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Abstract 

Genetic algorithms have attracted a good deal of interest in the heuristic search community. Yet there are several 
different types of genetic algorithms with varying performance and search characteristics. In this article we look 
at three genetic algorithms: an elitist simple genetic algorithm, the CHC algorithm and Genitor. One problem 
in comparing algorithms is that most test problems in the genetic algorithm literature can be solved using simple 
local search methods. In this article, the three algorithms are compared using new test problems that are not 
readily solved using simple local search methods. We then compare a local search method to genetic algorithms 
for geometric matching and examine a hybrid algorithm that combines local and genetic search. The geometric 
matching problem matches a model (e.g., a line drawing) to a subset of lines contained in a field of line fragments. 
Local search is currently the best known method for solving general geometric matching problems. 
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1. L'ltroduction 

The use of  genetic algorithms as optimization tools is now familiar to a broad range of  
research communities,  including Operations Research and Artificial Intelligence. These 
algorithms show great promise  on synthetic and abstracted problems and have been put 
to good practical use. However, they also come in a variety of  forms with a myriad of 
possible tunings. It is quite difficult to know in advance what type of genetic algorithm 
to consider for a new application and how to tune it. Moreover, too often results are presented 
showing that an algorithm solves a problem, but not whether the problem could be more 
effectively solved using simpler  heuristic search methods. 

One part icularly simple form of  heuristic search which predates genetic algorithms is 
local search (Kernighan and Lin, 1972; Papadimitriou and Steiglitz, 1982). Local search 
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is, arguably, simpler than genetic search, and therefore when the performance of local search 
is comparable it is the method of choice. Conversely, genetic algorithms exhibit properties 
that suggest their intrinisic superiority for some problems and it is important to identify 
which problems fall into this category. 

Because of the additional overhead of a population based search, genetic algorithms are 
most useful whem it can be shown that these algorithms have advantages over other, simpler 
heuristic methods. This also suggests that comparisons between different forms of genetic 
search should also include a baseline comparison between local and genetic search. More- 
over, if the results are to be of practical significance, then comarisons should be made 
on problems largely resistant to local search. 

One goal of this article is to provide a basis for better understanding the relative perfor- 
mance of different genetic algorithms and therefore offer guidance to individuals trying 
to select between different algorithms. A secondary goal is to better understand the types 
of problems for which genetic search is an appropriate choice of search methods. A new 
and better set of synthetic test functions has been developed embodying complex nonlinear 
dependencies similar to those observed in difficult practical problems (Mathias et al. 1994). 
While the test functions commonly used to evaluate genetic algorithms are more easily 
solved using local search rather than genetic search, the advantages of genetic search are 
evident on these more difficult problems. The algorithms compared in this article include 
a relatively vanilla simple genetic algorithm, a steady state genetic algorithm (Genitor) 
and the CHC algorithm. 

In addition to tests on the new test suite, genetic and local search are compared on a 
geometric matching problem. Geometric matching exemplifies a problem on which local 
search has already been shown to work relatively well. The task is to find the best example 
of a given line model in a set of line segments; for example, one might wish to automatically 
match the outline of a truck to a subset of line segments extracted from a photograph in 
which a truck appears. The field of line segments may also include clutter and the matched 
object may be fragmented or distorted. This is a difficult problem with important practical 
applications (Beveridge and Riceman, 1995; Beveridge, 1993; Collins and Beveridge, 1993; 
Fennema et al., 1990). It is therefore interesting to see whether genetic algorithms can 
improve performance beyond the baseline established using local search. 

Several important themes emerge from our studies. The first is the importance of distin- 
guishing problems with strong nonlinear dependencies between state variables from those 
lacking such dependencies. Most of the common test functions used in the past to evaluate 
genetic algorithms lack such dependencies. However, both the geometric matching problem 
presented here and the statics problem in geophysics (Mathias et al., 1994), for example, 
exhibit strong nonlinear dependencies. Thus, results on relatively simple test functions say 
little about how heuristic search algorithms will perform on more complex practical appli- 
cations. The size of application problems also are often much larger than the size of com- 
mon test problems; thus, scalability of search algorithms is also a critical concern. 

The second major theme of this article is the need to understand and take account of 
domain specific challenges and opportunities and how these interact with assumptions under- 
lying different heuristic algorithms. For example, the evaluation function for the geometric 
matching problem is defined such that bit string encodings of optimal and near optimal 
solutions tend to be sparse in terms of the number of 1 bits. Each of the genetic algorithms 
required some modification in order to accommodate this aspect of the problem. 
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One final and very important theme emerges from the comparison of genetic and local 
search on geometric matching: "Will your algorithm recognize when it can stop?" On the 
new synthetic test functions, the evaluation of the optimal solution is known in advance. 
This makes terminating upon finding the correct answer straightforward. However, for the 
geomtric matching problem as well as many other practical problems, the evaluation of 
the optimal solution is not known in advance. Thus both local search and genetic search 
face a problem: When do you terminate search? This problem surfaces in a variety of forms 
for a great many practical problems. For instance, for geometric matching using constraint 
satisfaction rather than optimization techniques, it has been shown that average case com- 
plexity is polynomial if a terminating condition is known; however, given that the terminating 
condition is generally unknown, average case complexity is exponential (Grimson, 1990). 

For local and genetic search, the problem manifests itself in deciding how many times 
to restart the search algorithm. For genetic search, it is also necessary to define a stopping 
criterion indicating the population has converged. This is an often neglected and quite im- 
portant issue. Given the default stopping criterion found in the genetic software package 
we used, a genetic algorithm hybridized with local search yields performance which is 
roughly comparable to a local search alone. However, the hybrid genetic algorithm typically 
"wastes" 50 % or more of its time driving the population to convergence after it has already 
found the best solution. Thus, given a more intelligent stopping criterion, the hybrid genetic 
algorithm has significant potential for improvement compared to local search. 

The comparisons run in this article on the new test functions show that CHC clearly 
outperforms the other genetic algorithms. On the geometric matching problem local search 
outperforms the various genetic algorithms--in part because local search can exploit a form 
of incremental approximate evaluation which cannot be directly exploited by the genetic 
algorithms. A hybrid algorithm integrates local search as an operator within the genetic 
algorithm, thus allowing a genetic algorithm to also exploit partial evaluation. Our results 
suggest that future refinements of the hybrid will produce an algorithm clearly superior 
to one reliant solely upon local search or genetic search alone. 

2. The Algorithm Descriptions 

The term genetic algorithm in a sense has come to have two meanings. First, it refers to 
the "genetic plan" first defined by Holland (1975), which DeJong (1975) called the "genetic 
algorithm" in this 1975 Ph.D. dissertation. There exist good descriptions of this algorithm 
(for example, Goldberg, 1989) as well as introductory papers on the genetic algorithm and 
analysis tools for modeling its behavior (for example, Whitley, 1994). Holland's genetic 
plan is a population based form of search that represents potential problem solutions as 
binary strings. In one generation a current population is transformed via selection and repro- 
duction to create a new population. During the selection phase, an "intermediate popula- 
tion" is created that is made up entirely of duplicates of the strings in the current population. 

The proportional representation of strings in the population increases or decreases based 
on fitness, This is accomplished by fitness proportionate reproduction. To determine the 
fitness factor used to increase or decrease the string's representation in the intermediate 
population a string's evaluation is divided by the average evaluation of the strings in the 
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current population. Strings which are better than average increase their representation in 
the population, while strings that are worse than average probabilistically decrease their 
representation in the population. After duplicating strings according to fitness, strings 
undergo "mating." Strings are recombined and mutated to generate new strings represent- 
hag new potential solutions to the search problem. The creation of the next population via 
seletion and mating is referred to as one generation. Recombination between two strings 
can then be applied as follows. 

1111 111111 1111111111 = 11110000001111111111 
\ /  \ /  

/ N  / \  
0000 000000 0000000000 = 00001111110000000000 

In this way two parents can generate two offspring by exchanging string fragments. Muta- 
tion typically involves changing each bit with a very small probability so that on average 
only a few bits are changed in a string during the mutation process. In Holland's genetic 
algorithm the resulting offspring replace the parents. The new population is reevaluated 
and the process of fitness proportionate reproduction followed by recombination and mutation 
is repeated. 

The second interpretation of "genetic algorithm" is any population-based form of search 
that uses some form of selection and recombination to generate a new population. The 
term evolutionary algorithm has also very recently come into use (Bh'ck and Schwefel 1993), 
but also includes evolutionalprogramming (Fogel, Owens, and Walsh, 1966; Fogel, 1994) 
and evolutionary strategies (B~/ck, Hoffmeister, and Schwefel, 1991). "Steady state" genetic 
algorithms differ from Holland's genetic plan in that only 1 offspring is generated at a 
time and the resulting offspring replaces the worst member of the population. Most algo- 
rithms also do not use strict fitness proportionate reproduction. Over time, the average 
evaluation of strings in the population becomes more uniform and there is less diversity 
in the population. Consequently, fitness proportionate reproduction results in less and less 
selective pressure toward the best strings in the population because the fitness of these strings 
(as normalized by the population average) becomes increasing closer to 1. Rescaling the 
fitness factor is one solution to this problem (Goldberg, 1989), but several researchers have 
proposed the use of rank-based selection schemes instead so that selection remains uniform 
over time (Goldberg, 1990; Whitley, 1989). 

We next describe the various algorithms used in the current study in more detail. 

2.1. ESGAT 

Goldberg's simple genetic algorithm (SGA) (Goldberg, 1989) is close to the original genetic 
plan described by Holland. There are only two differences between our SGA implementa- 
tion and Holland's original algorithm. First, the algorithm as implemented here is elitist: the 
best individual automatically survives from one generation to the next. This variation was 
tested in DeJong's 1975 Ph.D. dissertation (DeJong, 1975) and is a fairly standard feature 
of many implementations. Second, instead of using fitness proportionate reproduction we 
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use tournament selection. We refer to our modified SGA as ESGAT: Elitist SGA with Tour- 
nament selection. 

Tournament selection (Goldberg, 1990) produces a probabilistic form of rank based selec- 
tion. Explicit ranking schemes have the added overhead of maintaining a sorted population 
in order to rank the strings in the population. Tournament selection has the advantage that 
is does not require the population to be sorted. Tournament selection also allows for con- 
venient parallel execution during the construction of the intermediate population. A basic 
form of tournament selection works as follows. Two strings are randomly selected from 
the current population and their fitness values are compared. The str:mg with the best fitness 
is place~fi iz the intermediate population. This process is then repeated ~ times, where 
9Z is the population size. To see that this produces a linear ranking with a bias of 2.0, 
consider the following. In expectation, every string in the population is sampled twice. 
The best string will win both tournaments and have a representation of 2 in the intermediate 
population. The median string will win 1 tournament and lose 1, and thus have an expected 
representation of 1. The worst string in the population will lose both tournaments. Thus, 
in expectation, a rank-based selection scheme with a linear bias of 2.0 is induced over 
the entire population. A lower selection bias can be achieved by probability selecting the 
best of the two strings in the tournament for insertion into the intermediate population. 

2.2. CHC 

The CHC adaptive search algorithm (Eshelman, 1991) is a monotonic, generational genetic 
search algorithm. However, this algorithm differs from the simple genetic algorithm in 
several ways. The CHC algorithm does not bias the selection of strings for reproduction 
in favor of those strings with a higher fitness. Instead the algorithm employs a cross- 
generational selection mechanism. Strings are paired for recombination from the parent 
population randomly and uniformly. Offspring are held in a temporary population. Then 
a survival competition is held where the best ~ strings (where 9Z is the population size) 
from the parent and offspring populations are selected to form the next generation. Thus, 
the population is guaranteed to monotonically improve over time. This "selection" scheme 
differs from that used in the simple genetic algorithm where selection is applied to the 
parent population before the reproduction phase of the search. Also, no mutation is applied 
during the recombination phase of the CHC algorithm. 

The CHC algorithm does not just randomly pair parents; it also employs heterogeneous 
recombination as a method of "incest prevention" (Eshelman, 1991). This is accomplished 
by only mating those string pairs which differ from each other by some number of bits 
(i.e., a mating threshold). The initial threshold is set at L/4, where L is the length of the 
string. When no offspring are inserted into the new population the threshold is reduced 
by 1. The crossover operator used in CHC, called HUX, is very disruptive and is designed 
to scatter the sampling of new points in the search space. HUX (Half, Uniform X-over) 
performs uniform crossover over half of the bits that differ between the two parent strings, 
where the positions are chosen randomly (Eshelman, 1991). 

When no offspring can be inserted into the population of a succeeding generation and the 
mating threshold has reached a value of 0, CHC infuses new diversity into the population 
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so that genetic search may be continued. This is done through a form of restart known 
as cataclysmic mutation (Eshelman, 1991). Cataclysmic mutation uses the best individual 
in the population as a template to re-initialize the population. The new population includes 
one copy of the template string. The remainder of the strings in the new population are 
formed by repeatedly mutating some percentage of bits (typically 35%) in the template 
string and copying the result into the new population. This creates a population that pre- 
serves the progress made so far and is biased toward a good solution but with new diversity 
to continue the search. 

2.3. Genitor 

Genitor (Whitley and Kayth, 1988) is what Syswerda (1989) and Davis (1991b) describe 
as a "steady state" genetic algorithm: only 1 offspring is generated at a time and the result- 
ing offspring replaces the worst member of the population. Genltor is therefore similar 
to CHC in that the best strings that have been found so far are maintained in the popula- 
tion; thus the population is monotonically improving. 1 The other distinguishing feature of 
Genitor is rank-based selection. The population is maintained in sorted order. The median 
individual is selected for recombination with a probability of 1/gZ. Using a linear selective 
bias, B, between 1 and 2, the top ranked individual has a probability B(1/9~) of being selected 
for reproduction, while the worst individual in the population is selected with probability 
(2 - B)(1/9~). The selective pressure for other strings is interpolated linearly according 
to rank. (Genitor has been implemented using Tournament Selection, but explicit ranking 
was used in the experiments reported here.) In all of the experiments on test functions, 
a population of 1000 strings with a selection bias of 1.25 was used for Genitor. The muta- 
tion rate was l/L, where L is the length of the string. 

2.4. Local Search: Steepest Ascent, RBC, and RMHC 

For the set of synthetic test problems, we include local search to show that exiting problems 
are solved by simple methods--thus making genetic algorithms an inappropriate search 
method for this class of problems. Such basic search methods fail to solve the new test 
problems that are used for comparison in this article. For general problems of geometric 
matching, local search methods currently provide the best method for generating matches. 

All of the test problems examined in this article are parameter optimization problems 
represented by a binary problem encoding. The geometric matching problem is a combina- 
torial problem that has a natural binary representation. Using a bit representation, a local 
neighborhood with respect to any string is defined to be the set of strings that are Hamming 
distance 1 away. Each of the L neighbors can be reached by changing any of the L bits 
that make up the string representing the current state. Steepest ascent for this representa- 
tion involves checking each of the L neighbors and then picking the best of the L neighbors 
as the next state. The process is then repeated until a local optimum is reached (i.e., all 
neighbors are no better than the current state.) 
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Random Bit Climbing is a form of next ascent defined by Dave Davis (1991a). Next 
ascent is like steepest ascent, except instead of checking all L neighbors for the best im- 
proving move, the first improving move which is found is accepted. Every time a new neigh- 
borhood is searched for an improving move, Random Bit Climbing randomly orders the 
sequence in which neighbors are tested. 

We also tested a local search method that changes multiple bits. Random Mutation Hill 
Climbing (RMHC) is a form of stochastic hill climber. In our implementation, each bit 
is flipped with probability 2/L, so that in expectation 2 bits are flipped at each step--but 
larger moves in the search space can occur with lower probability. Only improving moves 
are accepted. RMHC was tested on all of the synthetic test problems, but yielded poorer 
results than using multiple starts of Random Bit Climbing (RBC). Thus, only results for 
RBC are reported. There are, of course, more complex forms of local search. Scatter search, 
as defined by Glover (1994) applies local search to combinations of multiple solutions--thus 
giving it the ability to vary multiple parameters at a time. Like genetic algorithms, it is also 
capable of making much larger jumps in the search space than simple neighborhood searches 
in Hamming space. Our goal in the article, however, is to not to thoroughly compare local 
search to genetic search, but rather to compare the three forms of genetic algorithm on a 
set of problems that are known to be resistant to simple hill climbing in Hamming space. 

For the geometric matching problem local search methods that change multiple bits were 
also tested in previous work (Beveridge, Weiss, and Riseman, 1989). However, as with 
RBC on the new synthetic test functions, the results were poorer than could be obtained 
with single bit changes and multiple restarts. 

3. Some Test Suite Problems 

Many of the functions that have been used to test genetic algorithms are small (less than 
50 bits) or the test functions can be decomposed such that the individual pieces that make 
up the test function can be solved independently. For example, the DeJong test functions 
(labeled F1 through F5) are common test functions, as are the Rastrigin (F6), Schwefel 
(F7) and Griewangk (F8) functions (see Table 1) (M/ihlenbein and Schlierkamp-Voosen, 
1993). In addition, the functions labeled F9 and F10 are known as the sine envelope sine 
wave and the stretched V sine wave functions (Schaffer et al., 1989). 

There are serious concerns with many of the existing test functions; methods for con- 
structing new functions have recently been introduced (Whitley et al., 1995a, 1995b). Some 
of these new test problems are used for comparative purposes in the current study. All 
of the algorithms were allowed to run to 500,000 evaluations for comparison purposes. 
All test functions have a global solution with evaluation 0. 

3.1. Limitations of Existing Test Problems 

While all of the test problems in Table 1 are nonlinear, for most of these problems the 
interactions between variables are linear. Such problems are separable in the sense that the 
optimal value for each parameter can be determined independent of all the other variables. 
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Table 1. Common test functions. 

3 
FI: f ( x  ill=l,3) = : ~  x2 

i=1 

F2: f(xi]i=l,2) = 100(x 2 - X2) 2 q- (1 - Xl) 2 

5 
F3: f ( x  ili=1,5) = ~ ~_x~ 

i = l  

1 

I0 25 I - 1 
F5: f(xil i=l,2) = .002 + ~ . 1 

j=l J + E2=l(Xi -- alj )6 

N 
F7: f (x i l i=l ,N)  = ~ - x i s i n U  ]xil) 

i=l 

N 
F8: f(xili=l,N) = 1 + ~_.j x2 f i  (COS(Xi/~)) - 

i=l i=l 

F9: f(xi l i=l,2) = 0.5 + 
sin2N/x 2 + x 2 - 0.5 

[1.0 + 0.001(x 2 + x2)] 2 

FlO:f(xi!i=l,2) = (x 2 + x~)~ + x2) ~ + 1.0] 

x i E [-5.12, 5.11] 

x i ~ [--2.048, 2.047] 

x i E [-5.12, 5.11] 

x i E [-1.28, 1.27] 

x i ~ [-65.536, 65.535] 

x i E [-5.12, 5.11] 

x i E [-512, 511] 

x i E [-512, 511] 

x i ~ [-100, 100] 

x i E (-100, 100] 

Of  the DeJong functions, F1, F3 and F5 are separable functions that are always solved 
by decomposition. (F4 is also separable, although the addition of  noise might prevent an 
algorithm from locating an optimum.) F6 and F7 are also separable. Only F2, F8, F9 and 
F10 are nonseparable, nonlinear problems. Yet, F2, F9 and F10 are relatively small prob- 
lems that are not scalable. 

Davis (1991a) has shown that many of the DeJong functions are quickly solved by Ran- 
dom Bit Climbing. Additionally, M/ihlenbein and Schlierkamp-Voosen (1993) have used 
functions F6, F7 and F8 to argue that the "Breeder Genetic Algorithm" scales such that 
O ( n  In (n ) )  function evaluations are needed to locate the global optimum, where n is the 
number of parameters used by these functions. However, Whitley et al. (1995a) have shown 
that problems F6 and F7 can be exactly solved in O ( n )  time using simple hill climbing 
methods. 
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Only F8 (Griewangk's function) would appear to be scalable, nonlinear and nonseparable. 
However, the summation term of F8 induces a parabolic shape while the cosine function 
in the product term creates "waves" (which create local optima) over the parabolic surface. 
Thus, as the dimensionali ty of the search space of F8 is increased the contribution of the 
product term involving the cosine becomes smaller and the local optima become smaller. 
The function becomes simpler  and smoother in numeric space, and thus easier to solve, 
as the dimensionality of  the search space is increased (Whitley et al . ,  1995b). 

In Table 2 we represent results for 10, 20, 50 and 100 dimensional versions of Griewangk's 

function using a Gray coded version o f  the function. Nb Var is the number of  total variables, 
Mean Soln is the best solution found averaged over 30 runs and sigma is the standard devia- 
tion. Succ is the number  of times the global opt imum is found, and Mean Trials is the 
number of evaluations for those cases where the global opt imum is found. Restarts refers 
to the average number of  times local search is restarted. Clearly, as the dimensionality 
of  the function increases Random Bit Climbing requires fewer restarts to find an initial 
random starting point in the basin of attraction of  the global solution. The various genetic 
algorithms perform reasonably well on this problem, but are not competitive with RBC 
at higher dimensions. 

Table 2. Result for a Gray code version of simple F8. Nb Var is the number of variables, sigma is the standard 
deviation. Succ is the number of times the global optimum is found, and Mean Trials is the number of evaluations 
required to find the global optimum. Restarts refers to the average number of times local search is restarted. 
All results are based on 30 experiments, with 500,000 evaluations per experiment. 

Nb Var Mean Soln. o Succ Mean Trials Restarts 

ESGAT Pop 200 Pc 0.90: 
10 0.0515 0.0381 6 354422 
20 0.0622 0.0400 5 405068 
50 0.0990 0.0564 0 

100 0.262 0.0459 0 

CHC: 
10 0.00 30 51015 
20 0.00 30 50509 
50 0.00104 0.00569 29 182943 

100 0.0145 0.0231 20 242633 

Genitor: 
10 0.00596 0.0121 25 92239 
20 0.0240 0.0289 17 104975 
50 0.0170 0.0284 21 219919 

100 0.0195 0.0321 21 428321 

RBC: 
10 0.00212 0.00808 28 184105 313.3 
20 0.00 30 82215 56.9 
50 0.00 30 33789 7.4 
100 0.00 30 34119 3.0 
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4. Constructing New Test Problems 

One way to introduce nonlinear interactions and still retain scalability is to use a nonlinear 
function of two variables. F(x, y), as a starting primitive function. The function can then be 
scaled to three variables, for example, by constructing a new function E-F(x, y, z) where: 

E-F(x, y, z) = F(x, y) + F(y, z) + F(z, x). 

We will refer to E-F as an expanded function. The expanded function E-F is no longer 
"separable" and induces nonlinear interactions across multiple variables. Furthermore, this 
strategy can be extended to provide different degrees of nonlinearity. Consider the follow- 
ing matrix: 

q x y z 

q qx qy qz 
x xq xy xz 
y yq yz yz 
z zq zx xy 

where the variables q, x, y, z are labels along the left and top edges and appear as variable 
pairs in the matrix. The full matrix scaling strategy uses O(n 2) primitive subfunctions. The 
nonlinear interactions are such that every variable interacts with every other variable. Note 
that the cost of executing the evaluation funciton also scales; the cost cost of the full matrix 
evaluation grows as a function of O(n2). Functions built in this way are very similar to 
the evaluation function used in problems such as the "statics problem" in seismic data 
process, where the evaluation function is summed over correlations computed over pairs 
of seismic traces (Mathias, 1994). 

F10 provides a convenient example of a function that has nonlinear interactions between 
two variables. Each parameter ofF10 is encoded with 22 bits. In 2 dimensions, this func- 
tion has many local optima, yet overall the function is regularly structured--which should 
make the function well suited to search via genetic algorithms. 

After scaling up the expanded E-F10 function to 10, 20, and 50 variables we compared 
the performance of the three evolutionary algorithms using a Gray code representation 
(Whitley et al., 1995b; Mathias and Whitley, 1994). Results are shown in Table 3. The 
RBC results show that this problem is not readily solved by simple hill climbing, especially 
as the problem is scaled up. The evolutionary algorithms frequently locate the optimal solu- 
tion at 10 dimensions. At 50 dimensions, CHC scales up with reasonable effectiveness 
while bothe ESGAT and Genitor have problems. 

4.1. Composite Functions 

Many of the test functions in Table 1 have been introduced into the literature because of 
interesting properties, but they lack nonlinear interactions between variables. Simple function 
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Table 3. Results for a Gray coded E-F10. 

Nb Var Mean Soln. ~ Succ Mean Trials 

ESGAT Pop 200Pc~90: 
10 0.572 2.254 25 282299 
20 1.617 1.340 2 465875 
50 770.576 584.476 0 

CHC: 
10 0.00 30 51946 
20 0.00 30 139242 
50 7.463 8.351 3 488966 

Genitor: 
10 0.00 0.t20 30 136950 
20 3.349 3.276 4 339727 
50 294.519 151.039 0 

RBC: 
10 27.935 17.084 0 
20 363.111 148.950 0 
50 4158.513 836.189 0 

composition can be used to convert these functions into a nonlinear function of 2 variables. 
The inner primitive function of the composition takes in two variables and outputs a single 
value which falls into the domain of the outer primitive function. This technique, when 
combined with the matrix expansion methods discussed previously, provides a method for 
constructing complex nonlinear fitness landscapes. 

In the simplest case, a separable function such as Rastrigin (F6) might be expanded as 
follows. A separable function of the form 

F(Xl, x2, . .  Xn) --  S (x i )  
i=1 

becomes 

E-F(xt, x2, 
n-1 

" "  Xn) = S (T (xn '  Xl)) + Z  S ( T ( x i '  xi+l))  
i=1 

where S is the subfunction used in the original function and the transformation function 
Tmaps two variables onto the domain of S. Results for an expanded version of F6 denoted 
E-F6 (AVG) uses a simple average (i.e., T(x2r = (x + y)/2) for the transformation hmc- 
tion are given in Table 4 for 10, 20 and 50 dimensions. Here again, RBC fails to solve 
the function, while ESGA and Genitor are competitive with CHC at lower dimensions, 
but CHC produces solutions an order of magnitude better when the function is scaled to 
higher dimensions. 
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Table 4. Results for E-F6 (AVG) using a Gray coded representation. 

Nb Var Mean Soln. a Suet Mean Trials 

ESGAT Pop 200 Pc 0.9: 
10 14.392 21.448 20 90102 
20 160.515 145.433 12 306583 
50 2429.129 1229.784 0 

CHC: 
10 10.665 $7.988 11 33536 
20 11.998 45.660 28 118935 
50 144.502 361.058 18 398969 

Genitor: 
10 26.662 19.175 10 56483 
20 107.982 89.674 12 109041 
50 1148.460 399.944 0 

RBC: 
10 43.094 11.853 0 
20 367.405 62.480 0 
50 4279.672 318.973 0 

One can also construct composite primitive functions using the Griewangk function (F8); 
by using F8 as a one-dimensional primitive function the scaling problem associated with 
the cosine term is eliminated. E-F8 (AVG) again uses simple averaging at the transforma- 
tion function. This has the effect of making the problem harder at higher dimensions and 
also makes the function more resistant to hill-climbing by RBC. We also constructed a 
composite function E-F8 (F2) where DeJong's F2 was used as the inner primitive transfor- 
mation function. Even CHC now has a more difficult time finding good solutions for E-F8 
(AVG) and E-F8 (F2) at higher dimensions. (See Tables 5 and 6). However, CHC still 
outperformed ESGAT and Genltor. 

4.2. Discussion 

The test functions used here provide a much better test of genetic search algorithms than 
the existing test suites. These functions include more complex nonlinear interactions than 
existing test problems and also allow the study of how performance is affected by scaling 
the dimension of the test suite. The results show CHC to be a very effective form of heuristic 
search compared both to the elitist Simple Genetic Algorithm using tournament selection 
and Genltor. All of the new test problems are resistant to simple hill climbing by next ascent 
in Hamming space. This stands in sharp contrast to the existing test suites, which we have 
found can be solved more quickly by simple local search methods than by genetic algo- 
rithms (Whitley et al., 1995a). 

The results suggest that CHC is generally more effective than Genltor and ESGAT. Aside 
from its performance, CHC also has the advantage that is required no parameter tuning. 
CHC uses a standard population size of 50. This is much smaller than the population size 
used by Genitor (1000 for all of these experiments) and by ESGAT (200). Increasing the 
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Table 5. Results for a E-F8 (AVG). 

Nb Var Mean Soln. a Succ Mean Trials 

ESGAT Pop 200 Pc 0.90: 
10 3.131 0.942 0 
20 8.880 4.296 0 
50 212.737 36.803 0 

CHC: 
10 1.283 I. 107 10 222939 
20 8.157 4.114 0 
50 83.737 10.922 0 

Genitor: 
10 1.292 0.936 5 151369 
20 12.161 2.232 0 
50 145.362 23.746 0 

RBC: 
10 4.738 0.9002 0 
20 42.779 8.443 0 
50 640.625 119.999 0 

Table 6. Results for E-F8 (F2). 

Nb Var Mean Soln. a Succ Mean Trials 

ESGAT Pop 200 Pc 0.90: 
10 4.077 2.742 0 
20 47.998 32.615 0 
50 527.100 176.988 0 

CHC: 
10 1.344 0.921 0 
20 5.630 2.862 0 
50 75.0995 49.644 0 

Genitor: 
10 4.365 2.741 0 
20 21.452 19.459 0 
50 398.120 220.284 0 

RBC: 
10 0.139 0.422 0 
20 7.243 11.289 0 
50 301.561 72.745 0 

population size for CHC (or changing CHC in any other way for that matter) results in 
poorer performance on all the test functions considered in this article. Only on one large 
seismic application with approximately 500 variables--the "statics problem'--have we found 
that CHC works better with a population size of 200 (Mathias et al., 1994). 

We should reemphasize that the current experiments were designed to compare the three 
genetic algorithms and that Random Bit Climbing was used to demonstrate that the problems 
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are resistant to simple hill-climbing. More complex forms of local search would no doubt 
perform better on these problems. It should also be pointed out that these test functions 
allow a form of fast incremental evaluation. Note that there are O(N 2) subfunctions in an 
expanded function, but that any one parameter appears in only O(N) of these function sub- 
functions. Thus, any form of local search that tests changes that affects only a single param- 
eter can use a fast form of incremental evaluation, and thus would have a significant advan- 
tage compared to genetic search. Incremental evaluation also plays a critical role in the 
Geometric Matching problem discussed in the next section. For geometric matching, we 
are able to utilize a form of steepest ascent that uses a rapid heuristic approximate evalua- 
tion method to filter neighbors from further consideration. This reduces the cost of evaluating 
all L neighbors during one step of steepest ascent. 

5. Near Optimal Geometric Matching 

5.1 Background 

For several years Beveridge (Beveridge, Weiss, and Riseman, 1991; Beveridge, 1993; 
Beveridge and Riseman, 1995) has studied the use of local search as a way of finding near 
optimal solutions to geometric matching problems. Here, geometric matching is the prob- 
lem of solving for the optimal correspondence mapping and geometric transformation which 
relate a model to a set of data. For example, the model may be a line drawing and the 
data might be line segments extracted from a photograph. Problems of this type arise in a 
number of areas and are specifically relevant to problems associated with computer vision. 
Variations of local search are currently being used to solve geometric matching problems 
in the context of semi-autonomous photo-interpretation (Collins and Beveridge, 1993) and 
robot navigation (Fennema et al., 1990). 

In this section, we compare local search techniques to CHC and Genltor and present 
initial results on a set of geometric matching problems. These matching test problems are 
useful because factors such as problem size, object model structure, data corruption and 
image clutter are all controlled. 

The matching problems are extremely challenging for heuristic combinatorial optimiza- 
tion algorithms. The evaluation function exhibits a global connectivity missing from the 
simple test functions typically used to evaluate general heuristic search algorithms. To be 
specific, with elements of the discrete search space encoded as bit strings, a change to 
any bit changes the relative worth of all other bits. The reason for this connectivity is that 
changing any bit changes the correspondence mapping between object model and data. 
This, in turn, almost certainly changes the global best-fit transformation aligning model 
and data. Finally, this change in alignment changes the relative value or quality of all other 
pairs of corresponding features. 

There are 32 distinct matching problems in the test data set. These problems involve 
relatively simple "stick figure" models. These geometric models are defined as sets of 
2D straight line segments. In matching, these models may be rotated and translated to lie 
anywhere in an image. In addition, the size of the models is allowed to vary. The four 
models are shown in Figure 1. 
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Rectangle Pole 

?" \  
Deer Tree 

Figure 1. Four stick figure models used in geometric matching tests. 

The Pole is an interesting test case because it is so simple: it is comprised of only three 
segments. Many heuristic matching techniques use distinctive local structures to direct search 
(Bolles and Cain, 1982; Lowe, 1985). The lack of such features in the Pole hinder these 
approaches. The Tree is interesting because it exhibits some partial symmetry: the model 
may shift up or down in the branch structure. Incorrect, yet relatively good evaluations 
can be produced in this way. Symmetries complicate matching for many well established 
techniques such as tree search (Grimson, 1990). 

Figure 2 shows a sampling of the 32 problems. Figure 2a shows a relatively simple prob- 
lem in which simulated image data has been generated by fragmenting and skewing 

\ / 
,, / I %  

(A) (B) (C) 

Figure 2. Sample of synthetic test data for matching: a) Rectangle model randomly placed, scaled and corrupted, 
b) Corrupted Deer model with random clutter, c) Multiple corrupted instances of the Tree model. 
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fragments of the original model line segments. This corruption has been carried out by 
a Monte Carlo simulator which steps through a multi-stage degradation process. The simu- 
lator also rotates, translates and scales the model so that the placement and size of the 
model is unknown to the matching algorithm. Figure 2b shows a problem in which ran- 
domly distributed clutter segments are added. Figure 2c shows an example in which multi- 
pie instances of the same model are present. While visual inspection would suggest that 
Figure 2b involving clutter represents a more difficult problem than Figure 2c, in reality, 
objects with multiple corrupted instances are often the most challenging for heuristic search 
methods. Problems are classified according to model type (Pole, Tree, Rectangle, Deer) 
as well as by string length and whether there are multiple objects (M) or clutter (C). 

An example of a best match is shown in Figure 3. This match is for the Tree model. 
The line segments making up the model are labeled with letters and are shown on the left. 
The data line segments include three instances of the Tree and are shown to the right. The 
model is overlaid on top of the data in the best match position. The correspondence matrix 
indicates which pairs of model and data segments are part of this best match. Each square 
in the table may be thought of as representing one bit in the bit string encoding of the 
match. The filled in squares correspond to ls in the bit string. 

The evaluation function used to rank alternative matches is complex. Briefly, the function 
is defined over a space of possible mappings from the model to image segments. Letting 

be the set of model segments, D the set of data segments, and S the cross product of 
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Figure 3. E x a m p l e  o f  a bes t  m a t c h  for one  o f  the  32 ma tch ing  p rob lems .  
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9E and D, the correspondence space C is the power set of S. This means the search space 
C consists of all possible combinations of pairings between model and data segments. 

The match error, En~t~h, is defined over the correspondence space. In many practical 
applications, prior knowledge can be used to limit the sets of pairings considered in the 
search space, but here the most general case with S = 9E • D and C = 2 s is considered. 
While the complete search space contains all 2 L possible combinations (where L is string 
length), through biasing the selection of matches from which search is initiated, attention 
is focused upon the regions of space containing sparse solutions. Search is typically initial- 
ized with start states where the number of bits turned on in the binary encodings is related 
to the number of model segments, 91Z. 

Intuitively, the match error measures two things: 1) the degree to which the modelfits 
the corresponding data segments and 2) the degree to which the portions of the model are 
omitted from the match. Details of how fitting is performed and omission measured can 
be found in an early paper on this work (Beveridge, Weiss, and Riseman, 1991) and a 
much more detailed account appears in Beveridge's (1993) dissertation. While this article 
will be limited to comparing search techniques on 2D problems of the type described above, 
the local search matching work has been extended to handle matching of 3D models to 
image data (Beveridge and Riseman, 1995). 

5.2. Empirical Resuhs Comparing Genetic and Local Search 

5.2.L Local Search. The binary encoding for matching assigns a unique bit to every pairing 
of model and image line segments in the set S = ~ x D. Therefore, if I SI = L, then 
the search space C maps to the space of all possible bit strings of length L. A 1 bit in the ith 
position of the string indicates the ith pair si E S is part of the match. The local search 
neighborhood consists of all strings within Hamming distance 1 of the current match. 

Local search is initiated from randomly and independently selected initial matches. How- 
ever, a bias is introduced which favors initial matches with approximately the same number 
of matching pairs as are expected in the optimal match. For example, if on average a model 
line matches 2 data lines in the best match, the goal is to generate initial starting matches 
with 2 data lines per model line. For each subsequence of the string associated with a dif- 
ferent model line m, if there are k data segments to which m might match, each pair in 
this sequence is assigned a I with independent probability q/k. The parameter q determines, 
on average, how many data segments are matched to a given model segment. In all experi- 
ments reported here q = 2. 

Using the bit string encoding, toggling every bit to generate the Hamming distance 1 
neighborhood adds or removes individual pairs of model-data segments. If a pair s is in 
the current match, then the result of removing s is tested. If a pair s is not in the current 
match, then the result of adding s is tested. Using this neighborhood, local search naturally 
tends to interleave the addition and removal of pairs until it converges upon a locally opti- 
mal match. This neighborhood definition does not permit one data segment to be swapped 
for another in a single move. 

Our problem presents an example of a case in which local search, because it is evaluating 
states which are minor perturbations of a current state, can take advantage of this knowledge 
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to speed testing. In principle, for every match tested, the model must be completely fit 
to the corresponding data and the associated omission over the entire model computed. 
However, the exact change in fit error can be computed incrementally relative to the current 
match. This allows for very efficient evaluation of the new fit error (Beveridge, 1993). 
In contrast, omission must be recomputed from scratch and in practice this requires an 
order of magnitude more computation than does computing the new fit error. 

Given the ability to incrementally compute the change in fit error, a useful heuristic is 
to first check the change in fit error, and then only compute the omission change if the 
change in fit suggests improvement is possible. The relative savings are illustrated in Table 8. 
Incremental evaluation can be used with the local search algorithm because local search 
only changes a single bit at a time. The recombination operator used by genetic algorithms 
produces much larger jumps in Hamming space, thus making it impossible to use the sim- 
ple incremental evaluation exploited by local search. Incremental evaluation also reduces 
the cost difference between steepest ascent and Random Bit Climbing. Preliminary experi- 
ments suggested that steepest ascent was more effective, and since there is little cost dif- 
ference between steepest ascent using incremental evaluation versus RBC, steepest ascent 
was used. 

5.2.2. Genetic Search. We applied both the Genitor algorithm and the CHC algorithm 
to the model matching problem. To perform these experiments, the Genitor Software Package 
(a version of which also includes CHC) has been merged with the local search geometric 
matching software. Thus, the functions and parameter settings used to evaluate members 
of the genetic algorithms population are exactly the same as those used to evaluate matches 
by the local search algorithm. 

The standard constant mutation rate was replaced by a mutation rate which varies as 
a function of the degree of convergence within the population. A previously defined adaptive 
mutation operator (Starkweather, Whitley, and Mathias, 1990) was tested but resulted in 
poor results: for this operator the probability of mutation, Pu is given by MaxRate/PerDiff, 
where MaxRate is the maximum mutation rate (set to 0.2) and PerDiffis the percentage 
of bits that are different between the two parents currently being recombined. The adaptive 
mutation algorithm created difficulties, especially for the larger matching problems. The 
source of the problem is that bit encodings of optimal solutions become increasingly sparse 
as problem size increases. To see why this is so, recall that string length L is the product 
of the number of line segments in the model m and the number of line segments in the 
image d. Typically, d _> m, and so L ___ m 2. Thus, while string length grows as a function 
of m 2, the number of bits expected to be 1 in most solution strings remains O(m). 

To give an example, for the matching problem involving the Tree model and 30 random 
clutter lines, m = 12, d = 43, and thus L = 516. Assuming the genetic algorithm is con- 
verging upon the proper match with 12 bits set to 1, a mutation rate of 1% will turn on 
an additional 5 bits. This is enough to prevent convergence. Once identified, this problem 
has a relatively simple fix, and that is to make the mutation rate vary in response to the 
expected degree to which the desired solutions have sparse encodings. A linearly changing 
rate is computed where the highest rate is determined by the number of model lines m, 
and the overall bit-string length n. The highest number of changes desired is set at 25 % 
of the number of model lines. The high end is then set so that on average, this maximum 
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number of bits are changed in the overall bit-string. The low rate is set such that on average, 
one mutation would take place in the entire bit-string. The mutation rate is varied linearly 
between these two extremes based on the Hamming distance between parents. The largest 
number of differences expected is set at four times the number of model lines. The smallest 
number of differences expected is of course one. If the variance between parents exceeds 
the expected max, the mutation rate is clamped at the low end. 2 

It is important that a good global sample of the space be represented in the population; 
at the same time, the desire to generate solutions in times that are competitive with local 
search also dictated the use of relatively small populations. The population size is set at 
one half of the bit-string length, with a minimum of 50, and a maximum of 300. 

The same algorithm used to pick initial matches for local search was used to seed the 
initial populations for both CHC and Genitor. Thus, these initial strings are relatively sparse 
in terms of 1 bits. Recall this strategy is used because most solutions lie near the origin 
of the hypereube corresponding to the the search space. Consequently, most strings in the 
population are relatively near each other in Hamming space. Even if two matches share 
no 1 bits in common, they still only differ by approximately 2 times the number of lines 
in the model. 

Several mechanisms used by CHC assume that the binary strings being recombined are 
initially drawn uniformly from the search space. The incest prevention mechanism of CHC 
requires that parents differ by some minimal Hamming distance. Strings in the initial seeded 
population often fail to satisfy this requirement; this failure becomes worse as CHC strug- 
gles to converge. HUX also uses Hamming distance to vary the number of bits swapped 
during uniform crossover. It starts at exactly half of the differing bits in the two parents~ 
but as the Hamming distance between parents decreases, the number of differing bits swapped 
during crossover is adaptively reduced. Since Hamming distance is low in the seeded popula- 
tion, HUX's adaptive mechanisms are prematurely triggered. This causes the search to 
stall, which in turn triggers the restart mechanism used by CHC. High mutation rates (e.g. 
35 %) are used as part of the Cataclysmic mutation restart. This caused the same problems 
that Genitor experienced with higher adaptive mutation rates: the resulting strings were 
not sufficiently sparse. We attempted to correct these problems in the CHC algorithm by 
resetting Hamming distance threshold mechanisms and mutation rates; instead of using 
the length of the string to determine relative Hamming distance, we instead used m, the 
nur~aber of model lines. This improved the performance of CHC, but Genitor still out- 
performed CHC. CHC has many interrelated mechanisms that help it to more fully explore 
the entire search space. The fact that the geometric matching problem has solutions that 
are largely restricted to strings near the origin of the hypercube appears to conflict with 
the fundamental design of the CHC algorithm. Genltor is less specialized, and less sensi- 
tive to the sparseness of 1 bits in most strings which are generated during search. Thus, 
while CHC dominated the other algorithms on our test suite, it failed to generate competi- 
tive solutions on the geometric matching problems. 

Table 7 illustrates the relative performance of the enhanced CHC+ algorithm, Genitor 
and Genitor+ using the new adaptive mutation operator. The results illustrate the relatively 
poor performance of CHC+ compared to Genitor. One key measure of performance is 
the probability of converging upon the correct solution? The maximum likelihood estimate 
of this probability, P~, is simply the percent of correct solutions found when running the 
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Table 7. Comparison of CHC+, Genitor, and Genitor+ on 32 test problems. CHC+ is the CHC algorithm with 
thresholds reset with respect to number of model lines. Genitor uses a constant mutation rate, while Genitor+ 
uses the new adaptive mutation operator that is "also sensitive to number of model lines. Params describes problem 
parameters: the number indicates the length of the string encoding, while M indicates multiple objects and C indi- 
cates clutter. Ps denotes percent of time that a globally optimal solution is found. Evals refers to the number 
of evaluations. 

CHC + Genitor Geultor+ 

Model Params Ps Evals Ps Evals Ps Evals 

Pole 12c 100 879.9 88 1051.0 98 88.5 
Pole 24M 88 1528.7 72 1521.0 86 1411.6 
Rectangle 28C 69 2024.6 44 1461.0 72 2282.5 
Pole 42C 54 2162.3 42 3201.0 48 1302.0 
Pole 42M 44 2120,9 26 1871.0 38 1973.3 
Rectangle 52M 41 3099.5 48 2211.0 54 2175.1 
Rectangle 68C 52 2902,2 56 2161.0 54 2263.9 
Pole 72C 42 2447,5 32 1411.0 14 1069,4 
Deer 81C 68 4065.7 50 2831.0 80 5418,2 
Pole 81M 16 3656.7 24 2471.0 24 1829.0 
Pole 96M 11 3579.2 30 2151.0 10 1521.6 
Deer 99M 49 4849.7 62 2901.0 68 6858.8 
Pole 102C 20 2774.5 26 1511.0 22 1256.6 
Rectangle 108C 15 3341.9 48 2781.0 34 4349.0 
Rectangle 108M 1 4665.7 16 3631.0 16 6231.1 
Rectangle 124M 5 4140.0 14 3701.0 6 3512.7 
Rectangle 148C 16 3970.3 28 7481.0 34 5459.8 
Tree 156C 28 7387.7 28 6171.0 30 21998.1 
Rectangle 168M 3 4807.7 16 5221.0 12 4814.4 
Deer 171C 32 6143.1 24 5541.0 54 19596.0 
Deer 180M 21 6269.2 38 6241.0 44 13659.9 
Tree 216M 12 9321.8 50 9791.0 32 41698.0 
Deer 261C 7 7517.4 35 12911.0 40 30488.6 
Deer 261M 8 7706.3 26 14891.0 40 27215.9 
Tree 276C 14 9848.8 32 19471.0 46 47862.2 
Deer 342M 2 8802.8 12 38341.0 28 34512.4 
Deer 351C 4 7638.3 42 39791.0 40 27949.6 
Tree 396C 9 11501.4 40 62690.9 68 77713.3 
Tree 432M 3 13442.1 18 96520.3 28 90889.3 
Tree 516C 3 12215.8 8 100000.0 44 96694.7 
Tree 552M 1 14136.0 0 100000.0 4 99683.2 
Tree 780M 0 13253.4 0 10000.0 0 100000.0 

genet ic  a l g o r i t h m  mul t ip le  t imes.  T h e s e  p robab i l i t i e s  are s h o w n  in Table 7 for  each  of  the  

th ree  a lgor i thms .  Table 7 a lso shows the  the  n u m b e r  of  evalua t ions  r equ i r ed  to r each  the  

s topping c r i t e r ion  w h i c h  t e rmina tes  the  genet ic  sea rch  in  t he  c o l u m n  l abe led  Evals. 

5.2.3. Comparing Relative Performance. Nei the r  the  local  search  a lgor i thms nor  the  genet ic  

a lgor i thms  converge  u p o n  the  g loba l ly  op t ima l  m a t c h  in all  cases.  Therefore ,  in  c o m p a r i n g  

a lgor i thms  for  mode l  ma tch ing ,  two th ings  m u s t  b e  t aken  in to  cons idera t ion .  F i r s t  is  the  

l ike l ihood  t ha t  the  a lgo r i t hm once  in i t ia ted  wil l  converge  o n  the  op t ima l  solut ion.  The  sec- 

ond  is how m u c h  work  m u s t  be  p e r f o r m e d  in o rde r  to r each  convergence .  T h e  first  is easi ly 
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measured for sample problems as illustrated above in Table 7. The second is more problem- 
atic. Typically, when evaluating different local search algorithms, the measured CPU time 
on a given system using a given implementation has been used as the measure of work. 

Given an estimate of the average run-time required per trial of local search r, and the 
probability Ps that local search converges upon the optimal match, the run-time to find 
the correct solution with probability Qs can be estimated as follows. Assuming search is 
initiated from randomly and independently chosen start states, then in running t trials, the 
probability Q/of  failing to fmd the optimal match in one or more trial drops exponentially 
as a function of t. 

Qf = (py)t, where P / =  1 - Ps. (1) 

Given this relationship, it is possible to compute the number of trials t s required to fred 
the optimal match with probability Qs = 1 - Qy : 

t, = rloge: Qf~.  (2) 

The expected time rs required to solve a problem with confidence Qs is the product of 
r a n d  is. 

Despite its apparent objectivity, there are a number of problems with using execution 
time to compare the efficiency of local search and genetic search on the geometric matching 
problem. One important factor is that the local search is relatively simple and approximately 
4 years have been spent developing the local search code so that it executes quickly. The 
Genitor software, on the other hand, has been built as a development environment; it was 
build to be easy to understand and flexible to use and not necessarily for extremely efficient 
execution. The geometric matching work using Genitor software has been done in approx- 
imately 4 months and there has been no attempt to change the software to alter its execu- 
tion time. 

One attractive alternative to total run-time is to compare number of evaluations. However, 
this too is unsatisfactory because different evaluations require a different amounts of time-- 
even under the full evaluation function. The partial evaluation used by local search compli- 
cates matters further. Therefore, in this section we treat the execution time required by 
local search as a baseline for comparison. If a genetic algorithm can produce comparable 
results or improve on local search, then this approach warrants further attention as a means 
of solving geometric matching problems. 

In the comparisons which follow, the values of Ps and r are estimated based upon many 
runs of each algorithm on individual test problems. Local search was run 1000 times, 
Genitor+, which has a higher execution cost, was run 50 times. Based upon these estimates, 
the expected run-time rs for each problem is reported and compared for different algo- 
rithms. The confidence threshold, Q~, will be set to 0.95 in this study. 

5. 3. Local Search and Genitor 

In order to better understand the impact of incremental evaluation, Table 8 presents results for 
local search using the Full evaluation function (LS Full), local search using the approximate 
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Table 8, Comparison of steepest ascent local search using partial incremental evaluation (LS-Inc), steepest ascent 
local search using full evaluation (LS-Fttll), and Genitor+ algorithm on 32 test problems. 

Model 

Trials Required: t95 Estimated Run Time 

Params LS Inc. LS Full Genitor+ LS Inc. LS FUll Genitor+ 

Pole 12C 6 5 1 0.3 * 0.2 * 0.3 
Pole 24M 8 7 2 0.8 o 0.7 * 1.4 
Rectangle 28C 6 6 3 0.6 * 0.6 * 3.6 
Pole 42C 26 20 5 2.6 o 2.0 * 4.0 
Pole 42M 12 10 7 1.2 o 1.0 * 9.1 
Rectangle 52M 5 5 4 1.0 * 1.5 o 7.2 
Rectangle 68C 11 9 4 1.1 * 2.7 o 8.4 
Pole 72C 35 39 20 3.5 * 7.8 o 20.0 
Deer 81C 13 11 2 3.9 * 8.8 o 12.2 
Pole 81M 37 29 11 3.7 * 8.7 o 20.9 
Pole 96M 45 24 29 9.0 * 9.6 o 52.2 
Deer 99M 19 15 3 7.6 * 18.0 o 25.5 
Pole 102C 96 72 13 9.6 * 21.6 20.8 o 
Rectangle 108C 47 17 8 9.4 * 10.2 o 41.6 
Rectangle 108M 12 13 18 3.6 * 10.4 o 138.6 
Rectangle 124M 14 15 49 5.6 * 13.5 o 240.1 
Rectangle 148C 42 26 8 12.6 * 23.4 o 67.2 
Tree 156C 42 32 9 33.6 * 118.4 o 361.5 
Rectangle 168M 20 24 24 10.0 * 72.0 o 206.4 
Deer 171C 29 34 4 17.4 * 85.0 o 137.6 
Deer 180M 31 33 6 21.7 * 99.0 o 152.4 
Tree 216M 51 52 8 66.3 * 291.2 o 331.5 
Deer 261C 43 67 6 43.0 * 341.7 o 414.0 
Deer 261M 59 46 6 59.0 * 239.2 o 372.0 
Tree 276C 51 52 5 76.5 * 473.2 o 617.5 
Deer 342M 106 67 7 159.0 * 576.2 o 984.9 
Deer 351C 64 66 6 96.0 * 607.2 517.2 o 
Tree 396C 52 70 3 114.4 * 1,113.0 829.2 o 
Tree 432M 135 99 7 310.5 * 1,871.1 o 2,405.2 
Tree 516C 99 96 5 297.0 * 2,438.4 2,156.5 o 
Tree 552M 149 106 75 461.9 * 3,307.2 o 35,317.5 
Tree 780M 299 175 --  1,554.8 * 10,202.5 o 

incremental  evaluation (LS Inc) and Gen i t o r+  using the full evaluation function.  The results 

indicate  that  a single " t r i a l "  of  genet ic  search us ing G e n i t o r +  a lmost  always has a m u c h  

h igher  probabi l i ty  of  locat ing a g lobal  op t imum than local search.  O f  course ,  the cost  per  

trial for genet ic  search ( i .e . ,  running G e n i t o r +  unti l  the s topping cr i te r ion  is met)  is very 

costly compared  to local search. The Estimated Run Time associated with a 95 % probabili ty 

of  f inding the  global  o p t i m u m  shows that  G e n i t o r +  is general ly  poore r  than  local search  

using the full  evaluation funct ion,  bu t  its p e r f o r m a n c e  is some t imes  compet i t ive  on some  

of  the larger problems.  (For the two largest  p rob lems ,  it is not  c lear  that  a sample  o f  50 

runs is sufficient to adequately est imate the probabil i ty of  convergence for Gen i to r+ . )  How- 

ever, this table also makes  it c lear  that  incrementa l  evaluation gives local  search a large 

advantage w h e n  c o m p a r e d  using Es t imated  Run Time, In Table 8 a * appears  next  to the 
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lowest run-time t s and a o by the next best for each problem. For all but 3 of the smaller 
problems, local search using incremental evaluation is best, and the difference is dramatic 
for larger problems. 

5.4. Hybrid Genetic and Local Search 

One way in which the genetic algorithm can also exploit fast incremental evaluation is to 
include local search as an operator to improve the strings in the population. Such algorithms 
are often called "Hybrid Genetic Algorithms" (Davis, 1991b). 

The genetic algorithm provides a population of strings for local search to act on, and 
local search in turn inserts a much better string into the population. Again, the best solu- 
tion found is returned when the population has converged to within a user-specified tolerance. 
The parameters used for Genitor+ are unchanged. 4 

Another question which has received attention in the last few years in the genetic algo- 
rithm community is the rate with which local search is to be done. Some hybrid algorithins 
(M/ihlenbein, 1991) apply local search to every string. More recently, some researchers 
have argued that local search should only be applied to a small percentage of the population 
in order to best exploit local search. We tried both strategies. In one approach local search 
is applied to every string generated during mating. The alternative approach is to use local 
search sparingly. To limit the use of local search, Genitor+ was allowed to produce 9Z/10 
new offspring (gZ = population size) using oniy recombination and mutation. At this point 
local search is applied by using the linear selection bias to select strings for local search. 
The number of strings selected for improvement via local search is equal to 1% of the 
population size; a minimum of 1 string was always processed. The cycle is then repeated, 
running Genitor+ without local search until 9Z/10 new offspring are generated; then local 
search is again applied to 1% of the population. 

This limited use of local search was far more effective than applying local search to every 
string. When local search was applied to every string, the population very quickly lost 
diversity and the best and worst strings in the population quickly became similar, thus render- 
ing the genetic operators ineffective and triggering the automatic stopping criterion. 

The comparison in Table 9 suggests there is little difference between the hybrid genetic 
algorithm compared to local search using incremental evaluation. Aside from concerns 
about the execution speed of the implementations of the different algorithms, there is another 
factor which very much influences the results shown in Table 9: What criterion should 
be used to terminate genetic search when evaluation of the global optimum is unknown? 
This issue typically does not arise for artificially constructed test functions and this issue 
has not received a great deal of attention in the genetic algorithm literature. 

5.4.L Stopping Criterion. Considerable computation is expended by the genetic algorithm 
between the time when it first finds the best solution upon which it is going to converge, 
and when the automatic stopping criterion is satisfied. Given the type of comparison used 
in Table 9, the choice of stopping criterion is critical; yet we used the default stopping 
criterion which had been implemented in the Genitor Software Package. The criterion was 
designed more to determine when to give up on search rather than to terminate search 
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Table 9. Comparison of steepest ascent local search using partial evaluation (LS Inc) and the Hybrid genetic 
algorithm. % Diff refers to the amount of time required by the Hybrid to find a solution with 95% reliability 
compared to local search. 

Success Prob.: Ps Trials: t95 Estimated Run Time 

Model Params LS Inc. Hybrid LS Inc. Hybrid LS Inc. Hybrid % Diff. 

Pole 12C 0.42 0.94 6 2 0.2 0.2 83 % 
Pole 24M 0.32 0.98 8 1 0.8 0.3 38% 
Rectangle 28C 0.44 1.00 6 1 0.6 0.5 83 % 
Pole 42C 0.11 0.52 26 5 2.6 2.0 77 % 
Pole 42M 0.23 0.80 12 2 1.2 1.2 100% 
Rectangle 52M 0.47 0.98 5 1 1.0 1.4 140% 
Rectangle 68C 0.24 1.00 11 1 1.1 1.1 100 % 
Pole 72C 0.08 0.42 35 6 3.5 4.8 137% 
Deer 81C 0.21 0.66 13 3 3.9 7.2 185% 
Pole 81M 0.08 0.62 37 4 3.7 6.4 173% 
Pole 96M 0.07 0.40 45 6 9.0 9.6 107% 
Deer 99M 0.15 0.84 19 2 7.6 6.0 79 % 
Pole 102C 0.03 0.40 96 6 9.6 8.4 88% 
Rectangle 108C 0.06 0.64 47 3 9.4 6.0 64% 
Rectangle 108M 0.23 0.94 12 2 3.6 8.0 222% 
Rectangle 124M 0.19 0.92 14 2 5.6 7.6 136% 
Rectangle 148C 0.07 0.60 42 4 12.6 14.0 111% 
Tree 156C 0.07 0.58 42 4 33.6 36.8 110% 
Rectangle 168M 0.14 0.76 20 3 10.0 ~18.3 183% 
Deer 171C 0.10 0.60 29 4 17.4 29.2 168% 
Deer 180M 0.10 0.90 31 2 21.7 16.8 77% 
Tree 216M 0.06 0.70 51 3 66.3 47.7 72% 
Deer 261C 0.07 0.52 43 5 43.0 80.5 187% 
Deer 261M 0.05 0.82 59 2 59.0 35.4 60% 
Tree 276C 0.06 0.64 51 3 76.5 78.3 102% 
Deer 342M 0.03 0.64 106 3 159.0 105.6 66% 
Deer 351C 0.05 0.54 64 4 96.0 145.2 151% 
Tree 396C 0.06 0.80 52 2 114.4 125.2 109% 
Tree 432M 0.02 0.64 135 3 310.5 235.5 76% 
Tree 516C 0.03 0.74 99 3 297.0 390.6 132% 
Tree 552M 0.02 0.74 149 3 461.9 482.4 104% 
Tree 780M 0.01 0.46 299 5 1,554.8 1,735.0 112% 

as quickly and as eff iciently as possible.  W h e n  the  di f ference in fitness be tween  the best  

and worst  strings drops below 3 / 5 0 ,  then the best  e r ro r  thus far is recorded.  I f  after 9~ 

addit ional  i terations no bet ter  solution is found then the a lgor i thm terminates.  

For  the steepest  ascent  a lgor i thm,  each  " t r i a l "  terminates  w h e n  a local  op t imum is 

reached;  there is no unnecessary  thrashing of  the a lgor i thm after the local ly  opt imal  solu- 

t ion is found. With  the genet ic  a lgori thms a " t r i a l "  terminates only  after some  stopping 

cr i ter ion is reached.  Our  cr i ter ion compares  the best  and worst  solutions in the popula-  

tions; when  their  evaluations b e c o m e  similar, search is terminated.  

The  not ion  that the hybr id  genetic a lgor i thm requires  s o m e  form of  heuris t ic  stopping 

criterion while  the steepest ascent algorithm does not  is somewhat misleading. While  steepest 
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ascent automatically terminates when a local optimum is reached, it must be run many 
times in order to have any reasonable chance of finding the global solution. What then is the 
stopping criterion for deciding when enough trials of steepest ascent have been run? Here 
we defined that criterion in a post-hoc and problem specific fashion using equation 2. Given 
unseen problems, both algorithms face a similar problem. If user intervention is utilized to 
determine if a solution is adequate, then the hybrid genetic algorithm is a better solution, 
since it finds the correct solution with a much higher probability on each run, while the 
steepest ascent algorithm relies on running many trials in order to find a correct solution. 

One question we wished to explore in more detail was whether this criterion for the genetic 
algorithm was overly conservative: How many evaluations were required for the Hybrid 
algorithms to find a solution (when the solution was found) compared to the total number 
of evaluations executed before satisfying the stopping criterion? The data presented in Table 
10 indicates that the Hybrid Genetic algorithm is finding the solution to the problems long 
before the stopping criterion is satisfied. The data in Table 10 is broken down into the 
number of evaluations used by the local search algorithm (which can exploit incremental 
evaluation) as well as the full-evaluation calls used by the genetic algorithm after mating. 
In every single instance in each individual category, the number of evaluations required 
to fred the best solution is less than half the number of evaluations required to satisfy the 
stopping criterion. In some cases the number of evaluations involved differ by an order 
of magnitude. 

Cutting the number of evaluations in half would be easy if the stopping criteria were 
selected in a post hoc fashion. More conservatively, if we assume a generally effective 
stopping criterion is selected that reduces the number of evaluations by even as little as 
20%, then the hybrid genetic algorithm represents a solution to the geometric matching 
problem that improves on the local search algorithm using incremental evaluation. This 
ignores additional time savings which could be obtained by receding the Genitor software 
to maximize execution speed for this application instead of flexibility. 

6. Conclusion 

This article has compared three genetic algorithms on a set of test problems demonstrated 
to be resistant to simple hill climbing. Two of these algorithms are also applied to the geo- 
metric matching application. The performance of the different genetic algorithm is varied, 
with CHC performing particularly well on the set of test problems. These test problems 
were especially formulated to exhibit complex nonlinear interactions between variables. 
These interactions reflect properties of important applications such as the geometric match- 
ing and seismic data interpretation. Unlike the simpler and more common test functions, 
they demonstrate the advantages of genetic search relative to simpler local search techniques. 

On the geometric matchine problems, solutions are generally found near the origin of 
the hypercube corresponding to the search space. This bias appears to cause problems for 
some of the genetic algorithms, especially CHC. In addition, the geometric matching prob- 
lem allowed for a form of fast incremental evaluation which could be exploited by local 
search, but which could not be directly exploited by genetic algorithms. A hybrid genetic 
algorithm that includes local search, however, is able to exploit incremental evaluation and 
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Table 10. Comparison of number of evaluations required to find solutions in contrast to time required to reach 
the stopping criterion. This is further broken down into the incremental evaluations (Inc-Evals) used by the local 
search component of the Hybrid algorithm and full evaluations (Fuil-Evals) of strings generated by recombination 
and mutation. 

Best Match Found Convergence 

Model Params Ps Inc-Evals Full-Evals Inc-Evals FuU-Evals Secs 

Pole 12C 94 161.4 22.1 727.6 129.2 0.2 
Pole 24M 96 452.0 16.3 2540.8 138.0 0.5 
Rectangle 28C 100 438.8 12.2 3693.9 164.7 0.7 
Pole 42C 54 1311.2 47.6 3264.2 141.8 0.0 
Pole 42M 90 1284.0 30.2 4748.0 148.8 0.9 
Rectangle 52M 100 1462.4 13.1 11597.6 178.9 1.9 
Rectangle 68C 100 1920.9 22.1 10663.4 184.7 1.8 
Pole 72C 42 2324.5 49.8 5949.4 150.8 1.2 
Deer 81C 84 6175.3 40.6 23095.7 252.9 3.6 
Pole 81M 72 4288.2 45.8 12057.3 162,4 2.4 
Pole 96M 56 3999.0 38.6 12707.8 163,3 2.5 
Deer 99M 92 9740.3 60.3 30829.1 280.7 4.7 
Pole 102C 48 4161.0 58.3 10026.1 163.7 2.1 
Rectangle 108C 80 4888.9 37.9 18074.7 197.9 3.4 
Rectangle 108M 96 6251.5 28.7 28152.4 205.8 5.0 
Rectangle 124M 94 6286.8 33.8 29511.1 233.6 5.7 
Rectangle 148C 62 7684.1 74.2 19792.1 227.0 4.3 
Tree 156C 68 37024.8 154.9 83272.4 505.6 13.4 
Rectangle 168M 90 8978.0 48.0 41066,9 291.4 8.4 
Deer 171C 78 24980.9 151.2 62196.5 520.5 10.6 
Deer 180M 88 21017.0 116.8 73928,3 602.3 12.0 
Tree 216M 74 52856.6 271.0 129904.2 897.4 21.1 
Deer 261C 62 50067.9 285.2 113533.1 796.8 20.7 
Deer 261M 84 37051.1 206.2 122304.8 925.7 22.7 
Tree 276C 72 89913.4 370.7 202536.3 1082.0 33,8 
Deer 342M 66 65857.8 274.4 184221.0 966.9 35.3 
Deer 351C 64 85626.9 371.5 179823.7 941.0 35.2 
Tree 396C 70 148512.5 504.8 332537.4 1392.8 62.9 
Tree 432M 76 175521.8 693.4 387632.3 1864.1 82.9 
Tree 516C 56 245209.8 539.8 571884.2 1590.3 113.7 
Tree 552M 66 263373.7 613.2 643095.3 1937.2 130.7 
Tree 780M 42 429647.0 701.4 1032966.4 2191.5 245.9 

find a g lobal  solution wi th  a high degree  of  reliability. As implemented ,  the  hybrid genetic  

a lgor i thm and local  search using incrementa l  evaluat ion yield s imilar  results;  however, the 

hybrid genetic  a lgor i thm is explor ing only half  as many possible  solutions before finding 

the best. A n y  significant  improvement  in the pe r fo rmance  o f  the hybrid a lgor i thm would 

result  in it be ing  super ior  to steepest ascent  local  search for geometr ic  matching.  The  data 

suggests that such improvements could be easily achieved by adjusting the stopping cri terion 

used to terminate  the hybr id  algori thm. 
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Notes 

1. Technically, the 9Z - 1 best strings are maintained in the population of size 9L, since the worst string in the 
population is replaced after every reproduction. 

2. Selective Pressure was also reset to 2.0 for Genitor with the new adaptive mutation function. 
3. In these geometric matching problems it is usually possible to determine the global optimum (or a good approx- 

imation thereof) through visual inspection. In general, the evaluation associated with a near optimal solution 
is not known until after a solution has been found. 

4. Except the selection bias was reset to 1.25. 
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