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Summary. Three conservation laws are associated with the dynamics of Hamiltonian 
systems with symmetry: The total energy, the momentum map associated with the 
symmetry group, and the symplectic structure are invariant under the flow. Discrete 
time approximations of Hamiltonian flows typically do not share these properties 
unless specifically designed to do so. We develop explicit conservation conditions 
for a general class of algorithms on Lie groups. For the rigid body these conditions 
lead to a single-step algorithm that exactly preserves the energy, spatial momentum, 
and symplectic form. For homogeneous nonlinear elasticity, we find algorithms that 
conserve angular momentum and either the energy or the symplectic form. 
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1. Introduction 

The dynamics of an autonomous Hamiltonian system possesses two fundamental con- 
servation properties. The flow preserves the Hamiltonian function (i.e., conserves 
energy) and defines a canonical transformation that preserves exactly the symplectic 
two-form. If the Hamiltonian possesses symmetries induced by the symplectic ac- 
tion of a Lie group on the phase space, additional conserved quantities known as 
momentum maps arise which are exactly preserved by the Hamiltonian flow; see, 
for example, Arnold [1988] or Abraham and Marsden [1978]. Typical examples of 
momentum maps are the total linear and total angular momentum. The preceding 
conservation laws play a fundamental role in the foundations of classical mechanics 
and often define observables of primary interest in applications of solid, fluid, and 
celestial mechanics. 
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Temporal (and spatial) discretizations of the dynamics generated by a Hamiltonian 
system need not, and in general will not, inherit the conservation laws of the contin- 
uum system. Numerical schemes designed to preserve exactly one or several of the 
underlying conserved quantities for finite step sizes will be referred to as conserv- 
ing algorithms. At least three considerations motivate the construction of this type 
of numerical scheme: (1) the fundamental physical and mathematical significance of 
conserved quantities, (2) the belief that conserved quantities often capture key qual- 
itative features of the long-term dynamics, and (3) the enhanced numerical analysis 
properties of conserving algorithms. For instance, exact energy conservation is often 
regarded as a strong manifestation of unconditional numerical stability. The use of a 
priori energy estimates is in fact the essence of the classical energy method of stability 
analysis; see, for example, Ritchmyer and Morton [1967] and Morton [1977]. 

This paper investigates two specific classes of conserving schemes for Hamilto- 
nian systems possessing a truly nonlinear configuration space with a group structure: 
symptectic integrators, which define a canonical transformation that conserves invari- 
ants such as the volume in phase space (Liouville's theorem), and energy-momentum 
conserving algorithms. Symplectic integrators were introduced in the pioneering work 
of De Vogelare [1956] (unpublished) and have recently received considerable atten- 
tion; see for example, ChanneU [1983], Feng Kan [1986], Feng Kan and Qin [1987], 
Lasagni [1988], Sanz-Sema [1988], Channell and Scovel [1990], and Zhong and 
Marsden [1990]. For overviews of the exponentially growing literature on the subject, 
too extensive to be examined here in any detail, the reader is referred to the review 
articles of Scovel [1991] and Sanz-Serna [1992]. Energy-momentum conserving algo- 
rithms have been considered by a number of authors, including Bayliss and Isaacson 
[1975], Labbude and Greenspan [1976a,b], Marciniak [1984], and Simo and Wong 
[1991], often in the context of specific applications. General methodologies applicable 
to any Hamiltonian system with a configuration manifold open in a linear space are 
described in Simo and Tarnow [1992]; energy-momentum conserving algorithms for 
general Hamiltonian systems on SO(2) and SO(3) are given in Simo, Tarnow, and 
Wong [1992]. 

1.I .  Motivation and Scope o f  the Paper 

Within the setting typically adopted in investigations on symplectic integrators, the 
configuration space Q is assumed to be linear, say, finite dimensional for simplicity 
(dimQ = n), with canonical phase space P = T*Q (dimP = 2n). Given a general 
Hamiltonian H: P -~ R the canonical evolution equations then take the standard form 

= ~VH(z) with zlt=0 = zo, (1.1) 

where o~ denotes the canonical symplectic matrix and the symplectic two-form co: 
T P × T P --~ R is given by 

A number of results are derived within this framework. For instance, the symplec- 
tic character of the implicit midpoint rule (Feng Kan [1986]) or the explicit central dif- 
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ference method (Simo, Tarnow, and Wong [1992]), and the explicit characterization 
of symplectic members within the classical family of Runge-Kutta methods (Lasagni 
[1988] and Sanz-Serna [1988]). 

The preceding setting, however, does not apply to nonlinear problems of evolution 
in classical mechanics arising in a number of significant applications. For example, for 
rigid bodies Q = SO(3) is a finite dimensional compact Lie group, for incompressible 
homogeneous elastic bodies Q = SL(3) is the group of unimodular matrices, for 
ideal incompressible fixed boundary fluids Q = Diffvol(fl) is the infinite dimensional 
group of volume preserving diffeomorphisms on f l  C tt~ 3, while for three-dimensional 
incompressible elasticity Q = Embvol(ll, R 3) is the differentiable manifold of volume 
preserving embeddings from f l  into 1~ 3. The proper mathematical setting of these and 
many other examples is that of simple mechanical Systems in the sense of Smale 
[1970]: the configuration space Q is a differentiable manifold, often (but not always) 
a Lie group, and the canonical phase is the cotangent bundle P = T*Q. In addition, 
the Hamiltonian H:  P ~ N is invariant relative to the symplectic action of a Lie 
group G on P with equivariant momentum map J: P ~ ~3", where q3* is the dual of 
the Lie algebra. 

A key question addressed in this paper is, To what extent can conserving algorithms 
and algorithm design strategies derived in the restricted setting of Hamiltonian systems 
on a linear phase space be applied to mechanical systems on general manifolds? This 
question can be motivated by the following elementary example. 

Example. Consider the simple example afforded by the dynamics of a pendulum of 
mass m > 0 in a force field with potential function V: N3 _+ N. The configuration 
space for this mechanical system is the unit sphere Q = S e, with canonical phase 
space the cotangent bundle P:= T*S z. Denoting by q ~ Q the position vector of the 
point mass m relative to the fixed point, which is taken as the origin of a Cartesian 
coordinate system, the Hamiltonian function H: P -~ N can be written as 

H(z) = K('rr) + V(q), :=  ll lr -, (1.3) 

where 7r := mq × ~1 is the generalized (angular) momenta, and z = (q, ~r) denotes a 
point in the canonical phase space. Obviously P is a four-dimensional manifold which 
is not a vector space. Elementary considerations show that Hamilton's equations of 
motion can be written in the canonical form (1. l). However, the symplectic matrix 
~(z) is configuration dependent and given by 

Here ~ denotes the skew-symmetric matrix associated with the vector q, defined 
by the relation ~h = q × h for any vector h ~ I~ 3. To make matters even simpler, 
consider a force field with constant direction defined by a unit vector y E S 2, so that 
V(q) := - g ( y .  q) where g: N ~ I~ can be interpreted as the intensity of a gener- 
ally non-constant gravitational field. Under these conditions, the Hamiltonian (1.3) 
is invariant under rotations about 3, and the momentum map J~: P --~ I~, defined as 
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Jr(z) = zr- 3/ (angular momentum about the axis y), (1.5) 

is a constant of the motion. The system is completely integrable since the presence 
of two conserved quantities, H and Jr ,  yield a reduced phase space ~ isomorphic to 
the two-dimensional toms. 

To illustrate the issues that arise when the phase space is no longer linear, we con- 
sider the numerical time-integration of this completely integrable Hamiltonian system 
by the midpoint rule. The algorithmic counterpart of equation (t. 1) is 

zn+, - z. = At¢(½(z.+, + z.))VH(½(zn + z.)). (1.6) 

Note that the Hamiltonian (1.3) and the map ~ (1.4) can be extended to T*•3; thus 
(1.6) can be defined even though ½(zn+1 + z~) is typically not an element of T*P. 
Assume that the algorithmic initial data zn: = (q~, zr,) at time t = t~ is in P, so that 
IIq tl = 1 and  = 0. T h e  reader can easily verify the following results (for a 
detailed analysis of this problem see the review article of Simo and Gonzalez [1993]): 

I. The algorithmic approximation zn+t = (qn+I, ~rn+i) lies in P = T*S 2. Equiva- 
lently, algorithm (1,6) exactly preserves the constraints Ilqn+l[I = l and 
"/rn+l " qn+l = 0. 

2. Algorithm (1.6) is exact momentum preserving, in the sense that Jr(z~) = Jr(zn). 
In addition, if the function g(-) is at most quadratic, the algorithm exactly preserves 
the Hamiltonian in the sense that H(zn+l) = H(zn). 

3. When applied to a system with linear phase space, the midpoint rule is symplec- 
tic; in fact, it is the lowest order symplectic Runge-Kutta method. Remarkably, 
however, algorithm (1.6) is not symplectic. 

The parametrization of P used in the preceding formulation of the problem is global 
and, in many ways, analogous to the optimal parametrization of the rotation group in 
terms of unit quaternions. Alternatively, one may consider a pammetrization of the 
problem in terms of local charts relative to which the symplectic two-form is constant 
and given by (1.2). By Darboux's theorem, such a local parametrization is guaranteed 
to exist. However, the possible advantages of working with a simple expression for the 
symplectic form are often offset by difficulties introduced by the parametrization. One 
drawback associated with local charts is the inevitable appearance of singularities. For 
the problem at hand, spherical coordinates provide a local Darboux chart. The singu- 
larity arises from the fact that it is not possible to cover the unit sphere with a single 
two-dimensional chart. It is for this reason that global pammetrizations are preferred 
in applications. For the rotation group, for instance, unit quaternions parameters are 
almost universally used in attitude dynamics, while the familiar Euler angles are sel- 
dom implemented in numerical algorithms. Singularities are a well-known difficulty 
with local coordinate charts; other, more subtle problems associated with conserva- 
tion laws also arise. Assume that spherical coordinates are used to parametrize the 
pendulum. Then 

4. The midpoint rule retains its symplectic character and is exact momentum preserv- 
ing when the dynamics is parametrized in spherical coordinates. 
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5. Remarkably, however, neither the midpoint rule nor any high-order symplectic 
Runge-Kutta method conserve energy when the dynamics is formulated in spheri- 
cal coordinates, even in the simple case g(q.  3') = q" 7 corresponding to constant 
gravity acceleration, The reason is that a trigonometric function cannot be inte- 
grated exactly regardless of the accuracy of the numerical method. 

The conclusion to be drawn from this elementary example is that conventional 
conserving algorithms on vector spaces need not, and in general will not, retain their 
conservative properties when applied to a nonlinear manifold Q. Accordingly, the 
construction of symplectic schemes has to be undertaken on a case-by-case basis. 
For the elementary problem at hand, for instance, it can be shown that the algo- 
rithm (1.6) becomes symplectic and retains second-order accuracy if the average val- 
ues ½(qn+t + qn) on the right-hand side of (1.6) are replaced by the scaled values 
q,+(~/2) := ½(q,+l + q.)/ll½(qn+~ + qn)ll. Observe that this scaling ensures that q ,+m 
lies on S 2. [] 

The goal of this paper is to address the question raised above when the configu- 
ration space Q happens to be a Lie group. We focus on dynamics of Lie groups for 
two reasons: (1) they appear in a variety of important physical systems and (2) the 
structure of a Lie group makes it possible to specify geometrically precise algorithms 
(although the actual implementation of such algorithms may be quite difficult). A 
key feature of linear configuration manifolds is the freedom to take arbitrary linear 
combinations of variations, that is, tangent vectors. For a closed nonlinear manifold, 
this is not directly possible. It is necessary to first translate variations to a common 
vector space before combining them and then translate the result to the appropri- 
ate tangent space. In addition, incremental updates of the configuration require some 
generalized form of exponentiation. The geometric structure of Lie groups provides a 
framework within which these operations can be carried out. Right or left translations 
are used to map the tangent space at an arbitrary element of the group onto the Lie 
algebra--a linear space--where the algorithm is formulated. The resulting algebra el- 
ement is then mapped to a group element by means of the group exponential map and 
appropriately translated. Another context in which such constructions exist is Rieman- 
nian manifolds. Such manifolds possess a connection, which specifies the appropriate 
"parallel translation" of variations from one tangent space to another; the existence 
of an exponential map is also guaranteed. In general, however, such connections and 
exponentials are quite complicated and are typically implicitly defined. 

1.2. Summary of Results 

To further illustrate the difficulties involved in the generalization of conserving 
schemes on linear spaces to simple mechanical systems, in Section 2 and Section 
3 we consider in detail the dynamics on the rotation group. This specific exam- 
ple has a significant interest in its own right. Important applications range from 
celestial mechanics and robotics to classical rigid body dynamics. Moreover, this 
algorithm can be used as a building block in the design of symplectic schemes for 
infinite dimensional dynamical systems involving maps from an open set either on the 
real line or the plane into the rotation group, such as classical models of nonlinear rods 
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and shells. We also remark that the proposed one-step method encompasses, as a 
particular case, the energy-momentum algorithms of Simo and Wong [1991] and the 
subsequent Lie-Poisson integrator of Austin et al. [1992]. Noteworthy results include 
the following: 

• Derivation of the conditions for the preceding class of algorithms to define a sym- 
plectic transformation. In sharp contrast with the geometric setting implicit in (1. I) 
the symplectic two-form in the classical spatial or body descriptions of rigid body 
dynamics does not take the canonical form given in (1.2). 

• Identification of a scheme which, to our knowledge, provides the first numerically 
tractable one-step exact energy-momentum preserving and symplectic integrator for 
the rotation group. We remark that neither of the two schemes referred to above are 
symplectic. The new scheme appears to be optimal in the sense that the algorithmic 
flow differs from the exact flow only by a time reparamtrization. 

• Derivation of explicit error estimates on the lack of symplectic character of the gen- 
eral class of energy-momentum algorithms for the Euler equations. The symplectic 
character of the new energy-momentum algorithm and the significance of the fail- 
ure of the symplectic property in the two aforementioned schemes is assessed in 
numerical simulations. 

Remark. Discrete-time versions of the generalized rigid body dynamics on O(n) that 
preserve the energy and symplectic form have been found by Moser and Veselov 
[t99l]. These multistep discrete dynamical systems do not conserve momentum. 
Specifically, the image of the computed configurations and body momenta under the 
spatial momentum map is not constant. However, there are one-to-one maps of the 
trajectories into the spatial momentum level set. 

In Section 4 we generalize the preceding results to a general Hamiltonian that 
includes an additional potential for (nonzero) external loading. A model problem 
to keep in mind is the dynamics of a heavy rigid body in a gravitational field, a 
nonintegrable system in the general case. 

• Starting from a general class of momentum-conserving algorithms, an explicit con- 
dition for exact energy conservation is derived. For the general heavy rigid body, 
enforcement of this condition yields a concrete energy- and momentum-conserving 
algorithm generalizing the midpoint rule which is not symplectic, but is uncondi- 
tionally stable and second-order accurate. 

• The symplectic conditions for the momentum-conserving generalized midpoint al- 
gorithms are shown to imply conservationof the kinetic energy, not the total energy. 
Thus enforcement of the symplectic condition for these algorithms yields schemes 
which are not consistent with the governing equations. Although symplectic al- 
gorithms could, in principle, be identified within a larger class using the general 
conditions given in Section 5, the complexity of these conditions makes this task 
highly nontrivial even for the rotation group. 
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In Section 5 we consider the generalization of the results presented in the preceding 
sections to the Hamittonian dynamics on a general closed Lie group G governed by the 
generalized Euler equations, as described in the fundamental work of Arnold [1966]. 
Assuming that a map from the Lie algebra to the group is available (for instance, the 
exponential map) the following results are shown to hold: 

° The structure of the energy- and momentum-conserving algorithms for the rotation 
group carries over to the case of a general Lie group. The result for the Euter 
equations is the algorithmic counterpart of the analogy between the classical and 
generalized Euler equations set forth in Arnold [1966]. 

° Explicit conditions for a general class of momentum-conserving algorithms to be 
symplectie are derived. Simplifications of these conditions are also described for 
the case in which the group G is abelian. 

From a practical standpoint, the key obstacle in the implementation of conserving 
algorithms for the Euler equations is the explicit characterization of the exponential 
map. (For systems with nontrivial potential, specification of symplectic algorithms 
appears to be difficult even when a map from the algebra to the group can be explicitly 
identified.) A closed-form expression is generally not known--exceptions are the 
rotation group, the symplectic groups, and linear groups. In Section 6, this difficulty 
is circumvented in the case where the configuration manifold is open in a larger 
linear space. For instance, for homogeneous compressible elasticity Q = GL(3) is 
open L(3). Additional examples of interest in applications include the compressible 
Euler equations and compressible nonlinear elasticity. The key idea here is to replace 
the (multiplicative) configuration update by the simpler additive update on the larger 
linear space. This technique is widely used in finite element treatments of a number 
of problems including nonlinear elasticity (see, e.g., Simo and Taylor [1991] and 
references therein). Adopting this strategy, we show that 

• Energy-momentum algorithms can be developed which conserve the true momentum 
map and the true Hamiltonian function of a given Hamiltonian system. An explicit 
example for the case of homogeneous elasticity is given following the methodology 
recently proposed in Simo and Tamow [1992]. 

• Algorithms such as the implicit midpoint rule and the central difference method 
retain their symplectic character since, in the canonical setting, the symplectic two- 
forms in the phase space and the larger linear space coincide. 

The performance of these two classes of algorithms is illustrated by phase portraits 
of sample numerical simulations. 

2. The Dynamics on the Rotation Group 

Below we describe our general strategy in the formulation of algorithms for Hamilto- 
nian systems on Lie groups designed to inherit exactly conservation of the momentum 
map, conservation of energy, and/or the symplectic character of the flow. The con- 
struction proceeds in four steps, which are summarized below in the specific setting 
of the rotation group: 
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Step 1. 

Step 2. 

Step 3. 

Step 4. 
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Regard the rotation group SO(3) as embedded into a larger group, the lin- 
ear group L(3) D SO(3). Then construct a four-parameter family of exact 
momentum-preserving schemes by time-stepping in L(3). 

Restrict the four-parameter family constructed above by enforcing the con- 
straint that the algorithmic flow lies in SO(3). This constraint eliminates one 
parameter leading to a three-parameter family of exact momentum-conserving 
schemes in SO(3). 

Restrict further the three-parameter family of momentum-conserving schemes 
constructed in Step 2 by enforcing exact energy conservation. Enforcement 
of this constraint is shown to yield a one-parameter family of exact energy- 
and momentum-conserving schemes, where the free parameter is in fact an 
arbitrary functional. 

Remarkably, for the unreduced Euler equations on T'SO(3) it is possible to 
specify the free function in the one-parameter family of exact momentum- and 
energy-preserving schemes so as to exactly preserve the symplectic structure 
in SO(3) x R 3 ~ T'SO(3). 

A few remarks should be made concerning the general applicability of this strategy. 
The developments in the subsequent sections suggest that the simultaneous completion 
of steps 3 and 4 above is not possible for a general Lie group G or even a general 
Hamiltonian system on the rotation group. This difficulty could be related to the fact, 
first pointed out in Zhong and Marsden [1990], that symplectic schemes for noninte- 
grable systems which exactly conserve energy must differ from the exact flow only 
by a time-reparametrization. Integrability considerations, however, place no restric- 
tions on the design of algorithms that simultaneously conserve the Hamiltonian and 
the momentum map. The integrability property of the Euler equations on the rotation 
group plays no explicit role in our analysis. 

It should be emphasized that the result.of Zhong and Marsden quoted above applies 
only to nonintegrable systems and provides no information regarding the existence or 
absence of completely conserving algorithms for integrable systems. In spite of this 
negative result, the symplectic conditions derived in this paper can be exploited in the 
design of approximately symplectic schemes. For instance, within a given family of 
energy- and momentum-conserving algorithms one could identify the member which 
most nearly preserves the symplectic form when modeling nonintegrable systems. 
For the rotation group, the optimal member identified below turns out to be exactly 
symplectic. 

2.1. Summary of Basic Results on the Rotation Group 

We summarize some elementary properties of the rotation group needed for our sub- 
sequent developments. Further details can be found in a number of standard textbooks 
which range from classical treatments, as in Whittaker [1932] or Goldstein [t982], to 
accounts with a distinctive geometric flavor, as in Coquete-Bmhat and De Witt-Morette 
[1982], Abraham and Marsden [1978], or Arnold [1988]. 
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2.1.1. Basic Definitions. The rotation group SO(3) is the compact subgroup of the 
general linear group GL(3, ~) consisting of proper orthogonat matrices. Its Lie algebra 
so(3) is the linear space of skew-symmetric matrices, with Lie bracket [., .] the 
ordinary matrix commutator. {so(3), [', "]} is identified with {R 3, x} via the standard 
Lie algebra isomorphism ^: R 3 ~ so(3) defined as 

O h = O x h  f o r a l l h ~ N  3, with  [ (~ I , I~2 ] - -~ - I~ IX{~)2  . (2.1) 

The dual space to the Lie algebra so(3), denoted by so(3)*, is also identified with N3 
using the Euclidean dot product as duality pairing. 

The tangent space TASO(3) at any A ~ SO(3) is obtained via either left or right 
translations of the Lie algebra, leading to the body or spatial representations. Through- 
out this paper we shall use these two standard descriptions and, with a slight abuse 
of notation, write 

TASO(3) = {0A = 0A = A(} : with 0 = A® ~ N3}. (2.2) 

In the context of mechanics, 0 and O are interpreted as spatial and body (virtual) 
angular velocities, respectively. In actual computations it proves convenient to use 
the identification TASO(3) ~ R 3 x SO(3) (or SO(3) x •3) defined by the mapping 
(0, A) ~ 0A (or (A, ®) ~-+ 0a). In a similar fashion, the body (or spatial) identification 
of the phase space P := T'SO(3) ~ N3 x SO(3) (or SO(3) x R 3) is defined via the 
mapping (Tr, A) ~ 7ra (or (A, I'I) ~ 7rA). 

2.1.2. Mappings from the Lie Algebra to the Group. The update of the config- 
uration in the class of conserving algorithms on Lie groups described below relies 
crucially on the use of a map from the Lie algebra to the group. The natural choice is 
the exponential mapping exp[.], defined for a matrix group via the standard infinite se- 
ries; see for example, Curtis [1984]. A remarkable fact specific to the rotation group 
is that the exponential map exp :-~3 ~ SO(3) admits a closed-form representation 
given by the classical formula 

sin(]@]) ~, 1 - cos(l@[) @ ® ®, (2.3) 
exp[@] = cos(lOt) I + - - ~  + 10t2 

which goes back to Euler and Rodrigues (see Whittaker [1932]). Alternatively, the 
preceding formula can be recast in the equivalent form 

exp[@]= 1+  2 ( ~ +  ), where 1~:_21 ½[O] 1 + 10l 2 tan(½1OI)O (2.4) 

is often referred to as the pseudo-vector in the attitude dynamics literature. The closed- 
form formulas (2.3) and (2.4) are key results exploited in the formulation of attitude 
dynamic and control algorithms. 

For the rotation group, the Caytey transform cay : I~ ~ SO(3) defined by the 
formula 

cay[®] := (t + ½~)(1 - ½~) -I (2.5) 
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also defines a mapping from the Lie algebra R3 onto the group SO(3). This prop- 
erty holds for the symplectic group but, unfortunately, is not true for a general Lie 
group. Furthermore, in contrast with the exponential map, the Cayley transform is 
not singularity'-free. Interestingly, for the rotation group the inversion arising in the 
definition of the Caytey transform can also be computed explicitly using the Neumann 
series, yielding 

+I 0 +  6 
By comparing this expression with the formula for the exponential map in terms of 
the pseudo-vector, one concludes that 

tan(½1el) 
exp® = cay[K(O)(~], where K(®) - 51 I ~  ® (2.7) 

This property does not appear to be well-known and plays an important role in the 
formulation of symplectic schemes for the rotation group, discussed below. We remark 
that the exponential map provides the exact rotational update of arbitrary vectors in 
N3 a property which motivates its widespread use in attitude dynamic. This appealing 
feature is not shared by the Cayley transform. 

2.1.3. The Symplectic Two-Form. As was pointed out above, the spatial (or body) 
identification P = T ' S O ( 3 )  ~ R 3 × SO(3) of the phase space provides a convenient 
parametrization for actual calculations. If we identify an element g~rA of the tangent 
space TTr~P with the pair (g0, 6~r) ~ IR 3 × R 3 satisfying 

A 

6rrA = 6rrA + ff'60A, (2.8) 

then the spatial expression for symplectic form is 

Observe that the matrix appearing in this bilinear form is not the standard canonical 
symplectic matrix. The preceding result, which will be used in the analysis of the 
symplectic character of the algorithms described below, is a special case of the general 
formula for the right-trivialized representation of the symplectic two-form, which is 
derived in Section 5.1. 

2.1.4. Dynamics on SO(3): Euler Equations and Momentum Maps. Since the 
orientation of a rigid body is completely specified by the attitude matrix A, which 
defines the orientation of the body frame relative to the inertia frame, the configuration 
manifold of the rigid body is the group SO(3) and the canonical phase space is 
P = T 'SO(3) .  The spatial and body angular velocities, respectively denoted by ~o 
and ~ ,  then satisfy the relation 
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= ~A = Aft, so that o) = AlL (2. t0) 

The body angular momentum, denoted by I-I, is related to the body velocity via the 
standard (Legendre) transformation I-[ = J-Q, where J is the inertia tensor in body 
coordinates relative to the center of mass. The spatial angular momentum, denoted 
by ~r, is related to the body angular momentum via the relation rr = A-TrI  = AII. 

In the presence of zero resultant forces and moments, and relative to an inertial 
frame attached at the center of mass, the Hamiltonian function H: P ---> N for the 
rigid body is the total kinetic energy given by 

1 t - I  H = ~ I I . J - l I I  = ~rr ' [kJA r] rr. (2. l l )  

These two equivalent expressions correspond to the body and spatial descriptions of 
rigid-body dynamics. 

With the preceding conventions, the body representation of the (unreduced) form 
of the classical Euler equations governing the dynamics of a rigid body is given by 

A_=Af~ 1 ,  with II =J.Q, (2.12) 
11 = YI xD~ J 

which includes the evolution equation for the attitude matrix in (2.10). Observe that the 
second equation is equivalent to the statement that 4r = 0, a property easily verified 
by time differentiation of the relation ~ = A I I .  The equations (2.12) are Hamiltonian 
with Hamiltonian function H defined by (2.11). Since the system is autonomous, the 
dynamics exactly conserves energy in the sense that/2/ = 0. 

Inspection of (2.11) reveals that the Hamiltonian is invariant under the left action 
of SO(3), in the sense that H(QII, QA) = H(II, A) for any Q E SO(3). By the 
Hamiltonian version of Noether's theorem, associated with this invariance property 
there is an additional conserved quantity, the momentum map • : P -+ R 3, given by 

qb(II, A) := AII --- ~-. (2.13) 

As pointed out above, it follows from the second Euler equation (2.12,_) that ~ = 0. 
Using the preceding four conservation laws, the six-dimensional Euler equations, 
(2.12) are reduced to two independent equations; that is, a completely integrable 
system. This is the classical reduction process that describes the dynamics in terms of 
action-angle variables on the two-torus; see, for example, Arnold [1988]. 

2.2. Exact Energy and Momentum Conserving Schemes 

We describe a constructive procedure, outlined above within the specific context of 
rigid-body dynamics, for the systematic design of time-stepping algorithms that inherit 
exactly the conservation laws of momentum and energy summarized in the preceding 
subsection. 

Step 1. Regard SO(3) as a submanifold of the linear Lie group L(3) and compute 
the change in the momentum map as follows: 
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lTI)n+ I - -  O n  
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= An+lIIn+l - AnHn 

= An+l(IIn+l - 1-In) + (An+l - An)IIn. (2.14) 

Now define 

An+~ := aAn+l + (t - o0An t , ~ E [0, 1]. (2.15) 

II~+~ := o~H~+l + (t - o~)H, J 
A direct computation then shows that 

O,+1 - On = An+~(Hn+l - IIn) + (A,+1 - A,)Hn+(1-~,). (2.16) 

Motivated by (2.16) we consider the following four-parameter family of algorithms 

A,+l - A n  = A n + ~  l ,  a ~ [0, 1], (2.17) 
IIn+l - -  1-In = I I n + ( l - ~ )  x O J 

where the vector @ ~ •3 is at this stage completely arbitrary. The difference in 
momentum maps predicted by this scheme is then computed to be 

On+l - On = - A n + ~ I I n + o - ~  ) + An+~IIn+(t-~) = 0 (2.18) 

for all ot E [0, 1 ] and all O E N 3. Consequently, we have 

Result 1. The algorithm (2.t7) exactly preserves total angular momentum for any 
O ~ R 3 and any ot ~ [0, 11. 

Note that the scheme (2.t7) need not be consistent and, nevertheless, exact mo- 
mentum conservation is achieved. Furthermore, a standard calculation using Taylor 
series expansions shows that consistency of the scheme (2.17) with the continuum 
dynamics is ensured provided that ® = (At/2)J-l(Hn+l + I'In) + C(At2), regardless 
of the value a E [0, 1]. 

Step 2. Scheme (2.17) does not guarantee that An+l ~ SO(3) for given A, E SO(3). 
We show that enforcement of the condition that An+l be in SO(3) restricts a ~ [0, 1] 
to a = ½. In fact, solving for (An+l, II~+l) ~ L(3) x R 3 in terms of (A,, Hn) gives 

An+l - A~T,~(O) = : }  , (2.19) 

T,,(O)IIn+~ - II~ 

where 

'(1  220) 
The equivalent expression (2.19) shows that An+l will be in SO(3) for given An 

in SO(3) if T~(®) defines a map from R 3 (so(3)) to SO(3). To see when this is the 
case, we use the standard Neumann series, along with standard properties of skew- 
symmetric matrices, to compute explicitly 
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T,,(®) = 1 + 

An easy computation then gives 

T~(19)T~(19) r = 1 + vO 2, 

S incev = 0 f o r a  = 

1 a)~2 ) 
I + ~2101:(6 + (1 - (2.21) 

(1 - 2a)(1 - (1 - 00210[ 2) 
where v : =  (1 + a211912" 2) (2.22) 

leading to T~(19)T½(O) r = 1, we have 
2 '  - - 

Result 2. The algorithm (2.19) yields A,+l E SO(3)for given An ~ SO(3) provided 
I In fact, for a = ½ the transformation that oe = ~. 

T=(19)1,~= ½ = cay[19] (2.23) 

mapping •3 into SO(3) is the Cayley transform defined by (2.5) or, equivalently, by 
(2.6). 

A straightforward manipulation of relations (2.19) yields the following equivalent 
I.  form of the algorithm for ~z = ~. 

An+l = A, cay[@] I - (2.24) 
II,+1 = cay[-®]Hn J 

The algorithm (2.24) (or (2.19) defines an exact momentum-preserving scheme whose 
associated flow lies exactly in T'SO(3)  ~ SO(3) × t~ 3 for any (9 ~ •3 and a = ½. 
Observe that the number of "free parameters" in this exact momentum-conserving 
scheme equals the dimension, ndim = 3, of the quotient space T*S0(3)/S0(3)  ob- 
tained via reduction of the problem by enforcing conservation of momentum. 

1 (i.e., the Step 3. Our aim is to constrain further the scheme (2.19) with a = 
scheme (2.24)) by enforcing exact conservation of energy. Define 

I - 1  ftn+0/2): = ~J (IIn + II~+l), (2.25) 

that is, the angular velocity in body coordinates associated with a midpoint approxi- 
mation (a = ½). By definition we have 

1 H.+I - H.  := ~1~+1 - J - l ( I I . + l  - ½H. • J -~ I I .  

= ½(Hn+l  --  I In )  - J - t ( H n + l  + Hn)  

= (II.+l - I I . ) "  f~.+(1/z). (2.26) 

Inserting the algorithmic approximation (2.17)2 into this expression gives 

H.+:  - H~ = II.+(tp_ ) x 19 • l"~.+a(ta ). (2.27) 

Clearly, Hn+l = H.  if 19 is parallel to Ft.+(la ). Consequently 
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Result 3. For the exact momentum-conserving scheme (2.17) with ~ = ½, exact 
preservation of energy is achieved provided that 

At _~ 
O = K((~)(~ with (~ := At~2~+(1~) = -~-J (I]~ + IIn+l), (2.28) 

where K: ~3 .._> ~ is a completely arbitrary function. 

A standard argument using Taylor series expansions shows that consistency of the 
scheme is achieved provided that K = 1 + G(]~I2). Setting K -- 1 gives a scheme 
proposed by Austin, Krishnaprasad, and Wan [1992] within the competely different 
framework of almost Lie-Poisson integrators. 

It follows that exact momentum and energy conservation, plus the condition that 
An+l ~ SO(3) for given An ~ SO(3), defines the scheme (2.t7) up to an arbitrary 
(scaling) function K(O). Aside from the choice K -- 1 alluded to above, other op- 
tions are possible. In particular, in view of property (2.7) it follows that exp[~] = 
cay[K(@)O] is an alternative expression for the exponential map in the rotation group 

w en is o  e a ion in 

the energy-momentum scheme proposed in Simo and Wong [1990] the function K in 
definition (2.28) is set to 

tan(½1~[) 
K(~) = (2.29) 

½1 1 ' 

which leads to an update of the attitude matrix in terms of the exponential map. 

3. A Symplectie Energy- and Momentum-Conserving Algorithm on SO(3) 

A map taking zn to zn+] with linearization.6zn+t = Lnrzn is said to be symplectic if 

Lrno~(zn+i)Ln = to(Zn) (3.1) 

for all z, .  Since the function K introduced in Section 2 is arbitrary, we may search for 
a specific choice for K which renders the scheme symplectic, thus completing step 4 
in the design of momentum-energy-symplectic schemes. It is shown below that such 
a ~: does in fact exist and is given by a fairly simple closed-form expression. 

3.1. Symplectic Condition for General Schemes on S0(3) 

Our first objective is the derivation of the condition on the algorithm which ensures 
preservation of the symplectic two-form. Recall that spatial representation of the 
symplectic form is a function of the spatial momenta alone and hence is constant if 
the spatial momenta are conserved. To simplify the necessary calculations, we shall 
rewrite the momentum equation in (2.24) in terms of the spatial momenta and derive 
the symplecticity conditions by working with the Poisson matrix, which is the inverse 
of the matrix representation of the symplectie two-form, rather than the symplectic 
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form itself. Provided that L. is invertibte (for the algorithm (2.24) this is true for 
"reasonable" values of ®), condition (3.1) can be equivalently expressed as 

Lnw(Zn)-lLr n = ~o(z.+l) - t .  (3.2) 

The relationships 7r. = AnlI. and 7r.+1 = An+lII.+l between the spatial and 
body momenta at times tn and t.+t imply that the spatial representation of the general 
class of algorithms (2.24) takes the form 

A.+ 1 = A. T(0) 

~r.+l =Tr. ) , (3.3) 

At -1 r 
0 = = T  s + 

where T: R 3 --+ SO(3) is an arbitrary map from the Lie algebra so(3), identified with 
II~ 3 in the usual manner, to the Lie group SO(3). In particular, for the specific choice 
T = cay[®], where @ = ~:0 with t~ = Atf~.+(1/z), one recovers the exact energy- 
momentum-preserving algorithm (2.24) We note that substituting (3.31) and (3.32) 
into (3.33) yields the equation 

0 = At.l-! (1 + T(0) ) rH. .  (3.4) 
2 -  

Given (A., 7r.), the updated attitude matrix A.+I is determined by finding a fixed 
point 0 of the map ® ---> (At/2)J -1 (1 + T(®)) r I-i. and substituting ~) into (3.31). 
The momentum update (3.32) is trivial. The following result is proved below: 

Result 4. The general class of algorithms (3.3) is symplectic provided that the fol- 
lowing condition holds: 

4 
At skew (T(0) + 1)H(O)-rJ = l'I. - I].+l. (3.5) 

where H. Am:r . and II.+l 7" = = A.+lTr.+l and the 3 × 3 matrix H(O) is defined by 

the relation DT(O) " 80 = T(®)[H(0)60]. 

Condition (3.5) is proved by directly checking the definition of symplectic map via 
the following calculation. Using the definition of H and the chain rule, the linearized 
algorithmic equations become 

6"0.+tA,~+I = 6"-0~A,,+~ + A.T(O)H.80 ,  
(3.6) 

6 7 r n +  1 -~ 6 7 r . ,  

where Hn := H(O) for 0 given by (3.3) and 60 is given by 

At -l 
60  = T J  (Ar+, (8w,,+1 + rr,,+, × 60.+i) + A r (Sw. + 7rn × 60.)).  (3.7) 

Noting that the first matrix equation (3.6~) is equivalent to the vector equation 
60.+1 = 80~ + A.+IH.80 ,  we write the system (3.6) in matrix form as 
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(l+Bn+lff" B,~+,t{8On+,)=(l+Bn~" B~t{60n ) (3.8) 

where we have used the abbreviations 

Bn = MA~ r 
T B.+I -MA.+ l . (3.9) 

At 1 
m -flA. + 1/-/J- 

To check whether the algorithmic flow is symplecfic we use the identity 

(U V ) ( ~  ; 1 ) ( U  V~  (2skew[VUr]+V~V r V ~ - U )  
1 = ff.Vr + Ur ft. (3 .10)  

for U, V ~ L(3). It follows that the symplectic condition 

(1 + Bn+,ff-0 Bn+l )(01 1 ; 1 ) (1  + Bn+,~ 0 Bn+~) r 1 

=(l+B~ff-0 B~)(011 -1)(I+B~@~. 0 B~) r l  

holds if and only if 

(3.11) 

_ ^ r = (2 skew - Bn+l(2skew[B~-rl] ~r)Bn+ 1 Bn [B~ -r] ~)B r. (3.12) 

Equation (3.12) can be further simplified by using the regroupings 

^B r (4  skew[H~.rj] + l~+,)Mr (3.13) B~+, (2 skew[B~-+r,] - rr) ~+, = -M ~-~ 

and 

Thus, since Hn is invertible for reasonable values of ~, (3.12) is equivalent to the 
condition (3.5) and the proof is completed, 

3.2. A New Exact Energy- and Momentum,Conserving and Symplectic Scheme 

We now specialize the calculations of the preceding section to the one-parameter 
family of exact energy- and momentum-conserving algorithms identified in Result 4. 
We show below that the symplectic condition (3.5) yields 

Result 5. The energy-momentum preserving algorithm defined by (2,24) with ® = 
defined by expression (2.28), that is, 

:= Attqn+W2) = (At/2)J -~ (IL + II~+1), 
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is symplectic if the function K: R --~ ~ satisfies the differential equation 

with explicit closed-form solution 

dK K 3 

dx 4 - xK 2' 
(3.15) 

2 2(1 
~c(x) - - 1 + tan arcsin (3.16) 

1+ 2 " 

Observe that K(x ) is real valued only if  O <- x <-- 1. This condition places the mild 
restriction t61 <-- 1, that is, IAtl ~ 1/l~n+(1/2)], on the admissible time steps. 

Comparing the general algorithm (3.3) with expressions (2.24) and (2.28), we see 
that the proof of the preceding result reduces to checking the symplectic condition 
(3.5) for the specific choice 

T(®) = caytO] with 19 = K(161=)~. (3.17) 

Since the algorithm (2.24) is equivalent to the scheme (2.17) with ~ = ½, the right- 
hand side of the symptectic condition 

IIn - H,~+i = O x I/~+(t/2) = At x J O .  (3 .18)  

Thus, it only remains to compute the left-hand side of (3.5) The linearized operator 
Hn associated with the transformation T is computed from (3.17) using the chain rule 
a s  

/ / (0 )60  = Hcay(O)(K6(~ + 2K'(0" fi(~)(~) = Hcay(O)IP(t~)~(~, (3.19) 

where P(O) is a scaled projection operator and Hcay is the linearization of the Cayley 
transform, given by 

P(O) := K1 + 2K'0 ® 6 and Hcay(O) -T = 1 - ½~1 + ¼0 ® O. (3.20) 

Using the Sherman-Morrison formula, P(O) can be explicitly inverted: 

p(~))_~ = _I + 0 ® 0  = - 1 +  ® ® ®  . (3.2t) 
K K + 21~12K ' K K3 + 2~21~IEK, 

As a result, the matrix H(~)) -T appearing in the symplectic condition (3.5) satisfies 

) H ' ( { ~ )  - T  = H c a y ( ( ~ ) - T P ( l ~ )  - T  = - -  ~@ +/.,@ ® ® , (3.22) 

where 

(3.23) 
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Now a direct computation using the identity ~2 = @ ® O - tO[ 2 1 yields 

2 
= - (1 + /z® ® 19). (3.24) 

/£  

Therefore, the left-hand-side of the symplectic condition (3.5) reduces to 

skew [(1 + T(19))H(tg)-rJ] = 2p. skew [® ® J  O] = /zKJ® x 19. (3.25) 
x 

Comparing (3.25) with (3.18) we conclude that the symplectic condition (3.5) holds 
provided that tz = -¼,  which yields the differential equation (3.15) and completes 
the proof. 

3.3. Error Estimates 

Having found an algorithm which exactly preserves the symplectic two-form, we now 
attempt to provide a measure of the extent to which the other algorithms considered 
fail to preserve it. The general formula for the Poisson error is derived in Section 5.3; 
we simply apply the formula to the algorithms (3.3). 

The algorithmic approximation of the symplectic form at the nth time step is given 
by 

T ~  ~',+! := LnwnL n, where &'0 := ~o(A0, zr0) (3.26) 

and Ln denotes the linearized equations at the nth step. The approximate symplectic 
form satisfies 

_ _ 1 ( ~ 1 - o - . ® ~ )  with inverse _ _  t ,  co~ 
ton 1 - 7 r - o - ~  7 r ® o ' n - 1  ~n 

(3.27) 

for o'~ E I~ 3 defined inductively by o'0 := 0 and 

4 
o'.+1 = ¢r~ + ~ N n  rot[(1 + 4rd'n)(N. - #)], (3.28) 

where the map rot: L(3) --~ R 3 satisfies rot [M~-'--] = ½ (M - M r) for any M ~ L(3) and 
the matrix N. is given by 

N~ := An+l 50/A~+1. (3.29) 

We will monitor the numerical growth of the symplectic error for the following 
three algorithms involving scaled Cayley transformations: 

1. Caytey transform: t<(~) =- 1. 

2, Exponential map: K(0) = tan(½1OI)/(½1~]). 

O 3. Symplectic algorithm: K(~) = ~ .  
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lqig. 1. Poisson errors for the Cayley transform (--) and exponential map (- -). 

The plots given below were generated using the Mathematica code listed in Appendix 
A. We do not report results on the time histories of  momentum and energy since they 
are conserved by design in the three algorithms. The results below demonstrate the 
exact symplectic character of  the proposed algorithm and the superior performance of  
the exponential map (dashed line) in comparison to the Cayley transform (solid line). 

All of  the integrations shown in Figs. 1 and 2 were computed for a total o f  fifty 
units of  time, with initial angular velocity (0.2, 0, I). Both plots shown in Fig. I 
were computed using a time-step o f  0.05. The plot on the left was computed using an 
asymmetric reference inertia tensor diag[1, 2, 3]; the one on the right used a symmetric 
inertia tensor diag[ I, 1, 2]. The solid line traces the magnitude of  the Poisson error 
for the Cayley transform; the dashed line traces the magnitude of  the error for the 
exponential map. Figure 2 shows the maximum norm of  the Poisson error and the 
maximum variation in the total energy for the simulations discussed above and for 
simulations using the same initial conditions, but a time-step of  0.005. The notation 
A indicates the simulations using the asymmetric reference inertia tensor diag[1, 2, 3], 
while S denotes the symmetric inertia tensor diag[1, 1, 2]. 

Poisgon error 

~,t = .05 At = .005 

Run A S A S 

Symplectic 1.9 10 -14 3.4 10 -14 2.5 10 -14 4.4 10 -14 

Exponential 6.4 10 -4 |.0 10 -3 6.5 10 -6 1.0 10 -5 
Cayley 1.9 t0 -3 3.1 10 -3 1.9 10 -5 3.1 10 -5 

Energy change 

At = .05 At = .005 

Run A S A S 

Symplectic 8.2 10 -15 9.7 10 -t5 t.I 10 -~3 2,0 10 -~3 
Exponential 2.7 10 -15 5.8 10 -15 2.3 10 -14 1.1 10 -13 
Cayley 1.3 10 -12 1.4 10 -14 1.8 10 -14 5.8 10 -14 

Fig. 2. Maximum Poisson errors and energy changes. 
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All runs were computed using the default Mathematica precision of sixteen digits 
and accuracy goal of six digits on an SGI Indigo. It should be noted that the Poisson 
error for the symptectic scaling and the errors in the energy for all of the scalings 
are well within the range of round-off error. (The fact that the errors actually increase 
slightly when the time-step is decreased, resulting in an increase in the total number 
of steps taken over the total time interval, indicates that they are due to accumulated 
round-off error.) 

4. Dynamics on the Rotation Group with Nonzero Potential 

We shall now extend several of the results of the previous section to a large class 
of Hamiltonian systems with configuration manifold SO(3). It does not, however, 
appear to be generally possible to conserve momentum, energy, and the symplectic 
form simultaneously using the class of general mid-point algorithms analogous to those 
developed in Section 2; for such algorithms, preservation of the symplectic form leads 
to conservation of kinetic energy, which is inconsistent with conservation of the total 
energy for systems possessing nonconstant potential energy. We consider Hamiltonian 
systems on T'SO(3) with a nontrivial potential which is invariant under spatial (right) 
rotations about an axis 3'. The heavy top may be kept in mind as a prototype of such 
systems. We write the S l invariant potential in the form V(A) = V(Ar3'), where 

V: R 3 ~ R. Thus the first variation satisfies 

DV(A) • ( ~ A )  = DV(Ar3`) • (8"0A)ry = (ADV(AVy)) " (y x 80). (4. I) 

Thus, we see that DV(A) = -31 x e(A) for some function e : SO(3) --> R 3. The 
Harniltonian equations associated to such a potential are 

.~. = ft I .  (4.2) 
4r = ~/× e(A) J 

4.1. Conservation of Energy and Momentum 

The unreduced Euler equations are a special case of (4.2) for which e(A) is equal to 
zero. We can generalize the algorithms (3.3) to include the case of nonzero e. We 
carry out step one and two of the general program described in Section 2 by selecting 
the family of algorithms 

A,+I = A,T, 

zrn+l = It, + At- /× en 

for some Tn ~ SO(3) and e~ ~ •3. 

(4.3) 

The appropriate interpretation of conservation of momentum for the general system 
(4.2) is not the same as that for the Euler equations. In the presence of a nontriviat 
potential the spatial momentum typically varies in time; however, (4.22) implies that 
the component of the momentum parallel to the axis of symmetry 3  ̀ is constant in 
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time. This is consistent with Noether's theorem, since the Hamiltonian H(II, A) = 
1 2 g]l-II~. + V(A) is invariant only under spatial rotations about y. The form of (4.32) 
guarantees that 

Result 6. The algorithms (4.3) conserve angular momentum about the axis T for any 
choice of Tn and en. 

We now turn to the conservation of energy, restricting our attention to algorithms 
of the form (4.3) for which 

T, = T(O) := cay[K(O)O] ] 

en = e(An, ®) l (4.4) 
- I  O := Atfln+0/'2) = T J  (I-In q- I ' In+l)  

for some functions K: ~3 ~ R and e : SO(3) × R 3 --+ R 3. The choice of algorithms 
(4.4) may not be essential for conservation of energy, but we believe that it is a 
very natural one. The use of the scaled Cayley transforms is suggested by the results 
of Section 2. Our choice of 0 is motivated both by the traditional success of the 
midpoint rule and by results given in Section 5 that suggest that the specification of 
energy-conserving algorithms is greatly simplified if T(O)f'~n+(1/2) = ~n+(1/2), which 
for the scaled Cayley transforms is equivalent to the condition that @ is parallel 
to ftn+0/2 ). If the rotation matrix T(O) is viewed as an algorithmic approximation 
to rotation through Atf~n+0/2), then the condition T((~)f~n+o/2) = ftn+(1/2) has the 
simple physical interpretation of specifying that the algorithm must respect the axis, 
if not the magnitude, of the rotation. 

Result 7. The algorithms specified by (4.3) and (4.4) conserve energy if 

K(O)y- AnO x e(An, O) = V(An+I) - V(An). (4.5) 

For the heavy top, with V(A) = y • AE for some fixed vector E ~ •3, energy is 
conserved if 

e(A,, ®) = ½An(1 + T(®))E = ½(An + An+l)E (4.6) 

for any cho&e of the scaling function K(O); in particular, those considered in the 
preceding section. 

Equation (2.26) suggests that we express the difference IIn+1 - IIn, and thus the 
change in kinetic energy, in terms of An and 0 .  The algorithm (4.3) implies that 

l-In = T(O)rIIn+l - AtAr(y x e). (4.7) 

Substituting (4.7) into (4.43) and solving for 1-In+t, we obtain 

lln+l - fin = (1 - T(o))T(1 + T(O)) -T (~-JO + AtAnr(7 × e)) + AtAnr(T × e) 

1 ~ T = AtK(®)(~t.® × J@ + (1 + ~s®)An(y x e)) (4.8) 
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by means of the identity 

(1 + T(O))-~(T(O) - 1) = ½K(®)~. (4.9) 

Equations (4.43) and (4.8) imply that 

H.+I - Hn = ~ ( H . + I  - H~).  O + V(A.+0  - V(An) 

= K(@)y x e .  AnO + V(A~+I) - V(An). (4.10) 

Thus the total energy is conserved if and only if (4.5) holds. 
We now turn to the example of a heavy top and use equation (4.5) to identify a 

family of energy conserving algorithms. The change in potential energy for the heavy 
top is 

V(A.+I) - V(An) = y .  (An+l - A. )E = y - A ~ ( T ( O )  - 1)E. (4.11) 

Thus (4.5) implies that conservation of energy holds if 

K(O)y • An® x e = y .  An(T(@) - 1)E. (4.12) 

Using the identity (T(O) - 1) = ½~:(O)~(1 + T(O)), we see that e given by (4.6) 
satisfies (4.12). 

4.2. Symplectic Conditions 

Result 8. The algorithms determined by (4.3) and (4.4) are symplectic if and only if 
condition (3.5) holds, 

y X e(An, 0 )  = O, equivalently, l-In+l - 1-In = l f ~  x JO,  (4.13) 
At 

and 

(1___ 
(4.14) 

for some symmetric matrix S(An, 0) .  The condition (4.13) implies conservation of  
kinetic energy and the spatial momenta; it holds only if the algorithmic "force" 
equals zero. 

We do not derive the symplectic conditions in detail here; rather, we sketch the 
principal steps here and refer to Section 5.2 for the detailed derivation of these condi- 
tions for a general Lie group. The derivation for the rotation group has many features 
in common with that given in Section 2 for the unreduced Euler equations. 

The tinearization of (4.3) is 

(80,+1,6~r,+1) = L,n-~IL~(~O,,, B~r~), (4.15) 
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where 

and 

1 + BnCrn 
Ln := \A,Crn + At Fn 

1 + Bn+l"['rn+l 
Ln+j : =  A n + l ~ n + l  

Here 

At2 t--~ f - - I A T  
An := - - f '~no  ~ n ,  

At -- 1 T Bn := TAn+IH(19)J An, 

B~ ) (4.16) 
l + A n  

B,+l ). (4. t7) 
1 + An+l 

At2 /7  1 - 1 A T  
An+t  : =  - - - - ~ - , - , n a  ~'~n+l 

At - l T B~+l := -TA~+1H(®)J An+l 
, (4.18) 

and F~ and Gn ~ L(3) are determined by the relationship 

FnrO + G n r ®  = ~,De(A,,, (9) .  (60An, 619) (4.19) 

for all 60,619 E R 3. 
As in the case of the free rigid body considered in Section 3.1, we express the test 

for symplecticity in the form 

= L. + j. (4.20) 
¢rn ¢rn + ! 

Equation (4.20) is equivalent to the conditions 

B ^ r - BnCrnBrn = 2 skew[Bn+L - Bn] 1. n+lTFn+lBn+ 1 

" B r - (¢r~8 r 1 ) = A t F . e  r 2. An+l ('h',+l n + l  1)-- An 

3. A,+,Trn+,A,+l~ r _ AnCr, A r  = At (y ×-"~ + 2 skew[Fn(1 + An)T]). 

These conditions can be sequentially simplified to obtain the conditions given in 
Result 8. The first condition is identical to that appearing in the free rigid body case. 
The second symplectic condition can be written as 

G,H(@)-~(T(O) + I) r = FnAn; (4.21) 

the third condition simplifies to 

y × e + 2mt[Fn] = 0. (4.22) 

Combining these conditions yields (4.14) It is a direct consequence of (4.10) that 
conservation of kinetic energy is implied by (4.8). 

5. Algorithms on General  Lie Groups 

We now consider algorithms on general Lie groups. We shall initially restrict our 
attention to the Euler equations, for which the Hamiltonian is equal to the kinetic 
energy determined by a metric on the Lie algebra. We shall follow a slightly different 
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program than that used in the derivation of the algorithms for the rotation group. 
Guided by our results for that particular case, we shall combine the first two steps, 
assuming the existence of a map which allows us to carry out Step 2. We emphasize 
that the explicit identification of such a map for an arbitrary Lie group appears to be a 
nontrivial task. We do not attempt to carry out that task here. Rather, we shall construct 
a family of energy- and momentum-conserving algorithms assuming the existence of 
an approximate exponential map. We derive an explicit formula for the Poisson error, 
which provides a measure of the extent to which an algorithm fails to be symplectic, 
for a large class of algorithms. This formula can be used to determine symplectic 
algorithms on general Lie groups. The derivation of these results is analogous to 
those given for the algorithms on SO(3) discussed in Section 2 and Section 5, hence 
several of these derivations have been relegated to Appendix B. 

5.1. The Dynamics on a General Lie Group 

We now briefly discuss some of the fundamental constructs relevant to Hamiltonian 
dynamics on a Lie group. For detailed discussions of these and related constructions, 
see, for example, Abraham and Marsden [1978] or Arnold [1988]. Given a Lie group 
G, we denote the Lagrangian coordinates on the cotangent bundle T*G by z = (q, p). 

5.1.1. The Lie Algebra and Its Dual. The tangent space to G at the identity, that is, 
the space of infinitesimal group elements, is denoted by ~; its dual is denoted by ~*. 
The exponential map exp: ~ --* G maps infinitesimal motions to full group motions. 
We emphasize that while the exponential map can be expressed as a formal power 
series for all groups, relatively few Lie groups possess an exponential map for which 
an explicit closed form expression is known. Some examples are the rotation groups 
SO(2) and SO(3), the special linear group SL(2) on R ~-, and, of course, additive 
groups. 

5.1.2. Pairings. The natural dual pairing between the Lie algebra q3 and its dual ~d* is 
denoted by ( , ) ,  for example, (/z, ¢) for ¢ E ~ and/z ~ ~J*. We assume the existence 
of a metric on ~J, denoted by (( , )),~. The metric induces a map m: ~d ---* ~*, defined 
by 

(m~:, r/) = ((¢, ~))~a (5.1) 

for all s r, r / E  ~d, and a metric (( , ))~, on q3*, defined by 

((/z, v))~. := ( ( m - l , ,  m - ' v ) ) ~  (5.2) 

for all /z,  v ~ qJ*. 

5.1.3. Group Actions and Tangent Maps. The group G acts on itself on both the 
left and the fight by group multiplication. We let Lq denote left multiplication by q, 
that is, Lq(t = q(l. Similarly, fight multiplication by q is denoted by Rqgl := (/q. The 
adjoint action of G on ~ is given by 
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d I exp(e~)q -l  . (5.3) AdqsC = ~ ,=0 

The coadjoint action of G on ~* maps the dual of the algebra into itself and is 
determined by the relationship (Adq#, ~:) = (/~, Adq~) for all q U G, ~: ~ ~3, and/~ E 
~*. The infinitesimal adjoint and coadjoint actions of ~3 on ~3 and ~* are determined 
by the relations 

ad~  d~ ~=o * = Adexp(~o)~ and (ad,Tp., ~:} = (p., a d ~ )  (5.4) 

for all ~, 7 /E  ~3 and/~ ~ ~*. 

5.1.4. Trivializations. T*G can be represented by either the right or left trivialization. 
The left trivialization T*G ~ G x ~3" is given by 

(q, p) ~ (q, l-I), where II := T;Lqp. (5.5) 

The fight trivialization T*G -~ G × ~* is given by 

(q, p) ~ (q, 7r), where ~r := TqRqp. (5.6) 

For matrix groups left (right) translation is simply matrix multiplication on the left 
(right). 

5.1.5. The Symplectic Form. The canonical symplectic two-form on the cotangent 
bundle T*G is most conveniently expressed with respect to the left or fight trivial- 
ized variables. The symplectic form OiL on G x ~* ~ T*G with respect to the left 
trivialization is given by 

( 1  1 )  wfthinverse roL(q, Fl)-I = ( ~ - 1 )  (5.7) wt.(q, II) = _ 0 ' A ' 

where A : q3 --~ ~* is determined by the relationship 

A~ := -ad~rI. (5.8) 

The symplectic form ~on with respect to the fight trivialization is given by 

~on(q,~-)= ( - i  ~ ) '  with inverse o)R(q, Tr)-t = (~ - -1) ,  (5.9) 

where a : ~ ~ ~3" is determined by the relationship 

as ¢ : = ad~:Tr. (5.10) 

The fight trivialized representation of the symplectic form is derived by taking the 
variation of the equation 7r = T*Rqp, yielding 

(37r = T; Rqt~p + (Tq( T; Rq )t~q )p, (5.11) 
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where rq(7~q eq )  : 7"qG ---> L(7"q G, .3"). 
result into the canonical symplectic two-form on T'G,  we obtain 

w(q, p)((TqRq~q, ~p), (TqRqAq, Ap)) 

= (T ;Rq- ,  (zX~r - (Tq(TqRq)ZXq)p),  TqRq~q) 

- (TeRq-~((3"rr - (Tq(T;Rq)~q)p), TqRqAq) 

= (AT, 6q)  - (3p,  Aq) 

+ (Tr, (Tq(TqRq)3q)Aq - (Tq(TqRq)Aq)6q) 

= (Azr, 6q) - (6p, Aq) + (zr, adaq~q). 

The derivation of the left-trivialized symplectic form is analogous. 

Solving (5.1 I) for 3p and substituting the 

(5.12) 

5.1.6. The Unreduced Euler Equations. The Euler equations and unreduced Euler 
equations for a free rigid body are given by (2.12~_) and (2.12), respectively. As pointed 
out in Arnold [1988], essentially identical equations govern the dynamics on any Lie 
group whose Lie algebra is endowed with a metric. (The generalized Euler equations 
are often referred to as the Lie-Poisson equations.) The generalized unreduced Euler 
equations in 'body', i.e. left-trivialized coordinates, are 

= TeLq~ ] 

ad~II l " (5.13) 

f~ m - l H  

Equations (5.13) can also be written in terms of the right-trivialized variables, yielding 

t ¢r . (5.14) 

£~ m - '  Adq 7r J 

5.1.7. The Hamiitonian. The flow determined by the generalized Euler equations 
conserves the energy 

H(q,p):= ½1Loll~,~, (5.15) 

where the inner product (( , ))7-'c is determined by 

( (t91, P2))T*G = (( T: Lqpl, T~ LqP2))~, (5.16) 

for all q E G and all p~, P2 @ TqG. The Hamittonian (5.15) can also be written in 
terms of the left and right trivializations, namely 

H(q,p)  = HL(q, FI) = Hn(q, 7r), (5.17) 
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where 

i i  2 1 d* 2 nL(q,l-[) := 71[ [[~* and HR(q,~r):= 2[[A q'/TI[~.. (5.18) 

In fact, equations (5.13) are Hamiltonian; they can be written in the form 

(i 1, fI) = ~oL(q, I I ) - IDHz(q,  II). (5.19) 

Similarly, (5.14) can be written as 

(q, 4r) = mR(q, 7r)-lDHte(q, 7r). (5.20) 

generates the "spatial" form of We note that the right-invariant Hamiltonian I 2 
the unreduced Euler equations. The spatial form of the Euler equations is associated 
with systems such as the Euler equations for an incompressible fixed boundary perfect 
fluid, which have a right (body) symmetry. 

5.1.8. Momentum Maps. The Hamiltonian (5.15) is invariant under the left action 
of G on itself; hence Noether's theorem states that the left momentum map should be 
conserved by the Hamiltonian flow. This can be seen directly from (5.21) and (5.142). 

The momentum maps associated to the left and right actions of G on itself are 

(PL(q,P) = TqRqp = ~ and cbR(q,p) = TqLqp = It. (5.21) 

As an example, we shall identify some of the constructions defined above for 
the rotation group. The rotation group SO(3) has Lie algebra so(3) ~ R 3, with dual 
so(O)* ~ R 3. This is seen by varying the equation ArA = 1 with respect to A, yield- 

ing skew[ArfA] = 0, that is, 6A = ~-OA for some 6@ E ~ 3  The natural pairing 
between the algebra and its dual is simply the Euclidean inner product. SO(3) acts on 
itself by matrix multiplication on the right and left; straightforward calculations show 
that 

AdA~ = As ¢, A d ~  = At/z, a@~ ¢ = 7 7 × s  c, and adng. = / z × r / .  (5.22) 

Using these expressions, the remaining constructions discussed in Section 2 can readily 
be obtained from the general formulas given above. 

5.2. Conserving Algorithms for  the Unreduced Euler Equations 

We shall construct algorithms for Hamiltonian systems on general Lie groups which 
capture as many as possible of the properties of the algorithms developed for the 
rotation group. To do so, we shall make use of the geometric constructions mentioned 
in the previous section which generalize the familiar constructs, such as rotations 
and cross products, associated with SO(3). In addition, we must identify appropri- 
ate generalizations of the algorithmic constructions used in Sections 2 through 4. 
The existence of maps T : g~3 __> SO(3) such as the scaled Cayley transforms was 
crucial for the construction of the algorithms (3.3) for the rotation group. In construct- 
ing algorithms on general Lie groups, we shall assume that an explicit map z : q3 --> G 



280 D. Lewis and J. C. Simo 

from the Lie algebra to the group is known. The map r will play the role taken by the 
map T for the rotation group--it is an algorithmic approximation of the exponential 
map. Consistency requires that r(0) = 1. 

We consider algorithms of the form 

q.+l = Lq'r(O) } 

q'/'n+l ~--- "fin 

O := O(At, f~n+l, f~.) 

where 

~'~n = m - l l I n  

(5.23) 

- 1  * - 1  * = m AdqTrn and ~'~n+l "~" m - l I ' [ n + l  = m Adq.+~Trn+l. 

(5.24) 
Conservation of the right-trivialized momentum 7r is explicitly incorporated in the 

algorithms (5.23). The map (q,p) ~ 7r is the momentum map associated to the left 
action of G on itself; hence 

Result 9. The algorithms (5.23) conserve the left (spatial) momentum map for any 
choice of 0 and r. 

A straightforward calculation, given in Appendix B, shows that the algorithms 
(5.23) conserve energy if and only if 

A convenient and geometrically motivated condition which implies (5.25) relates the 
map ~', the vector O, and the average velocity 12n+0/a): 

Result 10. A sufficient condition for the conservation of energy is that 

Adz(o)~n+(l/2) = ~n+(l/2)- (5.26) 

The exponential map exp : ~3 ~ G satisfies Adexp(o)O = O for all O E ~. If this 
property is shared by the map ~-, that is, if Ad,(o)O = O for all O E ~, then one 
family of algorithms satisfying (5.25) is the generalized midpoint rule, determined by 
the condition 

O := At~n+O/2). (5.27) 

The algorithm determined by (5.23) and (5.27) is the general Lie group expression 
for the algorithm (3.3) discussed in Section 2. 

We now specify conditions which will ensure that the general momentum-preserving 
algorithm determined by (5.23) and (5.27) is symplectic. Define H : ~ ~ L(~, ~3) by 

H(O) := TL,(o)-~D'r(O). (5.28) 
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The algorithm (5.23) has linearization (Sq.+, =(l+Cna  {6q. x} 
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(5.29) 

where, for invertibte H(O), Cn : N* --~ N satisfies 

Cn - -  Adq.+l mH(0) -1 - ad*l-[.+l (Adq. + Ad~.+,). (5.30) 

Result 11. The algorithm (5.23), with @ defined by (5.27), is symplectic if 

4 
At skew[mH(O) - ' ( l+  Adr,o,)] = ad*(lrI,+t - l ' I , ) ,  (5.31) 

where for M : ~J* ~ wo, 

(/z skew[M]u) := ½((/z, Mu} - (p, Mtz)) (5.32) 

for all tz, u E wd*. The right-hand side of(5.31) can be expressed in terms of O using 
the relationship 

4 ( (  , -1 ) 
IIn+l - II, = ~-~ 1 + Adz(o)_, ) - ½1 m@,. (5.33) 

Remark. If the group is abelian, then (5.31) simplifies to H(®)*m = mH(@). 

5.3. Error Estimates 

In theory, condition (5.31) can be used to determine symplectic algorithms. However, 
this condition may be difficult to explicitly implement. For some Lie groups, no 
explicit closed-form expression for a map r : ~ --~ G is known; even in cases where 
such maps exist, they may fail to satisfy the symplectic condition. Thus, we may 
wish to use the preceding calculations to estimate the extent to which an algorithm 
for the unreduced Euler equations fails to be symplectic. It appears to be convenient to 
explicitly estimate the error in the Poisson matrix (i.e., the inverse of the symplectic 
matrix) and then relate the error in the Poisson matrix to the error in the symplectic 
form. 

We define the approximate Poisson matrix ~,+t at the (n + 1)th time-step by 

~'n+I := L , ~ , L  *, where ~o := to(qo,Po) -1 = (5.34) 

and the matrix Ln is given by (5.29). 
Using the identity (3. I0), we see that for the class of algorithms given in (5.23), 

~n = , (5 .35 )  
OL 



282 D. Lewis and J. C. Simo 

where or0 := 0 and o% : N* --> N is defined inductively by 

cr,,+l := o'n + skew Cn(1 + ao'n)(21 - o~C n . (5.36) 

Note that the error occurs only in the 67r-tzr component of the approximate Poisson 
matrices ~n. We shall refer to o'n as the Poisson error at time-step n. 

For the rotation group, if we identify the skew-symmetric map o-~ : I~ 3 --* R 3 with 
a three-vector, then the formula (5.36) for the Poisson error takes the form 

6-~+~ = 6"~+ C~ skew[(1 + ¢rd-n)(2C~ " r -  #)]C r ,  (5.37) 

where the matrix Cn is given by 

)' 
C~ = A~+I JH(O) -1 - l~+ t  (1 + T(O))Ar+l, (5.38) 

with inverse transpose 

C2 r = A,+l H(O) - r J  + ~ + l  + ~ An+ t. (5.39) 

Thus, using the identity 

M ~ ' I  r = detMM'2"rx (5.40) 

for M ~ GL(3) and x ~ R 3, we obtain the formula (3.28) given in Section 3.3. 

5.4.  A lgor i thms  f o r  General  Hamil tonians  on Lie Groups 

In Section 2 and Section 5.2, we considered only the unreduced Euler equations, for 
which the Hamiltonian is equal to the kinetic energy of the system. We now consider 
a system on T*G with a nontrivial potential V: G ~ •. The canonical Hamiltonian 
equations associated with such a potential are 

0 = f~ l .  (5.4t) 
= - D V ( q )  J 

We shall generalize the algorithms developed in Sections 2 and 5 so as to model 
equations (5.41) by incorporating an appropriate expression for the differential of 
the potential into the momentum update equation. A nontrivial potential breaks the 
symmetry of the system; we let G denote the (possibly trivial) symmetry group of the 
Hamiltonian 

l 2 g(q, p) =  .ILolt .a + V(q). (5.42) 

Invariance of the potential V under the action of G implies that DV(q)  ~ (~  • q)A, 

the annihilator of the tangent to the group orbit. 
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We consider algorithms associated with (4.2) of the form 

qn+l = qnr(O) ] 
! 

1r~+~ ~n + At~(qn, O) ~ .  (5.43) 
[ 

@ @(At, [In, IIn+l) J 

We do not give general conditions for conservation of momentum here, since such 
conditions depend strongly on the action of the symmetry group. However, we consider 
two special but common cases--first, the case in which the symmetry group G is a 
subgroup of G, acting by left multiplication, and second, a particular case in which 
the configuration group G is additive and the symmetry group G acts linearly on 
G. In the first case, the condition for conservation of momentum is simply that 
~(qn, @) ~ @ C ~*; that is, 

(Y(qn, 0),  r/) = 0 for all 77 E ~, (5.44) 

where ~ denotes the Lie algebra of the subgroup G. We next consider the special class 
of algorithms on a linear group for which z is the identity map and t9 is a convex 
combination of the body velocities; that is, 

@ = m-l(ap~+~ + (1 - a)p~) (5.45) 

for some a E [0, 1]. For ~ ~ q3, we let ~ " G ~ q3 ~ N denote the map determined 
by the infinitesimal group action. This notation is intended to be suggestive of the 
map from IR 3 to the space of three by three skew matrices associated with the action 
of SO(3) on matrix groups, which is the motivation for our treatment of this special 
c a s e ,  

Result 12. The momentum for a linear Lie group is conserved if and only if ~(q, ,  @) 
(~" %+(1-~))A," that is, 

^ 

(~(qn, ®), ~:qn+(l-~)) = 0 (5.46) 

for all ~ ~ ~. 

The momentum map q5 • T*G ~ @ is determined by the relationship 

(C~(q,p), c) = (p, ~.q) (5.47) 

for all (q, p) E T*G and s c E ~. The change in momentum satisfies 

(dg(q~+l,p~+I) - Cb(qn,p,,), ~) 

: (P~+I - P n ,  ~-q,,+(i-,~)) + g%+. ,  ~(q,,+J - q . ) )  

= at(Uk(q,,, @), ~q,,+(l-,~)) + (P,,+,~, ~P,,+,)~.~j.. (5.48) 

tn the linear case G-invariance of H implies that G is a subgroup of the group of 
isometries of (( , ) ) r 'o ;  hence ((p,,+~, ~p,,÷~)),,~. = 0. 
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Result 13. Conservation of energy holds/fAd,(o)12~+O/z ) = t2~+(v2) and 

At(~(q~, O), Adq, On+(lf2)) = V(qn) -- V(qn+l)* (5.49) 

A more general, but substantially more complicated, energy conservation condition is 
given in Appendix B. 

We shall now specify conditions under which the algorithm (5.43) for a Hamiltonian 
system with a nontrivial potential is symplectic. To simplify the necessary expressions, 
we introduce the following notation. Define F~ and Gn E L(~, ~*) by 

Fn3q + GntO = D~(qn, 0 ) .  (TeRq.tq, 80) (5.50) 

for all 3qn, 30 ~ ~ and ~n and ~ + 1  : ~* "-> ~J by 

DO(At, On, ~n+l) " (0, m-16II~, m-16IIn+l) = ~n6IIn + XItn+16IIn+l (5,51) 

for all 6II~ and 6IIn+ l E ~*. 

Result 14. The algorithm (5.43) is symplectic if 

1. ~-~ skew/-/(0)  - l  . . . . . .  n+l + Adr(o)-~ = ~ + t a d  rIn+laYZn+l --~nad IIn~n 

2. Grill(O)-' (*;+1 + Ad*(o)- '*n)= F.Adq " 2  

3. ad*~(q., O) = - 2  skew[F~]. 

Note that there are three sets of conditions to be satisfied, corresponding to three 
components of the Poisson matrix, in comparison to the single condition associated 
with the 8zr--67r component of the Poisson matrix which arose in the case of the Euler 
equations. 

In special cases, the conditions given" in Result 14 can be further simplified: if O 
is given by (5.27), then the first two symplectic conditions take the form 

'. 

'. 

skew[H(O)-I (1 + Ad~(o)_t)] = ad*(II~+ 1 - I I ~ )  

O~(qn, 0)" (tq, 60) = F~ (tq + (1 + Ad¢(o)-~)-' H(O)Adq tO). 

If the group is abelian, then the symplectic conditions simplify dramatically. If 
~(qn, 0)  = ~(qn, qn+l) for some map o ~ : G x G ~ ~ with first variation satisfying 

D~(qn, qn+l) " (TeLq.tqn, TeLq,+~qn+l) = ~qn~qn + ~qn+l qn+l (5.52) 

for some ~ e~ ~q, ,q-~+t ~ L(q3, ~*) and all 6qn. 8q~+l ~ ~3, then 

= ~ and G. = .H(O). 
F .  ~q~ + 8q.+l 6qn+l 

(5.53) 
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Hence the symplectic conditions for an abelian group are equivalent to the conditions 

l" .  skew [H(O) (qt,+l + % ) ]  = 0 

2". a ~ * *  6 3  ~ .  ~q~ " 6 q, +-----~l ,+1 

3". skew[ 8 ~ ]  = [ qnj 0. 

6. Dynamics on Manifolds Open in a Larger Linear Space 

The developments in Section 5.4 illustrate some of the difficulties involved in for- 
mulating conserving algorithms for Hamiltonian systems on closed Lie groups. Aside 
from the rather intractable form taken by the symplectic conditions, from a pragmatic 
standpoint the key difficulty is the lack of an explicit expression for the exponential 
map. As pointed out in the introduction, if the configuration manifold is open in a 
larger linear space, this difficulty can be circumvented by replacing the (multiplica- 
five) update dictated by the structure of the configuration manifold with the additive 
update of the larger linear group. Adopting this strategy, one recovers the conventional 
setting of conserving algorithms on linear phase spaces. 

We illustrate this methodology in the specific setting of a representative example: 
the dynamics of homogeneous compressible elasticity. First, we provide a brief account 
of the Hamiltonian structure of this simple mechanical system; we then consider the 
formulation of symplectic and energy- and momentum-conserving algorithms for this 
system. Finally, the results are illustrated in sample numerical simulations. 

6.1. The Dynamics of Compressible Homogeneous Elasticity 

The model under consideration can be viewed as a generalization of classical rigid- 
body dynamics to incorporate affine deformations of a continuum body occupying 
a reference configuration ~ C R 3. This motivates the denomination of pseudo-rigid 
bodies coined in Cohen and Muncaster [1984, 1988]. The theory of pseudo-rigid 
bodies can be derived from classical three-dimensional nonlinear elasticity by con- 
straining the elastic body to homogeneous deformations. A complete treatment of the 
resulting Hamiltonian systems is given in Lewis and Simo [1989]. The brief summary 
given below is restricted to those aspects needed for our subsequent algorithmic de- 
velopments. For simplicity, we assume that the center of mass of the body is a fixed 
point. 

6.1.1. Lagrangian Description: Canonical Hamilton's Equations. The configura- 
tion manifold of pseudorigid bodies is the group Q := GI+(3) of invertible 3 × 3 
with positive determinant, which is open in the general linear group L(3). (For the 
incompressible problem the configuration manifold is the group SL(3) of volume- and 
orientation-preserving matrices which is closed in L(3).) The canonical phase space 
is the cotangent bundle T*Q. Tangent and cotangent vectors at a point F ~ Q can 
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be identified with 3 x 3 matrices in L(3), denoted by V and P,  respectively. The 
identification T*Q ~ Q × L(3) via coordinates (F, P), with F ~ Q and P ~ L(3), is 
referred to as the material or Lagrangian description of pseudorigid bodies. 

The duality pairing between T*Q and TQ is the standard matrix inner product 
(P, V):= tr[PrV]. The canonical symplectic two-form on the cotangent bundle T*Q 
is defined as 

o)(F, P)((aFI, 8P1), (6~F2, ~P2)):= ((~P2, aFt) - (tPt, ~F2). (6.1) 

Let W(C) denote the stored energy function for the homogeneous material, expressed 
as a function of the right Cauchy-Green tensor C := FrF,  and denote by E the inertia 
tensor of the continuum body in its reference placement. In the absence of body and 
surface forces, the Hamiltonian function for homogeneous elasticity forces is 

H(F, P) := K(P) + W(FTF), where K(V) :=  ~(P, PE -l) (6.2) 

is the kinetic energy. Denoting by V := PE -i the velocity field associated with the 
momentum P,  the canonical Hamilton's equations (in the Lagrangian description) then 
take the form 

P = V and P = - 2 F V W ( F r F ) .  (6.3) 

6.1.2. Conservation Laws and Momentum Maps. Since the Hamiltonian system 
under consideration is autonomous, the Hamiltonian flow exactly conserves the total 
energy in the sense that/2/ = 0. 

Inspection of (6.2) reveals that H(F, P) is left invariant under the action of SO(3), 
in the sense that H(QF, QP) = H(F, P) for any Q E SO(3). The conserved quantity 
induced by this invariance property is the momentum map q5 : T*Q --* •3, given by 

cb(F, P) = rot[PFr] , (6.4) 

and interpreted as the total angular momentum of the system relative to an inertial 
frame. The additional conservation law is c~ = 0. 

Of course, the Hamiltonian flow defines a symplectic transformation in phase space 
that preserves exactly the symplectic two-form defined by (6.1); hence, & = 0 along 
the flow. 

6.2. Conserving Algorithms on GL + (3) 

We start our analysis of energy-momentum and symplectic algorithms by considering 
the following general class of one-step methods: 

Fn+i - Fn = At Pn+~E -l l 

J Pn+l - Pn = At ~(Fn+l,Fn) 

where 

(6.5) 

P~+~ :=/3&+l + (l - 3)&.  (6.6) 
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Here/3 ~ [0, 1] is a parameter defining the algorithm and ~ : L(3) x L(3) ~ L(3) 
is an arbitrary function, left unspecified at this point, and only subject to the usual 
requirement of consistency with the right-hand side of (6.3). Our objective is to 
determine the additional restrictions placed on this function by the condition of exact 
momentum and energy conservation. The analysis given below follows the approach 
proposed in Simo and Tarnow [1992] in the context of three-dimensional nonlinear 
elastodynamics. 

Result 12 can be applied to this example, yielding the momentum-conservation 
condition 

where 

0 = (.~(F.+,. Fn), ~F~+(1-t~)> = (~(F .+ , ,  F~)Fr~+(,_~), ~>, (6.7) 

Fn+~ := aF .+ l  + (1 - o0Fn for all o~ ~ [0, 1], 

for all ~ E ~3. In view of (6.7), we conclude: 

(6.8) 

Result 15. The algorithm (6.5) preserves exactly the momentum map if 

~(F~+l, Fn) = F~+~S(Fn+I, Fn) and /3 = (1 - a), 

for any symmetric matrix S(F~+I, Fn) and any a E [0, 1]. 

(6.9) 

Observe that momentum-conserving algorithms need not be consistent with the 
governing equations. Next, we examine the restrictions placed by conservation of 
energy on the general class of momentum-conserving algorithms identified in the 
preceding result. 

It is well-known that the (implicit) midpoint rule is an exact energy-conserving 
algorithm in the linear regime. Motivated by this result, we shall restrict our attention 

i Result 13, along with formulas (6,5) and (6.9), to the specific case in which a = 2." 
implies that for ot = ½ energy is conserved if and only if 

W(Cn) - W(C~+I) = (~(F.+I,  Fn), ~C~n+(1/2)) 
= (Fn+(t~)S(Fn+I, F,) ,  Fn+) - Fn) 

= ½{S(Fn+z, Fn), Cn+l -- Cn), (6.10) 

where Cn+l := Fr~+l F,+ I and C~ := FrnFn. As in the case of three-dimensional elas- 
ticity, the preceding condition can be exploited to arrive at the following: 

Result 16. The family of  algorithms defined by 

Fn+l - F~ = At Pn+(I/2)E -1 1 

J Pn+l - Pn = -AtVFW(Cn+~/) = -2AtFn+(I/Z)VcW(Cn+~) 

where 

(6.11) 

T T Cn+~ := yCn+~ + (1 - y)Cn = TFn+IF.+ l + (I - T)Fr~F~ (6.12) 
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and 3' E [0, ½) is determined by the equation 

W ( C n + l )  - W ( C n )  = ( V c W ( f n + y ) ,  Cn+l -- Cn),  (6.13) 

exactly conserves the total energy (6.2). In addition, the algorithm 

Fn+l - Fn = At Pn+O/2)E -1 1 (6.I4) 

P.+I - Pn --At F.+(I:zl (VWc(C.+r) + VcW(Cn+(I- .y) ) )  J 
conserves exactly energy and momentum and is second-order accurate. 

To complete the analysis, it only remains to establish the conditions under which 
the general class of algorithms defined by (6.5), subject to the momentum-conserving 
conditions (6.9), is symplectic. To apply Result 14, we first compute the derivatives 

~ n t P  = (I - ~) tPE -t  ] 

L ~.+16P = ~ t P E  -1 

__c) = aS(F ,+t ,F , )  + Fn+~ .~  - -  I (6. t5) 

d--~--'~(Fn+l, Fn) = (1 - ~)S(Fn+I, Fn) + F.+a i~ S(Fn+1, Fn) 
OFn OFn+I 

Since the derivatives ~ .  and ~.+~ are symmetric and H(tg) = 1 for all ®, the non- 
trivial symplectic conditions for the canonical symplectic two-form (6.1) are simply 

O = O--~S(F,+I,Fn) r - = = UFn+ ~ (6.16) (1 c~)~-~nS(F.+l, Fn) 
c) Fn+l 

for some symmetric matrix U. The choice 

~(Fn + l, Fn ) = -- VF W (F2+ ~ Fn +4) (6.17) 

renders symplectic the exact momentum-conserving algorithms in Result 15 for any 
c~ E [0, 1]. In particular, for c~ = ½ one recovers the well-known symplectic property 
of the midpoint rule. We remark that for o~ # ½ this one-parameter family of simplectic 
algorithms is only first-order accurate and conditionally stable; see Simo, Tarnow, and 
Wong [1992]. Note that the algorithms (6.11) and (6.14) do not satisfy (6.16) and 
hence are not symplectic. 

6.3. Delay Plots for Conserving Algorithms 

The momentum-conserving symplectic algorithms determined by (6.5) and (6.17) do 
not conserve energy. However, the energy along the algorithmic trajectory remains 
bounded throughout very long simulations, (It is popularly believed that this is a 
common characteristic of symplectic algorithms.) In fact, the approximate energy 
appears to be quasi-periodic. We provide below visualizations of the evolution of 
the total energy for sample initial conditions using delay-reconstruction techniques. 
Attractor reconstruction from scalar data is common in several areas of dynamical 
systems. (See, for example, Packard et al. [1980] for a discussion of reconstruction 
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(a) (b) 

(c) (d) 

Fig. 3. Energy delay plots. Time-step: .005; delay: 3; initial configuration: 1; angular 
momentum: (a) .4, (b) 2.0, (c) 6.0, (d) I0,0; energy variation: (a) 4.0- 10 -8, (b) 1.8 • I0 -5, 
(c) 2.3.10 -3, (d) 1.6.10 -1. 

techniques.) We employ here an extremely simple version of these techniques: We nu- 
merically compute a time series {(F,, Pn)} with initial conditions (F0, P0); we map this 
sequence of elements in GL(3) x L(3) to the real-valued sequence {Hn} consisting of 
the total energy at each time-step; finally, we plot the sequence {(H,, H,,+N, Hn+aN)} 
of three vectors determined by an integer delay parameter N. 

All delay plots that we have made to date using the symplectic algorithm deter- 
mined by (6.5) and (6.17) result in toil or deformed toil; we provide several samples 
of such plots below. The plots in Fig. 3 for initial conditions consisting of a sphere 
rotating with a relatively low angular velocity show only slightly deformed toil, while 
increasing angular velocity leads to increasingly dramatic deformations of the toil. 
Figure 4 shows integxations of two of the initial conditions used in Fig. 3, using the 
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big. 4. Energy delay plots. Time-step: .05; delay: (a, c) 3, (b, d) 5; initial configuration: 1; 
angular momentum: (a, b) 6.0, (c, d) 10.0; energy variation: (a, b) 3.9 • 10 -1, (c, d) 6.2. 

time-step At = 0.05, rather than the time-step At = 0.005 used in Fig. 3, and two 
choices of  delay. Note: While increasing the time-step from 0.005 to 0.05 yields a 
substantial change in the size of the figures, it does not (in our opinion) result in a 
significant change in the qualitative structure of  the figures. The symplectic algorithm 
determined by (6.17) and the energy-conserving algorithms (6.11) and (6.14) all yield 
slightly deformed tori in delay plots of the norm liEn - 111 of the displacement. Figures 
5(c) and 5(d) show representative plots; 5(c) is computed using the energy-conserving 
algorithm determined by (6.13), while 5(d) is computed using (6.5) and (6.17). All 
of the integrations except that plotted in Fig. 5(c) model a Mooney-Rivlin material 
with parameters h = 2000, p. = 6, and fi = 0.5; in 5(c) a Saint-Venant-Kirchhoff 
material with parameters A = 2000 and/z  = 6 is used. 
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Fig. 5. Energy and displacement delay plots. Time-step: (a) .005, (b, d) .05, (c) .001; 
delay: (a, c) 3, (b, d) 5; initial configuration: (a, b, c) ((1.01, .01, 0), (.01, 1.01,0), 
(0, 0, .99)), (d) 1; angular momentum: (a, b, c) 0, (d) 10.0; energy variation: (a) 1.6, (b) 2.0. 10-2; 
displacement variation (e) 3.1 • 10 -4, (d) 32. I. 
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Appendix A: Source Code for the Integration of the Unreduced Euler Equa- 
tions on S0(3) and Tracking of the Poisson Error 

We include here the Mathematica code used to generate the plots of the Poisson error 
given in Section 3.3. Our motivation for this is two-fold: first, to allow the reader 
to experiment with different initial conditions and different scalings of the Cayley 
transformation; second, to demonstrate that the energy- and momentum-conserving 
algorithms discussed in Section 2 are actually quite simple to implement. 

We first define the required maps and functions: skew takes a three-vector to 
a skew-symmetric matrix; r o t  takes a three-by-three matrix M to the three-vector 
such that s k e w [ r o t [ M ]  ] is the skew-symmetric pan of M. c a y l e y  is, of course, 
the Cayley transformation (2.5) taking a three-vector to a rotation matrix, k a p c a y ,  
k a p e x p ,  and kapsym are the scaling functions associated to the Cayley, exponential, 
and symplectic maps. 

id = IdentityMatrix[3] 
norm = Sqrt[#.#]& 
skew = {{0, -#[[3]], #[[2]]}, 

{#[[3]], 0, -#[[I]]}, 
{-#C[2]], #[[I]], 0}}& 

rot = {-#[[2,3]], #[[1,3]], -#[[I,2]]}/2&[#- Transpose[#]]& 
cayley = (id + #).Inverse[id - #]&[skew[#/2]]& 
kapcay = I~ 
kapexp = (Tan[#]/#)a[norm[#]/2]& 
kapsym = If[T~/eQ[# > I], (Print["\nTheta is too big!kn"]; 2), 

21(I + Sqrt[l - 4m2])]&EnormE#]]& 

The function step performs a single step of the integration using the algorithm 
(3.3), where T : •3 ~ SO(3) is a scaled Cayley transformation with scaling function 
ka ppa .  The integration "driver" i n t ,  which is based on the Runge-Kutta driver given 
in Maeder [1991], integrates from the initial configuration-momentum pair ( l ambda ,  
p i )  for a time period of length t ,  using fixed time-steps of size d t .  The matrix j is 
the body inertia tensor; options can include any (or none) of the optional arguments 
of the Mathematica function F i n d R o o t .  

step[{lambda_, theta_}, kappa_, pi_, j_, dr_, options_] := 
Block[ix, y, z}, 

{lambda.cayley[kappa[#] #], #}&[#1/.FindRoot[ 
(id + kappa[#1]/2 skew[#1]).j.#1 = 

dt Transpose[lambda].pi, #%#2, options]&@@ 
Prepend[T~pose[{~, theta}], #]&[{x, y, z}]]] 

int[lambda_, kappa_, pi_, j_, t_, dr_, options_] := 
NestList[step[#, kappa, pi, j, dt, options]&, 

N[{l~nbda, dt Inverse[j].Transpose[lambda].pi}], 
Round[t/dr]] 
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The Poisson error is computed according to the formula (3.28) using (3.23) and (3.29). 
The function p s t e p  computes the Poisson error at a single time-step, while po:LseaTr 
determines the Poisson error over a series of time-steps. The function muexp is the 
parameter/z, with general expression (3.23), associated with the exponential map; 
the expressions/z = 0 (respectively,/z = 2) associated to the Cayley (respectively, 
symplectic) maps are sufficiently simple that they are explicitly given in the S w i t c h  
statement. 

muexp = (3 - 11 Cos[#])(# - Sin[#])l((Cos[#] - I) #)&[norm[#]]& 

pstep[sigma_, {lambda_, theta_}, kappa_, pihat_, j_, dt_] := 
With[ {kap = kappa[theta] }, 

Fold[#2[#$]&, Switch[kappa, kapcay, D, 
kapexp, muexp[theta], kapsym, 2], 

{id/kap - skew[theta]/2 + 
kap (I- #)/4 Outer[Times, theta, theta]&, 

(2/dt lambda.#.j.Transpose[lambda] + pihat). 
(id + kap/2 skew[lambda.theta])&, 

sigma + 4/Det[#] #.rot[(id + pihat.skew[sigma]). 
(# - pihat) ]&}] ] 

poiserr[pairs_, kappa_, pi_, j_, dt] := 
FoldList[pstep[#1, #2, kappa, skew[pi], j, dt]&, 
{0, D, 0}, pairs] 

The functions plotScalar and showtop can be used to compute and display 
trajectories, their energy, and the magnitude of the Poisson error, p l o t S c a l a r  takes 
as its arguments a text string l a b e l  which serves as a label for a two-dimensional 
plot, a real-valued function f c n  which is to be plotted, and a list d a t a  of data 
points to which f c n  is to be applied, s h o w t o p  takes as input initial conditions 
( l ambda ,  pi '),  a scaling function k a p p a ,  a three-vector ~ d i a g  giving the diagonal 
entries of the body inertia tensor (for convenience, we assume that the inertia tensor is 
diagonal--this can be easily modified to accept a general symmetric matrix), an overall 
time range t and incremental time-step t i t ,  and a (possibly trivial) list of  options for 
the Mathematica command F i n d R o o t  used in the integration, s h o w t o p  performs 
the specified integration, creates a three-dimensional plot tracing the positions of the 
tips of the unit coordinate axes as rotated by the attitude matrices, and, finally, plots 
the energy of the system and the magnitude of the Poisson error. 

plotScaiar[label_, fcn_, data_] := 
ListPlot[#1, PlotJoined ->True, PlotLabel-) #2]&~@{#, 

StringJoin[label, ,,\nmaximum variation (max- min):kn,,, 
ToString[InputForm[Max[#] - Min[#] ] ] ] }&[fcn/@ data] 
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showtop[lambda_, kappa_, pi_, jdiag_, t_, dt_, options_] := 
Module[ {j = DiagonalMatrix[~diag], 

jinv = DiagonalMatrix[I/jdiag], 
outlist = int[lambda, kappa, pi, j, t, dt, options], 
attitude }, 

attitude = First/@Dutlist, 
Show[Graphics3D[ ( {RGBColor~@#, Line[attitude.#] } )&/@id] ], 
plotScalar[,,energy',, ( (#. jinv.#/2)&[Transpose[#] .pi] )&, 

attitude ] ; 
plotScalar["Poisson error", norm[#]&, 

poiseiT[outlist, kappa, pi, j, dt]]] 

Appendix B: Derivation of Energy Conservation and Sympleetie Conditions for 
Algorithms on General Lie Groups 

The proof of Results 3 and 10, giving conditions for the conservation of energy 
for Euler and general Hamiltonian systems, proceeds as follows. We shall prove the 
general case, which can then be specialized to the unreduced Euler equations by 
setting the potential and the algorithmic "force" equal to zero. For convenience, let 
~ ,  := A d q ~ ( q , ,  @). Equation (5.43) implies that 

1-In = Adq.~n = Adq.('rrn+l - A t ~ ( q n .  ®)) = Ad~(@)-~II.+, - A t t n .  (6.18) 

Solving 

2mt'~n+(,/2) = I-[n+l + l'In = 5onl-[n+, - - A t e . .  (6.19) 

where ~ = 1 + Ad~(o)_,. for II.+t yields 

IIn+ 1 = ,~On--' (21l~[~n+(b2) -1 t- Ate . ) .  (6.20) 

Combining (6.18) and (6.20) yields 

* n A t ~ . ] .  IIn+l - l-I. = 25°;'((1 - Adz(o).,)m .+(,/2) + (6.21) 

Thus energy is conserved if 

V(qn) - V(q.+l) 

1 2 _ 211~i.ll~. = ~t ln°+, l l~-  

= ( I I . + i  - 17 . ,  a . + w 2 ) >  

- -  Ad:,o  + At~n, (1 + Ad~(o)-,) -112n+(l/2)>- (6.22) 
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The general energy conservation condition (6.22) implies the Euler equation condition 
(5.26). The condition A~(o)fl~+(l/2) = fl,+(Ia) implies that 

(v, 12n+0/2) ) = {q-Iv, 1 + Adr(o)-, ) = 2<5°n-1•, I~n+O/2} ) (6.23) 

for any v ~ N*. Thus (6.22) simplifies to (5.49) (respectively, (5.25)) if 

Adr(O)l"~n+(l/2 ) = ~C~n+(1/2 ). 

The derivation of the expression for the Poisson error for the unreduced Euler 
equations proceeds as follows. The linearized equations associated with equations 
(5.23) are 

6qn+l = aqn + Adq,+ H(O)60 ] 

6rrn+l 6rrn I . (6.24) 

At -1 * * 
6 0  T m  (Adq.+, (adaq.+t-trn+ 1 + 6~rn+l ) + Adq. (adaq 7rn + 6rrn)) 

Equations (6.24) can be written in the form 

where B. := M Ad~. and Bn+t := -MAde.÷,,  for 

M := AtAdq.+,H(O)m-1 
2 

Solving (6.25) for (tqn+l. 67rn+1) yields (5.29), where 

since 

1 1\6~'. 
(6.25) 

(6.26) 

Cn :=  (1 + Bn+loO-l(Bn - Bn+l) 

= Adq.+, ~- - t/(O)m-~ad*II.+, H(O)m-' (Ad;. + Adq.+,). (6.27) 

Ad~.+, ad*Tr Adq.+, = ad*(Adq.+ rr) = ad*IIn+ , . 

Using (3. l) and the identity (3.10), we see that 

(6.28) 

(: (6.29) 

if and only if @n = skew[Cn(2 1 - aC*)] = 0. If Cn is invertible, the map is sym- 
plectic if and only if 

2 skew [ C 2 ' ]  = - ~ .  (6.30~ 
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Condition (6.30) can be simplified as follows: ~ and Adq.+t are invertible, hence 
(6.30) is satisfied if and only if 

0 = ~Adq.+, skew[2C~ -1 + or] Adq.÷c~ / 

= skew[-~mH(®)-lS°~ * + (2 1 - ~)ad*IIn+~Sc.*]. (6.31) 

Equation (6.31) can be further simplified using the identity 

skew[(2 l -  ~)ad*IIn+lS°~ *] = skew[ (1 -  Ad:(o)-,)ad*IIn+l(1 + Ad.(o)-~)] 

= ad* (II~ - II.+l) (6.32) 

and equation (6.21) to obtain the symplectic conditions (5.31) and (5.33). 
We shall now derive Result 14, which specifies the conditions under which the 

map (5.43) is symplectic. This derivation is analogous to that given in Section 2. We 
first consider the tinearized equations. If we define 

An := At Gn~nAdq° 

Bn := Adq.+tH(O)~nAdq. 
d. } An+l := -A t  Gnat~n+~A q.+, 

Bn+z := -Adq.+tH(O)"F.+IAd~.+, . 

OLn+ 1 : =  ad* 'B 'n+ 1 

then the linearization of (5.41) has the form 

(rqn+l, 67rn+,) = £-~l+,L.(6qn, 61rn), 

where 

and 

(6.33) 

(6.34) 

A straightforward calculation shows that 

(:)  ( L~ - 1  L; = 
ce. 1 + An (1 - anB:) - At F.B* 

- 1  ) - .  
Ln+ t . (6.37) 

OLn+l 

- 1  -- (1 + Bnotn)A* n + At BnF~ ~. 

otn+l - A.anA* - At k(qn, O) 

(6.38) 

1 + Bn+lc~n+l B,+~ ) (6.36) 
Ln+l := An+lotn+l 1 +An+l " 

As we did for the free rigid body in Section 3.1, we express the test for symplec- 
ticity in the form 

( 1 +BhOtn Bn ) (6.35) 
L n : = \ A n c ~ n + A t F n  l + A n  
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where 

*~ skew [Fn (1 + k(qn. ®):= ad ~(qn. ®) + 2 An*)], (6.39) 

Thus the algorithm (5.4t) is symplectic if: 

1. Bn+lan+lBn+ 1 - Bn~nB n = 2 skew[Bn+l - Bn] 

2. An+l(Oln+,Bn+ , - 1 ) -  An(otnB n - 1)=  At FnB: 

3. An+lan+iA]+1 - AnanA~ = At k(qn, 0 ) .  

We shall now rearrange and simplify these conditions to obtain the conditions given 
in Result 14. The first condition can be regrouped using the relations 

B * * n + l O t n + l B n +  1 - B n o L n B  n 

= Adq.+~/-/(@)(~n+lad*IIn+~2+~ - ~rnad*IIn~2)H(@)*Ad*q.+z (6.41) 

and 

skew[B~+l - Bn] 

= Adq.+,H(O)skew [(~n+l + ~nAd*(o)-,)H(O)-r]H(O)*Adq'+, (6.42) 

to show that condition 1 holds if and only if 

• ./J . . . .  "trn+l + Ad,(o)-~n = ~n+lad IIn+lgrn+l - ~nad I I , ~ .  

(6.43) 

The second condition is simplified by noting that if condition 1 is satisfied, then 

An (1-  ~nB*)-  An+, (1 - an+lB:+l) 

= A, Gn((*.+, + *nAd:,o:)H(O) 

+ ~n+lad*IIn+l~+l  

- * n  ad*YI. ~*)H(O)* adq.+, 

= ~ t  o.mo)-' (,I%, + Ad,(o)-~,~)H(O)*Ad~.÷. (6.44) 

Thus if condition 1 holds, then condition 2 is equivalent to 

GnH(~))-' (gg2+t + Ad,(o)_,q:~ ) = FnAdq ~,~. (6.45) 

and 

- 1  skew[Bn+l(2 1 - c~n+lBn+1)] - 1  - (1 + Bn+,an+l)An+ ~ 
Ln+, Ln+ 1 = • - 

otn+l \ 1 + An+,(1 - an+lBn+ l) O~n+~ -- An+lo~n+,a*n+ I 

(6.4o) 
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If  the first two conditions hold, 

Ano~n+lAn+ 1 - A ~ n A  n = 

D. Lewis and J. C. Simo 

then condition 3 can be rewritten using 

At 2 Gn (%÷,ad*n~÷,%*+~ - 't~.ad'IL~I'J)G * 

2At2 skew[Gnt t (o)- l (  n+l + Ad~(o)-txtrn)Gn] 

2At 2 skew[F~ Adq=,'t~,~G,~] 

2At skew[FnA;] 

= At (k(q~, O) - ad*~ - 2 skew[F~]). (6.46) 

Thus the third condition holds if conditions 1 and 2 hold and ad*~ = - 2  skew[Fn]. 
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