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Summary. The purpose of this paper is to develop analytical methods for study- 
ing particle paths in a class of three-dimensional incompressible fluid flows. In this 
paper we study three-dimensional volume preserving vector fields that are invariant 
under the action of a one-parameter symmetry group whose infinitesimal genera- 
tor is autonomous and volume-preserving. We show that there exists a coordinate 
system in which the vector field assumes a simple form. In particular, the evo- 
lution of two of the coordinates is governed by a time-dependent, one-degree-of- 
freedom Hamiltonian system with the evolution of the remaining coordinate being 
governed by a first-order differential equation that depends only on the other two 
coordinates and time. The new coordinates depend only on the symmetry group 
of the vector field. Therefore they are field-independent. The coordinate transfor- 
mation is constructive. If  the vector field is time-independent, then it possesses an 
integral of motion. Moreover, we show that the system can be further reduced to 
action-angle-angle coordinates. These are analogous to the familiar action-angle vari- 
ables from Hamiltonian mechanics and are quite useful for perturbative studies of 
the class of sytems we Consider. In fact, we show how our coordinate transformation 
puts us in a position to apply recent extensions of the Kolmogorov-Amold-Moser 
(KAM) theorem for three-dimensional, volume-preserving maps as well as three- 
dimensional versions of Melnikov's method. We discuss the integrability of the class of 
flows considered, and draw an analogy with Clebsch variables in fluid mechanics. 

Key words, three-dimensional fluid flows, volume-preserving symmetry, KAM the- 
ory, Melnikov's method 

1. Introduction 

For two-dimensional, incompressible, time-periodic fluid flows the equations for fluid 
particle paths are given by 
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= ~-y~(X, y, t), 

00  
= - - - '  ( x ,  y ,  t ) ,  

c~x 

where qt(x, y, t) is the stream function periodic in t. From the dynamical systems 
viewpoint, these are Hamilton's equations where ~0(x, y, t) is the Hamiltonian function 
and the phase space of this dynamical system is actually the physical space where the 
fluid flows. Through time periodicity the study of these equations can be reduced to 
the study of a two-dimensional symplectic Poincar6 map, and once the problem has 
been cast in this setting a variety of techniques and ideas from dynamical systems 
theory can be applied for the purpose of studying fluid transport and mixing issues. For 
example, KAM toil represent barriers to fluid transport and mixing, chaotic dynamics 
should act to enhance mixing, and invariant manifolds, such as the stable and unstable 
manifolds of hyperbolic periodic points, are manifested as "organized structures" in 
the fluid flow. See Ottino [1989] and volume 3, number 5 (I991) of Physics of Fluids 
A for recent reviews. 

Over the past 10 years there has been much work by the fluid mechanics community 
in applying these types of dynamical systems techniques to the study of fluid transport 
and mixing. However, most of the theoretical work has been in situations where the 
study of the flow kinematics is reduced to the study of a two-dimensional symplectic 
map. 

The purpose of this paper is to develop a framework and analytical methods for 
studying fluid particle paths and global structures in a class of three-dimensional, 
time-dependent flows. Global perturbation methods, such as KAM theory, Melnikov's 
method, and averaging techniques, rely on a coordinate description of the underlying 
unperturbed phase space structure for their development. In particular, KAM theory 
uses action-angle variables, Melnikov's method uses "homoclinic coordinates," and 
averaging methods use coordinates that decompose the motion into "fast" and "slow" 
motions. Finding such coordinates in the two-dimensional case is particularly easy 
as all trajectories are given by the level sets of the Hamiltonian (streamfunction), for 
steady flows. However, for three-dimensional flows the lack of a canonical Hamil- 
tonian structure poses some difficulties in developing similar analytical techniques. 
In the past few years there has been some work dealing with Hamiltonian formula- 
tions for three-dimensional, autonomous, divergence-free vector fields by Cary and 
Littlejohn [1982] and Janaki and Ghosh [t987]. The work of Cary and Littlejohn is 
the most complete work along these lines. Starting from a variational principle for 
divergence-free vector fields, under the condition that the vector field does not vanish 
at any point, they are able to transform the system into a noncanonical Hamiltonian 
form where the reduced system is a one-degree-of-freedom Hamiltonian system in 
noncanonieal coordinates. The transformation to noncanonical Hamiltonian form de- 
pends on the nature of the specific vector field. Our work differs from that of Cary 
and Littlejohn in that our coordinate transformations depend only on the symmetry 
of the vector field, not its specific analytical form. Moreover, the vector field being 
transformed need not be autonomous. 
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The main purpose behind developing coordinates that reveal the global structure of 
the vector field is to develop analytical methods for studying transport issues. There 
has been recent work along these lines by MacKay [1992], who introduces the idea 
of surfaces of locally minimal flux and the skeleton for three-dimensional, volume- 
preserving vector fields. Feingold, Kadanoff, and Piro [1988] perform a numerical 
study of a model three-dimensional, volume-preserving map that highly suggests the 
presence of two-dimensional "KAM-like" toil. Recently, there has been much theo- 
retical work along these lines which we discuss in Sec. 5. 

In this paper we begin in Sec. 2 by developing coordinates for describing the 
velocity field that facilitates global analyses similar to those in the two-dimensional 
setting. In particular, we consider three-dimensional fluid flows that are invariant under 
the action of a spatial, volume-prese~'ing symmetry group. We show that the velocity 
field can be transformed to the form where two components have the canonical form 
of a one-degree-of-freedom Hamiltonian system and the third component depends 
only on the first two variables. Hence the velocity field is integrable in the sense that 
equations for the particle trajectories can be obtained by quadrature. Under certain 
nondegeneracy assumptions in Sec. 3 we show that the vector field can be further 
transformed to action-angle-angle variables. In See. 4 we discuss the relationship of 
our work with the work of Arnold on the topology of steady, volume-preserving vector 
fields as well as the relationship with a description of Euler flows in terms of Clebsch 
variables. In Sec. 5 we show how the action-angle-angle representation can be used 
to apply new KAM-like results for volume-preserving maps, and in Sec. 6 we show 
how our coordinates allow for the use of a generalized type of Melnikov method 
for three-dimensional flows. In Sec. 7 we give three examples that illustrate our 
methods. 

2. Coordinates for Three-Dimensional, Time-Dependent Vector Fields with 
Symmetry  

2.1. General Background from Lie Group Theory 

In this section we prove the main result. First, we begin with some definitions and 
establish some notation. We will not state the necessary definitions and results from 
Lie group theory in their full generality (e.g., in multidimensions or for Lie groups 
acting on general manifolds); rather, we will state them in a form that is appropriate 
for the fluid mechanical context that is our main interest. For more background the 
reader should consult Olver [1986] or Bluman and Kumei [1989]. 

Definition 2.1 (One-Parameter Lie Group).  Let U C ~3 be an open set and con- 
sider the mappings 

(x, t) ~ g(x, t;h), (x, t) ~ U x R 

which depend on a parameter A ~ 3 G C N, where 3 ~ is an interval in N. We assume 
that qS(A, 8) defines a law of composition for any two parameters A, 8 ~ 5. Then we 
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say that this family of mappings forms a one-parameter Lie group acting on U × 
if the following properties hold: 

1. For each parameter A ~ 3 ~ the mappings are one-to-one and onto U x ~. Moreover, 
the mappings are infinitely differentiable with respect to (x, t) E U and analytic 
i n h E ~ .  

2. 3 5, with the law of composition ~b, forms a group. Moreover, qS(A, 3) is an analytic 
function of A ~ 3 ~ and $ ~ 3 6. Without loss of generality we can assume that 
contains the origin and that A = 0 corresponds to the identity element e in this 
group. 

3. (x, t) = g(x, t; e). 
4. I f ( x  1, t t) = g(x °, t°;A °) and (x 2, t 2) = g(x 1, t l ;Al),  then 

(X 2, t 2) = g(x o, to; ~b(A 0, ~.1)). 

We will often denote one-parameter Lie groups generally by the symbol G. 
The infinitesimal generator of the action of a one-parameter Lie group plays an 

important role in many computations related to symmetry issues. 

Definition 2.2 (Infinitesimal Generator.). Let G be a one-parameter Lie group act- 
ing on U x R. The infinitesimal generator of the action of G is the vector field 

3 0 8 
W ~- Z ~ i ( X  , t )~xi  + ~4(X, t)~'~, 

i=t  

where 

~i(x, t)  = agi(x , t ;A)  a=0' i = 1, 3, ~4(x,t) - Og4(x,t;A)[ 
0A . . . .  0A ~=o" 

Our main interest is in discussing one-parameter groups of symmetries of first-order 
ordinary" differential equations, henceforth.referred to as "ODEs." Thus our notation 
(x, t) is suggestive of the dependent ("space") variable and independent ("time") 
variable of an ordinary differential equation. Indeed, we will want to discuss the 
situation where the Lie group acts only on the space variables. In this case one can 
easily rewrite definitions 2. I and 2.2 with the t variable eliminated. 

Now we are ready to define the notion of a symmetry of a system of ODEs. 

Definition 2.3 (Symmetries of  a System of ODEs). Let G be a one-parameter Lie 
group acting on U x ~ and let 2 = F(x,  t), x ~ U, t E R be a system of ordi- 
nary differential equations. We say that this system admits a one-parameter group 
of symmetries G if and only if whenever ~o(t) is a solution then so is g(~p(t), t; A), 
where g(x, t, A) is any element of G. We will call G a spatial symmetry group if it 
acts only on the dependent variables and its infinitesimal generator is an autonomous 
vector field on ~3. 

Functions that are invariant with respect to the group action play an important role 
in our analysis. We now define this notion. 
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Definition 2.4 (Functionally Independent Invariants). Suppose we are given a one- 
parameter Lie group G acting on U × R. A scalar-valued func t ionf  is said to be an in- 
variant of  the group action if and only if f ( g ( x ,  t; A)) = f ( x ,  t), V A E I,  V (x, t) E 
U × ~.  A set of  functions f i ,  i = 1, 2, 3, are calledfunctionaUy independent invari- 
ants of  G in some V C U × ~ if and only if their (3 × 4) Jacobian matrix has maximal 
rank everywhere in V. 

Given a function f ( x ,  t) we can determine whether or not it is invariant under the 
group G by computing its derivative with respect to the infinitesimal generator of the 
group. This is known as the Lie derivative and is given by 

3 ~xi ~t d f  h))l~=0. (1) Lw(f(x , t ) )=--Z~i  ( x , t )  +~4 (x,t)  = -~(g(x , t ;  
i=1 

If  Lw ( f (x ,  t)) = 0 then f ( x ,  t) is an invariant. Moreover, it can be be proven that if 
w[(x.t) ¢ 0, then in some neighborhood of  the point (x, t) there exist three functionally 
independent invariants for the group G (see Olver [1986], Theorem 2.17, p. 88). 

With this background we can now state a general result from Olver [1986] that we 
will use in the proof of  our main result in this section. 

T h e o r e m 2 . 1 .  Let 

dxi 
dt - f i ( x l ,  x~,x3, t), i = 1 . . . . .  3, (2) 

be a first-order system of ordinary differential equations. Suppose further that (2) 
admits a one-parameter group o f  symmetries G with the parameter A. Then there 
exists a local change of  variables, defined near (x,  t) such that Wl~x.t) ~ O, given by 

xi = rli(yl, y~, Y3, s), i = 1 . . . . .  3, 
(3) 

t = tP(yl, Y2, Y3, s), 

such that in coordinates (3) the system (2) becomes 

dyi 
- gi(Yl ,Y2,  s), i = 1 . . . . .  3. (4) 

ds 

Furthermore, Yl, Y2, s form a complete set of  functionally independent invariants of  
G which satisfy 

Lw(Yi) = 0, i = 1, 2, 
(5) 

Lw(s)  = O, 

and Y3 satisfies 

Lw(Y3) = 1. (6) 

Proof. See Olver [1986], Theorem 2.66, p. 158. 

If  G is a spatial symmetry group, then we have the following result. 
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Lemma 2.1. Suppose G f rom the above proposition is a spatial symmetry group. 
Then we can take s = t, and Yi, i = 1 . . . . .  3 independent o f  time. 

Proof. Since we are assuming that G is a spatial symmetry group the t-component 
of the infinitesimal generator of  the action of G is zero. Therefore the function t is 
an invariant for the action of the symmetry group and we can take s = t. 

F~rther, the infinitesimal generator of the action of G, w, is an autonomous vector 
field on R 3. Therefore the solutions to the equations 

Lw(yi) = 0, i = 1,2, 

Lw(Y3) = 1, (7) 

are independent of time. Since the solutions to these equations give the required 
coordinate change, the lemma is proven. [] 

2.2 Volume-Preserving Vector Fields and  Spatial, Volume-Preserving Symmetry  
Groups 

Since our main interest is incompressible fluid mechanics, we will be interested in 
volume-preserving vector fields. Along these lines, most applications will be con- 
cemed with spatial symmetry groups; henceforth we will restrict ourselves to this 
situation. We begin with some definitions. 

Definition 2.5 (Volume-Preserving Systems of ODEs).  Let 

dxi 
- f i ( x l ,  x~, x3, t), i = 1 . . . . .  3, (8) 

dt  

be a system of ordinary differential equations on U x N. We call (8) a volume- 
preserving system if and only if it satisfies 

3i• a f i = O. 
.= OXi 

Next we define what we mean by a volume-preserving spatial symmetry group. 

Definition 2.6 (Volume-Preserving Spatial Symmetry Group).  Let G be a one- 
parameter spatial symmetry group acting on U C ~3. We call G a volume-preserving 
spatial symmetry group if and only if the components of the infinitesimal generator 
of  its action satisfy 

3 ~ i  
= 0 

In finding the symmetry group of a specific vector field, the following lemma is 

quite useful. 
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Lemma  2.2. Necessary and sufficient conditions for a vector field w = (T/1 , 772, T/3) tO 
be the infinitesimal generator for the action of  a volume-preserving, spatial symmetry 
group of  a vector field v = (s eI, ~:2, ~3) are 

Ow 
- -  _~_ 0 7  
Ot 

Iv, w] = O, (9) 

V - w = O ,  

where [v, w] denotes the Lie bracket of  vector fields v, w defined in coordinates by 

Iv, w]i ~ °T/i -J °¢~ ] 

Proof. This is an easy calculation which stems from the general theorem on in- 
finitesimal generators of symmetry groups for systems of differential equations and 
the definition of the infinitesimal generator of a spatial, volume-preserving symmetry 
group. The general theorem is given in, e.g., Olver [1986]. 

The following theorem is the main result of this section. 

Theorem 2.2. Let 

d x i  

dt 
- f i ( x z , x 2 ,  x3, t), i = 1 . . . . .  3, (10) 

be a volume-preserving system of  ordinary differential equations. Suppose further 
that (10) admits a one-parameter, spatial, volume-preserving symmetry group G. 
Then there exists a local change of variables 

xi = ¢ i (z l , z2 ,  z3), i = I . . . . .  3, (11) 

such that in variables (1I) the system (10) becomes 

dzl OH(z1, z2, t) 

d t cgz 2 " 

dzz _ OH(z1, Z2, t )  (12) 
dt  Ozl ' 

dz3 
- k3(z~, z2, t), 

dt 

where zx and zz are functionally independent invariants of  G. Further, i f  (12) is 
autonomous, H is a f r s t  integral. 

Proof. Applying Theorem 2.1 and Lemma 2.1, there exists a transformation of co- 
ordinates in which (10) takes the form 
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Next we show that 

can be written in the form 

dyl 
dt  = k t (y l ,  yz, t), 

dy2 
- k~_(y l ,  Y 2 ,  t ) ,  

dt 

dy3 
- k3(y~, Y2, t). 

dt  

(13) 

dyl 
- k l ( y ~ ,  Y z ,  t ) ,  

dt 
dy2 

- k2(yt,  Y2, t), 
dt  

(14) 

dyl 1 3K(yl ,  Y2, t) 

dt  J c)y2 ' 
(15) 

dy2 1 OK(yl, Y2, t) 

d t  J 0yl ' 

for some function K(y l ,  Y2, t) where J is the Jacobian of the transformation xi  = 

rli(Yl, Y2, Y3). 
In order for there to exist a function K(yt ,  Yz, t) such that 

OK 
- Jk t ,  

Oy2 
OK 

- Jk2,  
Oyl 

it is necessary and sufficient for the second partial derivatives of K(yl ,  ye, t) to be 
equal (provided the domain is contractible in N2). This condition is equivalent to 

OJkl OJk2 
+ - O. ( 1 6 )  

Oyl 0y2 

In order to show that (16) holds we will use the fact that the symmetry group is 
volume-preserving. Since the original vector field (10) is volume-preserving, we have 

Of--L = O. (17) 
.= Oxi 

In the transformed coordinates (17) is expressed as 

1 ~ O J k i  _ O, (18) 
J . = Oyl 

where J denotes the Jacobian of the transformation xi  = ~Ti(Yl ,  Y2 ,  Y3). (Note: the 
passage from (17) to (18) is a lengthy calculation that can be found in, e.g., Wrede 
[1963].) Thus, in order to show that (16) holds, it suffices to show that 
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dJ 
- -  O ,  

dy3 

since k3 does not depend on Y3, so dk3/c)y3 = 0. In order to show this, recall that by 
assumption the infinitesimal generator of  the action of  G is volume-preserving, so we 
have 

1 ~ oJ~i _ o. 
(19) 

7 . =  dyi 

From Theorem 2.1 we know that ~:1 = so2 = 0 and ~ = 1, so we immediately obtain 

c?J 
- o .  ( 2 0 )  

oy3 

Thus (14) can be written in the form of (15). 
For the final step of  the proof we show that (15) can be written in the following 

Hamiltonian form: 

dzl  dH(z l ,  Z2, t) 

dt Oz2 ' 

dz2 dH(z l ,  z2, t) 

dt  c)z l 

(21) 

We will show that the transformation of  coordinates (recall from (20) that J does 
not depend on Y3) 

(22) 

f 
zl = J J(Yl ,  Yz)dYl,  

z2 = Y2, 

takes the system 

Z3 "= Y3, 

to the form (12). 

dyl 1 dK(y l ,  Y2, t) 

dt  J dy2 ' 

dy2 1 OK(y1, Y2, t) 

dt  J Oy~ ' 

dy3 
dt 

- k3(yl, Y2, t) 

(23) 

This construction is an explicit implementation of  Darboux's theorem (see Abraham 
and Marsden [1978], Arnold [1978], Olver [1986]). Let 

H(Zl, Z2, t) = K(y j ( z l ,  Z2), Z2, t), 

and we will calculate z l and i2 in the new coordinates. We begin with z2, since it is 
easier. 
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Using the chain rule, we obtain 

1 OK 1 OH Ozl OH 
& = :92 = J Oyx J OOzl Oyl Ozl 

where we have used (22), from which follows OzffOyz = J. 
Now we calculate i l. 'Using the chain rule, we obtain 

dz~ . OZl . 1 OZl OK I Ozl OK OK 
"z, = ~yly,  + ~y2y2 = J c)yl Oy2 - 7 0yz Oyl - Oy,_ 

OH OK OyI OK 

C)Z2 OZ2 C)Z2 C)yl " 

Moreover, we have 

Now from (22) we have OK/Oz2 = 8K/Oy2, so if we show 

t OOz~ OK 
J Oy2 c)yl " 

(24) 

(25) 

(26) 

then it follows that 

The Jacobian of the 

1 0zi ayl 
J O3y2 C)Z2' 

dH 
~ °  

transformation Yi = yi(zl, z2, z3) defined in (22) is given by 

0z 1 
3y3 ( !  

OOZ2 = 

Oy3 

3Z3 
Oy3 

(27) 

/OZl OOZl 
Oyl dy2 

O3Z2 0Z2 
~Y2 J(Yl, y2)dyl 

1 , ( 2 8 )  

0 

°321 OOY2 

OZ3 OZ3 
Oyl Oy2 

and the inverse of these two matrices is easily calculated to be 

j . (29) 

0 

Oyi Oyl Oyl \ 

Oy2 Oya OY--!2 i = 
Oz3 ] -J I OZt OZ-'-~ O y 3 /  

Oy3 Oy3 

From (29) and (22) we have 

3yi _ 1 O ( j(yz,  y2)dyl = - - l  Oz--L1 
022 J 8y2 J J 022" 

Hence the theorem is proved, o 
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Remarks. 

1. An important point is that the coordinates in which the vector field takes the form 
(12) do not depend on the explicit form of the original vector field. Rather, they 
depend only on the volume-preserving, spatial symmetry group. 

2. An obvious question is "given a vector field, how do we know that it is invariant 
under a volume-preserving symmetry group?" In many cases a knowledege of the 
physical geometry and boundary conditions, as welt as inspection of the system 
of ODEs, often can be used to reveal the symmetries. One can also find an in- 
finitesimal generator of the volume-preserving, spatial symmetry group by using 
requirements on the infinitesimal generator spelled out in Lemma 2.2. In particular, 
an arbitrary vector field w can be substituted in (9) which then become equations 
for components of w. 

3. Transformation x i  = &i(z l ,  Z2, z3) is volume-preserving; i.e., its Jacobian is 1. 

3. Action-Angle-Angle Variables 

Action-angle variables have played an important role in the development of perturba- 
tion methods for the study of near-integrable Hamiltonian systems. In particular, the 
KAM theorem as well as the Nekhoroshev theorem are both proven in a context where 
the unperturbed system is expressed in action-angle variables. Action-angle variables 
have the virtue of rendering certain geometric features of the system transparent (e.g., 
the foliation of the phase space by invariant tori) as well as providing a natural de- 
composition of the dynamics into "fast" and "slow" time scales. We refer the reader 
to Arnold et al. [1988] for many examples of the analytical and geometrical virtues 
of action-angle variables. 

The construction of action-angle variables uses the symplectic structure of the 
system. Nevertheless, in this section we show how one can take thewolume-preserving 
system of the equations given in Theorem 2.2 and further transform the system into 
coordinates that have many of the virtues of standard action-angle variables. 

We assume that we are dealing with autonomous vector fields so that (12) takes 
the following form: 

dzl o~H(z~, z2) 
d t  dz2 ' 

dz2 8H(z l ,  zz) 

d t  Ozl ' 

dz3 
. . . . . .  k3(zl ,  z~). 

d t  

(30) 

Since the z~ and z2 components of the vector field do not depend on z3, we can 
consider transforming this two-dimensional vector field into the standard action-angle 
variables. 
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Assumpt ion .  There is some subset of  the z l - zz plane, denoted 9 ,  in which the 
level sets H(zt ,  z~) = h are closed curves. 

I f  this assumption holds, then it is well known from classical mechanics (see, e.g. ,  
Arnold [1978]) that there is a transformation 

(Z l, Z2) ~ ( I ,  0) 

satisfying the following properties: 

1. I = l ( h ) ,  i . e . ,  I is constant on the closed orbits. 

2. _ }fl=h dO = 27r. 

3. 0 = f~l(I) .  

The action variable is given by (see, e.g.,  Wiggins [1990] or Arnold [1978]) 

I = z2dzl, 
=h 

while the angle variable reads 

(31) 

27"g 
0 -  T(H) t ,  (32) 

where T(H) is a period on the orbit on the zl - z2 plane (which is a level set of  H) ,  
and t denotes the time along the orbit measured from a certain point on the orbit. 

We assume that this action-angle transformation on the z l - z~_ component  of  (30) 
has been carried out so that these equations subsequently take the form 

/ = 0 ,  

0 = a~(1), (33) 

i3 = h3([, 0), 

where h3(l, O) = k3(Zl(I, 0), z2(I, 0)). 
The following theorem gives the construction of  action-angle-angle variables. 

T h e o r e m  3.1. Suppose ~ l  # 0 in (33). The transformation of variables (I, O, z3) --~ 
(1, 4~l, ok2) defined by 

I = I ,  

where 

(91 = O, 

Az30 - I h3(I 'O)do 
4~2 = z 3  + - ~  fzl(1) ' 

ff ~ h3(1, O) 
~z3 = f~l(l) dO, 
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then brings the system (33) to the form 

i; = 0, ~1 = f~l(I) ,  ~z = f~2(I), (34) 

where I ~ N +, (91 ~ S I, and 02 ~ S l, or N. Furthermore, the transformation is 
volume-preserving. 

Proof. Note first that the transformation is well defined for both z3 defined on ~r 
(when the invariant manifolds are cylinders) and z3 defined on S l (when the invariant 
manifolds are toil), as the appropriate points are identified. The rest of the proof 
involves straightforward calculations. Clearly, AZ3 is a function of I only, so 

~l = 0 = f~l(1), 

AZ30_ d f AZ30 = Az3~C~r(1) = ~"/~2(I), 

as claimed. It follows immediately that (91 is an angular variable and that the nature 
of  (92 depends on z3. I f  z3 is an angular variable, then so is (92; if z3 ~ N, then 
so is (gz. Further, a direct computation shows that the Jacobian of the transformation 
(t ,  0, Z3) ""-> (I, (Dr, (92) is 1. r~ 

This theorem shows that the phase space of  a three-dimensional, volume- 
preserving, time-independent flow that satisfies the above assumptions is naturally 
foliated into two-dimensional toil or cylinders. If  one removes the requirement that 
the flow is invariant under a one-parameter spatial, volume-preserving symmetry 
group, then the situation is not so simple, even if a system possesses an integral of  
motion, as the following theorem of Kolmogorov describes. 

T h e o r e m  3.2. Consider a three-dimensional, volume-preserving autonomous vector 
field, 2, = f ( x ) ,  x ~ U C ~3, h'aving an integral F(x ) .  Let Mc =- {x lF(x )  = c}. 
Further, assume that the vector fieM does not vanish on Mc. Then if  Mc is compact 
and connected, the following are true. 

1. Mc is diffeomorphic to a 2-torus. 

2. One can find angular coordinates (gr, ff92 o n  Mc such that the vector field restricted 
to Mc can be expressed as 

cI)((gL, (92)' 

@2 -- /-/,2 
~((9~, (92)" 

where IXl, ix2 are constants and ~((9r, (92) is a smooth positive 27r-periodic func- 
tion in (91 and 4)2. 

Proof. See Kolmogorov [1953]; also, an outline of  the proof can be found in Arnold 
et al. [1988], 
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4. Symmetry and Integrability of Three-Dimensional Vector Fields; Euler Flows 

4.1. Symmetry and Integrability of Three-Dimensional, Volume-Preserving Vector 
Ftelds 

In the previous section we showed that under certain assumptions a three-dimensional 
vector field which admits a spatial, volume-preserving symmetry group possesses in- 
variant manifolds which are tori or cylinders. This is analogous to the more familiar 
results for integrable canonical Hamiltonian systems where the fact that the vector 
field has invariant manifolds of certain type is a purely geometrical fact related to 
commutation relations between the Hamiltonian vector field and the infinitesimal gen- 
erator of its symmetry groups arising from the integrals. Arnold [1965] proved the 
following fundamental result along these lines for three-dimensional vector fields. 

Theorem 4.1. Consider an analytic autonomous volume-preserving vector field v 
in a domain D C •3 bounded by a compact analytic surface that admits a spatial, 
volume-preserving symmetry group with infinitesimal generator w. Further suppose 
that v and w are not everywhere coUinear in the given domain. Then the domain 
D C R 3 is partitioned in a finite number of  cells, and each of  the cells is fibered 
either into tori or into annula. On an invariant torus, trajectories are either all 
closed or all dense. On a cylinder, all trajectories are closed. 

Proof. See Arnold [1965]. 

4.2. Euler Flows 

Arnold used Theorem (4.1) to show that a steady analytic Euler velocity field (i.e., 
an autonomous solution of Euler equations of motion for an inviscid incompressible 
fluid) which is not everywhere collinear with its associated vorticity field in a certain 
analytic domain of R 3 admits invariant mafiifolds which are tori or annula. This result 
uses crucially the fact that the vorticity co associated with a steady Euler flow v is an 
infinitesimal generator of a volume-preserving spatial symmetry group of v. This can 
easily be seen by noting that 

&o 
- -  0 ,  

Ot 

[v,o)] = 0, 

V'cO =0 ,  

and recalling Lemma 2. 
This observation brings up a relationship between our methods and a transformation 

which has been known in fluid mechanics for quite some time, the Clebsch transfor- 
mation, which we briefly describe. It is well known that since the vorticity field co is 
volume-preserving, we can express it locally as 

co = V f  × Vg,  (35) 
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where f and g are some functions on R 3. Furthermore, it can be shown then that f 
and g satisfy 

/ = ,~;t(f, g) 
3g ' 

3A(f, g) g =  
af 

(36) 

for some scalar-valued function A o f f  and g (see, e.g., Truesdell [1954], p. I90, 
Serrin [1959]). 

Now we show how f and g are related to our work. Notice that from (35 ) f  and 
g satisfy 

L~o(f) = (Vf  x Vg) • Vf  = O, 

Lo~(g) = ( 7 f  x Vg) .  Vg = 0. 

It follows from these equations that f and g are functionally independent invariants 
of a symmetry group of v generated by co (see Sec. 2). Therefore, we can take f and 
g as the new variables, and find a third function h which satisfies 

L~o(h) = (Vf x Vg) .  Vh = 1. 

Thus a Euler flow can be written in the form (12). We witl use this procedure in two 
examples on Euler flows in See. 7. 

The derivation of (36) uses the fact that co is the curl of v. In the proof of Theorem 
(2.2) we used only the relations (9) describing the relationship between a vector field 
and the infinitesimal generator of  its volume-preserving spatial symmetry group. In 
particular, we did not require that the infinitesimal generator be the vorticity field. 

5. KAM-Like Theory for Three-Dimensional, Volume-Preserving, Vector Fields 

For two-dimensional, time-periodic flows, the KAM theorem (see, e.g., Arnold 
[t978], [1988]) plays an important kinematical role. Namely, it provides sufficient 
conditions for the existence of invariant circles for the associated two-dimensional 
Poincar6 map of the two-dimensional, time-periodic flow. These invariant circles are 
significant because they act as barriers to transport. As such, they are also a central 
component of the regular regions in flows. Hence, an understanding of how KAM 
toil arise is an important element in understanding mixing and transport issues in 
two-dimensional, time-periodic flows. Many examples of this, both theoretical and 
experimental, can be found in Ottino [1989]. 

The method of the proof of KAM theorems cannot be used immediately to prove 
KAM-type theorems in "odd-dimensional" settings for important technical reasons, of 
which a succint description can be found in de la Llave [1992]. Nevertheless, in the 
past two years some important advances have been made concerning KAM-like the- 
ories for volume-preserving maps by Cheng and Sun [1990], Delshams and de la Llave 
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[1990], Xia [1992], and Herman [1991]. In this section we want to show how the 
coordinates that we developed put us in the framework where we can use these 
new methods to study perturbations of the integrable three-dimensional vector fields 
that we have thus far considered. We will first consider the case of time-dependent 
perturbations. 

Consider a time-periodic, volume-preserving perturbation to the vector field (34) 
that takes the following general form: 

i = EFo(I, ~bl, b2, t), 

dpt = f~l(l) + eFz(I, bl, 4)2, t), (37) 

~2 = ~2([) + EF2([, ¢~1,62, t), 

where we now assume that both ~l and q~2 are angular variables, z is the (small) 
perturbation parameter, and the functions Fi, i = 0, I, 2, are periodic in t with period 
T = 2zr/w. We will derive an approximate form for a three-dimensional Poincar6 map 
of this system essentially using the approach from Wiggins [1990], pp. 129-132. Using 
regular perturbation theory, the solutions of (37) are O(E) close to the unperturbed 
solutions on time scales of (3(1). Hence we have the following expansions of the 
solutions of (37): 

i¢(t) = i o + Eil(t) + ~(~2), 

~ ( t )  = ~o + Ctl(IO)t + E~I(t) + f~(62), (38) 

6~(t) = 4 0 q- ~"~2(I0)t q- E~t(t)  q-- 0(£2), 

where 11 (t), ~b I (t), and 4~zl(t) satisfy the following first variational equation: 

°"'<,°) o o11o 1 ÷ + oo,,) ! 
\Chef  __~i_(lC;f~z o) 0 O~ \ ( a ~ /  \F2(I° 'O' ( l° ) t  +c~°'~t2(I°)t +¢b°' t) f  

(39) 

Because our coordinates put the vector field in such a simple form, this equation 
can be easily solved. We will postpone this for the moment, and instead recall that 
our goal is to construct a three-dimensional Poincar6 map. More precisely, we are 
interested in the construction of a map that takes the variables I e, ~b~, and, ~b~ to 
their value after flowing along the solution trajectories of (37) for time T. This map 
is simply given by 

P~ : (i~(o), ~(o), ~(o)) ~ (I~(r), ~ ( r ) ,  ~(T)),  

, ~ i T ,  o (i o, q~O, ~b o) ~_~ (i o + E11 ~b o + ~,(IO)T + ~bl( ) ~b 2 + ~2(IO)T + e&~(T)) + (~(e2), 

(40) 
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where we have used (38) and taken the following initial conditions: 

Ie(O) = t °, 

49;(0) = 4 9 0 ,  

49~(o) = 490. 

Now expressions for I I(T), 491(T), and 49~(T) can readily be obtained by solving 
(39): 

I~(T) = Fo(iO, 121(io)t + ~bo, 122(i0)t +490, t)dt  : "Fo(I°,49°,49°), 

491(T) = '-~--Ii =io Fo(I o, a i ( io )~  + 49o, a2(IO)~ + 49o, ~)d~dt  

E + F1(I°,ai(I°)t+49°,f~2(l°)t+49°2, t)dt:_~l(l°,49°,49°), (4t)  

49~(T) = an, r ~ fo' --~[ ,  :io Jo F°(l°' a ' ( l ° )~ + 49o, ~12(IO)s~ + 49o, ~)d~dt 

~0 T + F~-( l° ,~1( l°) t+49°,a2( l°) t+49°, t)  dt = ~2(I°,49 °, 492)-° 

Substituting these expressions into (40) and dropping the superscripts on the variables 
gives the following final form for the Poincar6 map: 

~ z + eTo(I,  49~, 49z) + ~(E2), 

491 ~ 491 + 2rr f~!(1) + e~l ( I ,  491,492) + (~(e2), (42) 
6O 

492 ~ ,f2)2 "~ 2 rr 122(I) + EF'z(I, 491,492) + O(E2), 
6O 

where we have used T ----- 27r/6o. 
This map is exactly in the form where the new KAM-like theorems for perturbations 

of  three-dimensional, volume-preserving maps can be applied. By translation and 
rescaling we can take the domain of  I to be the interval ~ = [1, 2]. We can also 
assume 27r(ftl(I)/o~) = I without loss of  generality. Further, we require f ~ ( I )  >--- 
cl > 0 on ,~. The theorem requires that the vector fields be real analytic on the 
domain of interest with analyticity holding on the extension to the following complex 
domain: 

Do(O5) = {Jim 491] ~ ro, Jim 492[--< ro, [I -o5[---  so, o5 @ 5~}. 

Under the above assumptions we have the following theorem. 
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Theorem 5.1 (Cheng and Sun, 1990). There exists a positive Go, which depends on 
Do(gO), such that if 0 < e <- Go the mapping (42) admits a family of  invariant tori 
given by 

I = w ( # , L g o ) ,  

4,~ = ~ + u (L  ~', go), (43) 

4,2 = ~ + v(~, ~, ~),  

with u, v, w as real analytic functions of period 2rr in the complex domain jim 4,11 --- 
ro/2, [Im4,zl-< ro/2. 

Moreover, the mapping restricted to the persisting perturbed tori (43) can be 
parametrically written as 

2~02(go) (44) 
~" ~ ~" + + ql(go, E), 

O9 

where qz(go, e) is a function depending on the perturbations ~ ( I ,  4,1,4,2), i = 
O, 1, 2, and q l(g~, O) = O. 

In fact, there is a Cantor set S(e) C [1, 2], depending on the perturbations 

Fi(I,  4,1,4,2), i = O, 1, 2, 

such that for each go ~ S(G) there is a corresponding invariant torus of  the form (43). 
Furthermore, the measure of the set S(G) tends to 1 as E --+ O. 

Despite the similarities with the standard KAM theorem for area-preserving twist 
maps, this result is quite different and may ultimately yield fundamentally new effects 
for three-dimensional, time-periodic flows. For example, in standard KAM theory for 
area-preserving twist maps the invariant circles that survive am those that have strongly 
irrational (Diophantine) rotation numbers. Hence, regardless of the specific form of 
the perturbation, if the perturbation is sufficiently small we know which invariant 
circles will persist. 

In three-dimensional, volume-preserving maps, circumstances are different. From 
the currently available proofs we are not able to predict whether a certain torus will 
persist under perturbation, even if it satisfies Diophantine conditions. The only claim 
we can make is that there will be a set of invafiant tori of positive measure for 
the perturbed map. In this situation, generally any invariant torus disintegrates as the 
perturbation changes with new tori (having new frequencies) created near the locations 
of the disintegrated invariant tori. 

For time-independent perturbations, we can take a time-1 Poincar6 map derived in 
the same spirit as the one for the time-dependent case, and make the same conclu~ 
sions on the issue of persisting tori. Note, though, that this conclusion is nontfivial, 
as opposed to the case of time-independent perturbations of one-degree-of-freedom 
Hamiltonian systems. 
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6. Melnikov's Method for Perturbations of Integrable,  Three-Dimensional 
~blume-Preserving Vector Fields 

In this section we want to give a version of Melnikov's method that applies to pertur- 
bations of autonomous vector fields of the form of (12), i.e., 

dzl all(z1, z2) 
- + eFl(zl, Z2, Z3, t), 

dt 0z2 

d z 2  _ 0H(Zl, z2) -t- eF2(Zl, z2, z3, t), (45) 
~zl dt 

dz3 
-- k3(Zl ,  z2) -t- 6F3(Z l ,  z2, z3, t) ,  

dt 

where we assume that the perturbation is periodic in t with period T = 2~/w. The 
standard Melnikov method has been applied by many authors to the study of fluid par- 
ticle dynamics in time-periodic perturbations of two-dimensional steady fluid flows; 
see Rom-Kedar et al. [1990] and Camassa and Wiggins [t991] for two specific exam- 
pies. This method is one of the few that enables one to rigorously prove the existence 
of chaotic dynamics in a specific system as well as to obtain an estimate on the size 
of certain chaotic regions in the flow; it also enables one to obtain an approximate 
analytical form for the flux across homoclinic and heteroclinic tangles that are created 
by time-periodic perturbation of separatrices in the steady flow. Melnikov's method is 
an example of a global, geometrical perturbation method that uses explicit knowledge 
of the invariant manifold structure of the unperturbed vector field to develop per- 
turbation methods to determine how these invariant manifolds "break up" under the 
influence of the perturbation. Thus having appropriate coordinates for describing the 
unperturbed system is crucial for the success of the method. It turns out that the coor- 
dinates developed in Section 2 are ideal for this purpose. In fact, in these coordinates 
for the case where z3 ~ S 1 , the appropriate Melnikov method is a special case of a 
method previously developed in Wiggins [1988] (more precisely, in the terminology 
of this reference, it corresponds to system I with n = 1, m = 0, and I = I). In the 
case where z3 E R 1 one must require the perturbation to be uniformly bounded in 
z3, in which case an identical derivation for the Melnikov function goes through. In 
this section we describe these Melnikov methods. We do not go into proofs of  all the 
details; for this we refer the reader to Wiggins [1988]. 

6,1. Analytical and Geometrical Structure of the Unperturbed System 

The unperturbed system is obtained from (45) by setting E = 0: 

dzl 3H(zl, z2) 

dt Oz2 

dz2 c)H(zl, z2) 

dt 3Z~ ' 

dz3 
- ~ 3 ( z ~ ,  z 2 ) .  

dt 

(46) 
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The zt - zz component of (46) decouples from the z3 component, and thus we can 
discuss the structure of the phase plane associated with the z l - z2 component of (46), 
the trajectories of which are given by H(zl,  z2) = constant. From this we can easily 
build up a picture of the global dynamics of the full three-dimensional unperturbed 
system. 

Assumpt ion .  At (zl, z2) h h = (Zl, Z2) the zl - z2 component of (46) has a hyper- 
bolic fixed point that is connected to itself by a homoclinic orbit (zh(t), zh(t)), i.e., 
limt--,+_~(z)(t), zh(t)) = (Z~, zh). 

From this assumption it follows that the set 

~Io = {(zt ,zz ,  z3)lzl = zh,z2 = zht (47) 

is a one-dimensional, normally hyperbolic invariant manifold. Suspending the system 
over ~I 3 x S l, ~ becomes a normally hyperbolic, invariant two-toms in the case when 
the symmetry group is S I , and a cylinder when the symmetry group is R. Normal 
hyperbolicity is a technical property that means that, under the linearized dynamics, 
expansion and contraction rates transverse to the manifold dominate those tangent to 
the manifold (formal definitions and examples can be found in Wiggins [1988]). The 
significance of this property is that normally hyperbolic invariant manifolds, along with 
their stable and unstable manifolds, persist under perturbation. Technical problems 
arise in the issue of the persistence of normally hyperbolic invariant manifolds which 
are not contained in some compact subdomain of the set on which the vector field is 
defined. This is treated in Kopell [1985]. The dynamics on A/to are described by the 
following equation: 

dz3 = k3(zhl ,z~), (48) 
dt 

which has the solution 

Z3(t) = k3(z h, zh)t + Z °. (49) 

If k3(z h, Z~) = 0 then 2~t0 consists entirely of fixed points. In this case, even though 
the manifold will persist under perturbation, the dynamics on the manifold will almost 
surely be dramatically altered under the perturbation. In the case where z3 ~ S l , 2lo 
is a periodic orbit, or circle of fixed points, if k3(z~, z~) = O. 

It also follows from our assumption on the zl - zz component of (46) that 3/to 
has two-dimensional stable and unstable manifolds, denoted WS(dOto) and W"(Wt0), 
respectively, that coincide along a two-dimensional homoclinic manifold, denoted F h , 
given as follows: 

r h = z2,  z3)  l z l  = z2 = - c o  < t < (50)  

For E = 0, I ~h forms a barrier to transport of the fluid as it is an invariant manifold 
that separates the space into two disjoint pieces. Moreover, such integrable homo- 
clinic structures are often the key feature in the creation of chaotic dynamics under 
nonintegrable perturbations. 
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6.2. The Perturbed System and the ~Melnikov Function 

Let us consider the system (46) suspended over R3 X S1  (i.e., include the time as a 
dynamical variable). & in the unperturbed problem is then a two-toms or a cylinder. 
As previously mentioned, & and its stable and unstable manifolds persist under 
perturbation, denoted Me, WS(Me), and WU(Me), respectively. However, it now may 
be the case that WS(Ae) and Wu(Y,) do not coincide as three-dimensional surfaces 
and thus create a barrier to the transport of fluid. Indeed, we would expect this to be 
the case since it is not the typical case for two three-dimensional surfaces to coincide 
in a four-dimensional space. A generalization of Melnikov's method will provide us 
with an analytical tool for determining certain geometrical properties of WS(JZI1,) and 
W1'(M,). 

The Melnikov function (up to a nonzero normalization factor) is the first-order term 
of an expansion in E of the distance between WS(M,) and W1'(ME). Following the 
arguments in Wiggins [1988], for systems of the type described in this section it is 
given by 

where 

The parameter corresponds to the phase of the periodic time-dependence of the per- 
turbation, and when considering the Poincari map it can be regarded as the parameter 
defining the Poincari section. In this context to and 230 can be viewed as param- 
eters describing points on WS(M,) and WN(AIU,), restricted to the three-dimensional 
Poincari section. Points (to, z30) at which dM/dto and dM/d~3~  are not both zero ("sim- 
ple zeros") correspond to transversal intersections of WS(M,) and WL1(AE) O ( E )  close 
to the point (zt(-to). z;(-to), ~ 3 0 )  on T h .  

6.3. Chaos 

In the familiar case of time-periodic perturbations of two-dimensional steady flows, 
transversal intersections of stable and unstable manifolds of a hyperbolic fixed point 
may give rise to chaotic dynamics. This may also be true in three-dimensions; how- 
ever, there are also more possibilities, depending on the nature of z3 as well as the 
dynamics on Ae .  Below, we describe some possible cases. Our discussion will be in 
the context of the Poincari map of (4.5). which can be derived similarly to the one dis- 
cussed in Section 3. We consider the three-dimensional map (zl(0), z2(0), z3(0)) H 
{zi(T), z2(T), z3(T)). For this three-dimensional map ~61, is manifested as a one- 
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dimensional invariant curve, denoted ~ , ,  having two-dimensional stable and unstable 
manifolds, denoted WS(.~) and W~(.~).  

t. 

. 

z3 ~ S 1. In this case .~, is an invariant circle (1-toms), and simple zeros of 
the Melnikov function correspond to transverse homoclinic orbits to a normally 
hyperbolic invariant 1-toms. In this case theorems in Wiggins [1988] (Theorem 
3.4.1) and Beigie et al. [1991a,b] imply that chaotic dynamics occur in the sense 
that near the homoctinic orbits there exists an invariant Cantor set of curves on 
which the dynamics are topologically conjugate to a Bernoulli shift. The fluid- 
dynamical significance of this type of chaos has not been studied. In the fluid- 
dynamical context, this'case is important for studies of, e.g., three-dimensional, 
time-dependent perturbations of steady axisymmetric swirling vortex rings. 
z3 E R, k3(z h, z h) ~ O. This is a situation that has received very little investi- 
gation mathematically. Generally speaking, homoclinic orbits give rise to chaotic 
dynamics when the invariant set to which the orbits are homoclinic is bounded. 
This allows one to relate the strong stretching and contraction that occurs near the 
hyperbolic invariant set to the global folding process associated with the homo- 
clinic orbits in such a way that regions can be found which stretch, fold, and map 
back over themselves. In such a situation the Contey-Moser conditions (Moser 
[1973]), or certain generalizations of these conditions (Wiggins [1988]), may be 
applied to prove the existence of chaotic dynamics. If the invariant set to which the 
orbits are homoclinic is unbounded, then there may be no recurrence (i.e., an indi- 
vidual orbit may not approach itself during its evolution in time). In particular, for 

our example, the dynamics on ~ are described by the following one-dimensional 
map: 

z 3 ~ z 3  + k3(z~,z~)T + 0(E). 

Hence, orbits on a~t, are unbounded. Nevertheless, one cannot rule out "infinite 
time" chaos without a detailed study. Moreover, transient chaos is a very likely pos- 
sibility. This case applies to, e.g., three-dimensional, time-dependent perturbations 
of steady flows with helical symmetry. 

3. z3 ~ R, k3(zhl, z~) = 0. In this case it may be possible to find recurrent motions, 
in particular periodic orbits, on ~ .  The dynamics on ~tE is described by the 
following nonautonomous ordinary differential equations: 

~3 = ~F3(z), z~, z3, t) + 0(E2), 

~ = 1 ,  
(52) 

which is in the standard form for applying the method of averaging (see, e.g., 
Wiggins [1990]). We consider the associated averaged equation 

~3 = EP3(z~, z~, z3), (53) 
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where 

1 I. r h h 
F3(zI h, z2 h, z3) ---- ~ F3(Zl, z2, z3, t )dt .  

It follows from the averaging theorem that hyperbolic fixed points of (53), denoted 
z3 = z3, correspond to periodic orbits (with period T) of (52). These, in turn, 
correspond to hyperbolic fixed points of the associated Poincar6 map. In this case, 
simple zeros in to of the Melnikov function (51), with z3o fixed at z3o = z30, 
correspond to orbits homoclinic to a hyperbolic fixed point. In this case the Smale- 
Birkhoff theorem applies, so we can conclude the existence of chaotic dynamics. 
If (53) has no fixed points then the discussion from case 2 applies. The fluid- 
mechanical application in this case is clear: three-dimensional, time-dependent 
perturbations of two-dimensional steady flows (in which case k3(zt,  z2) = 0 for 
all zl, z2). 

6.4. Autonomous Systems 

Suppose that the perturbations are autonomous, but break the volume-preserving sym- 
metry. Then the perturbed system has the form 

dz~ OH(z1, z2) 
- + eFl (z l ,  zz, z3), 

dt  Oz2 

dz2 _ c)H(zl, z2) + eF2(zl ,  z2, z3), (54) 
d t c7z l 

dz3 

clt 
= k3(zl ,  z2) + eF3(zl,  z2, z3). 

The development of the Melnikov theory goes through as before, except that the 
Melnikov function (51) in this case does not depend on 40. 

We next discuss how chaos ai-ises in such systems along the lines of the dis- 
cussion above. The possible fluid-mechanical applications are the same as in the 
time-dependent case, with the exception that the perturbed flows are also steady. 

1. Z3 ~ S 1 , k3(z h, z h) ~- O. In this case At, is a periodic orbit, and simple zeros of 
the Melnikov function correspond to transverse homoclinic orbits to a hyperbolic 
periodic orbit. In this case the standard Smale-Birkhoff homoclinic theorem ap- 
plies, so we can conclude that we have "Smate horseshoe" chaos. That is, near 
the homoclinic orbits there exists an invariant Cantor set on which the dynamics 
is topologically conjugate to a Bernoulli shift. 

2. z3 ~ •, k3(z h, z h) ~ O. In this case the discussion for the nonautonomous case 
still holds. 

3. z3 ~ R or z3 E S t , k3(zhl, z2 h) = 0. This case requires some slight modifications. 
In this case the dynamics on At, are described by the following one-dimensional, 
autonomous ordinary differential equation: 

i3 = ~F3(z~, z~, z3) + G(~2). (55) 
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Since (55) is autonomous, we need not apply the method of averaging. Hyperbolic 
fixed points of (55), denoted z30 = 230, correspond to hyperbolic fixed points of  
(54). In this case, a zero of the Melnikov function (51), with z3o fixed at z3o = 230, 
correspond to orbits homoclinic to a hyperbolic fixed point of an autonomous 
ordinary differential equation. For this situation, different mechanisms for chaos 
are possible; in particular, the "Silnikov mechanisms" and "Lorenz mechanisms" as 
described in Wiggins [1990]. (Note: there is a technical problem with this situation 
that is easily handled. Namely, once z3 is fixed at the value corresponding to a 
hyperbolic fixed point on ,kt~, then the Melnikov function is just a number. Recall 
that it is just the leading-order term in the expansion of the distance between the 
stable and unstable manifolds of ~ .  In order to show that the leading-order term 
dominates the expression for the distance, an argument using the implicit function 
theorem is required. This is the reason why one needs "simple" zeros in to or z3. 
This problem can be remedied if there are external parameter(s) in the system; 
in this case one need only require that the derivative with respect to an external 
parameter of the Melnikov function at its zero is not zero. More background on 
this issue can be found in Wiggins [1988].) 

7. Examples 

In this section we illustrate the techniques with three examples. 

7.1. Example 1: Euler Flow with Two.Dimensional Elliptic Vortex Lines 

Consider the following velocity field, v: 

d X l  
- -  a x l ,  

dt 

d x 2  (56) 
- - "  = a x 2 ,  
dt 

dx3 _ bx~ + cx~ - 2ax3, 
dt  

where a, b, and c are arbitrary coefficients. The vorticity field of  (56) is given by 

o9 = ( 2 C X 2 ,  - 2 b x l ,  0).  (57) 

It is easy to check that v and oJ satisfy 

Iv, o9] = O. (58) 

Moreover, both v and o9 are autonomous and divergence free; therefore, 

• v is a Euler flow. 
• w is an infinitesimal generator of a volume-preserving, spatial symmetry group 

for v. 
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We want to f ind two functionally independent invariants for w. These invariants 
satisfy 

Of + Of + O)x~0_~3 = 0, (59) o~ Ox-"-~ a'~2Ox---2 

where (oax,, wx 2, wx3) = ( 2 c x 2 , - 2 b x l ,  0). The classical theory of such equations 
shows (e.g., Olver [1986]) that the general solution of  (59) can be found by integrating 
the corresponding system of equations: 

dXl t-Ox~ 

dx2 ~ 2 '  (60) 

dx3 O)x3 

dx2 O)x 2 ' 

where we assumed ~ox~ 4 = O. 
The solutions to (59) are then given by the functions Yl (x j, x2, x3), y2(xl ,  x2, x3), 

which satisfy 

y l ( x l , x 2 ,  x3) = c~, 

ye(xl ,  x2, x3) = c2, (61) 

where cl, c2 are the constants o f  integration for (60). Note that here we use the 
same notation for new coordinates as in the proof of the Theorem (2.2). In particular, 
Yl, Y2, Y3 denote the coordinates in which the infinitesimal generator of  the symmetry 
group is rectified. 

For simplicity we will assume c = I/2, b = 1, a = 1/2. In that case, the equations 
corresponding to (60) are 

dxl  x2 

" d x 2  2 x  1 " 

dx3 
- -  O .  

dx2 

Integrating these gives ~ x  2 + 2x 2 = c | ,  x 3 = c2. Therefore, 

Yt = x5 + 2x~, 

To find y3, we need to solve 

Y2 = x 3 .  

or, in our case, 

f~fx, of Of + wx2 + ~ x ~ - -  - 1, 

df  _ 2 x l  Of = 1. 
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The solution to this equation is found to be f = (1/ .4/2)arctan(~f2xl/x2),  so 

= 1 

\x2  / 

The velocity field in new coordinates is now given by 

dyl 1 
d t  - ~Yl,  

dy2 1 2 
d t  - ~Yl - Y 2 ,  

dy3 _ O. 
d t  

(62) 

We can calculate the Jacobian of  the transformation x i = x i ( Y l ,  Y2, Y3), i = 1 . . . . .  3 
tO be Yl, and write (62) as 

dy~ 1 3 K ( y l , y 2 )  

d t  Yt OY2 ' 

dy2 

dt  

dy3 

dt  

1 0 K ( y ~ , y 2 )  

Yl Oyl ' 

- 0 ,  

where K = - y 4 / 8  + Y2 y~/2 is an integral of  motion for (62). Making a further 
transformation (zl,  z2, z3) = (y~/2, y2, Y3), which corresponds to (22) in the proof  of  
the Theorem (2.2), our system takes the form 

dzl  1 OJ-l(zl, z2) 
dt  = ~z~ = az2 ' 

OH(zi,  z2) (63) dy2 _ z l - z 2  = 
d t  Oz2 

dy3 
........ ~-- O~  

dt  

where H(zx,  z2) = z~z2 - z~/2 (see Fig. 1). In x coordinates H = - ( x z  z + 2x2)Z/8 + 
x3(x  2 + 2x~)/2. It is clear from this that the velocity field (56) represents the flow of an 
inviscid fluid around an elliptical paraboloid given by (x~ + 2x2)/4 - x3 = 0. We see 
that the transformation to symmetry coordinates simplifies the vector field significantly. 
In particular, in the new symmetry coordinates, the vector field is linear, two of its 
components  form a decoupled Hamiltonian system, and one of  the components is 
z e r o .  

Note that Y3 in this example is defined on S 1 . This is a consequence of the fact 
that the group acting on the flow is S ~ . We now give an example where the group 
acting on the flow is ~ i  
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Figure 1. Phase portrait of the Hamiltonian part of (63). 
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7.2. Example  2: Euler  F low with Two-Dimensional Hyperbolic Vortex Lines 

Consider the velocity field 

d x  1 

dt 
dx2 

dt 

dx3 

dt 

The vorticity field associated with this velocity field is given by 

o3 = ( - 2 b x 2 ,  - 2 b x l ,  0). 

This flow is also a steady Euler flow, as can be verified by direct calculation. We 
assume that b = 1/2, a = 1. It is easy to see that the vortex lines are hyperbolas 
described by the equations 

- -  = a x l  + ax2,  

-- ax l  + ax2, 

- b x ~  - b x ~  - 2 a x 3 .  

X ~ -  X~ = C3, X 3 = C 4.  
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Hence, functionally independent invariants Yl and Y2 are given by 

Yl = x ~ -  x22, Y2 = x3 

(we could have obtained these through the same formal procedure as in Example 1, 
in particular, solving the analogues of (60)). Also, using the same methods as in 
Example 1, we can find y3: 

Y3 = - tanh-1 xl 
X2 

In the Yl, Yz, Y3 coordinates, the velocity field is given by 

- 2yl, 
dt 

dy2 t 
d t  = ~YI - 2y2, (64) 

dy3 
- -  I .  

dt  

We can immediately recognize that it has the following form: 

dy I OH 

where 

dt 

dy2 
dt  

dy3 
dt  

0y2'  

aH 

3yl ' 

- 1 ,  

H = - y 2 / 4  + 2yty2 = - ( x t -  xzZ)2/4 + 2(x 2 - x2)x3.  

The major difference between this example and Example 1 is that, in this example, 
y3 is defined on [R 1, which is a consequence of the fact that the symmetry group 
is R 1 . Note that this flow describes a flow in a wedge which is three-dimensional, 
although the wedge bounded by {(xl, x2, xa)lxl = x2, x2 > O}U{(xl, x2, x3)[xl = 
- x 2 ,  x2 > 0} is two-dimensional. 

7.3. Example  3: Act ion.Angle-Angle  Coordinates 

Consider the following flow: 

dx  1 

dt  

dx2 

dt  

dx3 

dt  

X 3 X  l - -  2C ~ x2 
x T + x~'  

Xl 
- x3x2 + 2Cx~ + x~' 
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In cylindrical coordinates the flow is given by 

dr  
- -  r z ,  

dt  

dz  - 1 - 2r  2 - z 2, 
d t  

dO 2c 

dt  r 2 ' 

(65) 

dR OH(R, z)  

dt  0~ ' 

dz OH(R, z) 

dt dR ' 

where H(R,  z) = R z 2 - R + 2 R  2 is the Hamiltonian. Following the procedure in Sec. 2, 
we will first transform (67) to action-angle variables (I ,  491), and then derive the second 
angle variable, ~b2. It is easy to check that (67) satisfies the assumption from Sec. 2. 
In particular, there is an elliptic fixed point at z = 0, R = 1/4 surrounded by a family 
of  periodic solutions. There are two more fixed points for (67), at R = 0, z = - 1, 
which are hyperbolic. The integral H takes values between 0 and - 1/8; the first value 
corresponds to the separatrices connecting the hyperbolic points, which are given by 
{(R, z)tR = 0, - 1 < z < I} U {(R, z)12R + z 2 = 1}. H = - I/8 corresponds to the 
elliptic fixed point (see Fig. 2). 

The action variable is given by (see (31)) 

I = z d R  = ~ zdR ,  (68) 
= const  J Rmin 

where Rmin, Rrnax denote the values of  R where a level set of  H intersects the R axis. 

- l - 4 R - z ' ~ ,  (66) 

(67) 

system (65) then becomes 

dR 
- 2Rz,  

d t  

dz 

dt  

dO c 

d t  R '  

with the R - z components having the form 

where c is an arbitrary constant. In a fluid-mechanical context, c/2 is the circulation. 
The ftow (65) is a superposition of  a well-known Hill's spherical vortex with a line 

vortex on the z axis, which induces a swirl velocity 0 = 2c/r  2. The system of  
equations (65) satisfies Euler's equations of  motion for an inviscid incompressible fluid 
everywhere except on the z axis, where the swirl velocity becomes infinite. Note that 
we use r,  z,  0 instead of  Yl, Y2, Y3 as notation for the "symmetry" coordinates in this 
example. We transform the first two components of  (65) into canonical Hamiltonian 
form by letting R = r2/2 (this is another example of the transformation (22)). The 
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Figure 2. Phase portrait of (67). 
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These can easily be computed and found to be 

Rmin = ~ ( I -  ~ + 8H), 

Rma x = 41--(1 + ~ +  8H). 

In passing from the first to the second form of the integral in (68) we used the 
reflectional symmetry of  the level sets of  H around z = 0. From the expression for 
the Hamikonian function we have 

. / H  + R - 2R z 
Z=+---  R (69) 

We also have the equation 

H + R - 2R 2 = 2(Rm.x - R ) ( R  - Rmjn)- (70) 
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Using (69) and (70), (68) becomes 

I ( / H  + R - 2R 2 
I = -- I R~ dR 

zr derek, ~/ R 
(71) 

_ ~ 2 ~ R ' ~ ( R m a x - R ) ( R - R m i n ) d R "  

./Rmin R 

The integral in (71) can be evaluated in terms of elliptic integrals as found, for 
example, in Gradshteyn and Ryzhik [1980]. So, 

I - 2 " j 2 [ 1 E ( Z r  ~1 -- Rmin't - 2RminF (2, ~I -- R--~ax)lRmin 
3~" L 2 \2' R~x] 

(72) 

where F(~o, p), E(d), p) are elliptic integrals of the first and second kind, respectively, 
K(p) ,  E(p)  are the associated complete elliptic integrals, Rmin, Rma x are as defined 
above, and 

p = ~1 Rmin 
Rmax 

The first angle variable, ffl, is given by (cf. (32)) 

27r 
491-  T(H) t ,  (73) 

where t is the time measured from some reference point on the orbit (in our case the 
point (Rmin, 0)), and T(H) is the period of the orbit corresponding to the level set of 
H in the R - z plane. We then must first calculate the period T on the orbits in the 
R - z plane, which is given by 

i R~ dR 
T(H)  = 2 --:--. (74) 

J Rmi n R 

From (66), (69), (70), and (74) we obtain 

1 ( R~ 
T(H) = ~ Je.,~. ~/R(Rmax -- R)(R - Rmin) 

dR 

grnax -- Rmin 
(75) 

= ~/-e---~K(p). 
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To complete the calculation for 4)1 we need the time t. We have to distinguish between 
the cases z > 0 and z < 0. In particular, for z > 0, 

dR 
tz>o : 

~ R 

1 dR 

2 ~/2 ,,,. JR(Rmax - R)(R - Rmin)" 

We can integrate the last expression to obtain 

1 ~[ . /Rmax(R-Rmin) "~ 
tz> o -- ~ l a r c s l n / R ( - - - - - ~  , p ) .  

J2Rrnax ~k ~ /  (max  Rmin) 

In the case when z < 0, we have 

f R~.~ dR fR dR 
tz< 0 = -=-- q- 

dRmia R .~ R 

I~  dR _ T ( H )  + --:- 
2 ~ R 

_ T ( H )  1 ~"~"~ 

2 + JR 
Therefore, 

dR 
° 

~R(Rmax - R)(R - Rmin) 

~NO IO kl h3(I, 41) dC~l, 
4): = o + -~-~4~ - a ~ ( I )  (76) 

where 

AO = Io2~ ha(1,~d~l) dd~l 

Fortunately, we do not have to find the inverse of  the transformation ! = I(R, z), 4)1 = 
4)l(R, z) in order to calculate the neccessary terms in (76), as we can replace the 
integration on 4)1 with the integration on t and, in turn, integration on R. Thus, 

Thus we have completed the calculation of  all terms needed in (73). We now turn to 
the calculation of  4)2. Using Theorem (3.1) from Sec. 2, 4)2 (in the notation of  this 
section) is given by 

r(u) 2,,/5 F(arosin ~/ Rm~ -- R ) 
t z <  0 = - - - ~  -F ~/Rmax \ Rmax - Rmin' P " 
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irma;. ' AO = O dR 
3Rmin R 

_ 2c  ( R~' 

~-2JRmin 
which can be evaluated as 

Next we calculate 

1 
dR, 

~/R3(Rmax - R)(R Rmin) 

../7 _[~. R,,,..<-R,,,,°) 

= c ~_c----E(p). 
Rmin ~/Rmax 

fO ~I h3(I, f I ) a 2  
J = N, i7-7 " ' # '  

for the cases z > 0 and z < 0. We have, for z > 0, 

J->o - dR. 
" 2 ..,. , / R 3 ( R m . x  - e ) ( R  - em~°)  

1.4 

1.2 

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 

H 

Figure 3. Frequency f~l. 
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Figure 4. Frequency ~'~2- 

Thus we obtain 

C / .  /emax(R-Rmia) 
Jz>o = E 

Rmin . ~/-~'-'~m ~ larcsln ~ / ~  Rmin) ' p  " ) 
Similarly, 

Jz<o = --~-~ rcsin , p - • 
Rmin ~ Rma x - Rmi n R 

3O 

25 

20 

15 

i0 

5 

'-'o ~ . . . . . . . . . . . . . . . . . . . . . . . . .  -o i02 " 12 - o . 1  - o . o 8  -o .oG - o . o 4  
H 

Figure 5. Ratio of the frequencies. 
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Figure 6. Action variable I as a function of the integral of motion H. 

Thus we calculated all the terms necessary for the completion of the transformation 
to action-angle-angle coordinates. 

The frequencies f~t and 1"12 are given by (cf. Sec. 2 and Figs. 3, 4, and 5) 

f~ l (H(I ) )  - 
2~r r r ~  

T(H)  K ( p )  ' 

f ~ 2 ( H ( I ) )  - 
12n (H(I ) )AO cE(p)  

2 Ir Rmin K( p ) " 

Now I is a monotone function of H (see Fig. 6); thus, for a particular analytic 
perturbation having frequencies expressed as functions of H,  we can check the non- 
degeneracy condition required for the validity of the KAM-type theorem stated in 
Sec. 4. 

8. Conclusions 

In this paper we developed dynamical systems tools for the analysis of three- 
dimensional, nonautonomous or autonomous vector fields which admit a volume- 
preserving spatial symmetry group. We proved that such flows admit a very simple 
coordinate representation. That representation allowed us to develop action-angle- 
angle variables and appropriate homoclinic coordinates, which allowed the use of 
generalized KAM-type theory and Melnikov theory, respectively. The range of ap- 
plicability of these methods is quite large: it is clear from Sec. 4 that Euler flows 
always possess such a symmetry. By a direct analogy, steady magnetohydrodynamic 
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flows in the frozen-field approximation always have a magnetic field as an infinitesi- 
mal generator of a volume-preserving symmetry group. Through the geometry of the 
problem, it is often easy to conclude that a certain flow has a symmetry: such is 
the case, for example, for flows in nonstraight pipes, where the symmetry group is 
usually the translation along the axis of the pipe. Such symmetries are clearly volume- 
preserving. In fluid mechanics, flows of the form (12) are called regular ductflows. 
Franjione and Ottino [1991] proved the linearity of stretching for such flows. There 
are recent experiments on chaotic three-dimensional flows performed by Kusch and 
Ottino [1991] in which one of the examples (the so-called EHAM flow) is amenable 
to the type of anaylsis we are proposing. In particular, the chaoticity of the motion is 
due to the time-dependence of a cross-sectional flow, and it may be assumed that there 
is a translational symmetry in the direction of the z axis. Modifications of such flows, 
such as the ones shown in Fig. 21 of Kusch and Ottino [1991], should also admit our 
analysis. The KAM-type theory developed in Sec. 5 can be used to explain the persis- 
tence of invariant cylinders in these experiments. The Melnikov method developed in 
Sec. 6 can serve as a basis for the development of lobe dynamics in three-dimensional 
flows, along the same lines as for two-dimensional flows, as presented in Rom-Kedar 
et al. [1990]. The transport problems in chaotic three-dimensional fluid flows can thus 
be attacked, and some of the issues of transport raised by the previously mentioned 
experiments resolved. 

We also explained the geometrical meaning of the so-called Ctebsch variables, thus 
explaining why there is a Hamiltonian structure for a Euler flow when represented in 
these variables. 

Let us mention here that the local reduction procedure developed here admits 
a geometrical generalization in the spirit of symplectic reduction for Hamiltonian 
systems (Marsden-Weinstein [ 1972]). Also, instead of restricting our attention to three- 
dimensional systems, we can consider n-dimensional flows preserving some n-form. 
By performing reduction (i.e., transformation of coordinates analogous to the one 
presented in this paper for the three-dimensional case) we end up with an (n - 1)- 
dimensional system preserving an n - 1 form. Clearly, we cannot claim in general 
the Hamiltonian structure of the resulting (n - 1)-dimensional system, as n - I can 
be odd. The above-mentioned issues will be the topic of another publication. 
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