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Summary. Animal locomotion typically employs several distinct periodic patterns of 
leg movements, known as gaits. It has long been observed that most gaits possess a 
degree of symmetry. Our aim is to draw attention to some remarkable parallels between 
the generalities of coupled nonlinear oscillators and the observed symmetries of gaits, 
and to describe how this observation might impose constraints on the general structure 
of the neural circuits, i.e. central pattern generators, that control locomotion. We 
compare the symmetries of gaits with the symmetry-breaking oscillation patterns that 
should be expected in various networks of symmetrically coupled nonlinear oscillators. 
We discuss the possibility that transitions between gaits may be modeled as symmetry- 
breaking bifurcations of such oscillator networks. The emphasis is on general model- 
independent features of such networks, rather than on specific models. Each type 
of network generates a characteristic set of gait symmetries, so our results may be 
interpreted as an analysis of the general structure required of a central pattern generator 
in order to produce the types of gait observed in the natural world. The approach leads 
to natural hierarchies of gaits, ordered by symmetry, and to natural sequences of gait 
bifurcations. We briefly discuss how the ideas could be extended to hexapodal gaits. 

Key words, central pattern generators, locomotion, gait transitions, quadrupeds, 
bifurcation 

1. Introduction 

The past decade has witnessed considerable advances in the understanding of nonlin- 
ear effects in dynamics. In particular the behavior of systems of coupled nonlinear 
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oscillators is relatively well understood provided either that the number of oscillators 
is small (namely two or three, see Baesens et al. (1991)), or that there is a high 
degree of symmetry (Golubitsky and Stewart, 1986; Golubitsky et al., 1988; Ashwin, 
et al., 1990; Ashwin, 1990; Ashwin and Swift, 1992). A number of phenomena 
are "universal" or "model-independent" in the sense that they arise in very general 
circumstances and are relatively insensitive to fine details of the mathematical model 
that is employed. 

Muttitegged animals utilize several distinct patterns of leg movements, known as 
gaits (Muybridge, 1899, 1901). For example, humans walk, ran, or hop; horses walk, 
trot, canter, or gallop. A quotation from McGhee and Jain (1972) strikes an immediate 
chord for anyone familiar with nonlinear dynamics: "animals typically employ their 
limbs in a number of distinct periodic modes." Many of these modes possess some 
degree of symmetry (Hildebrand, 1965, 1966, 1968). For example, when an animal 
bounds, both front legs move together and both back legs move together, as in Figure 
2g on page 356. This gait thus preserves the bilateral symmetry of the animal. Other 
symmetries are slightly more subtle: for example, the left half of an animal can follow 
the same sequence of movements as the right half, but half a period out of  phase, as in 
Figure 1. This is an example of ~ymmetry-breaking (Golubitsky et al., 1988; Gaeta, 
1990): the gait of a bilaterally symmetric animal can fail to be bilaterally symmetric. 
However, such a gait has its own symmetry: "interchange left and right sides and shift 
phase by half a period." 

i t l / l l / / / i c / l / i / / i / / / t t / / / ~ / / / / / l / / i / i / / / / t / / t / / / / ) ' / / r / r / / t / / l  ~ v f/I.~.'11 I/I/11f. ~ 
¥ / I t ~ F ~ N / / / I  I I / / / / / 1  " / / ~ / / / t / 1 / A / / / I / / / / / I / ~ / / I / / Z I ~  E ~ / ~ r l / / H l / / t / / / ~ / ~ / J  
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Fig. 1. Slow rack-like walk of giraffe is left-right reflected by a phase shift of half a period. 
The bars below are the support graph of the gait, and show when each foot is in contact with 
the ground. [From P. Gambaryan (1974), How Mammals Run: Anatomical Adaptations. 
Distributed by John Wiley & Sons, Inc., New York.] 
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Our aim in this paper is to draw attention to some remarkable parallels between the 
generalities of coupled nonlinear oscillators and the observed range of gait patterns in 
animal locomotion. It is widely held that locomotion might be controlled by a central 
pattern generator (CPG), which is a network of neurons capable of producing rhythmic 
output; see Sect. 3. One explanation of the observed parallel is that a locomotor CPG 
may have a degree of rectangular or square symmetry. If so, then our results may be 
interpreted as a symmetry classification of the general architecture of CPGs, describing 
which symmetry types of gaits can occur for each. 

The traditional approach to CPG architecture has been to hypothesize specific neural 
circuitry and analyze its dynamics, either analytically for linear models or numerically 
for nonlinear ones. We approach this question from a different perspective, namely, 
that of nonlinear dynamics and local bifurcation theory. This approach makes the 
rigorous mathematical analysis of nonlinear systems more tractable, reveals general 
"universal" patterns and recognizable phenomena, and may be relevant to the neu- 
rophysiology of animals. These general results form a useful starting point for more 
detailed model-dependent analysis, and separate the questions to be answered into two 
types: 

a. What are the general phenomena to be expected in symmetrically coupled systems 
of nonlinear neuronal oscillators? 

b. What specific phenomena among these actually occur, and what does that imply 
about model-dependent features of the network architecture? 

Here we answer some questions of type a. In particular we show that for each 
of a number of symmetry types of CPG, there is a natural "universal" hierarchy of 
symmetry-breaking oscillation patterns, many of which correspond to actual gaits. The 
patterns depend strongly on the architecture of the CPG network, but have a certain 
amount in common. Among quadrupedal gaits (Figures 2--4), the pace, trot, and bound 
(and also the rarer pronk) are highly symmetric, with relative phase lags of zero or half 
a period, and are very robust. The walk involves phase lags of a quarter of a period 
and also has a natural interpretation in terms of symmetry-breaking. The rotary and 
transverse gallops have less symmetry (but despite often being termed asymmetric, 
they retain s o m e  symmetry), are less robust, and involve somewhat arbitrary phase 
lags. They appear to correspond to networks of oscillators having an "odd" internal 
symmetry, a characteristic shared by pendulums and van der Pol oscillators. The 
canter is a more curious gait, rather fragile, with very little symmetry, and it remains 
mysterious. It is worth observing that it is often a "trained" gait. 

Moreover, transitions between these gaits strongly resemble the typical types of 
symmetry-breaking bifurcation that can occur in the corresponding nonlinear dynami- 
cal systems. Varying parameters in a CPG, such as the coupling strengths between the 
component neuronal oscillators, may thus permit the s a m e  CPG to control a variety 
of distinct gaits, and to cause transitions from one to another. 

The results of this paper complement those of Schrner et  at. (1990), which 
approach the same problem from the point of view of synergetics rather than 
equivariant bifurcation theory. They describe the main observed gait symmetries 
group-theoretically, analyze the corresponding phase dynamics, and obtain gait tran- 
sitions as phase transitions in model dynamical systems. In our approach all possible 
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symmetries of gaits are derived as a natural consequence of generic symmetry-breaking 
in CPG dynamics, and gait transitions are viewed as generic symmetry-breaking bi- 
furcations. Moreover, our main results (Sects. 7, 9 and Appendices 2, 3) are model- 
independent. Thus, Sch6ner et al. (t990) take symmetries of gaits as their starting 
point, and discuss their consequences for animal behavior; we concentrate on how 
such symmetries might arise from the dynamics of symmetric CPG networks. 

The analogy between the general phenomenology of periodic oscillations of sym- 
metric dynamical systems, and the various more-or-less symmetric gaits of animal 
locomotion, is thus quite striking. Below we investigate how far this analogy can 
be carried. We describe symmetric gaits and discuss how they can be classified. We 
present experimental evidence for nonlinear effects and symmetry-breaking in animal 
gaits and discuss the conclusions which can be drawn about the general nature of 
locomotion, without considering specific model equations for the dynamics. 

2. Animal Gaits 

Gait analysis is an ancient science. Aristotle (see references) described the walk of 
a horse in his treatise De Incessu Animalium: "The back legs move diagonally in 
relation to the front legs; for after the right fore leg animals move the left hind leg, 
then the left fore leg, and after it the right hind leg." However, he erroneously believed 
that the bound is impossible: "If they moved the fore legs at the same time and first, 
their progression would be interrupted or they would even stumble forward...For this 
reason, then, animals do not move separately with their front and back legs." 

According to legend, modem gait analysis also originated with a horse: namely, a 
bet concerning the animal's gait (Taft, 1955). In the 1870s, Leland Stanford, former 
governor of the state of California, became involved in an argument with Frederick 
MacCrellish over the placement of the feet of a trotting horse. Stanford put $25,000 
behind his belief that at times during the trot, a horse had all of its feet off the 
ground. To settle the wager, a local photographer, Eadweard Muybridge, was asked to 
photograph the different phases of the gait of a horse. As will be explained, Stanford 
was correct in his bold assertion. 

Classification and Description of  Gaits 

Most gaits can be represented as symmetrical, cyclical patterns of leg movements. By 
convention, one gait cycle spans the interval from footstrike of some reference foot 
to consecutive footstrike by the same foot. The duty factor [3 of a foot is the fraction 
of the gait cycle for which it is in contact with the ground (McGhee, 1968). For each 
of the following gait descriptions, it is assumed that all feet (two or four) have the 
same duty factor. Walks have duty factors greater than 0.5; thus there are periods 
in bipedal walking gaits, called double-stance, when both feet are simultaneously on 
the ground. Runs have duty factors less than 0.5; therefore during running, there are 
periods, called ballistic or flight phases, when both feet of a pair are off the ground. 

The relative phase q~i of footi is defined as the fraction of the gait cycle between 
ground contact of a reference foot (typically the left fore limb in quadrupeds) and 
ground contact of foot/ (McGhee, 1968). The reference foot therefore has a relative 
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phase of zero. The use of ground contact to standardize phases is convenient for 
most gaits, but can sometimes by unsatisfactory: see Sect. 7 and Figure 13. As far as 
considerations of symmetry are concerned, the relative phase is crucial, but the duty 
factor plays virtually no role. 

Bipedal Gaits. The two limbs can be out of phase (walking and running) or in phase 
(hopping). Running and hopping involve flight phases separated by stance phases. 

Quadrupedal Gaits. The gaits referred to below are illustrated in Figure 2 (except 
for the pronk, which is shown in Figure 3) as they occur in various animals, and 
schematically in Figure 4, following Alexander (1984). 

I l r l / / / l " / ~ - / f / / x i / / / / / / x / / / / / x / . / / / / / l / ~ / / / / / / / f l i A  . . . .  I e ~ / / / / / / x / / / ~  
v / / l l l / / i / / / l / / / / l l . / ~ / / / i / / ~ / l l l / / l l l t l v l l l ~ / l l ~ t / t / / l l / i / l l / i / / l i l l l / 1  
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~ / / / / / / ~ / / / / / / / / / / / /  / / / /  
I ,  I I r / L / / / / / / / / /  / / / /  / / / / / / / / / / / / / / / / / . ~ / / / / / / / / ~ r / / / / / / / / /  ,v 

Fig. 2, Gaits of various quadrupedal animals. [From P. Gambaryan (1974), How Mammals 
Run: Anatomical Adaptations. Distributed by John Wiley & Sons, Inc. New York.] (a) Walk, 
ox. 
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Fig. 2. (b) Trot, horse. 
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Fig. 2. (c) Pace, camel. 

(a) Walk. The legs move a quarter period out of turn, in a figure-eight wave. The 
amble is the running form (lower duty factor) of this stepping sequence. 

(b) Trot. Diagonal legs, i.e. left front/right back, move together and in phase. The 
right front and left back legs move together, half a period out of phase with the other 
pair. The trot is a running gait; therefore, the limbs of a trotting animal have duty 
factors less than 0.5. 

(c) Pace (or Rack). Left/fight pairing. The left legs move together and in phase. The 
right legs move together, half a period out of phase with the left legs. 

(d) Canter. Right front/left back legs move together and in phase. The left front and 
right back legs move half a period out of phase with one another and out of phase 
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Fig. 2. (d) Canter, horse. 
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Fig. 2. (e) Transverse gallop, horse. 

with the strongly coupled diagonal pair. With increasing speed, a horse will typically 
walk-trot-canter-gallop. The canter phase may be absent, and often has to be learned 
as a result of training. 

(e) Transverse Gallop. This gait resembles the bound, but the feet of the front and 
back pairs are slightly out of phase with each other. The left back leg is half a period 
out of phase with the left front leg, and the right back leg is half a period out of phase 
with the right front leg, 
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Fig. 2. (f) Rotary gallop, cheetah. 
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Fig. 2. (g) Bound, long-tailed Siberian souslik. 

© 1979 United Feature Syndicate, Inc. 

Fig. 3. The pronk, from Davis (1981). 
[Reprinted with permission.] 
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(3') Rotary Gallop. Similar to the transverse gallop except left and right back legs have 
interchanged patterns. Diagonal legs are therefore half a period out of phase with one 
another. 

(g) Bound. Front/back pairing. The front legs move together and in phase. The back 
legs move together, half a period out of phase with the front pair. At galloping speeds, 
some animals, e.g., squirrels, use the half-bound (Figure 5): the back legs move 
together and in phase, but the front legs are slightly out of phase with one another 
(similar to the front legs of a gallop). 

(h) Pronk. All four legs move together and in phase. This gait is sometimes used by 
young animals and gazelles (Dagg, 1973). 

3. Central Pattern Generators 

Multilegged gaits require a high degree of coordination. It is generally believed that 
central pattern generators (CPGs)--networks of neurons in the central nervous system 
which produce cyclic patterns--play a significant role in the generation and control 
of locomotion and other rhythmic behaviors. This is not a new idea, for in 1879 
T.H. Huxley (see Calabrese, 1980) compared the rhythmic motion of a crayfish to the 
melody played by a musical box: "It is in the ganglia that we must look for the analogue 
of the musical box. A single impulse conveyed by a sensory nerve to a ganglion, may 

• • • 

L \ \ \ . \ \ \ . \ \ \ 4  , , , 1 ] 

Fig. 5. Half-bound of the hare. [From R Gambaryan (1974). How Mammals Run: 
Anatomical Adaptations. Distributed by John Wiley & Sons, Inc., New York.] 
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give rise to a single muscular contraction, but more commonly it originates in a series 
of such, combined to a definite end." Brown (191I) demonstrated that portions of 
a cat's spinal cord can elicit locomotor-like movements in the animal's hind limbs; 
he later proposed (Brown, 1914) a spinal rhythm generator model consisting of a 
pair of mutually inhibitory neurons ("half-centers"). Von Holst (1935, 1973) showed 
experimentally that an assembly of neurons in the spinal cord can coordinate fin 
movements in some fish, without any sensory feedback. 

There is considerable evidence for the existence of locomotor rhythm generators 
or CPGs (Grillner, 1975, 1985; Herman et al . ,  1976; Shik and Orlovsky, 1976; Stein, 
1978; Detcomyn, 1980; Selverston, 1980; Grillner and Watltn, 1985). Quadrupedal 
locomotion may, for example, be controlled by four (or more) distinct but coupled 
neuronal oscillators (Grillner, 1975; Willis, 1980). These might be "central" in the 
sense that they occur in a small region of the central nervous system (CNS), or 
"distributed" about the CNS with longer neural interconnections. For the purposes 
of this paper, whenever we use the term CPG we include the distributed option 
as well as the central. Cohen et al. (1982), Rand et al. (1988), and Kopell (1988) 
consider linear arrays of identical oscillators, or of pairs of identical oscillators. Several 
previous studies analyze the behavior of rings of coupled oscillators (Glass and Young, 
1979; Grasman and Jansen, 1979; Errnentrout, 1985; Alexander, 1986). The main 
aim of this paper is to study a number of different arrangements of four oscillators, 
either identical or identical in pairs, with the main emphasis being on symmetry 
and symmetry-breaking. For completeness and motivation we also treat the case of 
two identical oscillators (Sect. 7); and in Sect. 9 we make a few remarks about six- 
oscillator systems, appropriate to hexapodal gaits, and general systems of n coupled 
oscillators. 

We shall consider five possible networks of four coupled oscillators, represented 
graphically in Figure 6. Here there are either one or two types of oscillator, and up to 
three distinct types of coupling between them. They are chosen bearing in mind two 
alternative interpretations: either as. simple networks of neuronal oscillators in a CPG 
or as some coarse model of the morphological type of a quadruped. For convenience 
we shall not always distinguish between these two interpretations, making the same 
simplifying assumption as Cohen (1988): "that the motor patterns of intact animals 
more or less accurately reflect the organization of the CPGs which give rise to them." 
We are aware, as is Cohen, that this assumption need not always be valid. It is 
not essential to our discussion, but it lets us avoid interpreting every result in two 
distinct ways. One intriguing aspect of our results is that there are natural similarities 
between the two interpretations, perhaps suggesting a natural evolutionary route for 
the development of controlled locomotion. We return to this somewhat speculative 
point in Sect. 10. 

4. Symmetries of Animal Gaits 

The mathematical symbolism used to describe animal gaits is already extensive, 
including gait matrices (McGhee and Jain, 1972) and support graphs (Gambaryan, 
1974). Some explanation should be given for introducing yet another. Our purpose 
is to focus on the symmetries of gaits, and this leads us to employ standard math- 
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4 

d G;-© 

5 

Fig. 6. Graphical representation of five distinct symmetric systems of 
coupled oscillators. Symbols o and [] indicate two distinct types of 
oscillator; lines "--,  ---, and -- indicate three distinct types of 
coupling. The arrow shows the direction in which the head of the 
animal is facing. 

ematical notation for symmetries, which is group-theoretic in nature. Schrner et at. 
(1990) also employ group-theoretic methods to describe animal gaits. Our approach is 
similar, but is related more explicitly to the theory of periodic oscillations in systems 
with symmetry. The reader is not expected to know any group theory, although such 
knowledge is needed to follow the mathematical appendices. 

We distinguish two types of symmetry in gaits. The first, spatial symmetry, refers 
to permutations of the oscillators (interpreted either as neuronal components in a 
CPG or as legs of  an animal) in a coupled system. The second, temporal symmetry, 
involves patterns of  phase-locking. The prime message from the mathematical theory 
of symmetric Hopf bifurcation (Golubitsky and Stewart, 1985; Golubitsky et al., 
1988) is that the symmetries of oscillating systems are either purely spatial or involve 
combinations of  both spatial and temporal symmetries. We describe the two types of  
symmetry separately, before discussing their interaction. 

Consider a system of n identical oscillators numbered 1, 2 . . . . .  n. At time t, 
oscillator Oi is in a state xi(r),  which typically is a vector quantity. A permutation 7r 
is a mapping from the set {1, 2 . . . . .  n} to itself, associating to each number i between 
t and n a number ~r(i) = i '  between I and n, such that i' = j~ if and only i f /  = j .  
The permutation 7r also maps oscillator Oi to Ou and its state xi( t)  to xi,(t). We say 
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that the state of  the system has spatial (orpermutationat) symmetry zr if xi(t)  = x i , ( t )  

for all times t and for all i = 1, 2 . . . . .  n. That is, after applying the permutation ~ ,  
all oscillators appear to behave exactly as before. For example, let the indices 1, 2, 
3, and 4 refer to the left fore, right fore, left hind, mad right hind limbs, respectively, 
of  a quadruped. The bound gait is symmetric under the following permutations: 

a. interchange 1 ~ ~ 2, 

b. interchange 3 < ~ 4, 

c. interchange 1 < ~ 2 and 3 ~ ~ 4, and (for mathematical completeness) under 
the trivial or identity permutation 

d. leave i ,  2, 3, 4 unchanged. 

That is, at any instant of  time, limbs 1 and 2 are always in exactly the same state, 
and limbs 3 and 4 are in exactly the same state (though this generally differs from the 
state of  limbs 1 and 2). 

The permutations of  {I . . . . .  n} form a group; that is, if two permutations are com- 
posed by performing them in turn, the result is also a permutation. The composition 
of  permutations p and o-, in that order, is usually written as crp. The order is reversed 
in the notation so that (crp)(i) = cr(p(i)). 

There are two standard mathematical notations for a permutation. The first is cum- 
bersome but explicit: 

(123 n) 
= r 2 r 3 r n '  " 

That is, the top row lists the symbols 1 . . . . .  n and the bottom row lists their images 
under ~r, so that i '  lies directly below i. For example, when n = 4 the interchange 
I < 7 2 is written as 

The second notation is more compact  but slightly less direct, and it has the advantage 
that the value of n can be left implicit. It is known as cycle notation, and we define it 
by examples to avoid complicated formalism. The cycle (123), for instance, represents 
the permutation in which 1' = 2, 2 '  = 3, and 3' = 1, so that all symbols in the cycle 
"move one place on" with wrap-around to the back. In the two-rowed notation, again 
with n = 4, this permutation takes the form 

The permutation in equation (1) is just ( t2) in cycle notation. Not all permutations 
are cycles, but all permutations can be obtained by composing cycles. As before we 
write the composition as a product; for example, if n = 6 then the cycle notation 

(123)(45) 
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refers to the permutation 

3 1 5 4  

Greek letters c~ , /3 ,y . . ,  are generally used to refer to individual permutations, and I 
to refer to the trivial permutation l ( i )  = i. 

Temporal symmetries are simpler to describe. Suppose that x ( t )  = 
(x1(t)  . . . . .  xn( t ) )  is a time-dependent vector representing the states, at time t, 
of  all n oscillators. (Again, each xi  may be a vector quantity.) We define the phase 
shift by q~ of x ( t )  to be 

x ( t  -- ~) = (Xl(t -- ~) . . . . .  Xn(t -- ~p)). 

Then we say that the phase shift ~ is a temporal symmetry of  x ( t )  i f  

for all t, that is, if 

x ( t  - ~ )  = x ( t )  

x~( t  - ~o) = x i ( t )  

for all t and for all i = 1 . . . . .  n. In words: q~ is a temporal symmetry if each oscillator, 
phase-shifted by ~0, looks the same. 

Purely temporal symmetries (other than ~o = 0) exist only if x ( t )  is periodic. 
Suppose that T is the (minimal) period: then x ( t  + T) = x ( t )  for all t, so that 
x ( t  - m T )  = x ( t )  for all integers m. That is, the purely temporal symmetries are 
the integer multiples of  the period. Because the state is periodic, phase shifts by m T  
have no effect on the state. For this reason, phase shifts are considered modulo T,  
meaning that integer multiples of  T may be discarded. In effect the set of  phases is 
wrapped around into a circle so that 0 and T coincide. As a matter of  convention, we 
normalize the period T to 1, so that phase shift by E T is denoted by E; and ~ is thus 
considered modulo 1. 

Mixed spat io-temporal  symmetries have a richer structure and are more common.  
ff 7r is a permutation sending each i to i t, and q~ is a phase shift, then we say that 
the pair [Tr, q~] is a symmetry o f  the state x ( t )  if 

x i ( t )  = x i , ( t  - ~ )  

for all t and for all i = 1 . . . . .  n. 
As an example,  consider the trot (Figures 2b, 4). Here oscillators (in this case legs) 

1 and 4 are identical; 2 and 3 are identical; and 2 is half a period out o f  phase with 
1. I f  the gait period is T,  this means that 

x2(t)  = x t ( t  + T / 2 ) ,  xa(t)  = Xl ( t  q" T / 2 ) ,  xg(t)  = Xl(t) .  

The symmetries are: 

a. The trivial permutation I ;  equivalently, the pair [t ,  0]. 

b. The cycle (14); equivalently, the pair [(14), 0]. 
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c. The cycle (23); equivalently, the pair [(23), 0]. 
d. The pair [(12), ½]. 

Note that to obtain consistent notation, purely spatial symmetries c~ are thought of 
as spatio--temporal pairs [a, O] with zero phase shift. Spatio--temporal symmetries 
compose according to the rule 

[p, ~][e, O] = [po-, ~ + 0], 

and the set of all spatio-temporal symmetries of a given gait again forms a group; 
that is, composing two spatio--temporal symmetries produces another spafio-temporat 
symmetry. This set, together with its law of composition, is the symmetry group of 
the gait: it is the mathematical description of all of its possible symmetries. A vivid 
diagrammatic representation of mixed spatio-temporal symmetries may be found in 
Schrner et al. (1990). 

The possible symmetry groups of gaits can be classified by purely group-theoretic 
arguments. By this we mean that a complete mathematical description of all possible 
groups of symmetries can be given. The approach of Sch6ner et aL (1990) is descrip- 
tive: it begins with the known gaits and determines their symmetry groups. We use 
group-theoretic methods to determine all possible mixed spatio-temporal symmetry 
groups for a given symmetry class of CPG networks, and only subsequently do we 
match these to observed gaits. 

For simplicity we here consider only the "rectangularly symmetric" network 2 of 
Sect. 3 and Figure 6; see Appendix 2 for more details and a discussion of the general 
case. Table 1 lists all possible spatio-temporal symmetry groups for such a rectangular 
network. Table 2 lists the observed symmetries of various gaits in the same nota- 
tion, together with the corresponding group. The symbols for the groups are chosen as 

Table 1. Possible gait symmetries, type 2 (rectangular network). Let c~ = (I2)(34) be 
left-right reflection, 13 = (t3)(24) be front-back reflection, and a/3 = (14)(23) be their 
composite, which geometrically is an interchange across diagonals, or equivalently a rotation 
through 180 ° . 

Symbol Symmetries 

D2 x S I [I, 0] [a, 0] [/3, 0] [~/3, 0] for all 0 
D~_ [I, 0] [~, 0] [/3, 0] [~#, 0] 
z~ [t, o] [~, o] 
z~ [t, 0] [13, 0] 
z~ [z, o] [c~/3, o] 
1 [z, o] 
5~ [z, o] [~, o] [#, ½] [~#, ½3 
zS~ [/, o1 [~, ½] [~, 0j [~/3, ½] 
& [r, o] [,~, ½] [,G, ½] [,~/3, o] 
Z~ [I, O] [a, ½] 
2~ [z, oj [8, ½] 
2~ [z, o] [aS, ½] 
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Table 2. Observed gait symmetries in quadrupeds. Let a = (12)(34) be left-right reflection, 
/3 = (13)(24) be front-back reflection, and aft = (14)(23) be their composite, rotation 
through 180 ° . 

Gait Symmetries Group 

Stand [I, 0] [c~, 0] [/3, 0] [aft, 0] for all 0 Dz x S l 
Pronk [I, 0] [or, O] [/3, O] [a/3, 0] D2 
Trot [l, 0] [~, ½] [/3, ½] [c~/3,0] b~ 
Bound [I, 01 [or, O] [/3, ½1 [o~/3, ½] /}• 
Pace [I, 0] [a, ½] [/3,0] [a/3, ½] L]~ 
Transverse gallop [I, 0] [/3, ½] 2 L 
Rotary gallop [1, O] [a/3, ½] Z~ 
Canter [I, O] 1 

follows: any group that involves all four permutations t ,  ~, /3, a/3 includes the 
symbol D2; any group involving only 1 and one other permutation includes Z2. Here 
D is the initial letter of "dihedral" and Z of the German "Zyklik" for "cyclic." The 
superscripts L, F ,  and D correspond to left-right reflection, front-back reflection, and 
diagonal interchange, respectively. For example, in Z2 L the L means "no phase shift 
for interchange of left and right." A tilde - indicates that phase-shift symmetries 
are involved. The symbol S 1 refers to the "circle group" of all phase shifts q~, taken 
modulo I. 

To avoid confusion we should add that in the gaits literature the term "symmetric 
gait" is often used to refer to the pace, bound, and trot (e.g., Gambaryan, 1974). As 
Sch6ner et al. (1990) remark, many other gaits possess nontrivial symmetries. Table 
2 confirms this contention. 

Observe that in Table 2 we have listed the canter as having trivial symmetry. This 
is because we have assumed a rectangular network of oscillators, type 2. In fact the 
canter has two spatio-tempoml symmetries which in the above notation are [(23), 0] 
and [(14), ½], but these do not arise in case 2. They do, however, arise in case 3, as 
shown in Appendix 2. 

The above group-theoretic description may appear cumbersome, but it provides a 
precise framework for discussing symmetries of animal gaits and is used in the next 
section to analyze the possible patterns of broken symmetry, which are fundamental 
to our approach. 

5. Symmetry-Breaking Bifurcations 

In this section we discuss how a CPG network whose symmetry is fixed can generate 
patterns with different symmetries. Our contention is that changes in animal gaits fit 
neatly into the general pattern of symmetry-breaking bifurcation in dynamical systems. 
The likely role of bifurcation in physiological systems has been emphasized recently 
by many authors, such as Kopell (1988), Rand et aI. (1988), and Alexander (1989). 
The possible role of symmetry-breaking has not received as much attention, but seems 
to be relevant to the issue of symmetry in gait patterns. Again our results complement 
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those of Sch6ner et al. (1990): what they interpret as phase transitions in a synergetic 
system, we view as symmetry-breaking bifurcations. 

We here describe a few basic phenomena of symmetry-breaking: for further details 
see Appendices 1-3 and Golubitsky et al. (1988). Consider a dynamical system 

d x / d t  = f ( x ,  a), (2) 

where x ~ Nn, a is a parameter, and f : Nn x ~ ~ N" is a smooth vector field. As 
the parameter a in (2) is varied, qualitative changes in the dynamical behavior may 
occur--typically at isolated values of a. Such a change is called a bifurcation, and a 
is therefore called a bifurcation parameter. 

Let F be a compact Lie group acting orthogonally on N". We say that f is 
F-equivariant, or that f commutes with F, if 

f( 'ex, a) = ~f (x ,  a) 

for all y E F. Equivariant dynamical systems often arise as models of physical sys- 
tems with a more or less "obvious" symmetry group F. For example, a system with 
circular symmetry will usually give rise to a dynamical system that is O(2)-equivariant, 
where 0(2) is the group of rotations and reflections in the plane that fix the origin; 
that is, the symmetry group of a circle. 

Symmetry tends to cause violations of the hypotheses of theorems that give condi- 
tions for the occurrence of "generic" dynamical phenomena. For example, a common 
assumption on generic bifurcations is that the Jacobian (df)x = [dfl/Oxj] should 
have simple eigenvalues. However, for equivariant f ,  its eigenvalues are usually mul- 
tiple. In consequence, the symmetry must be "built into" the whole approach, and 
instead of "generic" behavior it is necessary to study behavior that is "generic among 
those systems that possess symmetry group F."  A considerable body of technique 
now exists in this area. 

One of the most fundamental phenomena in equivariant dynamics is symmetry- 
breaking. We measure the symmef_ry of a solution x = x(t) of (2) by its isotropy 
subgroup 

~x = {or ~ F I o'x(t ) = x(t)  for all t}. 

If Ex ~ F then we say that x breaks the symmetry from F to Ex. For example, the 
equations describing a spherical pendulum are equivariant under 0(2); but a pendulum 
that swings periodically in a vertical plane breaks the symmetry to a group Z2 generated 
by reflection in that plane. 

The simplest types of bifurcation are steady-state bifurcation, where the number 
of equilibria of the system changes, and Hopf bifurcation, where a stable equilib- 
rium becomes unstable and creates a limit cycle. Our main concem in this paper is 
symmetry-breaking via Hopf bifurcation; and here the appropriate group is the col- 
lection of all spatio-temporal symmetries, which generalize those described in the 
previous section for permutations of oscillators. Namely, if (2) is F-equivariant, and 
x -- x(t)  is a periodic solution with period T, then (y, ~) ~ F x S 1 is a spatio- 
temporal symmetry of x if 

x(t)  = 3,x(t - q~) 
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for all t. Here S 1 is the circle group R/T77. We discuss the general theory of 
symmetry-breaking Hopf bifurcations in Appendix 1. 

We apply these ideas in the following manner. Any network N of identical oscil- 
lators possesses a "spatial" symmetry group F, consisting of all permutations of the 
nodes of the network that preserve the couplings. For example, a ring of n oscillators 
with identical nearest-neighbor couplings has spatial symmetry group Dn, the dihedral 

group of order 2n, generated by cyclic permutations of the oscillators together with 
inversion: 

(nl  2 3 " " n ) .  
n - 1  n - 2 . . . t  

Thus the spatio--temporal symmetry group is Dn × S 1 • Hopf bifurcation in this con- 
text has been analyzed, making essential use of the group-theoretic framework, by 
Golubitsky and Stewart (1986). For example, when n = 3 there are three types of 
bifurcating periodic oscillation: a rotating wave and two different standing waves. The 
possible types of symmetry-breaking Hopf bifurcation for the networks of oscillators 
employed in this paper are described in detail below, based upon the general theory. 

For example, let us consider actual quadrupedal gaits, again using the model of 
rectangular symmetry, type 2 (Figure 6). From Tables 1 and 2 we can read off the 
possible patterns of symmetry-breaking, shown in the abstract in Figure 7 and for the 
corresponding gaits in Figure 8. We see the primary modes are the most symmetric 
gaits (pronk, pace, bound, trot) and the secondary "mixed" modes are the rotary and 
transverse gallops. Indeed the rotary gallop is a mixture of the pace and bound, and 
the transverse gallop is a mixture of the bound and trot. For other network types, see 
Appendix 2. 

Primary bifurcations generally lead to states that possess a high degree of symme- 
try, and subsequent secondary and tertiary bifurcations lead to states with less and 

D 2×S 1 

I 

Fig. 7. Abstract patterns of symmetry-breaking for a 
rectangularly symmetric network (type 2 of Figure 6). 
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Fig. 8. Quadrupedal gaits corresponding to Figure 7. 
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less symmetry. In other words, successive bifurcations tend to break more and more 
symmetry, so the list of possible symmetry groups governs the broad pattern of the 
bifurcations that can occur. These statements are intended as a rough guide and should 
not be taken too literally, however. There are some known exceptions, and many points 
of fine detail are not captured by the list of possible symmetry groups (Gotubitsky et 

al. ,  1988, Chapter XIII, Sect. 10). 

6. Evidence for Nonlinearity in Animal Gaits 

The idea that nonlinearity is involved in the generation and regulation of animal 
movement is gaining recognition. The role of bifurcation, for example, is made explicit 
in Kelso and Schtner (1988), Kopell (1988), and Rand et al. (1988), and it plays a 
central role in Sch6ner et aI. (1990). Alexander (1989) also offers extensive evidence 
for nonlinearity and bifurcation in animal gaits. 

Striking experimental evidence that gait transitions in animals are related to the 
above types of bifurcations is given in Hoyt and Taylor (1981). In this study, horses 
were trained to walk, trot, and gallop on a treadmill. Hoyt and Taylor's observations 
of oxygen consumption as a function of speed are shown in Figure 9a. This type of 
diagram is precisely what one would expect from a nonlinear system bifurcating into 
one of several distinct modes. The overlap of the parabolic curves for the trot and 
gallop suggests the presence of hysteresis in the corresponding transition. The data are 
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Fig. 9. (a) Graph of oxygen consumption versus speed for horses. [From Schmidt-Nielsen 
(1990), redrawn from Hoyt and Taylor (1981). Reprinted with permission from Nature (Gait 
and the energetics of locomotion in horses, Nature 292, 239-240). Copyright 1981 
Macmillan Magazines Limited, London.] 

more equivocal for the walk/trot transition but support a smaller degree of hysteresis. 
The interpretation of these results in terms of a bifurcation diagram is shown in 
Figure 9b. 

Alternative gait-transition conventions to bifurcation, such as optimization princi- 
ples (Alexander, I989), are attractive for several reasons: they reflect the plausible 
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Fig. 9. (b) Interpretation as a bifurcation diagram. 

hypothesis that gaits represent the effect of controlled rather than free-running dy- 
namics, and are consistent with a great deal of experimental work. Thus Hoyt and 
Taylor (1981) observe (histograms in Figure %) that when the trained horses are per- 
mitted to select their own speeds, varying on the ground, they tend to minimize the 
oxygen consumption in each gait. They thus select discrete ranges of speeds from 
the continuous range available. One would not generally expect to find hysteresis 
if the gait transitions are determined by optimization principles. According to Tay- 
lor (private communication), dogs and horses do not exhibit any hysteresis at the 
trot/gallop transition in treadmill experiments for which the speed of the treadmill is 
changed slowly; however, they do exhibit hysteresis if the treadmill speed is changed 
rapidly. 

7. Coupled Oscillators 

We now describe the typical oscillation patterns of systems of two and four cou- 
pled nonlinear oscillators, where the oscillators are either identical or divided into 
two distinct groups. (By the use of the term "oscillator" here it is not intended to 
imply that the individual components are necessarily capable of oscillating on their 
own; for example, Smate (1974) reports a case where oscillation sets in only when 
the components are coupled.) We seek features that are independent of the detailed 
dynamics of the individual oscillators and of the nature of the coupling (other than 
its symmetry properties). This is similar in spirit to the approach of Kopell (1988), 
who states, "The idea is to develop a body of mathematics that can help decide, with 
minimal a priori guessing, which differences do indeed make a difference. Thus, 
the method is to work with robust classes of equations and, within these, to attempt 
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to sort out which conclusions are essentially universal and which depend on further 
structure." Similarly Rand et al. (1988) emphasize "those aspects of the dynamical 
behavior of the models which should be shared by a rather general class of systems." 
This is not to deny the utility of specific models, such as those of Bay and Hemami 
(1987) or Yuasa and Ito (1990): its aim is to clarify which features of specific models 
are instances of more general phenomena. 

Systems of  Two Coupled Oscillators 

If two identical oscillators are coupled together (Figure 10), then there are two typical 
oscillation patterns: 

a. The in-phase pattern: both oscillators have the same waveform. 
b. The out-of-phase pattern: both oscillators have the same waveform except for 

a phase difference of half a period. 

These patterns are illustrated in Figure 11. The two patterns of phase-locking arise 
through a Hopf bifurcation, and typically they are the only patterns that occur. 

These abstract results can be interpreted in the following ways. Firstly, the two 
oscillators could represent identical components of a central pattern generator, coupled 
neurally. Then the signals that they produce, either through "spontaneous" excitation 
or external stimulation by a single periodic signal (Kupfermann and Weiss, 1978), will 
possess the same pattern of phase-locking. Such signals could "drive" the musculature 
that controls a single leg or a pair of legs. Alternatively, the oscillators could represent 
the legs of a biped, coupled mechanically by the body of the animal. Again, the two 
natural oscillation patterns (for free or forced oscillations) wiU be the in-phase and 
out-of-phase oscillations. For the in-phase pattern, both legs will move together: that 
is, the animal will perform a two-legged hopping motion (Figure 12). The out-of- 
phase motion could resemble the normal .human walking/running gait: both legs move 
with the same waveform, but half a period out of phase. A more exotic possibility 
with the same symmetry is shown in Figure 13. Observe that the figure shows only 
half a period: the "final" position is the mirror image of the initial one. 

The gait in Figure 13 raises a problem conceming the usual definition of relative 
phase (see Sect. 2) because each foot hits the ground twice during a gait period. Only 
for one choice of ground contact is the relative phase equal to 0.5. The mathematical 
point behind this is that an oscillation does not of itself possess a phase: the notion of 
phase difference makes sense only for oscillation patterns that are identical except for 
time translation, as in Sect. 4. For such oscillations,/f each foot hits the ground once 

Fig. 10. Schematic of two 
identical coupled oscillators. 
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Fig. 11. Schematic of in-phase and out-of-phase motion for two identical coupled 
oscillators. 

.......... III 

~ ' f l Z M / I / / Z / I . ' / / / 1 1 1 / / / / / / M / Z 1 1 1 / / . ' ~  

Fig. 12. Bound of kangaroo has in-phase left-right symmetry. [From R Gambaryan (1974). 
How Mammals Run: Anatomical Adaptations, Distributed by John Wiley & Sons, Inc., New 
York,] 
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Fig. 13. Half-bound of Severtsov's jerboa has out-of-phase left-right symmetry. Note that 
each foot hits the ground twice per gait period. [From R Gambaryan (1974). How Mammals 
Run: Anatomical Adaptations. Distributed by John Wiley & Sons, Inc., New York.] 

per period, then ground contact provides a convenient reference point. Real gaits are 
not perfectly symmetric, so a degree of judgment is involved in deciding when to 
consider two oscillations as being "the same" except for time translation. Differences 
in such judgments could affect some details of our conclusions. 

Systems of Four Coupled Oscillators 

For four oscillators there are more types of pattern and more possible ways in which 
the oscillators might be coupled. In Sect. 3 we introduced five possible cases (Figure 
6). We show in Appendix 3 that for these five coupled systems the typical symmetries 
of periodic oscillations which are always created by Hopf bifurcation are given in 
Table 3. In some systems there may be additional patterns, but the existence of those 
listed is model-independent. Several of these patterns can be observed in the results 
of Bay and Hemami (1987) for a specific model composed of van der Pot oscillators. 
In Sect. 8 we briefly describe the results of numerical experiments with two specific 
model systems. 

The annotation mFtJRCAT~ TOCErHER in Table 3 indicates states that occur together in 
a single Hopf bifurcation; that is, multiple branches of the bifurcation diagram which 
emerge from the same point. See Appendix 1 for further details. 

Type 1 is an arrangement of four identical oscillators with square symmetry (Fig- 
ure 6). We are not suggesting that there exist animals with square symmetry. If we 
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LF RF LH RH Mathematical 
System (1) (2) (3) (4) comments Corresponding gait 

1 a A A A A pronk 
b A A + ½  A + ½  A trot 
c A A + 1 A + ~ A + ½ ] similar to rotary gallop 
d a A + a + ¼ A + ½ t to rot y gallop 

[ BIFURCATE (opposite orientation) 
e A A A + ½ A + ½ 1- To~zrri~ bound* 
f A A +  ½ A A +  ½ ] pace 
g A B B +  ½ A I A = ½ period 
h A B B A +  ½ [ B = ½ period canter? 

2 a A A A A pronk 
b A A + ½ A A + ½ pace 
c A A A + ½ A + ½ bound* 
d a A + ½  A + ½  a trot 

3 a A A A A pronk 
b A A A + ½ A + ½ bound* 
c A A +  ½ A +  ¼ A +  ¼ I walk and amble 
d a A + ½  a + ¼  A + ¼  [BIFURCATE 
e A A + ½ A + ½ A l- zo~zrrmF, trot 
f A A +  ½ Z A +  ½ 1 pace 
g a a B B +  ½ I a = ½Period 
h a A +  ½ B B I B = ½ period 

4 a A A B B asymmetric bound* 
b a a + ½  B B + ½  

5 a A A B B asymmetric bound* 
b A A + ½  B B 
c A A B B + ½  

*Bound is close to transverse and rotary gallops. 

are thinking of physical symmetries of  the animal, then this arrangement would be 
appropriate for quadrupeds whose four legs are approximately the same and where 
the mechanical coupling between them is relatively similar. If  we are thinking of  
locomotor central pattern generators then genuine square symmetry is reasonable. 

Type 2 has rectangular symmetry, and is appropriate for animals whose fore l imbs 
and hind limbs are fairly similar, but where the left/right coupling differs substantially 
from the front/rear. It might be argued that in animal limbs, exact front/back symmetry  
never occurs. In this case type 4 is more appropriate. However, approximate symmetry 
between front and back is common.  Raibert (1986, 1988) notes that the rotary gallop 
of the cat is symmetric,  apart from minor deviations, under time reversal and such a 
symmetry in particular interchanges front and back. Incidentally, front/back symmetry  
does not  imply that the animal can move backwards as easily as forwards: this concept 
refers to the hypothetical interchange of front and back limbs, not to a reversal of  
direction. The oscillations of  individual limbs can be "'directional." 
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Type 3 preserves the differences in coupling of type 2 but has more symmetry. 
It treats the two front legs as a unit, coupled to an identical unit at the rear. Its 
symmetries are independent transpositions of oscillators (12) and (34), together with 
the interchange of front and rear. If, for example, the front and rear legs are mainly 
coupled through the spine, type 3 is appropriate. In the abstract, type 3 is isomorphic 
to type 1, which is why their lists of oscillation patterns (Table 3) are very similar. To 
be precise, if we renumber oscillators 1234 in type 3 as 1423 (so that front and back 
pairs in type 3 correspond to diagonal pairs in type 1), then the networks become 
identical. We distinguish the two cases because the labeling as limbs is not preserved 
by this isomorphism, but it means that we can read off the answers for type 3 directly 
from those for type 1. In the same way, networks 2 and 5 are isomorphic. 

Types 4 and 5 are analogous to 2 and 3, but now the front pair of legs differs 
substantially from the back pair. 

A s  Table 3 shows, each type of arrangement has its own particular set of "natu- 
ral" oscillation patterns. The most symmetric gaits (pronk, trot, bound, pace, walk) 
correspond precisely to patterns that occur in the table. The final gait listed for type 
1 has the correct phase relations for a canter, but a true canter does not involve the 
half-period property of waveform B. However, minor breaking of the square symmetry 
could destroy this property, leaving something closer to a canter. 

The rotary and transverse gallops are not represented in our list, although type 1 
has two conjugate patterns, lc and ld, that are similar to the rotary gallop. Among 
the twenty patterns listed for the first three networks (all oscillators identical), only 
four do not seem to correspond to gaits described in Sect. 2. All of these involve the 
half-period condition. This 2:1 frequency-locking effect and its relevance to animal 
locomotion are treated in greater detail in Collins and Stewart (1992). 

The oscillation patterns for types 4 and 5 are plausible for animals whose front legs 
are significantly different from their rear legs. For example, pattern 5b corresponds to 
a two-legged walk on hind legs, while the front legs move together in phase; pattern 
4b is essentially the normal bipedal human walking/running gait with A representing 
arm movements and B leg movements. 

8. Numerical Simulations 

In this section we describe some simple numerical simulations that show just how 
common, and how varied, symmetry-breaking oscillations are, in symmetric networks 
of identical oscillators. The model (see equations (3) below) consists of coupled 
oscillators of van der Pol type, with additional terms that break the "internal" odd- 
function symmetry of a conventional van tier Pot oscillator. We are forced to add 
such terms because internal symmetries have a strong effect on the entire analysis. 
The equations describe four oscillators Oj(j  = 1 . . . . .  4), each of which involves 
two dynamic variables (x j, y j). There are five parameters a ,  /3, 3', 8, e, of which 
oz, /3, and e affect the internal dynamics of each oscillator, and 3, 3' are coupling 
constants. We have chosen a simple form of linear coupling. The model has no special 
physiological significance since it is presented only as evidence that the mathematical 
phenomena that we have described are easily observed in actual equations. 
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The model equations are 

d t  - Y l - O ~ X l  - 1 ) + / 3  + e x  ff + ' / ( x ~  - xz)  + 3 ( x i  - x4),  

dt  - y2 - cexz - 1 +13 + e x  2 + y ( x z  - x l )  + 3 ( x z  - x3), 

d t  - y 3 - 0 z x 3  - -  t ) q -  /3 q" ffX~ -b 3t(X3 --  ,174) -}- 3 (X  3 --  X2) , 

dx4 (x~ 
d t  - Y4 - ozx4 - -  1 ) +  ffi "~ 6 X  2 "1- ~ ( X  4 - -  X 3 )  -4- ~ ( X 4  - -  X l ) ,  (3) 

dy  I dy2 
- -  X l "  ~-- - - X 2  , 

d t  d t  

dy3 dy4 
- -  X 3  ' = - - X 4  . 

d t  d t  

These correspond to networks of type 2 (Figure 6) when y ~ 3, and type 1 when 
7 = 3. Since, as already explained, network 3 can abstractly be converted to network 
1 by relabeling, the model covers the main three networks that we have discussed in 
the case of four identical oscillators. 

Figures 14-20 show the results of some numerical experiments carried out on these 
equations using the package kaos developed by Guckenheimer and Kim (1990). We 
have not attempted a detailed exploration of this model, nor have we attempted to 
explain many additional dynamical phenomena that can be found numerically: we 
merely exhibit some of the symmetry-breaking dynamics that arise, without further 
comment. 

We have not found the "exceptional" solution types lg and lh (Table 3) in (3). 
However, we have found them (Figure 21) in a related system with different coupling 
terms, where the first four equations of (3) are replaced by 

- -  Yl  - -  c~x t 
d t  

d x z  

d t  

dx3 

d t  

d x 4  

d t  

- 1)+ ~ + ex~ + y ( 2 x l  - x 2  - x 4 ) ,  

- Y 2 - ° z x 2 ( X - - - ~  - 1 ) + / 3 + E x  2 + 3 ( 2 x a - x l - x 3 ) ,  (4) 

- i ) + / 3  + Ex 2 + y(2x3 - x 2  - X4), 

- 1 ) + / 3  + e x  2 + a (2x4  - x3 - x l ) .  y ,  _ 

The system (4) also has square symmetry, though of a slightly different kind. 



Fig. 14. Numerical solution of  (3) when a = 1, /3 = 2, 7 = - 0 . 5 ,  S = - 0 . 5 ,  ~ = 0.5. 
Horizontal variable is time t (ranging from 0 to 100); vertical variables are x4, x3, x~, xl 
reading from top to bottom. This solution illustrates the pronk gait la  (Table 3), which does 
not break symmetry. 

V 

Fig. 15. Numerical solution of (3) when a = 1, fl = 2, y = 1, S - 1, E - 0.5. Variables 
as in Figure 14. This solution illustrates the trot gait l b  (Table 3). 
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Fig. 16. Numerical  solution of  (3) when  o~ = 1, /3 = 0, 7 = 0 .02,  6 = 0 .02 ,  E = 1. 
Variables as in Figure 14. This  solut ion i l lustrates the gallop-like gait lc  (Table 3); its 
conjugate  ld  can be  obta ined by " ro ta t ing"  the initial condit ions through a fight angle.  

VVVVV JVVVV  

WWV  VV LL   

V  AJVVVVV  
Fig. 17. Numerica l  sotution of  (3) when  ~x = 1, /3 = 2, Y = - 0 . 5 ,  6 = - 0 . 7 ,  e = 0 .5 .  
Variables as in Figure t4 .  This  solution il lustrates the pronk gait 2a (Table 3). 
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9. Hexapodal Gaits and Generalizations 

We briefly indicate in this section an extension of the above group-theoretic approach 
to systems of more than four oscillators, beginning with six-oscillator models for 
hexapodal gaits. We consider only the arrangement of six identical oscillators shown 
in Figure 22, although many alternatives can be analyzed in a similar manner. 

We impose spatial periodicity by assuming that the left oscillators are coupled to 
the right oscillators as shown by the dotted lines (Figure 22). An alternative method 
leading to the same result is to impose periodic boundary conditions at front and rear. 
[For a discussion of periodic boundary conditions, nonperiodic boundary conditions, 
and symmetry, see Crawford et  al. (1991).] Then the symmetry group is generated by 
the permutations 

ot = (12)(34)(56) 

/3 = (135)(246) 

~/ = (15)(26) 

left-right reflection 

rearward rotation 

front-rear reflection. 

There are two classes of periodic pattern. In the first, the reflectional symmetry 
a is unbroken, and the patterns are given by the analysis of D3-equivariant Hopf 
bifurcation in Golubitsky and Stewart (1986) or Golubitsky et aI. (1988). In the 
other class, a produces a phase shift of half a period. The possibilities are listed in 
Table 4. 

The common tripod gait of insects (in which the front and rear legs on one side, 
and the middle leg on the other, move together, followed by the remaining three legs 

Fig. 22. Network of six 
identical oscillators modeling 
(some) hexpodal gaits. 
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Table 4. Typical patterns for six coupled nonlinear oscillators. 
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Ref. LF (I) RF (2) LM (3) RM (4) LH (5) RH (6) Comments 

I a  A A A A A A 
b A A+½ A a + ½  a A+½ 

2 a A a A+½ a + ½  A + ~  A + ~  
b A a A + ~  A + ~  Z+½ A+½ 

3 a  A A A A A A 
b A A B B A A 
c B B A A A A 

4 a A A A+½ A+½ B B 
b A a B B A+½ A+½ 
c B B A a a + ½  A+½ 

5 a A A+½ A+½ Z + ~  Z + ~  A + ~  
b A a + ½  A + ~  A + ~  a + ½  A + ~  

6 a A A+½ Z Z + ½  B B+½ 
b a a + ½  B B + ~  A A+½ 
C B B + ½  A A + ~  A A+½ 

7 a A a + ½  A+½ A B B 
b A A+½ B B A + ~  A 
C B B a A+½ A+½ A 

B = ½ period 
B=8+  

B = ½ period 

half a period later) does not occur in this network. However, it does occur naturally in 
a hexagonal network, as a mode in which alternate oscillators are phase-locked half a 
period apart, so that the oscillators group into two sets of three, effectively acting as 
a coupled pair of oscillating subsystems. Group-theoretically, this corresponds to the 
"threefold" mode in which the elements 0 in Z3 C D3 act as rotation by 30. See Sect. 
10 for an alternative possibility and Collins and Stewart (1993) for more extensive 
and detailed analyses. 

By increasing the number of oscillators to 2n, with a similar arrangement, we 
obtain models for multilegged animals such as centipedes. Among the symmetry 
types of solutions, there will typically occur traveling waves, sweeping along the 
chain of oscillators. We may also pass to the continuum limit and consider an in- 
terval composed of infinitely many, infinitely small oscillators. The periodic states 
for such a system include traveling waves and standing waves. Cohen (1988) reports 
that traveling waves occur in dogfish, whereas standing waves occur in salaman- 
ders (Figure 23). More detailed discussions of fish locomotion can be found in Gray 
(1968). Finally, we note that Epstein and Golubitsky (1992) have recently developed 
a "reflection" trick for converting problems posed for a linear string of n oscilla- 
tors into rings of 2n oscillators. It is analogous to an idea developed for partial 
differential equations (Crawford et al.,  1991). It extends our symmetry methods to 
networks with very little symmetry. However, we shall not discuss this development 
further here. 



382 

t ;%  

J. J. Collins and I. N. Stewart 

Traveling wave 

e ' e  

®,.® 
®,..® 

Standing wave 

®=® 

Fig. 23. Traveling wave in a dogfish. (b) Standing wave in a salamander. 
[Reprinted with permission of the publisher. From A.H. Cohen (t988). 
Evolution of the vertebrate central pattern generator for locomotion. In Neural 
Control of Rhythmic Movements in Vertebrates (Cohen, A.H., Rossignol, S., 
and Grillner, S,, eds.), pp. 129-166. Copyright © 1988 John Wiley & Sons, 
Inc,, New York. Reprinted by permission of John Wiley & Sons, Inc.] 

10. Implications for the Neural Control of Locomotion 

Using group-theoretic techniques, we have demonstrated that whole classes of 
models--namely networks of identical oscillators coupled in various more-or-less 
symmetric ways--possess "universal" patterns of phase-locked oscillations, many of 
which correspond to observed patterns of phase-locking in animal gaits. We have 
also shown that there are resemblances between the natural sequences of symmetry- 
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breaking bifurcations that occur in symmetric systems, and the transitions observed in 
gaits. We have presented these patterns and transitions in two distinct interpretations: 
either as oscillation patterns of a central pattern generator controlling limb movement, 
or as the movements of the limbs themselves. 

One way to develop these abstract results would be to build detailed physiolog- 
ical models, possessing the desired symmetries, and analyze the effects of various 
parameters, taking into account the known behavior of symmetric networks. The role 
of our results in such an investigation would be to organize what behavior should be 
looked for and suggest methods for finding it. These models would involve adjustable 
parameters for such quantities as the coupling between the component oscillators. 
The system will select possible patterns of oscillation from those available in general, 
according to the values of those parameters. This provides a natural mechanism for 
the control of gait transitions, and a natural mechanism for subsequent learning. 

In a more speculative vein, we could attempt to combine our two distinct inter- 
pretations of CPG structure and animal morphology. Presumably locomotor ability, 
and its neural control, evolved together. The "universality" of oscillation patterns of 
symmetric systems with given symmetry provides a natural link between the signals 
that can be produced by a small network of neurons and certain "natural" oscillations 
of an animal's body. That is, some movements of an animal are naturally modeled 
by simple neuronal networks. Within a given symmetry class there is a "universal 
mapping" between possible CPG oscillations and possible gait patterns. It would thus 
be possible to select for efficient gaits by fine-tuning the parameters of both CPG and 
physiological development through the usual Darwinian mechanisms. 

An important point to note about the correspondence between neuronal networks 
and gross physiology is that minor rerouting of a neuronal network could have a 
significant effect on the resulting gait. For example, we have observed that the six- 
oscillator network described in Sect. 9 does not exhibit the common tripod gait of 
insects. However, if the connections between the middle pair of oscillators (Figure 
22) and the corresponding limbs are interchanged from left to right, then the relatively 
simple gait pattern lb in Table 4 would become, precisely, the tripod gait. 

Our analysis does not force any commitment on whether a CPG is a self-sustaining 
system, or whether it is a forced system, responding to an incoming signal. Neither 
does it imply that a CPG must necessarily be truly "central": its components might be 
distributed throughout the central nervous system. The patterns of symmetry-breaking 
are the same in all cases, provided only that the incoming signal is distributed identi- 
cally to the component oscillators. Given the experimental evidence that at least some 
CPGs are located not in the brain but in the spinal cord, the picture which emerges 
is that of a forced oscillator-system, triggered by a signal from the brain: brain --~ 
CPG ~ limbs. The nature of symmetry-breaking implies that a single periodic signal 
from the brain (Kupfermann and Weiss, 1978) can stimulate different phase-locked 
oscillation patterns in the same CPG. Changes in animal gaits might thus depend 
on something as simple as the amplitude or frequency of this "driving" signal. They 
might also, as already mentioned, depend upon changing the strength or nature of the 
coupling within the CPG. 

Central pattern generators are not easy to locate or analyze. Paying attention to 
the symmetries of animal gaits may provide information on the likely structure of 
CPGs, and on how the neural connections to limbs should be arranged to produce the 
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observed gaits. Because varying parameters may produce different oscillation patterns 
in the same network architecture, the same locomotor central pattern generator may 
control a whole range of apparently very different gaits. 

Appendix 1. Symmetric Hopf Bifurcation 

In this appendix, we summarize the Hopf bifurcation theorem and its extension to 
symmetric dynamical systems. For the standard Hopf theorem see Appendix 3 in 
Murray (1989), and for full details on the symmetric generalization see Golubitsky 
and Stewart (1985) or Golubitsky et al. (1988). Consider the dynamical system 

dx 
dt - f ( x ,  a). (5) 

where x ~ R n, f : R  n --> R n , and a ~ R is a parameter. For convenience we assume 
that f(O, a) =-- O, so that x = 0 is always a steady-state solution of (5). Let (df)(x,a) 
be the Jacobian matrix evaluated at (x, a). 

Suppose that f commutes with the action of a compact Lie group F on R n . For Hopf 
bifurcation to occur, the Jacobian (df)(x,a) must have purely imaginary eigenvalues 
--ira at some value a0 of a.  Assume that the eigenvalues cross the imaginary axis 
with nonzero speed. Generically the corresponding real eigenspace of the derivative 
L = (df)(x.ao) is a F-simple representation; that is, it takes one of the two forms 

V ~ V where V is absolutely irreducible, or 

W where W is nonabsolutely irreducible. 

Assume this generic hypothesis, and assume without loss of generality (via center 
manifold or Liapunov-Schmidt reduction) that Nn is the real eigenspace of L for 
eigenvalues -+ira. Define an action of the circle group S 1 = R / Z  on R n by 

O ' x  = e -2~rOL. 

If  x ~ ~n then its isotropy subgroup Ex C F x S I is defined to be 

~;~, = {r E F  x S ~ l r . x  = x}. 

If  5~ C F x S l then its fixed-point space is defined to be 

Fix(E) = {x E Nnlcr • x = x for all ~r E £}. 

With these assumptions, we may state the following result of Golubitsky and Stewart 
(1985): 

Symmetric Hopf  Bifuraction Theorem 

Let E be an isotropy subgroup of F × S t such that dim (Fix ~) = 2. Then there exists 
a branch of periodic solutions to (5) with period near 27r/o9, having E as their group 
of spatio-temporal symmetries, where S 1 acts on a periodic solution by phase shift. 
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Informally, this asserts that at a symmetric analogue of a Hopf bifurcation several 
branches of periodic solutions bifurcate, distinguished by their symmetry groups ~. 
(Do not take "several" too literally: for some groups F- - in  particular any cyclic 
group--there will be only one branch, because only one subgroup E satisfies the 
condition dim(Fix E) = 2.) 

Appendix 2. Space-Time Symmetry Classifications 

With the notation of Appendix t, we may ask what form an isotropy subgroup E C 
F x S 1 can take. The answer (Golubitsky and Stewart, 1985; Golubitsky et al., 1988, 
Chapter XVI, Sect. 7) is that it is a twisted subgroup 

H * = {(h, ,p(h)) I a H} 

for a closed subgroup H of F and a group homomorphism p:H ~ S 1 . Not all such 
subgroups are isotropy subgroups, and whether one is depends upon the represen- 
tation of F concerned. However, to obtain a list that includes all possible isotropy 
subgroups for all representations, it suffices to list all possible twisted subgroups. This 
we do by listing all closed subgroups H of F, and for each H finding all possible 
homomorphisms q~. 

For the rectangularly symmetric network of Sect. 4 the group F is Da, and the 
calculation just outlined is routine group theory. The possible subgroups H are shown 
(up to conjugacy) in Table 5, using the notation of Sect. 4. Case-by-case analysis of 
possible homomorphisms ~ yields Table 1. 

In Table 6 we also place on record the results for F = D4, using the abstract 
presentation 

< 01,1310~ 4 = 1, t32 = 1, 3 ~  3 = a 3 > .  

We list the "untwisted" subgroups H of D4 × S I first. 
The lattice of subgroup containments is shown in Figure 24. It determines the 

possible patterns of symmetry-breaking for network types I and 3, which as we have 
mentioned, abstractly have the same symmetries. 

Table 5. Subgroups of D2 (rectangular network 
2). Here a = (12)(34) and/3 = (13)(24). 

Symbol Elements 

D2 I, o~, ~, a/3 
Z~ I, a 
z;  I, 
zy t, ~¢ 
1 I 
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Table 6. Twisted subgroup of D4 >( S l(network types 1 and 3). 

Symbol Elements 

94  
Z4 

Z2 

1 
D4 X S 1 

2, 
2, 

6o5 

@ 
z3t~ 

2~ 
2o 

1, c~, c& c, 3, /3, c~/3, c,2 /3, c~3 3 
[,  Of, O~ 2, Cl 3 

1, oz 2, /3, ce2/3 
1, ee 2, ~/3, ~3 /3 
1, ~2 
I , /3  
1, a/3 
1 
It, 01, [~, o], [~2, o], [~3, o1, [/3, o], [~/3, o1, [o~z3, o1, [~33, o] 

[z, o1, [~, ½1, [,~:, o•, [,~3, ½1 
[I, o1, [a s, o], [3, ½], [ '~,  ½1 
[I, 0], [~2, ½], [/3, 0], [~/3, ½] 
[L 0], [a 2, }], [/3, ½], [a/3, o] 
[z, 0], [,~2, 0], [,~/3, ½], [~3/3, ½] 
It, 0], [~,  ½], [oa3, 0], [o,3/3, ½] 
b', 01, [,~2, ½], [,~/3, ½], [,~3/3, o] 
[i, 0], [c~ ~, ½] 
[I, o], [/3, ½] 
[I, 0], [~/3, ½] 

for all 0 

Appendix 3. Generic Oscillation Patterns 

The purpose of this appendix is to providethe mathematical justification for Table 3. 
It will assume familiarity with the techniques used to study Hopf bifurcation in sym- 
metric systems, and with appropriate mathematical notation (Golubitsky and Stewart, 
1985, 1986; Golubitsky et at. ,  1988). Swift (1988) provides a more detailed analysis 
of four-oscillator systems. 

Suppose that we have a system of ordinary differential equations 

d x  
- -  + f ( x , a )  = O, 
d t  

where x = (xl . . . . .  xn) ~ R n and a ~ R is a bifurcation parameter. Assume that f 
commutes with a linear action of a compact Lie group F on R n . If  Hopf bifurcation 
occurs, then the Jacobian ( d f ) x  has purely imaginary eigenvalues _ io) at some value 
a0 of a.  Generically the corresponding real eigenspace of the derivative ( d f ) x  is a 
F-simple representation as in Appendix 1. Thus to find the possible range of generic 
Hopf bifurcations we decompose R n into irreducibles and list all possible F-simple 
components, after which each component can be analyzed separately. In fact, for this 
paper, we need only the cases F = D4 and Z2, as we shall demonstrate. 
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D4xS 1 

~ o  ~A  0 A 
Z2 Z2 Z2 z , Z~ Z~ Z 2 

1 

Fig. 24. Lattice of twisted subgroups of D4 x S t. 

Suppose we have a network N of oscillators. Let F be its automorphism group, 
the group of permutations of the oscillators that preserves 

a. the type of oscillator, and 

b. the type of coupling. 

Then the associated dynamical system that describes the behavior of the network will 
be equivariant for F. 

If we have k types of  oscillators, O~ . . . . .  Oh, with ni of each type Oi, and if 
the number of internal degrees of freedom in Oi is di ,  then the dynamical system is 
defined on the vector space 

k 

~"~ ®~ R ~, 
i = 1  

and the F-action is by permutation on N n' and is trivial on N d~. It is this vector 
space that we must decompose into F-simple components. We consider network type 
1 (Figure 6) as an example; the calculations in the other four cases are similar. 

Type 1. This network has square symmetry D4 generated by the permutations a~ = 
(i243) and /3 = (12)(34). If  there are d internal degees  of freedom, then Nn is of 
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the form R 4 ff~e R d . Thus we first decompose N4. There are three distinct irreducible 
components: 

Vl = {(x, x,  x,  x)} 

½ = {(y, - y ,  - y ,  y)} 

v3 = ((u, v, - v ,  - u ) }  

trivial action 

ot : y~---~-y 

/3 : y ~--~ - y  

Each representation is absolutely irreducible, so Hopf bifurcation requires d --> 2; 
that is, there must be at least two internal degrees of freedom for the component 
oscillators. We have 

R4 (~R ~ d .  Vl (~R ~d ~ ~ ~)R [~d ~) V3 ~R ~d 

so the possible F-simple components are ~ ®R •2, ½ ®R R 2, V3 ®R R 2. The first 
corresponds to ordinary Hopf bifurcation in which D4 symmetry is preserved, so it 
implies that all four oscillators have the identical waveform. The second is equivalent 
to Z2-equivariant Hopf bifurcation where the kernel < a2, ~fi > of the action is 
factored out and the Z2-action is nontrivial. Here the symmetry is broken to a twisted 
Z2 generated by (a, ½): that is, the effect of a or/3 on the oscillation pattern is to 
create a phase shift of ½ (half a period). In other words, if oscillator 1 has waveform 
A then oscillator 2 = a(1) has waveform A + ½; oscillator 4 = a(2) has waveform 

1 A + ½ + ~ = A; and oscillator 3 = a(4) has waveform A + ½ again. Conjugates of 
the isotropy subgroup yield no new pattern. 

The third case, V3, is standard D4 Hopfbifurcation (Golubitsky and Stewart, 1986; 
Golubitsky et al., 1988). There are three simultaneously bifurcating branches, with 
isotropy subgroups conjugate to E: 

:~2 -- z f  • z~ ~'~) = < 8 ,  (~:, ½) >,  

r~ = z~  ~ • z~ ~'~) = < ~ ,  (,~, ½) >.  

For ~1 we get the pattern 

(A ,A  + ¼,A + I , A  + ½), 

because the isotropy subgroup implies that oscillators related by a quarter turn (a) are 
a quarter of a period (1) out of phase. The conjugate solution is obtained by left-right 
reflection and is generated by (a 3, ¼). 
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For N2 we have the following isotropy: the system is unchanged by left-right 
reflection t ,  so oscillators 1 and 2 have the same pattern A, and 3 and 4 have 
the same pattern B. Also, the system is unchanged by rotation a 2 through angle ~r 
followed by phase shift of ½, so B = A + ½. Thus we have the pattern 

(A,A,A + ½, A + ½), 

and also its conjugate (front-back reflection instead of left-fight) 

(A,A + ½, A,A + ½). 

For ~3 we find that the pattern is unchanged by reflection in the diagonal (1-4 or 2-3 
depending on which conjugate we choose) and by rotation through 180 ° followed by 
i phase shift. Consider the 2-3 diagonal: we have the same waveform A in oscillators 
2 
1 and 4, but 2 and 3 are arbitrary, say B and C respectively. Symmetry under the 
180 ° rotation and ½ phase shift implies that 

B + ½ = C ,  

A + ½  = A .  

The first determines C in terms of B; the second says that A is half a period out of phase 
with itself, that is A has half the period of the overall system. Therefore A oscillates 
at twice the frequency expected from linear analysis (determined by the imaginary 
eigenvalue ---iw). This apparently paradoxical effect is actually quite natural, and an 
example is given in a three-oscillator system by Golubitsky and Stewart (1986) and 
Golubitsky et at. (1988). At any rate, we observe the patterns 

(A, B, B + ½, A) [A = half period], 

(A, B, B, A. + ½) [B = half period]. 

This 2:1 frequency-locking phenomenon and its locomotor implications are treated in 
greater detail in Collins and Stewart (1992). 
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