that this analogy is correct. 

We would like to point out that considering massless charges is the essence of 
an approximation (guiding center) frequently made in plasma physics and usually 
associated with the presence of strong magnetic fields. In the context of point charges 
the relation between the formal limits as B ~ c~ and m --+ 0 is very easily seen. 
Changing the time scale as t = t 'B in equation (11) we obtain 

mj .. Q j  Oq~ 
-ff~qji = c (¢lj x e3)i - --'aqji i = 1 , 2 ,  j = 1  . . . . .  N. 

So, either the limit as B ~ ~ or as m ~ 0 gives us the same result. For large B, these 
equations describe the motion in the slow time scale t' = t /B  (drift approximation). 
The analogy between the "Poisson drift" approximation for a continuous distribution 
of two-dimensional charges in a transversal uniform magnetic field and the two- 
dimensional Euler equations for an incompressible fluid was first presented in Levy 
(1965) and recently has been the object of experimental studies (Driscoll and Fine 
(1990)). 

3. Vortices with Mass 

3.1. Symplectic Structure 

Consider the same situation described in Section 2.1, now assuming that the vortex 
j has mass mj. This massive vortex can be viewed as an idealization of a very thin 
cylinder with circulation, or of a two-dimensional "massive particle" (or impurity) with 
circulation. The following result is fundamental in this work. 

Theorem 2. The motion of  "massive vortices'" is governed by the equations 

m j ( t ' j = p F j e 3 x ( d ~ - u ~ ) ( q j ) ) ,  j = l  . . . . .  N, (12) 

where p is the density of  the fluid. 

Proof This is an immediate consequence of a formula appearing in Friedrichs 
(1966, (3.9)) for the force acting on a vortex by the rest of the fluid. We outline 
the idea. Consider a frame (instantaneously) in uniform motion in a such way that 
the vortex at qj appears at rest. Take a circuit C around it, enclosing an imaginary 
cylinder; the force exerted by the fluid on the vortex is equal to the force exerted by 
the exterior through C, plus the sum of the flux of momentum out of the cylinder 
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with the rate of change of momentum in the interior. Combining Bernoulli's formula 
and Cauchy residue theorem, Friedrichs obtained, for the force Fj, the following 
expression: 

× 

where the vortex velocity was reinserted. The equations of motion follow, then, im- 
mediately. 

Remark. From identities (1) and equations (2) we have 

r ju~~(qj )  = e3 x VjW. 

Using this, equations (12) can be written as 

mj(t'j = pFj(e3 x qj) -- Vj( -RW),  j = 1, 2 . . . . .  

Therefore  equations (12) are formally equal to equations (11) with the identifications 

pFj(e3 x qj) ~ QjB (qJ x e3), - p W  ++ dp. 
e 

This remark implies the following theorem. 

Theorem 3. The equations (12) can be written as a Hamiltonian system on 
{ql . . . . .  qN, Pl . . . . .  PN} C [R 4N with Hamiltonian function 

N ~1 PJ --~%rJP" 2 
H =  ~ - x e3) + ( - p W ) ,  (13) 

j= l  

where W is the Kirchhoff-Routh function, and the canonical symplectic form is 

N 
o) = E dpj  1 A dqjl + dpj2 A dqj2. 

j= l  

When there is no boundary for "the flow, the function W is given by (3) and the 
system has the following three first integrals (the two first ones pre~ented in vectorial 
form): 

N . pF j  
YI = ~ pj + -~--qj x e3, (14) 

j=l 
N 

L = ~--~(qj x p j ) .  e3, (15) 
j= l  

satisfying the following commutation relations, 

N 
{1"[1' I-[2} = --P Z I"j, 

j=l  

{l"iI, L} = 1-I2, 

{I-[2, L} = - I I1 ,  

{1-[ 2, L} =- 0, 1.-12 de f l-I- H, 
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where the Poisson bracket of functions f and g is given by 

N 2  ( O f  O g Of O0__~j. ) 
tfgl-- E E  j=l i=l OPji ~qji Oqji 

3.2. Examples of One-Vortex Systems in Domains with Boundaries 

The dynamics of a single massless vortex in a domain with fixed boundaries is given 
by a one degree of freedom Hamiltonian system, which is always integrable. When 
the vortex has mass, Theorem 3 implies that the dynamics is given again by a Hamil- 
tonian, but with two degrees of freedom. In this case the question of integrability vs. 
nonintegrability becomes relevant. We present four examples of such systems. The 
first two are easily shown to be Liouville integrable, due to the geometric symmetry 
of the domains. The others are also examples of systems with simple geometry and 
discrete symmetry. We conjecture that these are nonintegrable, i.e., generically there 
is not a second integral of motion. Current understanding suggests that only acci- 
dental integrabili(y (i.e., for specific values of parameters) should be expected. The 
determination of such parameter values in a given Hamiltonian system turns out to 
be an interesting problem, for which Painlev6 analysis and Ziglin's techniques are 
current tools. 

3.2.1. One Vortex in the Upper Half Plane. Using Theorem 3 with W given by (4) 
we have the following Hamiltonian function for this system 

2 1 
p ~ - qle2) 

pF 2 
H ---- ~m - (q2el + ~ log q2, 

which is invariant under translations yielding the following first integral: 

pF 
1"I1 = Pl + -~q2.  

The system reduces to one degree of freedom, q2, as a natural mechanical system 
with mass m and effective potential 

Uef = pF 2 log(q2) + ~m (HI - pFq2) 2 • 

The equations of motion can be written as 

d 
~1 = ~~(mql + prq2) = O, 

m~/2 = __PF (rIl - pFq2) pF 2 1 = ___d Uef(q2). 
m 4:r q2 dq2 

Notice that, the last equation is similar to equation (54) (see Section 6.2). One can 
verify that for mF2p > :ri l l  2 the vortex collides with the boundary in finite time. 
For mF2p < :rrl~ two kinds of motions are possible, depending on the initial 
conditions: either the vortex collides with the boundary in finite time or it describes 
an oscillatory movement composed with a translation on the direction el (see Figure 
1). One can compare the solutions in the limit as m ~ 0 with those of the massless 
vortex system (see the discussion in Section 7). 
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q2 
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0.55 

0 . 5  

0 . 4 5  
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q2 
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1.85 

1 . 8  

(b) 

Fig. 1. NoncoUiding orbits of  a massive vortex in the upper half  plane; cases (a) and (c) 
are the typical ones. The distance from the vortex to the wall is shown in the vertical axis. 
Parameters values are m = F = p = 1. In each case the initial conditions are ql (0) = 
q2(0) = 0, oh(0) = 1/4rr and (a) q2(0) = 0.7, (b) q2(0) = 2.0. 
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q2 

5.15 

5.1 

5.05 

5 

4.95 

4.9 

4.85 

4.8 

4.75 

4.7 

(c) 

Fig. 1. (Continued). (c) q2(0)=5.0 .  

3.2.2. One Vortex inside a Circle of Radius a. Using Theorem 3 with W given by (5) 
we obtain, for this case, the Hamil tonian function 

2 1 
p -  ~ e3) 

pF 2 
H =  2--~ ( q x  + -~--  log tllqli2 - a2t, 

with Ilqll < a. Using polar  coordinates, 

er = cos0el + sin0e2, 

eo = - sin 0e'l + cos 0e2, 
po 

q = rer,  p = prer + - -Co ,  
r 

we have 

H = ~mm pzr + -;-£ + r2 + Fppo + ~ log Ir 2 - a21, 

with r < a. The momen tum po is a first integral of the system, which implies integra- 
bility. 
The equations of mot ion can be written as 

t) = -o + Fp 
m r  2 ~m ' 

l d  
): . . . .  Uef(r) ,  

m dr  

F 2 ~2 \ pP :  
def 1 { p2 + L-rg--r2} + ~ log I r2 - aZl. G f ( r )  = 

e4 / 
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The analysis of the motion follows immediately from the shape of the potential Uef 
(similar to the one shown in Figure 4). 

3.2.3. One Vortex in the Positive Quadrant. Using Theorem 3 with W given by (6) 
we have the following Hamiltonian function for this system: 

1 p ~_~p e3) 2 _ ~  2 ]lq[I 
H = ~ - (q x - log qlq2' 

or in polar coordinates 

1 (  P2 F2P 2 ) P F2 P F2 
H = ~m p2+ -~ + __~rZ+Fppo  + --~--logr + --~-- logsin(20), 

with 0 < 0 < :r/2, r > 0. The equations of motion are 

pF 2 cos 20 
P o - -  2zr sin 20'  

F p po 
O = -~m-kmr2, 

1 p02 p2F2 oF 2 1 
/ S t -  r3 4m r m 4rr r 

1 
i- = --Pr. 

m 

It is easy to see that, in this case, the equations of motion have no equilibria. 

3.2.4. One Vortex on a Rectangular Container. Using Theorem 3 with W given by (8) 
we get the following Hamiltonian: 

P 2 [ d[sn(w)] ] 1 Fp pF2 logilm[sn(w)][ - l o g  
H = 2--7 - -~-(q x e3) q- ~ dw w=ql+q2i' 

with q belonging to the rectangular domain defined in (8). 
This formula can be simplified using well known identities from the theory of 

elliptic functions (Byrd and Friedman (1971), [125.01, 731.01] and Bowman (1961), 
[(3.8)]). It should be interesting to perform a numerical study of this two degrees 
of freedom system, comparing it with the integrable one degree of freedom system 
obtained making m = 0. 

4. Two Massive Vortices. Reduction 

For the remainder of the paper we will consider the motion of two massive vortices 
in R 2. For simplicity, we assume the fluid to be at rest at infinity. Using Theorem 3 
with W given by (3), the Hamiltonian function is 

1 ( Flp )2  1 ( 1"2,o )2+qb(llql 
H :  ~ Pl - - - ~  (ql x e3) q-2-m-72 P 2 -  T (q2 × e3) -q2[]), (16) 
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where 
pF1F2 

• (llqt - q21l) = -pW(qt ,  q 2 )  = - -  2 ~  log [Iqt - qzll. 

We use the available first integrals to reduce the Hamiltonian system (16) to two 
degrees of freedom. We have to distinguish the particular case Ft + F2 = 0 in which 
the integrals I-It and I72 commute, implying that we can choose them as new canonical 
momenta. In the general case, since the integrals l-It, 172 and L do not commute, we 
will use I72 and L for the reduction. 

4.1. Reduction: F1 + F2 ~ 0 

We may assume F1 + F2 > 0 without loss of generality. First we use the rotation 
symmetry of the Hamiltonian (16). Consider the Jacobi coordinates with respect to the 
center of vorticity: 

F2q2 + Flqt 
R =  

F1 + F2 ' (17) 

r ~ q 2  - -  I l l .  

Now let us write R and r in polar coordinates: 

R =  RcosOel+RsinOez, 

r=rcos (O+¢)e l+rs in (O+¢)ez ,  
(18) 

where 0 is the angle between R and el, ¢ is the angle between r and R, R and r 
being the norms of the vectors R and r, respectively. 

Relations (17) and (18) imply that 

( r2 ) 
- - r c o s ( 0  + ¢ )  el ql(R,r,O,q))= Rcos0 F I + F 2  

( F2 r s i n ( 0 + ¢ ) )  e2, + R sin 0" F1 + F--------2 

q2(R,r,O, 4D= Rcos0+Ft+F-----~ r c ° s ( 0 + ¢ )  el 

+ R s i n O + F t + r 2 r s i n ( O + ¢ )  e2. 

(19) 

The new momenta PR, Pr, PC, PO are given by 

{ F1 M_ 1 PR 

P0 

(20) 

where 
cos0 sin0"~ 

To= - s i n 0 c o s 0 ] '  
0) 
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After some computation, we obtain the Hamiltonian in the new canonical variables, 
which will be denoted by the same letter H: 

(m!_+ m__2 "~ (p2 
H ~- \ 2mlm2 ] 

I (Ft2 + F22~ 
+2 \mi rn2/ 

P 

_[ Pi ~ p2 ( F___ E 2 ~ 2 (m l ..~ m2 ~ r2 t_ ci) (r ) 
r--2] q--S \Pl-+-FZJ \ mlm2 / 

(F1 1~2)2 ( p 2 . ~  -Jr- (,Po--Pea)2-{- P.P-~-4R2(I"1-{-.r2)2 ) 

rl+F-22 f - k - g  ~ ~11 (FlTF2)2]  g 

pea +g\r .x  m2! (21) 

where f and g contain the 4~-dependent terms 

) po ) 
r ~ Pr sin~b+ 2 prs in~+--coS~br  ( F I + F 2 )  

and 

( (po 
g = ~ ( F l + r Y 2 ) R r c o s q ) - r  pRsin~b-- ~ 

Notice that coordinate 0 is ignorable, that is, Po is a constant of motion and the 
Hamiltonian is reduced to three degrees of freedom. 

In order to reduce even more the number of degrees of freedom in Hamiltonian 
(4.1) we use integral rI 2, which in the new coordinates is written as 

( 2 pl 2 = p2 + Po - PC, R(F1 + F2) (22) 

For any initial condition, it is possible to make rl = 0 with a suitable translation 
(this is not possible when F1 + F2 = 0). Therefore, without loss of generality we 
assume that rI 2 = 0. From (22) it follows that 

pR = 0 (=> bR = 0), (23) 

R(I'I + F2) = 0 or R = 
Po Pea P 2 

R - 2 p(rl  + r2) (p° - pea). (24) 

Relations (23) and (24) may be used directly in the equations of motion associated 
to (4.1), to eliminate the variables pR and R. Moreover, this reduced system of 
equations is also Hamiltonian with Hamiltonian function H' given by 

H'(pr ,  pc,, r, 40; Po) = H(pR  = O, Pr, Pea, R(pea; Po), r, cD; po),  (25) 
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where R = R(pe~; po) is defined by relation (24). This assertion proved straightfor- 
wardly: 

OH I 
Or (Pr, Pea, r, 4); Po) = 

OH I 
- - ( P r ,  Pea, r, 4); Po) = 
~Pr 

OH I 
- - ( P r ,  Pea, r, 4); Po) = o4) 

- - ( P r ,  Pea, r, 4); Po) = 
OPO 

OH 
--~-r (PR = O, Pr, Pe~, R(pea; 130), r, 4); Po), 

OH 
-~pr (PR = O, pr, P4), R(p4); po), r, 4); Po), 

OH 
- ~ ( p l ~  = O, Pr, Pea, R(pea; po), r, 4); Po), 

(PR = O, Pr, PO, R(pea; Po), r, 4); Po) 
R=const 

a H  
+-~-'~(PR = 0 ,  Pr, Pg,, R(p4,; po), r, 4); Po) OOp R 

(p1¢ = O, Pr, P¢~, R(pea; Po), r, 4); Po) 
R=const 

where we used the condition (see equation (23)) 

OH 
-~-~ (PR = 0, Pr, Pea, R (pea; PO ), r, 4); Po ) = - P R  = O. 

Summarizing, omitting the "prime" in the sequel, we have the following theorem. 

Theorem 4. Let H(r, ¢, Pr, pc) be the reduced Hamiltonian. It depends on the integral 
of  motion Po as a parameter, and one may assume without loss of  generality I7 = 0 (so 
PR = 0 and R = ~/2/(p(F1 + F2)(P0 - pea)). H is obtained from (25) and (21), and is 
given by 

H = ~ p2 + ~ + y2r2 + 2ypea - ~'pea + qS(r) 

= 2--~ p - y ( r x e 3 )  +¢(Po-PO)+~(r) 

+O~/2p(po - P4~) (P - y ( r  × e3)) • e2, (26) 
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where r = rer, p = prer + (pe/r)e¢,  er, e~ being the usual polar unit vectors and where 

we define 

mlm2 

l~ - -  m l + m----------2' 

P PIP2 
Y -  2 F1 + F2 '  

P + 2 ¢ 

1 ) 

(27) 

I f  a solution o f  the reduced system is found, then the remaining variables can be 
reconstructed via (24) and with just one quadrature, namely, 

f t 3H dt 
0 = 3po 

with H given here by (21). 

4 .2 .  R e d u c t i o n :  1" 1 + ['2 = 0 

Cons ide r  the  canonical  t r ans format ion  to Jacobi coordinates with respect to center o f  
mass 

Pl = ml , t 
ml--~m2P R -- Pr, 

m2 
q l = R  r, 

ml  + m 2  

m2 , t 
P2 = ~ P R  + P r ,  

ml  + m2 

ml  
q2 = R + - - r .  

ml  + m 2  

(28) 

T h e  Hami l t on i an  (16) in the new coordina tes  p~, P'r, R, r is 
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( "] ( 1 ) 1 ml +m2 ,2 1 ml 
H'= ~ \ mlm2 / P r  +'~ _f.m 2 P~R 

-k-~l (~-~P)2(m-l+m2~\ mlm2 , R 2  

1 ( ml3__+m 3 
q-2(f f -~-)2\mlm2(ml+m2)2)r  

(29) 
1 

+2 Fpp~r • (R x e3) 
k mlm2 

1 (  1 ) Fpp~.  (r x e3) 
q-2 ml q- m2 

1 ( 
+2 \mlm'-~ml Trn2) ] r p p ' r  . (r × e3) + 

where we used ra = -1-'2 = F. Consider the canonical transformation induced by 
the following generating function (PR, Pr are the new momenta and R, r are the old 
coordinates): 

F = R- p ,  + r .  pr - ( - ~ )  (R x e3) - r. 

This transformation does not change the position coordinates, but changes the mo- 
menta to 

Substituting this transformation in Hamiltonian (29) we obtain the following theorem. 

Theorem 5. For F1 + F2 ----- 0 the reduced Hamiltonian in variables (r,  Pr)/s given by 

H=~--~I ( P r - 2  ( r × e 3 ) ) 2 + q b ( r ) + l \ ~ , /  e3× ~ + r  , (31) 

where 

and IX was defined in (27). 

r I = l"p((m2 - ml)/(ml q- m2)) (32) 

This Hamiltonian does not depend on the coordinates R, which implies that PR 
is constant. In fact, our canonical transformations imply that PR = rI. For future 
reference (see Section 6) we remark that the reduced Hamiltonian (31) has some 
analogy with the Hamiltonian appearing in the restricted planar three body problem. 
More precisely, it can be interpreted as the Hamiltonian of a particle with mass 
/z, subjected to a central force with respect to the origin, given by the potential 
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(r/2/8/z)r 2 + ~  (r), and to a harmonic force, given by the potential ( F ' p / ~ ) 2 r  2, 
centered on another point which describes a circular motion with radius (1/I'p)tlPR II 
and frequency rff2>. This is easily seen when we put the Hamiltonian (31) in a 
rotating coordinate system with frequency 0/21z. 

5. An Integrable Case: ml/1"1 = m2/F2 

In this section we examine a case in which the dynamics is not only Liouville inteZ 
grable, but also is easily determined. This allows us to visualize some features of the 
motion in the two massive vortices system which could be compared with the massless 
vortices system. First of all, let us reconstruct  the dynamics of the position coordinates 
eliminated by the reduction procedure, under the additional assumption 

ml m2 
- -  = 13, /3 > 0 .  ( 3 3 )  

Pl F2 
By inspection, we see that several terms of the Hamiltonian (4.1) drop out and 

we get another constant of motion p~.  Furthermore, 

{}=( F2 q_ P2t(l_,l~F2) (k,R(.~q_~2),p0-pC, +p), \ml m2] 
so, using relation (24) we obtain 

~ )=~  2 + 1  = const, 

R =  p ( F I + F z ) ( P ° - P ~ ) =  const, 

(34) 

(35) 

where ~" was defined in (27). This implies that, up to a translation (imposed to obtain 
I-I 2 = 0), the vector R defined in (17) has constant modulus and rotates with con- 
stant velocity. Therefore, it is sufficient to study the dynamics of r (defined in (17)) 
determined by Hamiltonian (26), which can be rewritten as 

1 2 1 2 
-7-' - y r )  - a log r, (36) 

where 

#FIF2 
~ -  2 ~ '  (37) 

× r 2 (38) PC,= ( r x  p ) . e 3 = / z ( r x / ' ) . e 3 - ] - - ~  , 

p F1 F2 
= . (39) 

Y 2 F1 -{- F2 
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The equations of motion associated to Hamiltonian (36) are 

pr 

Iz 

o u  
t7r  "-~ Or 

pc = constant, 

1 ( ~  )2 
where U = ~ - -  - y r  - cz log r. 

(40) 

(41) 

Potential U is depicted in Figure 2(a). Notice that U has a unique minimum point 
r, > 0 given by 

/zt~ + ,/(/~a) 2 + (2p, F) 2 
r 2 = ~ (42) 
* 2F2 

Once we know the r-component of the solution, by direct integration of equation 
(40) we obtain the b-component. Notice that the sign of ~ changes whenever 

r ( t )  = rc = ~/P-~. (43) 

In Figure 3 we present orbits associated to the Hamiltonian (36), for some typical 
choices of the parameters. 

6. Nonintegrability of the Case ml = m2 = m, -F1 = F2 = F 

The existence of a homoclinic orbit to a saddle-center point and some numerical ex- 
periments with solutions near this homoclinic orbit made us suspect that this Hamil- 
tonian should have "Smale's horseshoes" near the saddle-center equilibrium point 
and, therefore, does not possess any analytical first integral besides the Hamiltonian 
itself. 

Using "Melnikov functions" (see Holmes and Marsden (1982)), the existence of 
horseshoes can be proven, analytically, in many cases. Here one has to study a linear, 
second order, nonautonomous differential equation representing the monodromy op- 
erator associated to the homoclinic orbit. A rigorous proof for the nonintegrability 
would follow from the verification that this monodromy operator does satisfy some 
generic conditions. This turns out to be a difficult task which we could not accom- 
plish, analytically, at this time. We will attempt a return to this point in a future work. 
For examples which can be treated in closed form, see Grotta Ragazzo (1993) and 
Koiller and Carvalho (1989). 

Here we only present numerical calculations that "show" (or strongly suggest) that 
this monodromy operator satisfies the generic conditions for most values of F and rn 
and therefore the Hamiltonian (45) cannot be integrable in the Liouville sense. 
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Fig. 2. Graph of the potential U defined in (41) with y = 1, oe = 4/~r, p¢~ = 0.5 and (a) tx = 1, 
(b) # = 1/200. The scale of the vertical axis of (b) is logarithmic. 
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Fig. 3. Orbits related to Hamiltonian (36); cases 
(a), (c) and (d) are the typical ones. Parameter 
values are y = / x  -- 1 and a -- 4/Jr. In each case 
the initial conditions are ~b(0) = zr/4, pr(O) = 0 
and (a) p~(0) = 0.5, r(0) = 0.9, (b) pc(0) = 0.5, 
r(0) = ~,r0-~.5. Notice that the case (b) is not typical 
since r(0) = re, where rc is defined in (43). 

6.1. The Monodromy Operator 

We r e f o r m u l a t e  a t h e o r e m  by Le rman ,  and  i ndependen t l y  d e v e l o p e d  by Mie lke ,  
H o l m e s  and  O 'Re i l l y  (1992), which is a resul t  abou t  the  dynamics  n e a r  an orb i t  
homoc l in i c  to  a s ad d l e - c e n t e r  equ i l ib r ium point .  Phi losophical ly ,  this context  is s im- 
i lar  to  H o l m e s  and M a r s d e n ' s  m o d e l  of  two weakly  coup led  one  deg ree  of  f r e e d o m  
conserva t ive  systems,  whe re  one  of t h e m  moves  nea r  a separat r ix ,  and  the o the r  
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Fig. 3. (Continued). (c) pc(0) = 0.5, r(0) = 0.5, 
(d) p¢(0) = -0.1, r(0) = 2.0. 
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moves near  a per iodic  orbit  (Holmes and Marsden, 1982). 
The notat ions in the two theorems below are independent  from the rest of  the 

paper.  

Theorem 6 ( L e m a n ) .  Let (M, f2, H) be a Hamiltonian system defined on a four- 
dimensional symplectic analytic manifold M, with symplectic form f2 and analytic 
Hamiltonian function 1-[. Assume that: 

(i) p is a saddle-center equilibrium point of (M, f2, H), i.e., p has two nonzero real and 
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two nonzero imaginary eigenvalues. 

(ii) There is a homoclinic orbit F associated to p. 

(iii) There exists a neighborhood U of p with conjugate canonical coordinates 
(xl, Yl; x2, y2), symplectic form f2 = dXl /x dyl + dx2 /x dye and the Hamiltonian 
function is given by 

H(x,  y) = h(~, rl) = ~ + wrl + R(~, rl), R(~, rl) = O(~ 2, r/2, ~r/), 

(~ = Xtyl, 0 = (x 2 + Y~2)/2, co > 0). 

Let Zs C U (Eu C U) be a Poincar~ section transversal to F, Es n W ~  = 
(+d, 0, 0, 0) or ( -d ,  0, 0, 0) (Eu fh Wlo c = (0, 0, d, 0)), andIet Ns (Nu) be the intersection 
of Zs (Eu) with the energy level h(~, O) = O. Take (x2, ye) as symplectic coordinates 
on Ns and Nu. 

Define S: N~ --+ Ns as the Poincar~ map generated by ( M, f2, H) on Es and E~ 
restricted to the energy level h = O. Notice that S(0, 0) = (0, 0). Suppose, in addition, 
that 

(iv) For all ~ ~ [0, 2rr] the matrix representation B of  DS(O, O) satisfies 

(cos  3 - sin 8 ) def R~. 
B # \ s i n 8  cos~ = (44) 

Under these conditions there is a c* > 0 such that in each energy level c, 0 < c < c*, 
(M, f2, H) has an unstable periodic trajectory Lc ( Lc -+ p as c -+ O) and four transversal 
homoclinic trajectories to Lo Moreover, the system does not have an analytic integral 
distinct from H. 

The hypothesis (iii) above is not too restrictive. We can always choose a coordinate 
system in a neighborhood of p (Moser (1958), Rfissmann (1964)) and make a time 
rescaling in order to get (iii). 

We rewrite the hypotheses (iii), (iv) in a more convenient way for explicit verifi- 
cations. For a detailed proof see Grotta Ragazzo (1993). 

Theorem 7. Consider a Hamiltonian system satisfying the hypothesis (i) and (ii). Let 
~(t,  to) be the monodromy operator associated to the homoclinic solution F(.) between 
the points F(t) and F(t0), and 4-ico = 4-i2zr/r be the pair of imaginary eigenvalues 
associated to p. Then it is possible to define A(s) = limn~o~ lp(nv + s, -n r ) ,  s E [0, v), 
n ~ Y_, with A(s): TpM --+ TpM, where TpM denotes the tangent space to M at p. 
Moreover, the tangent space to the center manifold at p, TpW c, is invariant under A(s) 
and we can replace conditions (iii) and (iv) by 

(v) I f  At(s) is the restriction of  A(s) to TeW ~, then there is a value of  s such that the 
spectrum of  Ac(s) does not contain points in the unit circle (or the trace of  A~(s) is 
greater than 2). 
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6.2. Equilibrium Points 

For rnl = m2, the parameter ~/ given in (32) vanishes and the Hamiltonian (31) 
becomes one of "mechanical type": 

H = + v ( r )  
m 

def 1 2 k2 
= m p  ~ + ~ - r  2 + k2d- r + oe log Jr[ + const (45) 

1 2 k2 c¢ 
= - -  (Px "ff py2) _{.. 2 -  (x 2 q_ y2) q_ k 2 dx + ~ log(x z + y2) q_ const ,  (46) 

rn 

where we used PR = 1-I = const, and 

Pr = pxel  + pye2, 

r = x e l + y e 2 ,  
Fp 

k - -  

d = (e3 x PR) de__f de1, 
Fp 

pF  2 

27r" 

F o r  o~/(k2d 2) < 1/4 the potential U has two critical points (x+, y+) and (x_, y_) 

x + = - ~  1 + ~/t - k-5-~) , y + = 0 ,  

(47) 

x _ = - ~  1 - V .  k2d2 ] ,  y _ = 0 .  

The Hessian of U at these critical points is given by 

OxO2U2 .~=~:~ = k2 ol 
y=0 Xg: 

32U[ = k 2 _ 
X = x ±  OY 2 ~=0 x2 

O2U = 0 .  

Using relations (47) and (48) we obtain 

oZu ..... ± = 2k 2 I1 _ 1 ] 
Ox2 ,.=o k 1 4- v/1 --4~/k2d2 A' 

O2U r-  

..... ± = 2k 2 [ 1 

3Y 2 [. 1 ± v/1 4ee/k2d 2 ' 3~11 

(48) 

(49) 
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02U ,=x+ °2U ° 2 u  
.ox 2 > o, Ox 2 . . . .  < o ,  o y  2 x=~± > o .  ( 5 0 )  

y=o y-_o y=o 

Therefore we conclude that: The point (x+, O) is a stable equilibrium (elliptic type) for 
Hamiltonian (45) and (x_, O) is an unstable equilibrium (saddle type). 

6.3. Application of Lerman's Theorem 

The equations of motion for Hamiltonian (45) are 

~ = - - -  k 2 x + k d + c L  
m 

(51) 
= - - -  + a  y. 

m 

The plane y = j~ = 0 is invafiant and system (51) has a homoclinic solution u(.), to 
the point 

(x = x _ , y  = 0,.~ = 0, jp = 0) 

(see relations (47) and Figure 4). The homoclinic orbit is defined by (y = 0, p = 0) 
and by the solution of  ~ = - 2 / m  (d~ (x))/dx, where 

k 2 
• (x) = -~x 2 + k2dx + -~ logx 2 

o 
= k 2 x 2 + dx + ~ p  logx , 

with the initial conditions 

:~(0) = 0,  

• (x(0))  = ~ ( x _ ) ,  Ix(0)l < Ix-I .  

Let  us fix d as 

This choice is motivated by the limit as m ~ 0 discussed in Section 7.2. In order to 
write down the variational equations associated to the homoclinic orbit, it is conve- 
nient to make the following change of variables: 

t~=t  v m ' 

412rrp 
& = ~ ,  3 > 0 ,  

m (53) 
X 

X r ~ - -  
2 l '  

• ' (x ' )  = -~ -  - + 1 x'  + In Ix'l. 
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Fig. 4. Graph of the potential 4~ defined in (52) with k = 1, d = 1.2 and c~ = 0.2 (or the 
graph of ¢ '  defined in (53) with 8 = 0.2). 

We will omit the prime in the sequel. The new coordinates of x+ and x_ are 1 
and 1/3, respectively. Assuming 8 7~ 1 the equation for the (x, 2) components  of the 
homoclinic solution u(.) becomes 

{ ( ~ )  11}_ , (54) 
2 = -  ~ -  + 1  +~-x  

x(O) = 0, 
~(x(O))  = q~(x_), x(O) < x_.  

The first variation system along u(-) is given by 

1 
2 = - ( 1  8uT(t))x, (55) 

y~ = - ( E -  V(t))y, 

where 

E = I + &  
1 

lira V(t) = 0, V(t) < E. 
V ( t )  =- ~ ~ u 2 ( t )  , t--+~c~ 

The Hamiltonian system (45) satisfies the hypothesis (i) and (ii) of Lerman's  
theorem, with the center-saddle equilibrium point (x_, 0, 0, 0) and the homoclinic 
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orbit u(t). It is necessary to verify if the hypothesis (v) is satisfied. In this case, since 
the tangent space to the center manifold at (x_, 0, 0, 0) is given by (y, J0 arbitrary, 
2 = 0, x = x_, condition (v) is equivalent to (see Grotta Ragazzo (1993)): 

(vi) There is no fundamental solution ~(t) of 

j2 = p y  

Py = - ( E -  V(t))y, 

with the following asymptotic behavior (s ~ R): 

as t  --+ o% 

~(t) --+ ( cos ~/'E(t + s) 

\ -~/'E sin ~/-E(t + s) 

as t - ~  - - o o  

Ip(t) ~ ( cosv@'t 

\ - v / E  sin ~CEt 

-~E sin ~f-E(t + s) ) 

COS vt'E(t + s) ] 

/ 
cos 4-~t ] 

(56) 

Verifying condition (vi) is equivalent to the problem of deciding if the one- 
dimensional quantum scattering of particles with energy E, by the potential V, has 
a resonance (see Landau and Lifshitz (1976)). We can write the condition (vi) in 
another way, using the time dependent action-angle variables 

py = ~ t )  cos 0, 

y = sin 0, 

7 
where a(t) = ~/  E - V(t). 

Using these variables, equation (6.3) becomes 

= f2 + ~-~ sin 20, 

(5 
] = - I ~  cos20. 

f2 

(57) 

Notice that the first equation of (57) is decoupled from the second one. Solving it 
we obtain the solution 0 = ~o(t, 00) with g~(0, 00) = 00. It is easy to verify that the 
condition (vi) is violated if and only if all solutions of (57) have the same action I(t) 
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as t ~ 4-oc. Namely, condition (vi) can be written as 

405 

(vii) for some 00 ~ [0, 2zr), 

t ' =+~  f+~__fi log I(t, 00) t = - ~  = J _ ~  f2 cos 20(t, 0o) dt ¢ O. 
(58) 

Now, in order to check condition (vii), the following steps must be followed: 
(a) Solve the equation function u(t). (b) Substitute u(t) in the scalar equation for 0 in 
(57) obtaining the solution O(t, 00) as a function of  the initial condition. (c) Compute 
the integral in (vii) checking if it is different from zero for some 00. 

Since we could not develop this procedure analytically, we made a numerical in- 
tegration of  these equations using a sixth order Runge-Kutta  integrator of  the FOR- 
T R A N  routines library International Mathematical Standard Library (IMSL 1987). 
A typical example of the result obtained is shown in the Tables 1 and 2. It is impor- 
tant to say that the solution of equation (54) (that we also denote by u(-)) is even; 
therefore ~2 is even and for 00 = 0, 00 = - r e / 2  the integral (6.3) is zero. This fact 
helps us to check the validity of the numerical results. 

In Figure 5 we show a sequence of  time intervals of  a single solution of  the 
equation (51) with initial condition near the saddle-center equilibrium. This trajectory 
passes near the equilibrium a few times, where it slows down, and seems to take off 
"chaotically"; this is an indication of  homoclinic chaos. Moreover, it was not necessary 
to integrate for a long time to observe these features. Nevertheless, it may perhaps 
be interesting to perform a detailed numerical study, since some integrable systems 
appear to exhibit chaotic motions when viewed from certain directions. 

7. B e h a v i o r  a s  the  M a s s e s  Tend to Zero  

This section is intended to be a preliminary study for the following question: Is the 
guiding center (this means neglecting the masses) a good approximation? It is known 

Table 1. Differences A(t) = In I ( t )  - In I ( - t )  for the Parameter Value g = 20.0 

0o A (4) A (5) A (6) A (8) 

Jr 
0 x 10 -1° 0 x 10 -1° 0 x 10 -1° 2 x I 0  -~° 

2 
3Jr 

-2.275640 x 10 .2 -2.912588 x 10 -2 -2.907304 x 10 .2 -2.907314 x 10 -a 
8 
Jr 

-4.277453 x 10 .2 -5.468088 x 10 .2 -5.458338 x 10 .2 -5.458285 x 10 .2 
4 
Jr  

-4.505783 x 10 .2 -5.747780 x 10 -a -5.737892 x 10 .2 -5.737799 x 10 .2 
8 

0 0 x 10 -1° 0 x 10 -1° 0 x I 0  - I °  0 x i 0  -~° 
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Fig. 5. A solut ion of  equa t i on  (51) with initial condi t ions  near  the  saddle-cen te r  equil ib- 
r ium. P a r a m e t e r  values are  F = ~v/-~'~, ~ = 1/20, k = p = 1, d = - 1 . 0 5  and  l = 0.5. The  
initial  condi t ions  are x(0) = 0.05, k(0) = y(0) = 0 and  j~(0) = 0.1. In each case the length  
of  the  t ime  interval,  in which the  orbit  is showed,  is (a) 2, (b) 4. 
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Fig. 5. (Continued). (c) 8, (d) 16. 
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Fig. 5, (Continued). (e) 30. 

t h a t  in  g e n e r a l  it l eads  to  e r r o n e o u s  conc lus ions  a b o u t  t h e  long  t e r m  dynamics .  W e  

show h e r e  t h a t  for  s o m e  specif ic  choices  o f  ini t ial  cond i t i ons  ( e x p l a i n e d  b e l o w )  it 

works .  

Z1. The Integrable Case m l /  F1 --  m2/ I'2 = fl 

7.1.1. O r b i t a l  Stabi l i ty .  W e  now c o m p a r e  t he  dynamics  s t u d i ed  in Sec t ion  5 as fl ~ 0 

(wi th  fixed F1 a n d  F2),  w i th  t he  dynamics  o f  t h e  c o r r e s p o n d i n g  mass l e s s  vo r t i ce s  

sys tem.  T h e  s tudy  is r e s t r i c t ed  to t he  fo l lowing  s i tua t ion:  we take a point in a trajectory 
of  the massless vortices problem as initial condition for the massive vortices problem. 

Table 2. Numerical Estimates of u, zi and In I for the Parameter  Value ~ = 20.0 
and 00 = - r r / 8  

t u(t) it(t) In I(t) 

-4 .0  
+4.0 
- 5 . 0  
+5.0 
-6 .0  
+6.0 
-8 .0  
+8.0 

5.182196 x 10 .2 
5.182196 x 10 -2 
5.00236 x 10 -2 
5.00236 x 10 .2 
5.00003 x 10 .2 
5.00003 × 10 .2 
4.99999 x 10 .2 
4.99999 x 10 .2 

- 7.84229 x 10 .3 
+ 7.84229 x 10 .3 
-1 .028 x 10 -4 
+1.028 x 10 -4 
-1 .316 x 10 -6 
+1.316 x 10 -6 
-3 .934 x 10 -6 
+3.065 x 10 -6 

-2.994941 x 10 -a 
-2.544182 x 10 -1 
-3.045629 x 10 -1 
-2.470851 x 10 -1 
-3.045413 x 10 -1 
-2.471624 x 10 -1 
-3.045394 × 10 -1 
-2.471614 x 10 -1 
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The solution of the two massless vortices problem with vorticities I" 1 and ['2 is a 
rotation about the vorticity center, which we may set at the origin (Friedrichs (1966)): 

FlZl = -F2z2 = zzr((cos fat)el + (sin fat)e2), 

~ r = c o n s t a n t  and f a =  r12r2 1 
F1 + t-'2 2yr~zr 2' 

t e l l ,  

(59) 

where Zl and z 2 are the positions of  the first and second vortices, respectively. 
For any point along this solution, taken as initial condition for the massive vortices 

problem, it is easy to see that R = 0 in (17) and also that 17 = 0. One could worry that 
for these trajectories neither 0 nor ¢ in relations (18) are well defined, but fortunately 
0 and ¢ will be well defined as solutions of the reduced system in Section 4.1. In fact, 
R = 0 is equivalent to Po = P¢~ = const, and this eliminates the terms with R in 
the denominator.  Moreover,  since also PR = 0, the functions f and g in (4.1) vanish 
along the solutions. So the reduced system extends nicely to the situation considered 
here. In this case definition (18) and equation (34) show that the angle ¢ is measured 
relative to a frame that rotates with constant angular velocity fa' = 0 given by 

P (60) ~2' = ¢ = - .  

Now, from the relations (59), (17), (18) and the remarks above, the initial condi- 
tions for the massive vortices problem should be written as 

~o = - z r ,  

~ P  
r0 = Iz2 - Zll = 

2}, '  

f l l - l r  2 
- r 2 } ,  (= Poo), P,/,O = "2zr 

PrO "= O. 

(61) 

An important  point related to the limit to be considered as fl -+ 0 is that the 
critical value r,, presented in (42), tends to ro quadratically in the parameter  ft. In 
fact, 

r .  = 2},2 /z~ -}- (lZ~)2 -+- 4},2 \ 2re 

= r 0  2 2},2----~2+ \ 2 - ~ 0 2 ]  + 1 

= r  2 1 + ~ \ ~ ]  + O ( / x  3) , 

 Flr2 21 
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) r , = r o  1 + ~  \ - - ~ ]  +C( t t  3) 

= r ° (  l + ~ 2 { r ' l + r ' z ~ 2  ~ T P  ] +~(~3)  , (62) 

The energy of the solution associated to the initial conditions (61) also tends to 
the critical value of U as/3 --+ 0, since by a straightforward computation we get 

ot 4 
U(ro) - U(r.) = ~3 _ _  24y3 p3r~ + (~(f14). (63) 

Notice that the solution r(t), t e A, associated to the initial conditions (61) is 
bounded from below by r0, since PrO = 0. Therefore, in order to prove that 

lim sup Ir(t) - r0l = 0, (64) 
/3--+0 teR 

it is sufficient to show the root rm of the equation 

U(ro) - U(r) = U(r.),  rm > r., 

tends to r. as fl --+ 0. To do this we use the inequality 

U ' ( r , ) ,  r ,)2 + Urn(r,),  
U(r) > U(r,) + - - - ~ r  - ~ t r  -- r.) 3, r > r., 

given by Taylor's theorem and the fact U " ( r )  > O, r > O, and obtain an upper bound 
for rm, as the least root greater than r., of the equation 

U(ro) - U(r.) U'(r . )  (r - r.) 2 + Urn(r*)" - r.) 3 0. = 

Using (63), we get 

I" q.- r 2 ~  2 
rm < r, +/~2r0 ~ p  ] + ~(/j3). (65) 

This proves (64). Now, using the inequality 

U"(r.) , 
U(r) < U(r,) + ~ t . r  - r.) 2, r > r., 

given by Taylor's theorem and the fact U"(r)  < 0, r > 0, we obtain, through a 
procedure analogous to that one used to get (65), the following lower bound for rm: 

rm > r. + fl2r 0 \ -n"~;  + ~(f13). 
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The last inequality together with (65) implies that the asymptotic behavior of the 
amplitude of the radial motion as/3 ~ 0 is 

sup r(t) - inf r(t) =/322r0 r l  + r2 + ~(/33) de_=_f/32A r + G(/33)" 
t~R t~n \ rcr2p ) 

(66) 

Estimate (66) assures that the "orbit" (more precisely, the projection of the orbit 
over the configuration space) of the massive vortices problem with initial condition 
(61) tends to the orbit of the massless vortices problem under the same initial condi- 
tion. Thus we conclude that the massless vortices system is orbitally stable with respect 
to the mass perturbation, in the particular case considered in this section. 

7.1.2. Stability with Respect to Time. Our  next step is to verify if the massless vortices 
system is solution stable with respect to the mass perturbation. That means to verify 
if, under the same initial condition, the difference between the solutions in time of 
the two problems goes to zero, uniformly in t, as/3 goes to zero. It turns out that the 
answer is negative. 

We use the following approximation for the solution of equation (41) with initial 
condition (61): 

r(t) = ro + ~_"_~r (1 -- cos(a)rt)) + ~,~'~(/3, t), (67) 
z .  

where 

and 

d e f  
(D r 

[~'t(/3, t)l < G(/33)(lt[ + 1) (68) 

\Or2/r=r,J = \ 7  = 5 + ~(I) = --m-- + 6(I), (69) 

as/3 --+ 0. 
This expression is obtained in the following way. Let us write the solution r(t) as 

fl2 A r 
r(t) = r, -~ cosogrt + fft' (fl, t), 

with ~'(f l ,  O) = ~'(f l ,  O) = 0 and, from (66), 

sup 19~'(/3, t)l < (~(/32). (70) 
t E ~  

It is easy to see, substituting r(t) in equation (41) and expanding the potential U 
via Taylor's theorem, that fft'(fl, t) must satisfy the convolution equation 

/o' ~'(f l ,  t) -- --1 sin((Dr(t -- s)) 
2/~(Dr 

x U ' ( v ( s ) )  -/3----Z~ cos mrS + ~t'(/3, s) ds, (71) 
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where v: R ~ R is a continuous function with image contained in {r(t)lt ~ R]. Using 

s u p - U  (v(s)) =~ 
s~R I/z  I 

the inequality (70) and the definition (69) of wr, we conclude from equality (71) that 

Ifft'(¢~, t)l < 0(fl3)ltl. 

Estimate (68) follows from this inequality and relation (62). Notice that the ap- 
proximation (67) implies that the solution r (t) oscillates with a frequency given by o)r 
as fl --+ 0. 

Now, we integrate for ~ in equation (40) using the initial condition (61) and r(t) 
given by (67): 

f t_~l \ r - ~  ( P¢o _ y),ds , ( t )  - ~o = j .  

t 1 - 2 y  + - -  + (1 - cos(wrs)) 
= ; 2Zrro2 ro 

+2?,fft(fl, s) + fft"(fl, s)) ds 
[ 

uZrrr2 + ~  t +  co~ / + ~ " ( f l ' t ) '  (72) 

where, using inequalities (66) and (68), we have 

I~t"(fl, t)l < ~(f13), 

fo' s)) ds 
(73) 

[~t'"(fl, t)l = l(2y~t(B, S) "-}" ~t,t'(fl, < ~(f12)(t2 q- Itl). 
/z 

In order to compare the angular solution (72) with the corresponding one (59) for 
the massless vortices problem we recall that the angle ~ in (72) is measured with 
respect to a frame that rotates with angular velocity ~2' defined in (60). However, 
this implies that the singular term in fl, that appears in expression (72), is due to the 
angular velocity of the reference frame. In a nonrotating reference frame the angular 
solution ~p(t) is given by 

flr lF2,  f lAFp(  sincort']COr / ~ "  + (~. t). ~(t) = -~ r02 t  + - - ~ r  0 t +  

Now, using relations (59) and (61), we conclude that the first term of ~k(t) is equal 
to ~t  (defined in (59)), namely, the dominant term in ~-(t) is the angular rotation of 
the massless vortices system. The term 

flArP sinO)rt __ fl2Ar sino)rt .= fl2 ( Fl + F2 ~ 2 ( rn_l+m2~ 2 2row-'---~ 2ro \ ~ ]  sincort = \ zrr2 p ] sinwA (74) 
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represents an angular oscillation associated to the radial oscillation of frequency (69). 
Finally, the term 

f lArp t = p (ml + m2)(Pl + F2) t (75) 
2r0 Qrr2p) 2 

represents an angular drift with respect to the massless vortices angular motion. This 
drift term implies that the massless vortices system is not solution stable (in the 
meaning defined above) with respect to the mass perturbation. In fact, for any ~ > 0, 
such that 

( Ar p~2 1 (76) 
< t,-4-;7~o ) F '  

where 

we can choose fl' and 

I~"(fl, 1)1 
K = lim t3-+O ~22 ' 

t t = 4r06 
flzirp 

such that, for any 13 < fl', the difference between ~p~(t') and the respective angle fat', 
of the massless vortices system, is greater than e. The existence of fl' is obtained in 
the following way. From inequality (73) we get 

_ ( s inwrt '~ 
4/~(t') - fat ~ flA~p t' + + ~ ' ( f i ,  t') 

2ro wr / 

fl Ar p t, > - 1O(fl2)l - Igt'(fl, t')l 
- 2ro 

4roe "~ 

and from this, using inequality (76), 

lira (~'t3(t ')g2t ' i  > [2 ( 4 r ° ~  2 ] - -  - -  g ~  * E > E, 
~ o  - k A~p] 

which implies the existence of fl'. 
The results of this section are summarized in the following theorem. 

T h e o r e m  8. The solution of  the equations of  motion associated to the Hamiltonian (36) 
with initial conditions (61) has the following asymptotic behavior when the parameter fl 
goes to zero keeping ["1 and ['2 fixed" 

supr(t)- infr(t)= f122ro {FI+F2~2 
t / 

r(t) = ro + f l -~L (1 - cos(tort)) + ~(fl, t), 

@(t) - fa't -- ~r iF2  t + flA~P t + ( f lZAr ~ sin tort + ~ ' ( f l ,  t), 
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w/th 
[ff~(3, t)[ < ~(33)(Itl + 1) and I~g"(3, t)[ < (~(f12)(t2 -b [tl). 

Thus the limit o f  the solutions as the masses tend to zero are orbitally stable, but not 
solution stable with respect to the particular choice o f  initial conditions considered in this 

section. (Recall that 3 was defined in (33), ?, in (39), Ar in (66), cot in (69) and f2' in 
(60).) 

We suspect that the angular drift can be interpreted geometrically in a similar way 
to the "classical adiabatic angles" which appear in slow-fast systems. We conclude 
this section with one more remark. The limit process, using the initial condition (61), 
is very special. A necessary condition for the limit of a solution, as fl ~ 0, to be 
well defined is that the initial condition ro(3) satisfies ro(3) ~ 0 as 3 -+ 0. If it 
does not have this property, then the energy associated to it would diverge, as can be 
easily seen from the form of the potential U (see (41) and Figure 2(b)). However, 
by suitable renormalizations of time and energy one could perform more general 
comparisons between the trajectories. 

Z2. The Nonintegrable Case ml = m2, -1"1 = 1"2 : 1" 

We now compare the dynamics studied in Section 6 with the dynamics of the cor- 
responding massless vortices system. As before, we will restrict the study by taking 
a point on a trajectory of the massless vortices problem as initial condition for the 
massive vortices problem. 

If 1"1 + 1'2 = 0 the trajectories of the two massless vortices problem are parallel 
straight lines. The velocity of the vortices is F/4zrl, where 2l is the distance between 
the two vortices. 

Relations (79) and (80) below imply that the solution for the two massive vortices 
equation with initial condition (77) is exactly the same solution of the two massless 
vortices problem, for any value of m. Actually, this can be seen directly from Theorem 
2, since the inertial terms vanish (mj f t j '=  0). Hence, in the case analyzed in this 
section the dynamics of the massless vortices system is reproduced by the massive 
vortices m in a much better way than in the preceding section. Here the solutions of 
the massless vortices systems are also solutions of the massive vortices problem for 
any value of m. 

For the two massive vortices problem we should choose the following initial con- 
ditions: 

r0 = 21el, 

R 0 = 0 ,  

PRo = ~-~ +21-'pl e2, 

Pro = O, 

d = - + 2l el ----- de1. 
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With this choice the critical point (x+, O) can be written as 

m 1 
= 2l. (78) 

x+ = srpl 2 (1 + m/4rcpl2) 2 

Relations (77) and (78) imply f = 0 and therefore 

r(t) = 21eb (79) 

Now, from (45) and initial conditions (77) we have 

OH 1 F 
l~ = 0PR = ~m (Pc + Fp(r × e3)) = ~-~e2, 

which gives 
F 

R(t) = ~-~te2. (80) 

The solution given by (79) and (80) is obviously stable with respect to mass per- 
turbations in the sense of the last section. Moreover, in this case this solution is also 
orbitally stable with respect to small perturbations in the initial conditions, the point 
(x+, 0) is a minimum for the potential U and, from relations (49), the frequencies of 
small oscillations of these perturbations are 

= - -  = - -  m 2  '1- ~ , m \ v ~  ]~=~+ m 1 +  
y=O 

COy+ = m \ O y  2]~=~+ -- m 1 +  = - ' ~  q-C . 
y=0 

Notice that the dominant part of these frequencies is exactly the same one (see 
relations (69) and (74)) that was obtained for the oscillations of r(t) in the case 
m l / I " 1  = m 2 / I " 2  of Section 5. In the electromagnetic context this is the so-called 
cyclotron frequency, which only depends on the ratio between the intensity of the 
magnetic field and the electric charge of the particle. 

Summarizing: 

Theorem 9. The solution of the equations of motion associated with the Hamiltonian 
(45) with the initial condition (77)/s, for any value of m, given by 

r(t) = r0el = 21el, 
F 

R(t) = ~-~te2. 

Moreover, this solution is orbitally stable with respect to small perturbations on the initial 
condition, and the frequency of smaU oscillations co of the r components of the perturbed 
solution is 

3p 
c o  ~ - -  

m 



416 

8. Conclusions 

C. Grotta Ragazzo, J. Koiller, and W. M. Oliva 

The mathematical model studied in the present work, which generalizes the classic 
Helmholtz-Kirchhoff equations, has a wide range of applications. It is directly related 
to the problem of electron plasma dynamics in systems with cylindrical geometry, 
namely, two-dimensional massive charges (with logarithmic potential) in a transversal 
magnetic field (see Levy (1965, 1968), Briggs et al. (1970), Driscoll and Fine (1990) 
and Fine et al. (1991)). In the context of hydrodynamics it provides a model for 
impurities in thin flow films and a toy model for early planetary or galactic models 
(see Henbest (1991), Wetherill (1991), Abramowicz et al. (1992)). 

Several research directions can be followed, revisiting the huge literature available 
on massless vortices. We mention just a few: (i) integrability vs. "chaotic" behavior of 
a single mass vortex in simple domains, as those studied in Sections 3.2.3 and 3.2.4; 
(ii) stability of relative equilibria of rings of massive vortices; (iii) for two vortices, 
numerical experiments for arbitrary values of masses and vorticities (for this, recent 
work by Kunin et al. (1992) on special moving frames may be useful); (iv) in the case 
of two vortices with opposite intensities, collision in finite time may occur; blow-up 
techniques to regularize these singularities and a study of the collision manifold. 

A more general theoretical problem is related to the question of the limit systems 
as the masses of the vortices tend to zero. Geometrical aspects of singular Hamiltonian 
systems have been observed for several unrelated systems (e.g., Littlejohn (1984) and 
Kay (1990)). A general theory for Hamiltonian singular perturbations seems however 
to be lacking. In those and also in the present work, the singular perturbation question 
has a very special feature: we begin with a Hamiltonian system such that after the 
limit, as a parameter (here the masses) goes to zero, we obtain another Hamiltonian 
with a smaller number of degrees of freedom. Moreover, the symplectic form has a 
completely different structure when compared with the starting one. We believe that 
it would be interesting to understand the stability questions associated with this limit 
and relate them to the changes on the symplectic geometry. 
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