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Abstract 

We present in this article an evolutionary procedure for solving general optimization problems. The procedure 
combines efficiently the mechanism of a simple descent method and of genetic algorithms. In order to explore 
the solution space properly, periods of optimization are interspersed with phases of interaction and diversifica- 
tion. An adaptation of this search principle to coloring problems in graphs is discussed. More precisely, given 
a graph G, we are interested in finding the largest induced subgraph of G that can be colored with a fixed number 
q of colors. When q is larger or equal to the chromatic number of G, then the problem amounts to finding an 
ordinary coloring of the vertices of G. 
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number, sequential methods 

1. Introduction 

Let G = (V, E) be an undirected graph with vertex set V and edge set E. A stable set is 
a subset S c V of vertices whose elements are pairwise nonadjacent--that is, {x, y} E 
S = [x, y] ~ E. A partial q-coloring of G is a partition (I11, V 2 . . . .  , Vq) of a subset 
V' _~ Vof vertices into q disjoint stable sets. By assigning a color c(x) = i to each vertex 
x ~ Vi, a partial q-coloring can be seen as a coloring in q colors of a subset V' c_ V of 
vertices such that no two adjacent vertices receive the same color. The size of a partial 
q-coloring is the cardinality of the set V' = V 1 tA V 2 (J . . .  U Vq. The maximum size 
of a partial q-coloring of G is denoted aq(G) and is called the q-stability number of G. 
The partial q-coloring problem amounts to finding a partial q-coloring of maximum size 
in G. For q = 1, we have the well-known stable set problem. A partial q-coloring of size 
Otq(G) will be called optimal in the remainder of this article. It is to be observed that the 
stable set problem and the partial q-coloring problem are of equivalent complexity in that 



106 COSTA, HERTZ, AND DUBUIS 

there is a one-to-one correspondence between the partial q-colorings of G and the stable 
sets of a larger graph G' = G + Kq, which is constructed on the basis of G by making 
q copies of G and by adding all possible edges between the q copies of each vertex of G 
(Berge, 1989). 

A partial q-coloring of size n = I V I (that is, all vertices are colored) is commonly called 
a q-coloring of G. The problem in this case amounts to finding a q-coloring with q as 
small as possible. The minimum q for which a q-coloring exists is called the chromatic 
number of G and is denoted x(G). Thus x(G) = min{qlOtq(G) = n}. 

The problems of finding an optimal partial q-coloring (especially a stable set) or the 
chromatic number of a graph are among the most studied problems in the field of graph 
theory. These problems have a large variety of real-life applications in the area of schedul- 
ing and timetabling. Unfortunately both of these problems have been shown to be NP-hard 
(Garey and Johnson, 1979), and thus it is believed that there is no polynomial algorithm 
for solving these problems in an arbitrary graph, It follows that only small problem in- 
stances can be solved exactly within a reasonable amount of time in the general case (Dubois 
and de Werra, 1994; Friden, Hertz, and de Werra, 1990; Mannino and Sassano, 1992). 
This is why many researchers have concentrated their work on heuristic methods rather than 
on exact methods in order to solve practical problems of large size (Fleurent and Ferland, 
1995; Friden, Hertz, and de Werra, 1989; Gendreau, 1994; Hertz and de Werra, 1987; 
Johnson, et al., 1991; Morgenstern, 1990). 

One standard iterative approach for solving the partial q-coloring problem consists of 
developing a procedure that seeks a partial q-coloring of size k in G, where k is a fixed 
integer. An initial partial q-coloring of size k can be found by means of a greedy algorithm 
or simply by setting k = q. The value of k is increased by one unit, and the procedure 
is applied iteratively as long as it succeeds. When the whole process terminates, the current 
value k - 1 is a lower bound on Otq(G). A similar algorithm can be used for finding the 
chromatic number of a graph G. Starting with an initial q-coloring of G, we try to reduce 
q by one unit iteratively using a procedure whose function is to find a q-coloring in G. 
It follows that the resulting q + 1 value is an upper bound on x(G). 

The two problems we are interested in are as follows. Given a graph G and two positive 
integers q and k, find either a partial q-coloring of size k in G or a q-coloring in G. In 
our terminology, we understand that the value q is different in these two problems. 

In the next section we sketch the basic ideas of three general concepts for searching through 
the solution space of a combinatorial optimization problem. Then we indicate how two 
different solution methods can be combined to define a general procedure in which coopera- 
tion phases are interspersed with periods of optimization. More precisely, we focus on 
a simple hybrid algorithm based on two well-known methods--namely, a standard descent 
method and a genetic algorithm. Adaptations of this mixed procedure to the problem of 
finding a partial q-coloring of size k and a q-coloring in a graph G will be presented in 
Sections 3 and 4, respectively. In Section 5 numerical results are given for randomly gen- 
erated graphs, and some experiments are performed to evaluate the quality of the estimates 
for X(G) and offG) that we shall consider. Section 6 concludes with general remarks on 
this work and directions for future research. 
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2. General Search Principles for Combinatorial Optimization 

Generally speaking, the problems of finding a partial q-coloring of size k and a q-coloring 
in a graph G belong both to the class of combinatorial optimization problems (COPs). Given 
a finite set X of feasible solutions s and an objective functionfassignlng to each solution 
s E Xa  valuef(s), the goal is to find a solution s* E X for whichf(s) is minimum. Restric- 
tion to function minimization is without loss of generality since maxf(s) = -min( - f ( s ) ) .  
When designing a solution method for a COP, either we build a method that is specific 
to the problem under study, or we adapt some general existing schemes. In this latter case 
three different search principles can be defined for finding good solutions in X. 

2.L A Constructive Approach 

Constructive methods build feasible solutions of the form s = (xa, x2, �9 �9  xn) by starting 
from an "empty" solution s(O) and by inserting repeatedly a component x i into the current 
partial solution s(i - 1) = (Xl, x2, � 9  xi-1). An example of such a method is the well- 
known greedy algorithm that completes at best the partial solution in a rather myopic way-- 
that is, without taking care of all the consequences the current completion may have on 
the final solution. A greedy coloring (or partial coloring) algorithm proceeds by adding 
vertices one after the other (as long as it is possible) to the portion of the graph already 
colored. Each newly adjoined vertex is assigned the smallest color not allocated to one 
of its neighbors. Various constructive algorithms of this type have been defined for tackling 
the coloring problem (Br~laz, 1979; Culberson, 1992) and the stable set problem (Gendreau, 
1994). The advantage of a constructive method is that it is very fast. However, it is generally 
not competitive from the viewpoint of the quality of the final solution obtained. 

2.2. A Sequential Approach 

Sequential methods start from an initial solution s E X (for example, obtained by a con- 
structive method) and move step by step to a neighbor solution s '  E X by performing some 
elementary modifications m E Ms. Ms refers to the set of acceptable modifications at solu- 
tion s. A solution s '  obtained from s via an acceptable modification m will be denoted 
s '  = s (~ m. The neighborhood of a solution s can be defined more formally by N(s) = 
{~ E X[ 3m E Ms: s = s ~ m}. The process is repeated until some stopping criterion is 
met. The simplest example of a sequential approach is the steepest-descent method, which 
is formulated in Figure L A recent study (Hertz, 1995) has described the class of graphs 
for which a steepest-descent method is guaranteed to fred a maximum stable set indepen- 
dently of the initial solution s E X. 

Sometimes it is too time-consuming to scan the entire neighborhood, and thus only a 
sample V* C N(s) is examined at each step. When such a shortcut is accepted, we will 
use the term of descent method instead of steepest-descent method in the remainder of this 
article. The danger with a descent method is to be trapped in a local minimum of the objec- 
tive function. To overcome the limitation of local optimality, sequential methods with some 



108 COSTA, HERTZ, AND DUBUIS 

choose an initial solution s ( X; 
stop := false; 
While not stop do 

find a best s' E N(s) (i.e., f(s') _ f(~) u ~ N(s)); 
I f f ( s ' )  >__ f(s), then stop := true else s := s'; 

Figure 1. The steepest-descent method. 

additional features need to be defined. Simulated annealing (SA) and tabu search (TS) are 
two such methods. The difference between them lies in how the step from one solution to 
a neighbor one is selected. SA simulates the cooling of a collection of atoms by exploiting 
properties of statistical mechanics, while TS has recourse to notions of artificial intelligence 
for applying some learning rules. Adaptations of these two procedures to the problems 
considered in this paper can be found in Chams, Hertz, and de Werra (1987), Friden, Hertz, 
and de Werra (1989), Hertz and de Werra (1987), and Johnson et al. (1991). For more 
detailed explanations on how SA and TS work, the reader is referred to Eglese (1990), 
Kirkpatrick, Gelatt, and Vecchi (1983), and Reeves (1993), and Glover, Taillard, and de 
Werra (1993), Hertz, TaiUard and de Werra (1995), and Reeves (1993), respectively. 

2.3. An Evolutionary Approach 

Evolutionary methods deal with a population of solutions 6 ~ instead of a single (partial) 
solution like constructive and sequential methods. The central idea is to use collective prop- 
erties of a group of distinguishable solutions for searching in X. Once an initial population 
of solutions (P0 has been generated, it is improved by a cyclic two-step evolution process 
consisting of a cooperation step and a self-adaptation step. Each cycle is called a genera- 

tion. In the cooperation step, solutions of the current population exchange information with 
the aim of producing new solutions that inherit good attributes. In the self-adaptation step, 
solutions change their internal structure without any interaction with the other members 
of the population. We say that an evolutionary method goes through a diversity crisis or 
converges prematurely when its population contains a high percentage of replicates of the 
same solution. A number of mechanisms need to be incorporated to prevent this outcome. 

�9 Genetic algorithms (Davis, 1991; Liepins and Hilliard, 1989) are evolutionary methods 
based on genetics and biological mechanisms of natural selection. They are composed 
of three different operators that use probabilistic rules. The cooperation step is governed 
by a reproduction operator and a crossover operator. The reproduction operator eliminates 
the average worst solutions and gives more importance to the best ones by duplicating 
them. Then the crossover operator introduces a diversity within the population by mating 
pairs of solutions in order to give birth to new offspring. The self-adaptation step plays 
a secondary role in GAs. It is performed by a mutation operator that changes arbitrarily, 
with a low probability, each component x i of all solutions x -- (xt, x2, � 9  xn) of the 
current population 6~. 

�9 Scatter search (Glover, 1993, 1994) simulates an evolution that is not related to the field 
of genetics. There is no reproduction and mutation operator, and the manner of combining 
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solutions is different from the use of a genetic crossover in the sense that groups of more 
than two solutions are taken into account in the mating process. The self-adaptation step 
is made up of a "rounding" mechanism that consists essentially of modifying the solu- 
tions in order to make them feasible. 

| Antsystems (Colorni, Dorigo, and Maniezzo, 1991a, 1991b, and 1992) define an evolu- 
tionary method that imitates the behavior of an ant colony having to perform some specific 
tasks. In the cooperation phase each solution is examined with the aim of updating a 
global memory keeping track of important structures of X, which have been successfully 
exploited in the past. The self-adaptation step uses a problem-specific constructive method 
to create a new population of solutions on the basis of the global memory. 

Although the field of evolutionary methods has kept growing and evolving since the first 
developments in the 1970s there exist few evolutionary algorithms for solving problems 
related to graph coloring. The only adaptations we are aware of are described in Carter 
and Park (1993), Davis (1991), and Fleurent and Ferland (1995). 

The three search principles sketched in this section are illustrated in Figure 2. The con- 
structive approach considers a subset of X that gets smaller at each step, the sequential 
approach defines a path through X, and the evolutionary approach manipulates a set of 
solutions located in different promising areas of X. 

So far a great number of successful achievements in the field of general heuristics for 
combinatorial optimization has occurred by adapting sequential algorithms like SA and IS. 
Recent studies have shown that pure evolutionary methods are not very competitive when 
applied to highly constrained problems. However, it has been observed that the use of an 
evolutionary approach is well suited to complement and improve on existing procedures. 
One of the most promising innovations in the field of general heuristics is the insertion 
of sequential search techniques into an evolutionary method. The combination of these 
two different search procedures yields a hybrid algorithm the performance of which is gen- 
erally significantly better than the one of both procedures running separately (Costa, 1995; 
Thangiah, Osman, and Sun, 1994). In a hybrid algorithm the role of the sequential proce- 
dure is to explore thoroughly distinct areas of X, whereas the evolutionary procedure pro- 
vides global guidance through X. 

Following the ideas presented in Grefenstette (1987), and M/ihlenbein, Gorges-Schleuter, 
and Krffmer (1988), we focus on a hybrid algorithm combining a simple descent method 
and GAs. The general scheme of the evolutionary descent method (EDM) we have retained 
is given in Figure 3. It differs from most of the hybrid algorithms that have been developed 
recently in the sense that it deals with a steepest-descent method instead of a refined sequen- 
tial method that accepts nonimproving moves (Costa, 1995; Fleurent and Ferland, 1994, 
1995; Moscato, 1993). We will show that it is sufficient to use a simple sequential method 
in ahybrid algorithm whose crossover operator is adequately designed. The reproduction step 
of standard GAs has been partially omitted in our implementation of EDM because the risk 
of premature convergence is elevated in a hybrid algorithm whose individual optimization 
phase is deterministic. Indeed, a descent method applied to two identical solutions yields two 
identical local optima. The worse solution in the population at the end of the current genera- 
tion is merely replaced by the best solution found at the end of the previous generation. 
In order to save computation time at each step of the descent method, it has been decided to 
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a) A constructive approach 
X 

X i ~ {s~(xl, x2 ..... x~) e X I xt, x2 . . . . .  xi are fixed} i~ 1 . . . . .  n 

b) A sequential approach 

e) An evolutionary_ approach 

lags.= {Sg~,i e X; i= 1 ..... m=4}  gen= 0, 1, 2 .... 

Figure 2. Three search principles for combinatorial optimization. 

move directly to the first neighbor solution encountered, which is better than the current 
one (if any). The definition of an efficient crossover is the crucial point when implementing 
a GA. A good knowledge of the problem under study is required. ETD is stopped after 
a fixed number ngenmo.x of generations if no satisfactory solution has been reached before. 

In the next section we present an adaptation of EDM for finding a partial q-coloring 
of size k in a graph G. A new crossover operator will be defined and some refinements 
will be incorporated into EDM to increase its efficiency by achieving short term and long 
term diversification. 
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choose a random initial population CP 0 := {s 1, s~ . . . . .  s~} 

gen := 0 

While stopping criterion = false do 

f o r / : =  1 to m do 

create S~en+l by applying crossover to S~e n and s~+~ (the addition is taken modulo n) 
F o r i : =  l t o m d o  

apply mutation to s~e~+l 

improve Slgen+l with a steepest-descent method 

(~gen§ := {Slgen+I, $2en+l ..... S~en+l} 
replace the worst solution in (~gen+l by the best one in (~gen 
gen := gen + 1 

Figure 3. An evolutionary descent method. 

3. An Evolutionary Descent Method for Finding a Partial q-Coloring of Size k 

Given a graph G = (V, E), q colors, and a fixed integer k, the set of feasible solutions Xcon- 
tains all partitions s = ( V  o, I:1 . . . .  , Vq) of Vinto q + 1 subsets such that t V1 [ + -. �9 + 
] Vql = k. Vertices in V 0 are left uncolored, whereas those in V/receive color i. The neigh- 
borhood of a solution s is composed of all solutions that can be reached from s by exchang- 
ing the class of two vertices or by moving a colored vertex from one color class to another. 

To reduce the risk of premature convergence, short-term diversification is performed 
at each generation of EDM by using a dynamic objective function and a nonstandard mutation 
operator. Edges whose endpoints are in the same color class will be referred to as conflict- 
ing edges. Let w e be a weight associated to an edge e and E(Vi)  the collection of edges 
with both endpoints in Vi. The  cost f ( s )  of a feasible solution is computed dynamically 
on the basis of the set of  conflicting edges: 

q 

We. 
i=1 e~E(Vi) 

Initially, we set We = 1 Ye ~ E. In order not to manipulate the same conflicting edges for 
too long, it has been decided to increase by an amount Aw the weight we of all the conflict- 
ing edges in the m colorings Sigen at the end of each generation and to reset all the We values 
to 1 every ngenw generations in EDM. A solution s E X is clearly a partial q-coloring of 
G if and only if f (s) = 0--that is, V/is a stable set vi = 1 . . . .  , q. 

The mutation operator consists of replacing, with a probability Pmut, a solution by one 
of its neighbors chosen randomly. Usually Pm~t is held constant throughout a run of a 
genetic algorithm. However, following the ideas presented in (Fogarty, 1989), it has been 
observed that EDM performs significantly better if  the probability of mutation is changed 
once in a while. The variation scheme shown in Figure 4 has been retained in our adapta- 
tion of EDM. The probability of mutation is left at a constant level p~ for ngenmut genera- 
tions, then it is increased, or alternately, decreased linearly for rm~ t generations. 
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P ~ t  

o 
2 "Pmut 

0 
Pmut 

0 

ngenmu t ngenmu t gen 

Figure 4. A variation scheme for the probability of mutation Pmur 

In order to make the most of the characteristics of the best solution s* found so far, it 
has been decided to insert s* in the set of parent solutions before every cooperation phase 
of EDM. For this purpose we replace the worst solution in the population (Pgen at the 
beginning of each generation by the best one in the population (Pgen-1 at the beginning 
of the previous generation. The merits of a steady-state model where some solutions are 
kept from one generation to another are discussed in Davis (1991) and Syswerda (1989). 

Long-term diversification is achieved within EDM by changing periodically the structure 
of the solution space X to drive the search into new regions. The size k of the feasible 
partial q-colorings considered is increased during rch x generations every ngenchx generation 
(rchx < ngenchx). According to preliminary experiments, increasing k by rq/27 tin_its yields 
good results. 

Previous experiments with the most commonly cited crossover operators did not yield 
effective results in the context of graph coloring. Fleurent and Ferland (1995) developed 
a graph-adapted recombination operator that appeared to be significantly better than the 
ordinary one-point, two-point, and uniform crossover operators. The recombination operator 
we have retained in our study is an adaptation of the so called union crossover, which have 
been defmed in Costa (1995) for solving large-size scheduling problems. Roughly speaking 
the union crossover starts by building a "megasolution" that inherits all the information 
contained in the parent solutions sl and s 2. The megasolution is then transformed into a 
feasible solution by sequentially removing the most costly redundant information it con- 
tains. Figure 5 shows formally how two partial q-colorings Sl and s2 give birth to a new 
solution s3 based on the above mechanism. The color of a vertex v in si is denoted el(v). 
If v is not colored in si, then ci(v) = 0. It is important to point out that s2 has an influence 
larger than Sl on the offspring s3 since it determines the color elass of a vertex that is col- 
ored in both parent solutions. Vertices that are colored in only one parent solution receive 
a color ~ E {1, . . . ,  q} that causes a minimum number of conflicting edges in the solution 
s3 achieved so far. This coloring is done by simply following the given indexing of the 
vertices. A more strategic variant can be created by examining vertices in an appropriate 
order. The path relinking concepts proposed by Glover (1994) could be of some utility 
at this level. Experiments in this direction were not conducted. Feasibility of s3 is achieved 
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Inpu t  s 1, s 2 E X 

Ou tpu t  s3 = (Vo, V t . . . . .  Vq) E X 

V i : = O u  = 0  . . . .  , q ;  

For every vertex v such that Cl(V) > 0 and c2(v) > 0 do Vc2(v ) :=  Vc2(v ) LI {v} 

For every other vertex v do 

f f  cl(v) > 0 or cz(v) > 0 then 

V~(v) :=  V6(v) L) {v} where c(v) E {1, . . . ,  q} is the color yielding the smallest number of conflicting 
edges adjacent to v in the current solution s 3 

else V o :=  V 0 LI {v}; 

c3(v) := i Vv E Vi (i = O, . . . .  q); 

While [ V I I +  . - .  + IVq[ > k d o  

Find the vertex v + adjacent to the highest number of conflicting edges in s3; 

vc3(v+) := vc3cv+j \ {v +} 
c3(v +) := 0; 

Figure 5. A union crossover for the partial q-coloring problem. 

by repeatedly uncotoring the vertices adjacent to the greatest number  of  conflicting edges 
until we are left with exactly k colored vertices. 

4. A Special Case: Finding a q-Coloring 

Given that all vertices have to be colored when looking for a q-coloring of G, the feasible 
solutions s E X a r e  all partitions s = (V1, �9 �9  Vq) of  the vertex set Vinto q subsets (that 
is, V 0 :=  0). Thus finding a q-coloring in G = (V, E) is a special case of the problem 
studied in the previous section where k is set equal to [ V[. Except for the crossover operator 
and the long-term diversification process, which need to be reconsidered, the adaptation 
of E D M  presented in Section 3 is well suited for tackling the q-coloring problem. 

In this case the union crossover needs to be specialized because all vertices are colored 
in both parent solutions. Let ci(v ) be the color of vertex v in the coloring si and ncei(v, d) 
be the number of  conflicting edges located at a distance d from v in si. By definition the 
distance between a vertex v and an edge e = Ix, y] is the least number of  edges in a path 
from v to an endpoint of e (that is, x or y). To each vertex v, we associate a penalty pi(V),  

which measures how "close" vertex v is to conflicting edges in si. More formally, 

2 

p i (v )  = ~ o~ d " nce i (v ,  d ) ,  
d=O 

where ~a is a weight ba/ancing the importance of conflicting edges located at different dis- 
tances from a vertex v (co 0 > oJ 1 > C0a). On the basis of preliminary experiments, we have 
decided not to consider distances d greater than 2 because no significant improvements were 
observed while more computational effort was required for evaluating the penalties pi (v ) .  
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Each vertex v in the offspring s 3 to be created will be colored either with color cl(v) or 
with color c2(v ). Preference is given to the color ci(v) with the smallest penalty p i ( v )  in sl 
or s2. Ifpl(v) = pE(v), then we examine the vertices of v already colored in the current 
partial coloring s3 and we choose the color c E {cl(v), c2(v)} minimizing nadj(v, c), where 
nadj(v, c) denotes the number of vertices adjacent to v that are colored with color c in s3. 
If this criterion is not enough to decide between Cl(V) and c2(v) (that is, nadj(v, cl(v)) = 
nadj(v, c2(v))), then we select the color of vertex v arbitrarily among {ci(v), c2(v)}. A for- 
mal description of this graph coloring adapted crossover operator is given in Figure 6. 

EDM is redirected to different portions of the search space X by performing regularly 
two long-term diversification phases. The first phase consists in modifying slightly the struc- 
ture of X like in the partial q-coloring problem. We have decided to reduce the number q 
of possible colors by one for rchx generations every ngenchx generation. The iterated greedy 
algorithm presented in Ctdberson (1992) governs the second long-term diversification phase 
of EDM. Let ~ be a q-coloring of G (that is, f(~) = 0). A permutation lr of the vertices 
v E Vis said J-compatible if it rearranges the color classes of~ in the following way: c(v~(o) 
= c(vr(j) = c ~ c(vr(k~) = c Vi <_ k <_ j .  It can be shown easily that a greedy algorithm 
for graph coloring based on a J-compatible permutation produces a new acceptable color- 
ing s '  using q or fewer colors. This property can be extended to feasible colorings s E X. 
By applying a greedy algorithm to a s-compatible permutation, we produce a new feasible 
coloring s '  in at most q colors such thatf(s ' )  <- f ( s ) .  The  second long-term diversification 
phase is activated once every ngenigr generation, and it consists in applying iteratively a 
greedy algorithm of this type to each solution s E (P produced by the descent method in 
EDM. Starting with a solution s '  = s E 6) a sequence of rig ~ different feasible solutions 
s '  is created by generating successively npermigr s'-compatible permutations a-. Following 
the observations made in Culberson (1992), the permutations 7r we generate are either ran- 
dom or based on the order or the size of the classes 1I/(1 _< i < q) of the current solu- 
tion s'. The best solution produced in this way replaces the initial solution s. 

Input s~, s 2 E X 

Output s 3 = (V 1 . . . . .  Vq) E X 

nadj(v, c) = 0 vv  E V, u = 1, . . . ,  q; 

V c :=  0 vc  = 1 . . . . .  q; 

For every vertex v E V do 
I f p l ( v )  < p2(v) then c3(v) = cl(v) 

else IfP2(V) < pl(v) t h e n  c3(v) = c2(v) 

else (*pl(v) = pz(v)*) 

I f  nadj(v, cl(v)) < nadj(v, c2(v)) t hen  c3(v ) = Cl(V ) 

else It nadj(v, c2(v)) < nadj(v, q(v)) then c3(v) = c2(v) 
else (*nadj(v, Cl(V)) = nadj(v, c2(v))* ) 

c3(v ) = cl(v) or c2(v) arbitrarily; 
nadj(v" c3(v)) = nadj(v" c3(v)) + 1 for every vertex v' adjacent to v; 
vc3~v) = vc3<v~ u {v~, 

Figure 6. A crossover operator for the q-coloring problem. 
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As observed in Chams, Hertz, and de Werra (1987), Fleurent and Ferland (1995), Hertz 
and de Werra (1987), and Johnson et al. (1991), it is difficult, if not impossible, to find 
a q-coloring of a large graph G (more than 300 nodes) with q close to x(G) by applying 
directly a given algorithm ~ on the graph G. The approach proposed in Chams, Hertz, 
and de Werra (1987), Fleurent and Ferland (1995), Hertz and de Werra (1987), and Johnson 
et al. (1991) consists in constructing consecutively color sets (that is, stable sets) of G 
that are as large as possible until we are left with at most a certain number nte ~ of vertices. 
The algorithm ~ is then invoked to color the remaining vertices. In this article we generalize 
this approach by removing consecutively partial q '-colorings (1 _< q' < q) instead of stable 
sets (q' = 1) of G. The removal of partial q'-colorings as well as the coloring of the residual 
graph will be performed by the two adaptations of EDM presented in this article. In order 
to reduce the number of edges in the remaining uncolored subgraph, we have observed 
that it is advantageous to remove partial q'-colorings of G that are connected to as many 
noncolored vertices as possible. The external degree of a partial q-coloring is defined as 
the total number of edges with exactly one colored endpoint. If EDM has to choose between 
two feasible partial q'-colorings of equal value, then preference will be given to the one 
with the largest external degree (Johnson et al., 1991; Fleurent and Ferland, 1995). More- 
over, once a legal partial q'-coloring has been found (f(s) = 0) we run EDM for ngen + 
additional generations with the aim of finding new legal partial q'-colorings that are better 
from the external degree point of view. 

5. Computational Experiments 

5.1. Random Graphs 

Randomly generated graphs are used to test the efficiency and examine the average behavior 
of the adaptations of EDM presented in the two previous sections. A random graph Gn,p 
is a graph with n vertices such that there exists an edge with a probability p between any 
pair of vertices, independently of the existence or nonexistence of any other edge. This 
family of graphs has been deeply studied with respect to coloring, especially for p = 0.5. 
There exists some asymptotic results but they are of httle practical use in evaluating algorithm 
performance (Boltobas, 1985). Probabillstic estimates of %(Gn,p) and x(G~,p) can be ob- 
tained easily as shown in Johri and Matula (1982). Let 

E(Gn,p,j) = ~ 3 ~ ' ( 1 - p ) ~ ]  

be the expected number of stable sets of sizej in Gn,p. The size c~(Gn,p) of the largest stable 
set in Gn,p can be estimated by computing the maximum value of j  such that E(Gn,p, j) is 
greater than one--that is, t~(G~,p) = max(j I E(G~,p, j) >- 1). By sequentially deleting an 
independent set of maximum expected size, we obtain the following estimates of ~q(Gn,e) 
and x(G~,p): 
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1. Estimate of Otq(G,,e): 
&q(G,,p) := 0; 
n' := n; 
For r := 1 to q d o  

Otq(Gn,p) := Otq(Gn,p) + ot(Gn,,p); 
n' := n' - a(Gn,,p); 

2. Estimate of x(Gn,p): 
;~(G.,p) : =  0; 
n' := n; 
While n'  > Odo  

X(Gn,p) = X(Gn,p) + 1; 
n' := n' - ot(Gn;p); 

These estimates assume that the edge density remains constant after each stable set dele- 
tion. Although it is not true in general, these estimates also assume that an optimal partial 
q-coloring of G, or x(G)-coloring, is made up of optimal stable sets. A counterexample 
is provided in Figure 7. Since the graph G contains a clique of size 3, there exists at least 
one uncolored vertex in every partial 2-coloring of G (=  ot2(G) < n - 1 = 6). It follows 
that the partial 2-coloring of size 6 of Figure 7 is optimal. This 2-coloring is made up 
of two stable sets of size 3, whereas the stability number of G is 4. It can easily be seen 
that there exists no partial 2-coloring of size larger than 5 that contains the unique optimal 
stable set of G. Given an edge density p and a number q of colors, a number n of vertices 
will be referred to as q-stability break point, respectively a chromatic break point, if 
&q(Gn;p), respectively x(Gn,,p), increases as n' goes from n - 1 to n. 

The algorithms described in Sections 3 and 4 were implemented in Pascal and run on a 
Silicon Graphics Workstation (9 Mflops). Computing times are reported in CPU seconds of 
this machine. For each value ofp  ~ {0, 4, 0.5, 0.6} a sample of 20 Gloo,p graphs, 10 Gaoo,p 
graphs, 5 Gsoo,p graphs, and 2 G~ooo,p graphs is taken into account in our experiments. 
Each class of graphs is generated using a combination of multiplicative linear congruential 
generators that is described in detail in L'Ecuyer (1988). Forp = 0.5 we consider the same 
random graphs as Fleurent and Ferland (1995). Note that the sample contains one G500,0.5 
and one G100o,0.5 graph that have been used in Johnson et al. (1991) for testing various 
algorithms. All the results reported in the subsequent tables are average results obtained 
after one run of EDM for each graph in a class Gn,p. 

color 1 : �9 Ik~ ,~X / ~  C,(G) = 4 
color 2 : ~ N ~ ,  xN~//" a,2(G) - 6 

r O 
G 

Figure 7. An optimal partial 2-coloring that does not contain an optimal stable set. 
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5.2. Adjustment o f  the Parameters 

Various experiments have been carried out with the computer code in order to select appro- 
priate values of the parameters governing the search in our two adaptations of EDM. The 
following values have yielded good results on average: ngenrnut = 60, rmu t = 10, ngench x 

= 100, rch x = 10, (partial q-coloring), ngenchx = 200, rchx = 60 (q-coloring), ngenig r = 
100, npermigr = 50, ngen + = 100. The other parameters need to be set more carefully. 

Let us examine first the weights w0, wl, and w2, which define the crossover operator 
of the q-coloring problem. For this purpose we consider the problem of finding colorings 
in x(G100,0.5) = 16 colors to the 20 graphs in the class G10o,0.5. The results we have ob- 
tained with four sets of weights are sketched in Table 1 (m = 10, p 0  = 0.04, z~w = 0.03). 
CPU, ngen, A f  nstep, and entr are average values that denote, respectively, the CPU time 
needed to achieve a coloring, the number of generations of EDM, the increase (in percent) 
of the objective function fa l te r  a crossover phase, the number of steps needed by the des- 
cent method for finding a local optimum, and the entropy of the population. The entropy 
is a value in the interval [0, 1] that measures the diversity of a population of solutions 
(Fleurent and Ferland, 1995). A nil entropy characterizes a population of identical color- 
ings whereas an entropy close to 1 indicates that the colors of vertices are uniformly dis- 
tributed within the population. 

We observe that it is worth, in terms of the CPU time and the number of generations 
ngen, to take account of the conflicting edges located at a distance 1 and 2 from a vertex 
when computing its penalty. By giving some importance to these remote conflicts, we reduce 
considerably the increase o f f  after performing the crossover operator, but we lose diversity 
within the population. We see that the higher A f  is the more steps the descent method 
has to perform in order to achieve a local optimum. The best results have been obtained 
by considering all conflicting edges up to a distance 2 and by differentiating slightly the 
edges located at a distance 1 and 2. In the subsequent experiments we will use exclusively 
the set (100, 3, 1). 

The simultaneous influence ofp  ~ and Aw on the performance of EDM is studied below 
for 300 and 500 vertex graphs of density p = 0.5. The results we have obtained for three 
test problems with a population (P of size m = 10 are presented in Tables 2, 3, and 4. 
Similar results that we do not report here have been observed for other values of p, m, 
and n. The values shown in the following tables correspond to the average CPU time needed 
to achieve a solution. If EDM does not manage to find a solution in less than ngenm~ = 
5,000 for all the graphs in a class, then the success rate of EDM is indicated in parenthesis. 

We see that the parameters Aw and p~ have the same effect on the performance of 
EDM in that, for a fixed value of Aw (respectively pout ), the elapsed CPU time decreases 

Table L Influence of the weights w0, Wl, and w 2. 

(w 0, wl, w2) CPU (sec) ngen A f  (%) nstep entr 

(1, 0, 0) 4.20 28 350.2 38,6 0.53 
(10, 1, 0) 3.05 23 198.3 25.9 0.40 
(100, 10, 1) 2.30 17 164.1 24,5 0.39 
(100, 3, 1) 1.90 15 169.0 23.6 0.38 
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Table 2. Variation of hw and P~ t in the partial 2-coloring problem (--* &2(G500,0.5) = 26). 

Aw\ pO t 0 0.02 0.04 0.06 0.08 0.10 

0 (0/5) 740.5 (2/5) 432.0 628.6 379.2 502.2 
0.01 607.0 (1/5) 295.6 100.2 131.0 226.2 469.8 
0.03 437.8 130.6 77.0 131.8 128.2 232.4 
0.05 190.6 82.8 73.2 119.8 253.4 372.2 
0.07 185.6 51.6 85.0 68.4 131.0 445.4 
0.09 200.2 81.8 55.0 174.6 220.0 217.8 

Table 3. Variation of hw and P~ t in the partial 3-coloring problem (~  ~3(G50o,0.5) = 39). 

Aw \ pO~t 0 0.02 0.04 0.06 0.08 O. 10 

0 (0/5) (0/5) 1,367.7 (3/5)  3,731.5 (2/5) 1,200.0 (1/5) (0/5) 
0.01 (0/5) 943.2 412.6 2,249.5 (4/5) 1,108.0 (1/5) (0/5) 
0.03 535.5 (2/5) 161.6 492.8 1,386.3 (3/5) 3,505.0 (1/5) (0/5) 
0.05 533.4 253.4 326.8 2,621.0 4,135.0 (2/5) (0/5) 
0.07 157,7 (4/5) 209.8 302.0 (5 /5)  2,610.0 (3/5) 5,384.0 (3/5) (0/5) 
0.09 340.8 (5/5) 248.0 367.6 (5/5)  2,293.2 (4/5) 4,728.0 (1/5) (0/5) 

Table 4. Variation of Aw and p0mu t in the 35-coloring problem (~  ~(G30o,0.5) = 35). 

Aw\p~ 0 0.02 0.04 0.06 0.08 0.10 

0 (0/10) 1,198.9 (6/10) 1,316.9 (6/10) 1,289.5 846.1 (9/10) 795.0 (8/10) 
0.01 535.3 (9/10) 279.0 280.5 338.2 1,007.0 1,130.4 (5/10) 
0.03 349.2 180.9 192.7 370.4 910.7 (9/10) 1,353.0 (7/10) 
0.05 362.8 215.3 208.5 273.8 1,059.9 1,522.8 (9/10) 
0.07 474.6 213.3 194.3 422.7 720.7 (9/10) 1,570.0 (9/10) 
0.09 344.4 136.6 227.0 360.6 670.1 (9/10) 1,454.9 (8/10) 

first and then increases when pOut (respectively Aw) grows. The best results are obtained 
with intermediate values of Aw and p~ 0.03 <_ Aw _ 0.07 and 0.02 _ pout <_ 
0.06. For  smaller and larger values of these parameters EDM does not manage to find con- 
flict free solutions for all  the graphs in the class, Based on these observations it has been 
decided to set pout = 0.04 and Aw = 0.03 in the subsequent experiments. 

To find an appropriate value for the size m of the population (P we investigate the behavior 

of EDM with m ranging from 2 to 20. Tables 5 and 6 show the results produced by EDM 
when applied to the problems of finding a part ial  2-coloring and a partial  3-coloring in 

Gs0o,o. 5, as well as a 35-coloring in G300,o.5 and a 50-coloring in G50o,0.5. In the latter case 
we have decided to use EDM to first remove stable sets in the original graph until we are 
left with at most nle~ = 300 vertices to color. Once again each run of EDM is stopped 
after ngenm~ = 5,000 generations if  no conflict-free solution has been found before. The 
average number of generations and the average CPU time required to find a conflict-free 
solution are reported in Tables 5 and 6. 

We observe that the number of generations decreases with m varying from 2 to 10 and 
then gets rather unpredictable for larger values of  m. We think that the size of the popula- 
tion does not have a significant influence on the quality of the results when it is large enough. 
Beyond a certain value of  m, the extra information we gain by adding some individuals 
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Table 5 Variation of m in the partial q-coloring problem. 

&2(G500,0.5) = 26 &a(Gs0o,0.5) = 39 

m ngen CPU ngen CPU 

2 1,659 (4/5) 152.7 (4/5) 1,203 (2/5) 189.0 
4 603 109.2 1,053 334.8 
6 159 47.6 980 474.6 
8 132 49.6 873 635.0 

10 113 59.4 372 382.0 
12 130 78.4 747 968.4 
14 134 100.2 1,383 2,159.6 
16 78 73.0 1,060 1,933.0 
18 84 82.8 2,127 4,515.8 
20 58 68.4 1,796 4,290.4 

(2/5) 

Table 6. Variation of m in the q-coloring problem. 

--' x(G30o.o.5) = 35 --' x(Gs0o,0.5) = 50 

rn ngen CPU ngen CPU 

2 1,558 204.8 4,940 (1/5) 1,886.0 (1/5) 
4 920 239.9 2,444 (3/5) 2,733.7 (3/5) 
6 662 261.9 4,238 (4/5) 4,237.0 (4/5) 
8 375 198.4 1,331 3,908.2 

10 285 192.0 1,701 4,964.2 
12 237 195.4 1,883 6,994.6 
14 181 178.5 1,382 6,655.2 
16 240 268.2 1,593 7,631.4 
18 226 284.2 865 8,361.6 
20 173 245.8 1,591 10,045.2 

in the population does not really help. As we use a nonparallel machine, the CPU time 
is clearly proportional to the size of the population m and the number of generations ngen. 
From a computational point of view the best results have been obtained with m ranging 
from 6 to 14. 

Hereafter we report the results obtained by EDM on the samples of random graphs de- 
scribed above. The size m of the population has been set to 10. EDM is stopped if it fails to 
find a conflict-free q-coloring, respectively a conflict-free q-coloring, in less than ngen,m 
= 5,000, respectively ngenmax = 50,000 generations. In this case the success rate of EDM 
is shown in parenthesis and the average CPU times reported do not take account of the 
unsuccessful runs of EDM. 

5.3. Results 

Let us deal at first with the problem of finding an optimal stable set in a graph. For this 
purpose we run the branch and bound algorithm TABARIS, which is described in Friden, 
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Hertz, and de Werra (1990). TABARIS is able to find an optimal set for each of the graphs 
considered, except for the two graphs in the class G1000,0.4 where too much computing 
time is necessary. 

Table 7 reports, for every class Gn,p, the estimate of the stability number presented 
above, the minimum, maximum, and average stability number as well as the average CPU 
time needed by TABARIS and EDM to achieve an optimal stable set. In the class G100o,0.4 
the estimate et(Gn,p) replaces the stability number, which is unknown. As the variation of 
the stability number within a class decreases considerably when the size n increases, it 
follows that the stability number of the two graphs in the class G100o,0.4 is very likely to 
be equal to 19. We observe that EDM finds an optimal stable set in each graph where 
the stability number is known in a reasonable computational effort when compared to 
TABARIS. Contrary to EDM whose running time seems to depend essentially on the size 
n, the running time of TABARIS grows exponentially with n and decreases exponentially 
withp. More specifically, for a given density p, the difficulty of EDM in finding an opti- 
mal stable set grows as n gets closer to its lower 1-stability break point. 

Table 8 is devoted to the search of partial 2- and 3-colorings of maximum expected size 
in 300, 500 and 1,000 vertex graphs. Graphs on 100 nodes have been omitted for two reasons. 
First the q-stability number in a class Gloo,p is not unique (see Table 7), and thus the esti- 
mate Olq (Gn,p) is not sharp. Second, random graphs on 100 vertices can be colored opti- 
mally almost instantaneously by any sophisticated sequential or evolutionary procedure. 

Table 8 shows that the success rate of EDM in finding partial 2- and 3-colorings of max- 
imum expected size is rather low. Only ten out of the eighteen runs of EDM achieve a 
partial q-coloring of size k = &q(Gn,p) for every graph in a class Gn,p. For graphs on 300 
vertices we are convinced that EDM fails only when otq(Gn,p) is larger than Otdq(Gn,p). For 
example, it is not possible to color with two colors twenty nodes in every G300,0.6 graph 
when four out of these ten graphs have a stability number equal to 9 (see Table 7). For 

Table 7. Optimal stable sets in 100, 300, 500, and 1,000 vertex graphs. 

a(Gn,p) 
CPU CPU 

n p &(Gn,p) A v e r a g e  Minimum Maximum (TABARIS) (EDM) 

100 

300 

500 

1000 

0.4 12 11.35 10 13 <0.1 0.1 
0.5 9 9.10 9 10 <0.1 0.1 
0.6 8 7.15 7 8 <0.1 <0~1 

0.4 15 15.10 15 16 149.3 2.4 
0.5 12 12.0 12 12 17.7 9.7 
0.6 10 9.60 9 10 3.6 5.8 

0.4 17 17.0 17 17 6,556.0 58.1 
0.5 13 13.0 13 13 414.8 14.2 
0.6 11 10.2 10 11 40.2 11.6 

0.4 19 . . . .  633.5 
0,5 15 15.0 15 15 44,209.5 578.5 
0.6 12 12.0 12 12 1,795.5 788.6 
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Table 8. Partial q-colorings of size k in 300, 500, and 1,000 vertex graphs. 

q = 2  q = 3  

n p ot2(Gn,p) k CPU ~3(Gn,v) k CPU 

300 0.4 30 30 50.7 45 45 303.0 (8/10) 

0.5 24 24 28.9 (9/10) 36 36 252.9 (9/10) 

0.6 20 19 21.8 (6/10) 29 28 32.0 (6/10) 
18 2.1 27 9.7 

500 0.4 34 34 220.4 51 51 2,485.6 (4/5) 
50 1,444.5 

0.5 26 26 59,4 39 39 382.0 

0.6 22 21 9.0 (1/5) 32 31 49.5 (1/5) 
20 16.4 30 40.6 

1,000 0.4 38 38 4,372.5 57 57 10,817.6 

0.5 30 30 4,317.4 45 45 6,133.4 (1/2) 
44 7,036.8 

0.6 24 24 5,128.1 (1/2) 36 35 8,611.6 (1/2) 
23 134.5 34 639.3 

larger graphs we cannot be so categorical, especially for graphs on 1,000 vertices that 
are likely to contain partial q-colorings of expected maximum size. Larger partial q-colorings 
could eventually be obtained by increasing the maximum number of generations performed 
by EDM. To our knowledge there exists no exact algorithm for computing the q-stability 
number of a graph, and thus it is hard to evaluate the performance of EDM from a solution 
quality viewpoint. 

Generally speaking the difficulty in finding partial q-colorings of size &q(G,,,p) grows 
with p and n. However, it depends also, for given values of q and p, of the remoteness 
between n and its lower q-stability break point. Tables 7 and 8 show that the running time 
of EDM grows considerably with q, whereas it has been observed that the number of gener- 
ations does not vary significantly. This time increase is due to the descent method in EDM, 
which takes much more time to achieve local optima at each generation. The larger q is 
and the larger the neighborhood of a partial q-coloring is. 

Tables 9 and 10 summarize the results we have obtained with EDM in an attempt of 
coloring the graphs considered in this article by using a number of colors q as small as 
possible. The results in Table 10 have been obtained by the combined method mentioned 
at the end of Section 4. Partial q-colorings are removed repeatedly until the residual graph 
is left with at most nle~ = 300 vertices. Last row of Table 9 shows that the adaptation of 
EDM to the q-coloring problem is not sufficient to obtain colorings in 50 colors for every 
G500,0.5 graph. Moreover the successful runs require more time than the combined method 
when applied to the same problem (see Table 10). 

For a given n, we have observed that the elapsed CPU time per generation in EDM 
decreases as p increases. This means that the descent method fmds local optima in dense 
graphs faster than in sparse graphs, even though the neighborhood is larger in dense graphs. 
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Table 9. q-colorings of 100, 300, and 500 vertex graphs. 

n p ~(Gn,p) q CPU 

100 0.4 14 14 <0.1 
13 0.7 
12 40.8 

0.5 16 16 1.9 
15 17.5 
14 6.0 (1/20) 

0.6 19 19 3.1 
18 165.1 (14/20) 

300 0.4 28 28 201.7 
27 603.3 
26 10,348.2 (5/10) 

0.5 35 35 192.0 
34 741.2 
33 11,920.1 (7/10) 

0.6 42 42 5,252.6 
41 35,724.4 (5/10) 

50 35,940.0 (2/5) 500 0.5 50 

Table 10. q-colorings of 500 and 1,000 vertex graphs. 

CPU 

n p ~(Gn,p) q q'  = 1 q '  = 2 q '  = 3 

500 

1,000 

0.4 40 40 2,805.8 5,647.4 15,314.6 
39 5,277.2 7,594.4 16,963.6 

0.5 50 50 4,964.2 6,036.2 11,396.8 
49 11,397,8 11,152.4 17,680.0 

o. 6 62 62 27,122.4 28,603.8 26,416.2 

0.4 68 68 35,801,0 65,903.5 156,906.0 
67 41,106.0 67,972.0 162,817.5 

0.5 85 85 37,845.5 70,789.5 147,805.0 

0.6 106 108 69,079.0 ( 1 / 2 )  120,925.0 (1/2) - 
109 69,296.0 98,278.5 185,199.0 

With the exception of the Gloo0,0.5 and G100o,o.6 graphs, we see that EDM always finds 
colorings in a number of  colors smaller  than the probabilist ic estimate ~(G, , ,p ) .  Only the 
two G100o,o.6 graphs could not be colored in x(Gn,p) colors. EDM succeeds in coloring 
both of them with 108 colors but it uses two different strategies, namely q '  = 1 for one 
graph and q '  =- 2 for the other. Because of the large expected running time, experiments 
with q '  = 3 were not conducted. When using a combined method for coloring large graphs, 
we note that it is not worth extracting q '-colorings with q '  > 1 since EDM generally re- 
quires much more computational t ime without producing better results. 
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Table 11. Results on Gn,o. 5 graphs. 

Hertz and 
de Werra Fleurent and Our Results 

Number of (1987) Ferland (1995) (EDM) 
Graphs in 

n Gn,o. 5 ~(Gn,0.5) q* ~ q* (/ q* 

10o 20 16 16 - 15 14.95 15 14.95 
300 10 35 35 - 34 33.5 34 33.3 
500 5 50 50 - 49 49.0 49 49.0 

1,00o 2 85 87 -- 84 84.0 85 85.0 

To our knowledge no experiments with colorings have been conducted on classes of ran- 
dom graphs of density different from 0.5. For every class G~,0.5 the results in Tables 9 and 
10 appear to be better than those reported in Hertz and de Werra (1987). Fleurent and 
Ferland (1995) developed in a recent study an evolutionary algorithm for coloring random 
graphs and Leigthon graphs. Their algorithm differs significantly from EDM in that they use 

| A steady-state population where only two solutions are changed at each generation, 
�9 An improvement of TABUCOL (Hertz and de Werra, 1987), instead of a simple descent 

method, for reaching good colorings at each generation, 
�9 A modification of STABULUS (Friden, Hertz, and de Werra, 1989) for extracting stable 

sets as large as possible when coloring graphs with more than 300 nodes. 

Despite these refinements the results for Gn,0.5 graphs which are presented in Fleurent 
and Ferland (1995) are very similar to those produced by EDM (as a reminder, we deal 
with the same set of Gn,0.5 graphs). The results obtained by Hertz and de Werra (1987) and 
Fleurent and Ferland (1995) as well as our results are summarized in Table 11. The value 
q* denotes the smallest number of colors for which all graphs of the same class can be 
colored without a failure. ~ denotes the average number of colors needed to color the graphs 
in the class when trying with q* or less colors. No nmning time is reported in Table 11 
because all algorithms have been implemented on different computers. 

It appears that the algorithm of Fleurent and Ferland (1995) succeeds in coloring the two 
G10oo,0.5 graphs with eighty-four colors, whereas EDM achieves colorings with one color 
more. On the other hand, we notice that EDM finds a larger number of 33-colorings in 
the class G300,0.5. Different hybrid schemes were investigated by Fleurent and Ferland 
(1995). It is important to point out that EDM clearly outperforms their algorithm when 
TABUCOL is replaced by a descent method (like in EDM). For example, when searching 
for a 34-coloring in a G300,0.5 graph, no feasible colorings with less than ten conflicts could 
be achieved in Fleurent and Ferland (1995), whereas every graph in the class G30~0.5 could 
be colored in thirty-four colors with EDM. 

5.4. Prac t i ca l  Cons idera t ions  on the E s t i m a t e s  ~(Gn,p) and X(Gn,p) 

In this subsection we generate a sample of 100 random graphs for each value of n and 
for two given densities p = 0.4 and p = 0.6. Then we use the algorithms TABARIS (Friden, 
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Hertz, and de Werra, 1990) and EPCOT (Dubois and de Werra, 1994) to compute respec- 
tively the stability number ot(Gn,p) and the chromatic number x(G.,p) of each graph. Both 
of these algorithms are based on an implicit enumeration of all possible solutions of the 
considered problem. 

The estimate ot(G.,p) and the mean stability number ot(Gn,p) obtained by TABARIS are 
plotted in the graphics of Figure 8 for each value ofn  in the interval (20,200). Forp = 0.4 
we see that ~(G.,p) overestimates ot(Gn,p) for almost every n up to 100. Other experiments 
with small values of n (n < 150) have shown that the smaller p is and the more ~t(G,,,p) 
overestimates oL(G.,p). As expected, when n grows, the slope of the curve o~(Gn,p) decreases 
and the difference between two consecutive 1-stability break points increases. This means 
that the error of the estimate ~(G,,,p) decreases with n. More generally, we can say that 
the larger the number of edges in G.,p, the more accurate ~t(G.,p) is. This empirical con- 
sideration is confirmed in Johri and Matula (1982) from a probabilistic point of view. The 
density function of ot(G.,p) is shown to have a peaked behavior for large graphs. 
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Figure 8, Comparison of &(Gn,p) and ct(Gn,?) for p = 0.4 and p = 0.6. 



EMBEDDING A SEQUENTIAL PROCEDURE WITHIN AN EVOLUTIONARY ALGORITHM 125 

In Figure 9 we plot the estimate ;r and the mean chromatic number X(Gn,p) ob- 
tained by EPCOT for values n up to 80. The graphics we obtain provide evidence that the 
estimate ~(Gn,v) is not very good. For a small density p, given that a(Gn,p) often overesti- 
mates o~(Gn,p) for small values of n, we expected ~(G,,,p) to be significantly smaller than the 
mean chromatic number X(Gn,p). Surprisingly, an opposite behavior is observed: x(Gn,p) 
generally overestimates x(Gn,p), and the gap between x(G~,p) and ~(G,,,p) increases when 
p decreases. In fact, the approach that consists of repeatedly removing a maximum stable 
set in a graph for computing an estimate of the chromatic number is not very appropriate. 
The following explanation can be given. The process often ends up with the removal of 
a large number of stable sets of size 1 or 2. We observed that this number tends to increase 
when the density p decreases. However, optimal colorings are generally made up of balanced 
stable sets and thus they rarely contain stable sets of size 1 or 2 and of maximum size. 
This fact is predicted by Morgenstern (1990) when he shows that the most likely color 
class size distribution has a normal form. 
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Figure 9. Comparison of ~(Gn,p) and x(Gn,v) for p = 0.4 and p = 0.6. 
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6. Concluding Remarks 

Despite the impressive abilities of today's computers, many COPs still exist that require 
a heuristic search approach in the general case. In this article we show that an intelligent 
embedding of a sequential procedure within an evolutionary algorithm framework results 
in an efficient algorithm for solving problems related to graph coloring. The potential of 
the hybrid method we have developed is investigated on various classes of graphs by con- 
sidering two well-known combinatorial optimization problems--namely, the search for an 
optimal partial q-coloring and the search for the chromatic number. The results we have 
obtained are very satisfactory. Indeed, we managed to match most of the results obtained 
by a similar hybrid algorithm (Fleurent and Ferland, 1995) governed by a sophisticated 
adaptation of tabu search instead of a simple descent method. Our study shows that it is 
not essential to have recourse to a smart sequential method in a hybrid algorithm when 
the diversification scheme and the crossover operator are properly designed. 

Our experience with the two adaptations of EDM led us to the following general comments: 

* EDM is an easily implementable algorithm that can be modified, with little effort, to 
tackle a variety of assignment problems where there are competing objectives and multi- 
ple resources. 

�9 Due to its asynchronicity and intrinsic parallel nature, EDM is well suited for parallel 
computation. The use of a parallel MIMD machine would have reduced the execution 
time of the algorithm by a factor equal to the size of the population approximately. Inves- 
tigations to evaluate the speed-up of the algorithm have not been carried out in this study. 
Evolutionary algorithms form an emerging framework in computer programming that 
could challenge in the near future very sophisticated algorithms. The results we have 
obtained with EDM are encouraging for future research. 
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