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Summary. The Ginzburg-Landau modulation equation arises in many domains of 
science as a (formal) approximate equation describing the evolution of patterns through 
instabilities and bifurcations. Recently, for a large class of evolution PDE's in one 
space variable, the validity of the approximation has rigorously been established, in 
the following sense: Consider initial conditions of which the Fourier-transforms are 
scaled according to the so-called clustered mode-distribution. Then the corresponding 
solutions of the "full" problem and the G-L equation remain close to each other on 
compact intervals of the intrinsic Ginzburg-Landau time-variable. In this paper the 
following complementary result is established. Consider small, but arbitrary initial 
conditions. The Fourier-transforms of the solutions of the "full" problem settle to 
clustered mode-distribution on time-scales which are rapid as compared to the time- 
scale of evolution of the Ginzburg-Landau equation. 
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1. Introduction 

The so-called Ginzburg-Landau equation arises in many domains of science as an 
approximate equation describing the evolution of patterns through instabilities and 
bifurcations [4]. The equation occurs "generically" in the sense that it is obtained 
as a result of formal approximation procedures in specific problems of, for example, 
fluid dynamics, reactions-diffusion processes, or electric forcing of liquid crystals. In 
the mathematical sense the equation is a "universal" approximate equation for large 
classes of nonlinear PDE's of evolution type (see for example [3]). The equation looks 
as follows: 
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q/(~, ~-), ~: ~ (-0% co), r ----- 0, is a complex-valued function, /Zo, /.1,2, I"2 are real, 
and /3 is (in general) complex. All coefficients can be computed explicitly in any 
particular problem under consideration. It will be of importance for our considerations 
to note that the space-like variable ~: and the time-like variable r in equation (1.1) are 
slow variables (as compared to the "physical" variables of the original problem). In 
particular 

= ~2t, (1.2) 

where e is a small parameter (to be defined shortly) and t is the original time 
variable. 

Let us give an impression of the physical meaning of the Ginzburg-Landau equation 
by considering three prototype experiments from fluid dynamics: the Taylor-Couette 
problem of flow between concentric rotating cylinders, the Brnard experiment on a 
layer of fluid heated from below, and the Poiseuille flow between parallel walls driven 
by a pressure gradient. In all these cases there is a control parameter R (Reynolds- 
number, Taylor's-number, Rayleigh's-number) which can be varied at will by manipu- 
lating the experimental apparatus. Theoretical analysis of the governing Navier-Stokes 
equation shows that the basic smooth flow loses its stability to wave-like pertubations 
when R exceeds some critical value Rc. For each R > Rc there is an interval of wave- 
numbers k for which these waves are (linearly) unstable. (See Fig. 1.1 given below.) 
Nonlinear analysis and experiments show that at supercritical conditions R > Rc (but 
sometimes also at subcritical conditions R < Re, IR-  Re] small) wave-like patterns, or 
patterns of greater complexity evolve, reaching equilibrium configurations, or develop 
further into chaotic states. 

The significance of the Ginzburg-Landau equation lies in the fact that it is a uni- 
versal model equation: it arises (by formal procedures) as an equation governing the 
evolution of patterns at R near Rc for an enormous universum of original "full" prob- 
lems. The only trace of the "full" problem is found in the numerical values of the 
coefficients of the equation (see for further details [4]). 

A challenge to mathematicians, at this stage, is to prove the validity of the G-L 
equation, not only as a formal approximate equation, but as an equation of which the 
solutions provide approximations for solutions of the original "full" problem, in some 
well-specified sense. Recently considerable progress has been made in this direction. 
For certain specific problems of fluid dynamics a theory was developed by Iooss, 
Mielke, and Demay [6] and by Iooss and Mielke [7], while for a rather particular 
equation, called the Swift-Hogenberg equation, a proof of validity was given by 
Collet and Eckmann [1]. 

On the other hand, van Harten [5], considering a prototype class of problems, 
developed a method of analysis which seems very promising for far-reaching general- 
izations. In the present paper we derive results that are complementary to van Harten's 
analysis, in a sense to be specified shortly. 

Following [5] we study solutions O(x,t) of the class of nonlinear evolution PDE's 
given by 

- Lqt + N(t)), (1.3) 
Ot 
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with x ~ ( - %  0% t - 0. L is a real linear differential operator in x, with constant 
coefficients containing some control parameter, R. N(t)) are quadratic nonlinear terms. 
They are of the structure 

N($)  = 27rp(~92), (1.4) 

where p is again a linear differential operator in x, with constant coefficients. 
Next we introduce the symbols /z(k;R) and p ( k ; R )  of the operators L and N, 

through the formulas 

L . e -i~x = e - i kx  tx (k ;R) ,  (1.5) 

p" e - ikx  = e-ikX p ( k ; R )  (1.6) 

In order to make the analysis transparent we consider, in what follows, the case that 
/x and p are real. However, we emphasize that this is not a restriction for the results. 
Extension to the complex case does not introduce new difficulties. 

L is assumed to be of higher order than p, so that p(k ;R) / I . z (k ;R)  tends to zero for 
[k I ~ ~ (some discussion of this requirement will be given later on). Further, L and p 
are arbitrary. The only specification for L is the behavior of /x(k;R),  sketched in Fig. 
1.1. In the (R, k)-plane there is a critical parabola-like curve on which/z  = 0. For 
R > Rc solutions of the linearized version of (1.2) grow with time for wave numbers 
k inside the critical curve. This linear stability curve mimics the general features of 
stability results found in many applied problems. 

We consider the slightly supercritical situation 

R > Rc; R -  Rc = e z, (1.7) 

with e a small parameter. For simplicity of notation we suppress further the explicit 
dependence o f /x  and p on R. Our last requirement is that for any R defined in (i .7) 
/z(k) has a graph as given in Fig. 1.2. 

From bifurcation theory (or formal approximation procedures) it is known that 
under supercritical conditions (1.7) one can expect that the nonlinear equation (1.2) 
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Fig. 1.1. 
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Fig. 1.2. 

will have small (order e) nontrivial solutions. We shall study these solutions in a 
Fourier-transformed version of (1.2). Following [5] we introduce 

t) = I ~ O(x, t )e - ikXdx.  (1.8) ¢b(k, 

Then (see [5]), equation (t .2) is transformed into 

0q~ 
- -  = iz(k)d9 + p(k)CD ,d9, ( t .9)  
~t  

where q5 • ¢b is the convolution, i.e., 

*gP :=  f~_ ~ (k ' ,  t)qa(k - k', t )dk ' .  (1.10) 

The initial value problem for (1.2) is thus transformed into 

• (k, t) = e ~(k)' ~° (k )  +. p(k) e-~(~)t'q ~ * ~ d t '  , (1.11) 

where ~°(k)  is the Fourier-transform of ~(x,O).  Equation (1.11) will be the main 
object of our analysis. 

We now describe the main results of [5]. Let us introduce a scaling of the Fourier- 
components 

q~ = 8k(E)~?, ¢ = O(1). (1.12) 

Van Harten considers a "clustered mode-distribution," sketched in Fig, 1.3. 
The Fourier-components are of the order E tn-ll in intervals Ik - nkcl = O(~) and 

tail off very rapidly to very small orders of magnitude outside these intervals. This 
clustered mode-distribution was first introduced in [2]. The distribution is invariant 
under convolution. It is easy to derive the Fourier-transformed equivalent of the G-L 
equation. The main body of [5] is a proof of validity, which is necessarily rather 
technical and requires subtle choice of suitable Banach-spaces to accommodate all 
types of interesting solutions of the G-L equation and yet be able to use a contraction- 
mapping argument. The main result can be described as follows. 
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Consider solutions of (1.11) with cb°(k) scaled according to clustered mode- 
distribution. Then the solution of the (Fourier-transformed) G-L equation with the 
same initial conditions is an approximation of 6p(k, t) with an O(E) error on any 
compact interval of the intrinsic 1/~ 2 time scale, on which the solution of G-L is 
bounded. 

The complementary result, which will be established in this paper, is conceptually 
very simple. The main statement is as follows. 

Consider in (1.11) initial data dP°(k ) scaled as follows: 

(i)0(k) = 8k(e)q~0(k), q~0 = O(1), (1.t3) 

~k(E) = max[f (k, kc), el, (1.14) 

where f (k, kc) is of order unity for I k  - kcl = O(e ) and becomes rapidly small outside 
this interval. Then on time scales given by 

? 
0 < t < - -  v ~ ( 0 , 2 ) ,  7" = O(t)  (1.t5) 

the corresponding solutions c~(k, t) settle to the scaling of the clustered modes- 
distribution of Fig. 1.3. 

We note that the time scales given in (1.15) are long in terms of the original 
"physical" time t, but are short as compared to the G-L time scale (1.2). Hence, our 
main result states that from initial conditions scaled by (1.13), (1.14) the solutions of 
the Fourier-transformed (1.11) collapse to the clustered mode-distribution before they 
start to evolve on the Ginzburg-Landau time scale. This result, combined with van 
Harten's proof, shows in essence that the Ginzburg-Landau equation is an attractor 
for small solutions of nonlinear evolution equation of the type (1.3). 
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Remarks and comments. In an earlier version of this paper, the results of which 
have been announc.ed in [4], I did not include the order-one peak f(k, kc) in the 
initial condition (1.14). Critical remarks by Aart van Harten, Alexander Mielke, and 
Guido Schneider on the general level of the solutions which I have obtained made me 
understand the serious nature of this omission. I am very grateful for this constructive 
criticism. 

Reflecting more in general on the  O(E) solutions tp of (1.3), it is clear that their 
Fourier-transform ~b should be O(e) in the Ll-norm (over k). But this permits any 
number of peaks of order one, with O(e) support. I have included in the analysis 
only the peak centered at k = kc. However, once the analysis has been performed 
(in particular sections 2 and 3) it is quite easy to see that a peak at any other location 
will disappear rapidly. 

2. Analysis and Estimates of the Convolution Integral 

In our problem the nonlinear interactions between the Fourier-components are ex- 
pressed by the convolution integral • * qb. We intend to derive careful estimates for 
the magnitude of the convolution as a function of the parameter k. 

We introduce the initial scaling 

aa(k, t) = ak(e)q~(k, t), 

8k(e) = Max[f  (k, kc), e], 

~-k = 8k, (2.1) 

for k --> 0, (2.2) 

~2 
f(k, ko): = (k - k0) 2 + ez" (2.3) 

The function f(k, ko) mimics a distribution of orders of magnitude which is of order 
unity for k - k0 = O(E), and becomes rapidly smaller outside such intervals. In fact, 

f(k, ko) = O(e z-2e) for I k - k 0 ]  = O(e p) p ~ [ 0 , 1 ] .  (2.4) 

We are given that at the initial time t = 0, q~(k, 0) = O(I) for each value of k E 
(-c% ~). After the scaling (2.1) we get 

clp,q~=f~k,~k_k,q~(k')cp(k-k')dk ', (2.5) 

where for simplicity of notation the dependence of ~o on t has temporarily been 
suppressed. The analysis of qb • qb is a bit technical, but the ideas are very simple: on 
small intervals of the k'-axis, ~k and/or 8k-k' are of order unity. One separates out 
these intervals (taking them of order ~ so that the decay of 8k,Sk-k, tO order e is 
incorporated). The contribution of each of these small intervals can be estimated to be 
smaller than [supk 1~I] 2 multiplied by an explicitly given integral. On the remainder 
of the k'-axis, ~k" 3k-k, = ~2 and the integral of [~(k')[. [~(k - k')l can be estimated 
to be smaller than the product of sup~ t91 a~d II ~ ILL,. We shall demonstrate in this 
way the following result: 
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Lemma 2.1. For k >- O, 

169 * 691 <- e{c Max[f  (k, 0), f(k,  2kc), e] sup [q~[ + e II ~ ILL,} sup 19t 
k k 

where c is a constant independent of  e and 

ti ~ lILt: = f~= l~(k)l dk.  

Proof. Let us introduce the following subintervals of the U-axis: 

I+ = {k'lk'  = +-kc + O(, f~)},  (2.6) 

J± = {k'lk - k '  = +-kc + O( .,re)}. (2.7) 

In each of these intervals one of the order functions 6k,, 6k-k, is of order unity. 
However, we observe (and one can easily verify this) that: 

When k ~ O(v/7)  and k # -T-2kc + O( , re )  then I± and J± cannot pairwise coincide 
and one of the factors in 6k,ak-k, is always O(e). 

We commence our analysis with this restriction on the values of k. The first step 
is the estimate 

169 * 691 - e f, ~k,lq~(k')[' I~(k - k')[ dk' 
+ + J -  

+ ~ f: 8k-k,l~'(k')l" [,p(k - k') [  dk' 
+ + J -  

+ E 2 I ~ ( k ' ) l "  I ~ ( k  - k') l  dk'. 

(2.8) 

Note that in the last integral we have "filled in" the small subintervals removed in the 
first four integrals, which is consistent with overestimating [69 * 691- Next we use 

2 

169 * 69] ~ E 3k, dk' + 6k-k, dk' sup Iq~ + e 2 sup Iqo[- I~ldk'. 
+ + l -1  + + j _  k 

(2.9) 

Each of the remaining integrals in (2.9) is equal to the integral 

i k~ + c .f~ e 2 
k ~ - c ~  (k' - kc) 2 + e 2 dk' 

ff,~r[ 1 + O( .,/~)]. (2.10) 

This last result is easily obtained by explicit integration. 
Next we consider the values of k such that k = O(,/ 'e).  Then I± and J± coin- 

cide pairwise and (skipping a few steps entirely parallel to the preceding analysis) 
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one gets 

< 2  

+ e 2 supt,,]-l[ ~ [Ic~ - 
k 

E 2 
, dk'[sup ko[] 2 

(k - k'  + k~) 2 + e ~ k (2.1D 

The remaining explicit integral is estimated in Appendix A. 1, producing the result 
stated in Lemma 2.1. 

We consider finally k = 2kc + O(~/~) .  Again there are intervals of the k'-axis on 
which both 6 k, and 6k_ k, are of order unity. Proceeding as above, one now gets 

t kc + c ,f~ ~2 ~2 
t~ *aP[ --<2jr _ z ~  (k '  - kc) 2 + e 2 " (k - k '  - kc) 2 + E 2 dk'[supl~pll2k (2.12) 

+ ~= sap[~l" II ~ IL 
k 

The integral is again estimated in Appendix A. 1, completing the statement made in 
Lemma 2.1. [] 

3. A Priori Estimates of  the Solutions 

The starting point of the analysis is the integrated version of the functional-differential 
equation for the Fourier-components Cb(k, t); that is, 

~ ( k ,  t) = e~(k)t[q~°(k) + p(k)  e-~(k)rcb * ~d t ' ] .  (3.1) 

An estimate for I~ *~t  is given in Lemma 2.1. Let us introduce the following norms: 

X(~) = sup II~iL, (32) 
O<-t~T 

Y(q:Q = O<-t<-TSUp [supl~(k,t)l] ,  (3.3) 

where T is a parameter to be chosen later on. Then, for 0 <-- t <- T, Lemma 2.1 
states: 

I qb * ~l -< E{c Max[f  (k, 0), f ( k ,  2kc), e]Y(qo) + eX(~)}r(~o).  (3.4) 

Introducing this result in (3.1) and performing the integration with respect to t '  produce 
the basic inequality 

I~1 --< e"(~)tlq~°l + ~f(k, r){~X(~) + c Max[f (k, 0), f ( k ,  2kc), e]Y(qO}Y(q~), (3.5) 

io(k)l [e~(k)t _ I]. (3.6) F(k, 0 - - - ~  
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We intend to derive inequalities for X(q~) and Y(p) and eventually prove that these 
norms remain bounded on time intervals which are large (for e ~, 0) but are short 
as compared to the intrinsic time scale of the Ginzburg-Landau equation, given by 

= t i e  z. The analysis will necessarily be somewhat technical, but in essence is 
again very simple. The results are collected in Lemma 3.1, at the end of this section. 

We recall the scaling (2.1), (2.3). From (3.5) it follows in a straightforward way 
that 

Y(~p) -< e~(k'0rY(~p °) + {ezY(FI)X(p) + eY(Fz)Y(p)}Y(~p), (3.7) 

X(~) = et*(k~)rX(~ O) + {e2X(Fl)X(q~) + eX(Fz)Y(~)}Y(~),  (3.8) 

with 

1 
F1 = F(k,  t )Max~(k"  kc), e)'  (3.9) 

Fz = F~(k, t) c Max(f  (k, 0), f (k, 2kc), e) (3.10) 
Max( f  (k, kc), e) 

So the task is to estimate the Sup- and the L1- norms of the explicitly given functions 
F1 and Fz. The analysis is elementary, but somewhat delicate. It is given in Appendix 
A.2. The results are as follows: 

Y(F1) = e-2Cl(e2T), Y(F2) = e-lc2(eZT),  (3.11) 

X(FI) = ff-z+(1/3)Ct(E2T), X(F2) -- E-I+(1/3)C2(EZT ). (3.12) 

Here C1, C2, C1, and C2 are approximately constant when eZT = o(I); these expres- 
sions remain bounded when eaT = O(1) but is numerically sinai1. Overestimating all 
these constants by some constant Co, we obtain the following system of inequalities: 

Y <- Al + Co[X + Y]Y, (3.13) 

X <-- A2 + el/3Co[X + Y]Y, (3.14) 

where we have abbreviated 

From (3.14) we deduce 

AI:  = e~(k~TSuplq~01, 

A2' = e u'(~c)r II IIL  
(3.15) 

(3.16) 

A2 + e(~/3~CoY2 
x -< (3.17) 

1 - e(l/3)CoY 

For E small this is permissible in some range of T, because Y = O(t)  at T = 0 and 
depends continuously on T. From (3.13) X can now be eliminated, and (regrouping 
the terms) we find the inequality: 

~(Y) --- 0, (3.18) 

~(Y) :=  (Co + ~(1/3)Co)y2 - (I - CoA 2 + e(1/3)CoA1)Y + A I. (3.19) 
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The function ~(Y)  has two zeros Y1.2, given by 

1 1 Y1.2 = ~ o [  - CoA2 -~ .,/(1 - c0a2)  2 - 4a lC0]  + O(e 0/3>) (3.20) 

In order to obtain useful bounds on Y(q~) we must impose now some additional 
conditions. We shall give shortly a clear interpretation of these conditions (in terms of  
the initial distribution of ~0), but first we work out the consequences. So we impose 

1 - CoA2 > 0, (3.21) 

(1 - CoA2) 2 > 4AiCo. (3.22) 

Then Y12 are both real and positive. A plot of  ~(Y) is sketched in Fig, 3.1. It is an 
easy exercise to show from (3.20) that 

A1 
Y~ > - -  > At. (3.23) 

t - c o A 2  

In order to interpret these results we look more closely at the definition of AI and A2 
in (3.15) and (3.16), and impose the following limitation on T: 

T - e2_~, 1" = O(1), (3.24) 

where o- is an arbitrarily small positive number. On these time scales, 

A l  = Supl~°l[1 + o(1)] (3.25) 

az =11 9 ° ][r~ " [1 + o(1)] (3.26) 

At the initial moment  Y(~) = y(q~0) = Suplw0t < 1tt. The norm Y(~) depends con- 
tinuously on T and therefore cannot jump to the branch Y > Y2. So we have our a 
priori estimate Y(9) < Y1 on time scales (3.24), and from (3.14) the a priori estimate 
for X(~)  follows. With the aid of  (3.25) and (3.26) we also have a direct interpretation 
of the conditions (3.21) and (3.22). The results are collected below: 

S Y/ 

Fig. 3.1. 
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L e m m a  3.1. We consider scaled Fourier-components dg(k, t) = 8k(e)~(k, t) with 
6k(e) = Max[ f  (k, kc), ~], f ( k ,  kc) = E2/[(k - kc) 2 + 62] and introduce norms 

X ( ~ ) :  = Sup 2 l~(k, t)[dk 
O~ t<_z T 

f l 
Y(q~): = Sup ~Supl~(k , t ) [}  

O~t<-T L k J 

with T limited by 

T - 62_o., T = O(1) 

where ~r is an arbitrarily small number. We further introduce numerical bounds on 
the initial conditions 

fo *[m(k, O)]dk ---< 1 
Co 

k -- ~ 1 - co l~(k,O)tdk 

where Co is some constant. 
Then the norms X(~), Y (q~) are uniformly bounded, independent of E. 

Remarks. It is not clear whether the numerical limitations on the (scaled) initial con- 
ditions are essential, or are a technical complication due to our method of  analysis. 
But these limitations do not affect the scope of  our analysis because they do not 
impose restrictions on the order o f  magnitude of  the initial conditions. They are just 
numerical restrictions on the attraction-domain of  the G-L manifold. 

4. The Appearance of Clustered Modes-Distribution 

With the a priori estimate of  Lemma 3.1 our basic inequality (3.5) contains a wealth 
of  information on the Fourier-components q~(k, t). We repeat this result here for the 
convenience of  further analysis: 

I~(k, t)l < e~k~qcI'°I + Cf (k ,  kc){EX(~) + c Max[ f  (k, 0), f ( k ,  kc), e]Y(~)}Y(q~) 

(4.1) 

where we have used the estimate (A.2.5) for the function F(k,  t) appearing in (3.5). 
We know that X(~p) and Y(~) are bounded on the time scales given by 

j- 
0 --< t < T, T - E~ ,, v ~ (0,2), ~" = O(1). (4.2) 
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Fig. 4.1. 

So we immediately deduce from (4.1): 

L e m m a  4.1. For all k such that Ik - kcl >-- d ,  d = O(1) the influence o f  initial 
conditions becomes exponentially small on time scales for which v is an arbitrarily 
small number. For [k - kc] >- e 1-~, cr > O, the same holds, but in longer time, i. e., 
for  2(1 - tr) < v < 2. 

Next, again from (4.1), we find the following: 

L e m m a  4.2. On time scales (4.2) the Fourier-components Cb(k, t) reach the magni- 
tudes 

(L~ = 8~l)(E)~O (1), ~(1) = 0 ( 1 )  

with 6~1)(e) = Max{7"~zn =o e ln- l l f (  k, nkc),  e2}. 

We see that the clustered mode-distribution begins to appear. It is sketched in 
Fig. 4.1. 

5. Refined Results on  the Clustered Mode-Distribution 

Let us reflect a bit on the course of our analysis. We have started with the initial 
scaling of  the Fourier-components 4p(k, t) : 

qb = 6k(e)~o, (5.1) 

8k = Max[ f  (k, kc), e], (5.2) 

~2 

f ( k ,  kc) = (k - kc) 2 + ez '  (5.3) 
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and carefully deduced the orders of magnitude of the convolution qb, ~ as a function 
of k (Lemma 2.1). Next we have established that, on time scales faster than the 
G-L time t / e  2, the norms of ~ occurring in Lemma 2.1 are bounded (Lemma 3.1). 
This immediately permitted us to draw conclusions on the disappearing influence of 
the initial conditions outside the critical strip tk - kcl = O(E)  (Lemma 4.1), and 
furthermore produced a new scaling (Lemma 4.2) given by 

~b = 6~l)(e)q~(1), (5.4) 

~l ) (e )  = M a x  ~ n k ~ ) ,  . ( 5 . 5 )  

ln=0 

So it should be expected that further refinement of the scaling results could be obtained 
by essentially a bootstrap strategy: start anew with the scaling (5.4), (5.5) and recycle 
the preceding analysis leading to a new scaling, and then keep repeating the operation. 
This may seem a large undertaking but there is one very essential simplification: we 
now know that ~o (1) is bounded for e ~ 0 and therefore do not need to repeat the a 
priori estimate. 

Let us state our main result and then, after a few comments, describe how it is 
demonstrated. 

Theorem 5.1. Let the initial conditions for Fourier-components dp(k, t) satisfy the 
scaling (5.1), (5.2), (5.3) with q~(k, 0) = O(t)  and the technical boundedness con- 
ditions of Lemma 3. I. Consider the time instant 

t - T E R +  e2- o. , 

where o" is an arbitrarily small positive number. Then 

cb(k, t) = 6~(~)(o(k, t), ~ = O(1) ,  

3k(e) = Max eli-hi[f (k, nkc)] N, e N , 
n=0 

where N is an arbitrarily large integer 

Comments. We note that 

[f(k,  k0)] N = O(e  2N(1-p)) for tk - kot = O(e p) (5.6) 

So the clustered mode-distribution shows a very rapid decay in orders of magnitude 
outside the intervals ]k - nkc I = 0(~). 

In what follows we shall describe in some detail the first steps of the bootstrap- 
strategy and then outline the conclusion of the proof. 

Step 1. We consider 

(~) * (I 0 .~. f co=--k'a(l)t~(l)~k-k 'W'(l)(l't)@(I)(ktr~ -- k ')dk ' (5.7) 

with 6~ 1) given in (5.5). By Lemma 4.2 ~p(t) is bounded for e $ 0. So we can abbreviate 
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the bookkeeping of section 2, treating Supl,p (1>1 and I1 IlL, as constants, and just 
state the order of magnitude of cb.dp as a function of k. We must naturally distinguish 
various domains. 

k # +--nkc + O( ,Je) ,  n = 0, 1, 2, 3 : One of the functions ~;~1) ~;~1) is of order ~k' ' Vk -k '  
~z for all k'. The analysis is further as in section 2, so with a modification of (2.10) 
and (2.11) due to the smaller order of magnitude (e z as compared to e) we find 

Jok * okl = o ( ~ 3 )  • ( 5 .8 )  

k = +-nkc + O(~'~), n = 0, 2: Nothing changes in the analysis of section 2, and 
we have 

]ok • Ok[ = O(~ f (k, nkc)). (5.9) 

k = k¢ + O 4 ~  : We now have an interaction of O(1) peaks near k = +-kc and 
O(~) peaks near k = 0 and k = +-2kc. The integrals to be evaluated follow (with a 
slight change of notation) from Appendix A. 1, and we find 

lok * d91 = O(e f (k ,  k~)). (5.10) 

k = +-3kc + O( v/'~): By the interaction of peaks at k = +-kc, k = "+2kc, and 
again using Appendix A. 1, we obtain 

tok * okl = O(e2f(  k, 3k~)). (5.11) 

These results give the following modification of the basic inequality (4.1): 

Iok(k, t)[ <-e~k~'lok° I + lcf(k, kc){E2X (~p (1)) 

+ c Max If(k,  0), Ef(k,  kc), f ( k ,  2k~), e f (k ,  3k~), e2y(q~(l)}Y(¢(t)). 

(5.12) 

Using Lemma 4.1 and analyzing the result (5.12), we find: 

ok = 6~2)(e)@ (2), ~0 (2) = O(1) ,  

3 
3])(e)  = Max {fZ(k, kc) + ~ ,  e In-l[f(k, nkc), e3}. (5,13) 

n---O 
n¢=l  

We see that the clustered mode-distribution becomes more pronounced: 

• A new O(e 2) peak appears near k = 3kc and the order of magnitude between peaks 
drops to e 3. 

• The peak near k = kc has become steeper. 

Step 2. In the next recycling step one starts with the scaling (5.13). There is a slight 
(but inessential) difficulty because of the appearance of convolution integrals with 
unsymmetric integrants of the type 

f ( k ' ,  0)f2(k ' + k, kc). 
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We did not bother to deduce sharp estimates for such integrals because the difficulty 
is easily circumvented by proceeding in two "half-steps." First we leave 6k for k near 
kc unchanged and obtain 

q5 = 6~3~q~( 3~, ~o (3~ = O(1), (5.14) 

I± ± } 6~ 3) = Max e[n-tlf2(k, nkc)  + el"+ll f(k,  nkc),  ,4 . 
[ n = O  n = 3  

(5.15) 

Next, recycling with (5.15), one gets 

~4~ = Max f3(k .  kc) + ~ ,tn-~tf2(k, nkc~ + ~ , l " - l l f ( k ,  nk~) , ,  5 . 
n - - 0  n = 4  

n # 1 

(5.16) 

We observe that (5.15) proves Theorem 5.1 for N = 2. From (5.16) by another 
"half-step" the theorem is demonstrated f o r N  = 3. 

Concluding steps. Full proof of the theorem follows by induction and is obtained 
essentially by repetition of computations which already have been given and further 
use of Appendix A. 1. The reasoning runs as follows: suppose the theorem is true 
for N = M. In a first half-step the estimate near k = kc is sharpened and one gets 
[ f  ( k ,  k¢)] M+I. Next, other terms are improved to [ f  (k, (nc)] M +I, n = O, 1 . . . . .  M ,  
and some smaller terms are produced. Finally the term [ f ( k ,  (M + 1)kc)] M+l is added 
to the result, We leave out the explicit technical details which by now should be 
obvious. 

A. Appendix 

A.1 .  Some Convolution Integrals 

We consider, for k --> 0, k = O(.,/~) the integral 

f kc +c ~/~ ~2 if2 
dk '  

Io = k~-c,/g (k'  - kc) 2 + e 2 (k - k'  + kc) 2 + e 

where c is some (order-one) constant. We introduce the transformation 

k ' = k c + ½ k + f c  

and obtain 

= ~-(t/2)k+c,f~ (!2 62 
Io J-(1/z)k-c 47 (lc + ½k) 2 + e2"(k - ½k) z + e 2 dlc 

(A.t.1) 

(A.I.2) 

(A. 1.3) 
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For each k = O(,/ 'e) we can choose c such that the upper integration limit is positive. 
For masons which shall become clear shortly, we apply a somewhat more conservative 
condition: 

- k  + c , /~ > O. (A.1.4) 

Next, the integral (A.I.3) is reformulated so that the integration variable runs over 
non-negative values only: 

Io = [fo-O/2)k+c.fi + ~(1/2)k+c~,~" 52 •2 • .  
~o (~ + ½k)2 (~: - ½k~) + ,  

(A.I.5) 

We can now introduce the obvious estimate 

&. 
I o  --< ( ik)  2 + •2 + (f~ _ ½k)2 + • (A. 1.6) 

The final step is the transformation of variable 

lc = ½k + es e, (A.1.7)  

which produces 

Io -< • 
5 2 I~(kh)+(cf~ 7) 

(½k)2 + ~2 L;_(W2)@t~ ) 
r <fd~ ] df 

+ .1-(1/2)(k/,)] ~2 + 1" 
(A. 1.8) 

By explicit integration one gets 

•2 
• .a•27r(t + O(,/'e)). (A. 1.9) 10 ----- (1/2k)  2 + 

Hence 

Io ~ e f ( k ,  0)" 87r(1 + O(.re).  

We consider now, for k = 2kc + O(. , /~) ,  the integral 

( k~+c ./'~ E2 e2 

1I = |jk~_c,/~ (k' - kc) 2 + •2 (k - k '  - kc) 2 + E 2 

(A. 1.10) 

ate'. (A . I . l l )  

After the transformation 

k = 2kc + k, = o(,/7) (A. 1.12) 

one finds 

II Jkc-c,fi (k' - kc) 2 + e 2 ( k  - k'  - kc) 2 + e 2 
dk ', (A.1.13) 
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which is identical to I0 of (A. 1.1), with k replaced by/c. A further difference is that 
~: can take negative values, but with condition (A. 1.4) replaced by 

-Ikl + c ~  > 0 (A.1.14) 

one can just repeat the analysis and get from (A. 1.9) 

and finally, 

~2 

I 1 -- (½i) 2 q- t= 2 26¢r(1 + O(,,/7)), (A. 1.15) 

I1 <- e f (2 ,  2kc)" 8rr(1 + 0( , /7)) .  

In the analysis of section 5 one needs integrals of the type 

(A. 1.16) 

.__.. ~-(1/2)k+c,4~ I ,~2 62 }n 
~n : d-(1/i)k-c.,/7 [ (~ "t~ ½ k)2 q" 62 " ( i  -- ½k) 2 -k 62 de, 

(A. 1.17) 

with n an integer. They can be evaluated by methods similar to the preceding integrals. 
The steps are as follows: 

& -< + ( i  + ½k) 2 + 6 2 

}n 
( ~ _ 1  2 dk, gk) + e 2 

(A. I. 18) 

~n <: (lk)2 -b e 2 La_(l/zl(k/,) + a(t/2xk/~)j (#2 + 1)"' (A. 1.19) 

62 }n 
I ,  -- (½k) 2 + ez 2rr(1 + O(,,/e)). (A. 1.20) 

A.2. Coefficients in the Inequalities for Norms 

Our first object is the study of F(k,  t) given by 

F(k ' t )  : -  'P(k)i [e~(~)r - 1 ]  " i x ( k )  (A.2.1) 

Note that/x(k) is a polynomial in k and has a positive maximum of the order e 2 at 
k = kc. In the vicinity of k = kc /x(k) is monotonic for both k > kc and k < kc. 
In fact, for Ik - kc[  small we have 

/z(k) = ee/Zo = pq(k - kc) 2 + O[(k - kc)3]; /x0,/z~ > 0. (A.2.2) 

By straightforward power series expansion one finds 

IF(k, t)I = ]p(k)It[t + O(tx(k)t)]. (1.2.3) 
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The error term is of the order ezt when ]k -  kc[ = O(e) but becomes larger outside that 
region. On the other hand, for (k - kc) 2 > (/z0//zl)e 2 the function/z(k) is negative, 
so that one then has 

Ip(k)l (A.2.4) If(k, t){ - -/z(k-'---~" 

The order of magnitude of F(k, t), over the whole domain of k, can be described by 

IF(k, t)[ -< ~C(e2 t ) f ( k ,  kc) (A.2.5) 

where C(e2t) is bounded and of order unity when e2t is a less or equal order unity. 
Next we consider 

F(k, t) 
Fl(k, t) :=  Max[f  (k, kc), e]" (A.2.6) 

Because of the denominator the situation is more complicated. As before we find 

for  Ik - k d  = O ( e ) ,  lFl(k, t)[ <- pot + O(e2t), (A.2.7) 

where/90 is some constant. However, 

for [k - kc I = O(,f~) ,  I FI(k' t)l <-- ~z; (A.2.8) 

for  Ik - k~[ = 0 ( 1 ) ,  [Fl(k, t) I <_ c.  (A.2.9) 
E 

In the above (and in the sequel) the symbol c denotes constants which (in a sharp 
estimate) are of course not all the same. Our conclusion is that in the supremum norm 

Y(F1) <- -~Cj(EZT), (A.2.10) 

C I ( E Z T )  = poe2T + Co, (A.2.11) 

In order to deduce useful estimates in the Li-norrn we must be even more careful. 
We must assume that lp(k)l/f~(k)l decays to zero for Ik[ ~ ~ sufficiently fast so 
that the integral over the whole k-axis (excluding the neighborhood where/~(k) = 0 
exists). This condition is automatically satisfied if the differential operators in the 
basic equation (1.1) have leading terms of even order (in that case Tp/ t z  I ~ k - z  for 
Ikl--, o~). Now to the estimates. The difficulty lies in the fact that the intervals in 
(A.2.7) and (A.2,8) contribute to the same order of the magnitude, yet we must exploit 
the fact that the largest contributions come from a lk - kcl = o(1)  subinterval. 

We observe that for 

lk - kcl > ce p, /~ ---- O(e2P) ,  (A.2.12) 
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and divide the integration interval as follows: 

fo [I?" r 1 [Fl(k, t) I d k  = + + IFl(k, t) t dk .  (A.2.13) 
Jkc-c~e Jk~-cePJ 

The middle integral is smaller than Y(F1) times the interval length. So we get 

f0 if; IFl(k, t)[dk <-- Y(F1)2ce p + 1 ~ c~o - + ]Fl(k,  t )  I .dk.  (A.2.14) 
E c+C~p 

Using (A.2.10) and (A.2.12) it follows that 

fo ~lF~(k, t)ldk <- 2cCI(e2T)e  -2+0 + E-1-2PC. (A.2.15) 

Optimal choice of p is obtained by putting 

1 
- 2 + p  = - l - 2 p - - * p =  3 '  (A.2.16) 

so that the final result is 

X(FI)  = e - 2 + ( 1 / 3 ) d l ( f f 2 T ) .  (A.2.17) 

We now turn to the analysis of 

F2(k, t) "= F(k ,  t) 
c Max[f  (k, 0), f ( k ,  2kc), El 

Max[f (k, k¢), e] 
(A.2.18) 

When k > c ~ and ]k - 2kcl > c ,j-e, then 

F2('k, t) = ecFl(k ,  t). (A.2.19) 

On the other hand, for k = O(.,/~) or ]k - 2k¢ 1 = O(4/7) an easy estimate shows 
that 

c 
IFz(k, t) t <--- - .  (A.2.20) 

e 

Therefore, using the results for FI, it follows that 

Y(F2) = !C2(f f2T) .  
ff (A.2.21) 

Finally, the Ll-norm of Fz. Near k = 0 and k = 2kc the contribution to the 
integral is of order one, because integrals of f ( k ,  0), f ( k ,  2kc) are of order E. The 
contribution of the neighborhood of k = kc is as established in the analysis of FI. 
Therefore, 

X(F2) = e - I+( I /3 )C2(e2T ). (A.2.22) 
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