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Summary. Engineering and physical systems are often modeled as nonlinear differ- 
ential equations with a vector A of parameters and operated at a stable equilibrium. 
However, as the parameters A vary from some nominal value ho, the stability of the 
equilibrium can be lost in a saddle-node or Hopf bifurcation. The spatial relation in 
parameter space of )to to the critical set of parameters at which the stable equilibrium 
bifurcates determines the robustness of the system stability to parameter variations and 
is important in applications. We propose computing a parameter vector A, at which 
the stable equilibrium bifurcates which is locally closest in parameter space to the 
nominal parameters )to. Iterative and direct methods for computing these locally clos- 
est bifurcations are described. The methods are extensions of standard, one-parameter 
methods of computing bifurcations and are based on formulas for the normal vector 
to hypersurfaces of the bifurcation .set, Conditions on the hypersurface curvature are 
given to ensure the local convergence of the iterative method and the regularity of 
solutions of the direct method. Formulas are derived for the curvature of the saddle 
node bifurcation set. The methods are extended to transcriticat and pitchfork bifur- 
cations and parametrized maps, and the sensitivity to h0 of the distance to a closest 
bifurcation is derived. The application of the methods is illustrated by computing the 
proximity to the closest voltage collapse instability of a simple electric power system. 

Key words, bifurcation, saddle node, Hopf, stability, robustness, optimization, nu- 
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1. Introduction 

Consider a system modeled by smooth parametrized differential equations: 

= f ( z , A ) ,  z ~ A  n, A E R  r~, m--> 2. (1.1) 
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We write x for a particular equilibrium of (1.1) and assume that x is asymptotically 
stable at the fixed parameter vector ko ~ R m. )to arises in applications as the param- 
eters at which the system is currently operated or nominal parameters for engineering 
design purposes. As h varies in the parameter space R m , the equilibrium x varies in 
the state space A n and may disappear or become unstable in a bifurcation. The set 

C R" of parameters at which x disappears or becomes unstable in a bifurcation 
determines the limits in parameter space at which the system may be stably operated 
at x and is of importance in applications. ~ is part of the bifurcation set and typically 
consists of hypersurfaces in N'~ and their intersections. 

Given the fixed parameter value )to, an obvious question concerns the spatial re- 
lation of ~ to E and in particular the points of E which are closest to ~ .  Indeed, 
the distance from )to to the closest points of E measures the robustness of the system 
to parameter variations when it is operated at )to and the directions of the closest 
points of ~ from ~ are "worst case" directions for parameter variations leading to 
disappearance or instability of x.  There is an inherent difficulty in describing the ge- 
ometry of multidimensional hypersurfaces such as E, and computing the points of E 
locally closest to a fixed parameter value k0 is a useful way to summarize the spatial 
relation of to to N while avoiding the difficult task of describing all of E. We call the 
bifurcations at the points of E locally closest to ko "locally closest bifurcations." 

Our computation of locally closest bifurcations is directed toward applications in 
which it is desirable to monitor and avoid bifurcation instability in a multidimensional 
parameter space. In applications such as the electric power system example of Sect. 8, 
the parameters h vary slowly in time and the objective is to monitor the proximity to 

so that corrective action can be taken if )t moves too close to E. In an engineering 
design application as in Mazzoleni and Dobson (1993), system (1.1) is being designed 
to be robust to parameter variations by ensuring that the nominal design parameter 1o 
is sufficiently far from E. In both types of applications, it is desirable to obtain both 
the direction in parameter space of a closest bifurcation and the distance in parameter 
space to this bifurcation. Indeed, if the distance to a closest bifurcation is dangerously 
small, then parameters should be changed (controlled or redesigned) to increase this 
distance. The optimum direction for this parameter change can be obtained from the 
sensitivity to )to of the distance to a closest bifurcation as discussed in Sect. 9, 

The key to the computation of a locally closest bifurcation is the normal vector 
to hypersurfaces of  ~ and formulas for the normal vector are presented in Sect. 2. 
Section 3 expresses the conditions for a closest bifurcation in terms of the normal 
vector and curvature of ~;. In Sects. 4 and 5, we propose iterative and direct methods 
of computing locally closest bifurcations. The standard methods for computing points 
of ~ assume that ~. varies along a given straight line in R m so that the computation 
is reduced to the case of a one-dimensional parameter space. The formulas for the 
normal vector to ~ allow us to extend the standard methods to compute the points 
of ~ locally closest to k0. Conditions on the curvature of Z are given to ensure 
the convergence of the iterative method and the regularity of solutions of the direct 
method. 

We write x .  and )~. for the equilibrium x and parameter )t at a bifurcation and 
fx j .  = fxl(x.,X.) for the Jacobian f x  evaluated at the bifurcation. The hypersurfaces 
of Z correspond to a real eigenvalue of fx J* being zero (saddle node bifurcation) or a 
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complex conjugate pair of eigenvalues on the imaginary axis (Hopf bifurcation). We 
write Esn for the set of A for which the Jacobian fx [(x,A) has a zero eigenvalue and Ehopf 
for the set of A for which f ,  I(~,A) has a pair of imaginary eigenvalues. If system (1.1) is 
assumed to have no special restrictions or symmetries, then the saddle node and Hopf 
bifurcations are the only bifurcations generic in curves of parameters in A m (Sotomayor 
1973) and we can restrict our attention to these generically occurring bifurcations. 
Transcritical and pitchfork bifurcations arise in systems with special restrictions or 
symmetries and we consider computing closest transcritical and pitchfork bifurcations 
in Sect. 6. Section 6 also states the minor modifications needed to compute the 
closest bifurcations of parametrized maps. Section 7 derives formulas to compute 
the curvature of saddle node bifurcation hypersurfaces in E sn. This paper presents and 
analyzes new methods for computing locally closest bifurcations but does not consider 
the detailed implementation or performance in particular applications. However, we 
illustrate the computation of a closest saddle node bifurcation in a simple electric 
power system in Sect. 8. 

Most applications of bifurcation theory deal with a multidimensional parameter 
space by assuming that the parameters vary along a given straight line in order to 
reduce the problem to a one-parameter problem. This paper proposes one way to 
address bifurcation problems in a multidimensional parameter space. Other authors 
have addressed multidimensional parameter spaces in different ways and we briefly 
indicate their approaches. 

Although the focus in this paper is codimension one bifurcations in a multidi- 
mensional parameter space, we note that it is natural to study bifurcations of higher 
codimension in a parameter space of dimension equal to the codimension of the 
bifurcation. For example, Spence and Werner (1982), Roose and Piessens (1985), 
and Griewank and Reddien (1990) compute cusps of codimension two in a two- 
dimensional parameter space using extended systems. Spence et at. (1990) and De 
Dier et al. (1990) study the B-points of codimension two in which a saddle node and 
Hopf bifurcation coincide in two-dimensional parameter space. Kaas-Petersen (1990) 
computes a codimension three event in which a curve of Hopf points has a loop that 
degenerates to a cusp in a three-dimensional parameter space. 

One way to study the hypersurfaces of ~ is to compute curves in ~.  Rheinbotdt 
(1982) studied three methods for computing curves of saddle node bifurcations in Zsn 
in a general parameter space with more than one parameter. Curves in ~2 sn of saddle 
node bifurcations in a two-dimensional parameter space were computed by Jepson and 
Spence (1985) and applied to perturbed bifurcations and isolas. De Dier et al. (1990) 
compute curves in ~sn and Nhope and also curves of B-points in models of chemical 
reactions. Dai and Rheinboldt (1990) locally characterize Esn with a minimal extended 
system and compute a simplicial approximation to Zsn 

Some previous work on the closest saddle node bifurcation has been done in the 
context of the stability of large scale electric power systems. (Most of the work 
addresses the saddle node bifurcation in the context of the existence of a solution 
of static equations at which it is feasible to operate the power system.) The idea 
of computing a closest instability in a real power injection parameter space is due 
to Galiana and Jarjis (1978). Using a hypothesis that ~ is convex, Galiana and 
Jarjis parameterize Z with the normal vector N to S~ and define a measure D which is 
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the perpendicular distance from the operating real power injections ho to the tangent 
hyperplane of E with normal N. Minimizing D with conjugate gradient methods yields 
a closest instability and this computation is illustrated in a 6-node power system. Jarjis 
and Galiana (1981) minimize a non-Euclidean distance to instability in a load power 
and voltage magnitude parameter space using Fletcher-Powell methods. Constrained 
minimization in the load power parameter space is also considered. More recently, 
the saddle node bifurcation has been associated with the increasingly serious problem 
of voltage collapse and blackout of the power system (Dobson and Chiang 1989; 
Fink 1989; Fink 1991). Jung et al. (1990) suggest a gradient projection optimization 
method to compute a closest saddle node bifurcation and Sekine et al. (1989) attempt 
to compute a closest saddle node bifurcation by gradient descent on the determinant 
of the Jacobian fxi(x,X), Dobson and Lu (1992a) use the direct and iterative methods 
of this paper to compute a closest saddle node bifurcation in a six-dimensional load 
power parameter space of a 5-node power system. The theory for the iterative method 
in this paper is summarized in Dobson (1992b). 

2. Normal Vectors to Bifurcation Hypersurfaces in Parameter Space 

This section derives formulas for the normal vectors to saddle node and Hopf bifurca- 
tion hypersurfaces in parameter space. The formulas are not new and are essentially 
well-known transversality conditions, but they are usually obtained for the case m = 1 
of a one-dimensional parameter space and their useful interpretation as normal vectors 
to bifurcation hypersurfaces for m ---> 2 has not been emphasized. 

Write E~n for the set of A, ~ E sn for which equation (1.1) has a saddle node 
bifurcation at (x, ,  h,) with f~[, having a unique simple zero eigenvalue and satisfying 
the transversality conditions 

w,fxl,  ¢ 0, (2.1) 

w.fxx(v. ,  v,)[. ~ O, (2.2) 

where v, and w, are the right and left eigenvectors of f.~ I* corresponding to the zero 
eigenvalue. A, ~ ,y.~.n implies (Sotomayor 1973, Sect. 3.1; Chow and Hale 1982, 
Sect. 6.2) that there is an open set'V ~ A, such that ~ n V = ~sn O V and N}n n v 
is a smooth hypersurface and that the bifurcating equilibria near x ,  are given by u()d.) 
where u is a smooth function u : N~n n v ~ R n and u(A,) = x . .  It follows that 
2sn has a normal vector N(A,) at A, ~ E~ and the Gauss map N : ~n  ~ Sin-1 is 
smooth. (S m-I is the m - I sphere of unit length vectors in R 'n.) Moreover, 

N(A,) = otw,f  x[,, (2.3) 

where h, ~ E~ n and a is a nonzero real scale factor (also see formula (7.1)). [a] is 
chosen so that IN(A.)I = 1 and the sign of a is chosen so that changing h in the 
direction of N(A,) leads to the disappearance of x. 

The normal vector of formula (2.3) is the natural geometric interpretation of 
the transversality condition (2.1) and follows from the development in Chow and 
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Hate (1982, Sect. 6,2) or may be verified as follows (Dobson 1992a): For any 3.. 
~;~ we have f ( x . ,  3.,) = 0 where x .  = u(A.). Let d3.. be any one-form in the 

* srt cotangent space T (~ r )x . -  Then 0 = d f  = fx l ,dx .  + fxl.dA, and w.fAt ,d) t ,  = 
- w . f ~ l . d x .  = 0. Since d3.. is arbitrary, w,fz[ ,  is a normal vector to ~;}n at 3... 
Therefore N()t .)  = aw.f,~I, for some real a .  

"Th°Pf for the set of  3.. E ~,hopf for which equation (1.1) has a Hopf  bi- Write ~ r  
furcation at (x , ,  A.) with fxl* having a simple pair of  eigenvalues _+jw., o9. # 0 
and all other eigenvalues with nonzero real parts and satisfying the transversality 
conditions (2.4,2.5) presented below. Since fx].  is invertible, the implicit function 
theorem implies that there is a smooth function u defined in a neighborhood of  3.. 
with u(3.,) = x . ,  u(h) = x and f(u(3.) ,  A) = 0. Moreover, u~ = - f x l f , ~ .  There is 
also a smooth function p. defined in a neighborhood of A, with/x(3..) = jo) .  and/z(3.) 
an eigenvalue of fxl(u(z),)O. Write v and w for the right and left complex eigenvectors 
of  fxf(,,(A),x) corresponding to p~(A); these eigenvectors are normalized according to 
Iv I = 1 and wv = 1. Then v and w are smooth functions of 3. in a neighborhood 
of  3.,. Write v, = v(3..) and w, = w(3.,). The transversality conditions satisfied by 

s ,  hopf 3., E , . ,T  are 

c # 0, (2.4) 

Dx(Re{/z(3.)}) # 0, (2.5) 

where c is a coefficient of  cubic terms in the flow reduced to the center manifold and 
is a complicated function of  triple derivatives of  f (Guckenheimer and Holmes  1983; 

~;hopf implies (Sotomayor 1973, Sect. 3.4; Golubitsky and Schaeffer 1985). 3.. ~ ~ r  

Chow and Hale 1982, Sect. 9.5) that there is an open set V ~ 3.. such that Ehr°Pf AV = 
E h°pf f-1V is a smooth hypersurface given by Re{/x(3.)} = 0. It follows that ~hopf has a 

• s ' h o p f  sm-I "rh°Pf and the Gauss map N .  ~'r  ~ is smooth. normal vector N(3..) at 3.. ~ ~'r 
Moreover, 

N(3..) = /3 R e { w ( - f x x f ~ l f x  + f~x)v}[.,  (2.6) 

where/3  is a nonzero real scale factor. Ifl[ is chosen so that IN(3.,) t  = 1 and the sign 
of /3  is chosen so that changing 3. in the direction of N(3..) leads to the instability of  
the operating equilibrium. 

To prove formula (2.6), we first Compute the eigenvalue sensitivity/xA by following 
Horn and Johnson (t985).  Differentiate 

/..L ~ w f x k '  

with respect to 3. to obtain 

I.Zx = wDx( fx)v  + wx fxv  + w f x v x  = wDx(fx)V + I, zDa(wv) = wD,~(fx)V, 

Since D)dfx) = fxxUa + fxx = - f x , ~ f x l f x  + fx;~, 

I,z;~ = w ( - f x x f x l f ; t  + fxa)v, (2.7) 
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~hopf A normal vector to "~r at 3.. is Da(Re{/~(h)})k = Re{~a}lx. so that (2.7) gives the 
required formula (2.6). A different scaling of formula (2.6) and similar computations 
appear in Gohbitsky and Schaeffer (1985, pp. 352-355). 

3. Closest Bifurcations and the Normal Vector and Curvature of 

We express conditions for a closest bifurcation at 3.. ~ N in terms of the normal vector 
and curvature of E at h..  

We write E r  = ~ U E ~  pf and N : Er  ~ S n -  t for the Gauss map on Er .  If we 
define the distance to bifurcation A : Er  --~ R by A(3.'.) = 13.', - Ao[, then a closest 
bifurcation to )to is a local minimum of A. If A has a local minimum at h, ,  then 3.. 
is a critical point of A and 3.. - 2to is parallel to N(A,). This observation explains the 
key rote of the normal vector N(3..) in computing a closest bifurcation. 

The condition ensuring that a critical point 3.. of A is a strict local minimum is 

IX. - 3.0[ '~ (kmax) -1 if k max > 0, (3.1) 

where k m~x is the maximum principal curvature of Er  at A, (Thorpe 1979, Chap. 16). 
That is, the radius [3., - 3.01 of the sphere centered on ho must be exceeded by the min- 
imum radius of curvature (kmax) -1 of Er  at 3... Note that the curvature condition (3.1) 
is always satisfied if )to is close enough to Xr or if k max is negative. 

The curvature of ~ r  at 3.. can be stated in terms of N (Thorpe 1979; Dai and 
Rheinboldt 1990). The second fundamental form II: TEr  x TEr  ~ R is the quadratic 
form given by 

II(a, a) = a r N x . a .  (3.2) 

The eigenvalues of II[, are the principal curvatures of Er  at h, and we write k max for 
the maximum principal curvature and k rain for the minimum principal curvature. In 
the case of the saddle node bifurcation, Sect. 7. presents formulas for the curvature 
II of E sn so that kmax of (3.1) may be computed. 

4. Iterative Method 

This section describes an iterative method for computing a locally closest saddle node 
or Hopf bifurcation. There are well known direct, continuation, and iterative methods 
for computing the closest bifurcation to A0 along a one-dimensional ray in parameter 
space based at A0, e.g. Seydel (1988) or Mittelman and Weber (1980). Any of these 
methods is used to compute the nearest bifurcation at, say, A., along some ray based 
at )to. The normal vector N(A.) is then computed using the formulas of Sect. 2 and 
a new ray based at )to in the same direction as N(A.) is chosen. This procedure is 
iterated until the successive rays tend to a fixed ray and the corresponding A, tends to 
the parameter value of a locally closest bifurcation. We analyze the iteration near its 
fixed points and show that exponentially stable fixed points A. are the parameters of 
locally closest bifurcations. Moreover, if 3., ~ Er  is the parameter of a locally clos- 
est bifurcation and ~;r is not "too concave" at 3.., then the iteration has a corresponding 



Computing a Closest Bifurcation Instability in Multidimensional Parameter Space 313 

exponentially stable fixed point. For convenience, we consider closest saddle node 
bifurcations; the discussion applies to closest Hopf bifurcations with the substitution 
of ~hopf for E sn and A h°pf for Asn. 

Each ray in parameter space starting at A0 is specified by a unit vector n E S m-1 
so that the my is Ray(n) = {)to + t n  I t >--- 0}. We define a function p(n)  which yields 
the parameter value A, of the closest bifurcation along Ray(n). More precisely, if there 
is a smallest positive t .  with A. = )to + t . n  ~ Esn, we define the function p at n by 
p(n )  = A,. Thus p maps a subset of  S '~-1 into E ~.  Any of the standard methods for 
finding saddle node bifurcations along rays may be used to compute p (Seydel 1988; 
Mittelman and Weber 1980). 

Define the set Asn to be the n ~ S m-1 such that p is defined on n and p ( n )  = 
A. E E~ and Ray(n) is transverse to E~. n at )t.. Define a map h : A S~ --> S m-1 
by h ( n )  = N(p(n)) .  The lemmas of Appendix 1 prove that A s" is open and that h is 
smooth. We iterate h to try to find the direction from )to of a locally closest saddle node 
bifurcation: Start with some initial direction no E A ~ and obtain nr,  r = 1, 2, 3 . . . .  
by 

nr+l = h(n, .)  = N(p(n,.)).  (4.1) 

Iteration (4.1) fails if n~ ~ A sn for some r.  
At each step of the iteration the updated direction n~+l is normal to both :~'lp(,~) 

and its tangent hyperplane T~Snlp(~). It follows that the updated direction n~+l points 
toward the point on T~snlo(n~) which is globally closest to ~ .  Thus iteration (4.1) 
may be understood as globally minimizing the distance from ~ to a series of tangent 
hyperplane approximations to ~. 

The fixed points of h are exactly those points n,  ~ Asn for which p ( n . )  = ~.  is a 
critical point of A(~.) = I)~. - X0t. It is straightforward to deduce the local behavior of 
h near its fixed points from its Iinearization h , :  Since T S  ' ' - t  I,,. is parallel to T~S"tx . , 
p,,]n. : TSm-11,~. ---> T~S~l,~. is the uniform dilation with factor [3.. - )t01 and 

hntn, = Na. pn[n. = IIl.la.- hot. 

Hence the fixed point n. is exponentially stable iff 

and 

kmaxtA* - hol < 1 (4.2) 

kminfA, - )tot > - 1 ,  ( 4 . 3 )  

where k max and k min are the maximum and minimum eigenvalues of  II], and the 
maximum and minimum principal curvatures of £sn at 3,.. If  A. is a strict local mini- 
mum of A then condition (4.2) holds (see the identical condition (3. i) and discussion 
in Sect. 3) and h converges to the fixed point n.  iff condition (4.3) is satisfied; 
that is, if £sn is not "too concave" at a . .  The convergence is geometric with factor 
max{ ]kmax], ]kmin I }lh, --  /'tO] and is asymptotically along a direction of maximum ab- 
solute curvature. The iteration converges quickly if the curvature of E sn is small or 
)to is close to Zsn If A, is not a local minimum of A and kmaxIA. - ~ l  > 1 then the 
iteration diverges from the fixed point n , .  
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We emphasize that the iterative method is easy to implement; all that is required is 
iteration of any method to compute the nearest bifurcation along a given ray and the 
evaluation of a formula for the normal vector N(3.,). 

5. Direct Method 

This section shows how to construct direct methods for computing locally closest 
saddle node or Hopf bifurcations which are regular at solutions. 

A saddle node bifurcation at (x, ,  3.,) with A, ~ E~ n satisfies f ( x , ,  3.,) = 0 and 
W , f x ] ,  = 0. The left eigenvector w, can be scaled to satisfy w , f x l , ( w , f , x l , )  r = 1. 
If A, is a locally closest bifurcation to )to, then 3., - )to is parallel to the normal vector 
N(3.,) = w,fxl,  of E~n at 3., so that -k , (3 . ,  - Ao) r + w,fx[, = 0 for some nonzero 
k, ~ R. Consider the closest saddle node equations 

FSn(x, 3., w, k) = 0, (5.1)  

F sn: R n XR r~ XR n xi~-->R z~+m+l, 

where 

f ( x ,  3.) 

W f x  
FSn(x, A,w,k)  = w f ~ ( w f ~ )  r - 1 

k(X - )to) r w f x  

(5.1.1) 

(5 .1 .2)  

(5.1.3) 

(5.1.4) 

A locally closest saddle node bifurcation satisfies FSn(x , ,  w , ,  h,, k,) = 0. How- 
ever, any saddle node bifurcation with A, ~ E~ n and a critical point of A(A',) = 
]A', - Aol at A, will satisfy FSn(x,, w,, h,, k,) = 0. The curvature condition (3.1) 
is required to ensure that h, is a local minimum of A(A',). For practical calcula- 
tion it is often convenient to replace expression (5.1.3) by the simpler expression 
w q  - 1 where q is a fixed vector (Moore and Spence 1980; Spence and Werner 1982; 
Seydel t988). 

Equations (5.1) are the extended system equations for saddle node bifurcations 
(Moore and Spence 1980; Spence and Werner 1982; Seydel 1988) (with left eigenvec- 
tors instead of right eigenvectors) generalized to a parameter h ~ R m by the addition 
of the m equations (5.1.4). In the case of a scalar parameter (m = 1), (5.1.4) yields a 
trivial equation for k which may be omitted and the equations reduce to the extended 
system equations. 

Equations (5.1) may also be related to an optimization similar to that proposed 
by Jung et al. (1990) in the context of voltage stability in power systems: Minimize 
1 [3.- 3.'12 subject to the zeroing of the expressions (5.1.1), (5.1.2), (5.1.3) for 3. ~ R m . 
(Jung et al. (1990) use a right eigenvector instead of the left eigenvector w.) The 
Lagrangian is 

L = ½IA - A'I 2 + m l f  + r n 2 ( w f x )  r + m 3 ( w f ~ ( w f x )  r - I). (5.2) 
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In the voltage stability problem the parameters h are load powers and these enter 
linearly into (1.1) so that fx and w are not explicit functions of 3.. In this case the 
derivative of L with respect to h is 

L~ = (h - h') r + mlf ,~ .  (5.3) 

Now Lx reduces to (5.1.4) with Lagrange multiplier ml = - w / k .  

If Newton-type methods are used to solve (5. I) then the asymptotic convergence to 
a solution is quadratic, which is an improvement over the geometric convergence of the 
iterative method. However, Newton-type methods require good initial estimates of the 
solution. Another disadvantage of the direct method is the burden of checking that 
the solution of (5.1) yields a locally closest bifurcation with the curvature condi- 
tion (3.1). 

Extended system equations to compute Hopf bifurcations may be similarly gener- 
alized to compute locally closest Hopf bifurcations: 

F h ° P f ( x ,  A, O/, Vl, V2, Wl,  W2, U, k )  = 0, (5.4) 

where 

F h°pf : R n X ~m X R X [~5n X 1 ~  R 6n+m+2, 

Fh°Pf(x, A, (.0, Vl, V2, Wl, W2, U, k) = 

f ( x ,  A) (5.4.1) 

f x t , v i  - (.or 2 (5.4.2) 

fx{ .V2 + oar I (5.4.3) 

T q vi (5.4.4) 

v r v l -  1 (5.4.5) 

(W~fxI* - oJw2)'rr (5.4.6) 

(Wzfx{ ,  + o)wl)~r (5.4.7) 

w , v l  + wzv2 - 1 (5.4.8) 

wl v2 - w z v l  (5.4.9) 

f x l , U  - fx[, (5.4.10) 

k(h - ho) r - wl( fx .~U + fx : t ) t . v l  - w 2 ~ x x U  + fx;OI .vz  (5.4.11) 

where q is a fixed vector and 7r is a projection of N,n onto W (n-l) (prime denotes 
dual space). ~r is assumed to satisfy the generic condition that its kernel satisfies 
ker~- 7t range(fxrl. - ioa) = 0 when ¢r is considered as a map C 'n onto C '("-1). Equa- 
tions (5.4.1)-(5.4.5) are the extended system equations of Roose and Hlavecek (1985). 
The normalization (5.4.4), (5.4.5) of the complex eigenvector vt + iv2 is chosen 
so that saddle node bifurcations do not satisfy these equations (Roose and Hlavecek 
i985). Equations (5.4.6)-(5.4.10)compute the additional vectors wl ,  wz ,  u needed 
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in (5.4.11) and (5.4.11) is the condition that 3`, - )to is parallel to the normal vector 
N(A,). Equations (5.4) have dimension 6n + m + 2 so that this direct method for 
computing Hopf bifurcations may be too cumbersome to be useful if n is large. 

Appendix 2 proves that the closest bifurcation systems above are regular at solutions 
if A, ~ E r  and the curvature condition (3.1) is satisfied. This regularity implies that 
the solutions are isolated and Newton type methods may be used to solve the equations 
with quadratic convergence. 

6. Closest Transcritical and Pitchfork Bifurcations and 
Closest Bifurcations of Maps 

If the system (1.1) always has an equilibrium x = 0, then saddle node bifurcations of 
the equilibrium x = 0 cannot occur and the transcritical bifurcation of x occurs gener- 
ically in one-parameter families. (It may be necessary to change coordinates so that the 
trivial solution is at zero.) Also if the system has the symmetry f ( - x ,  3`) = - f ( x ,  3`) 
for all x ~ R n, 3  ̀E Nm, then there is always an equilibrium at x = 0, saddle node 
and transcritical bifurcations do not occur, and the pitchfork bifurcation occurs gener- 
ically in one-parameter families (Guckenheimer and Holmes 1983), This section de- 
scribes formulas for normal vectors to bifurcation set hypersurfaces and methods for 
computing a closest bifurcation for the transcritical and pitchfork bifurcations. Closest 
bifurcations for parametrized maps are briefly considered. 

We first consider the transcritical bifurcation. Suppose system (1.1) satisfies 
f (0 ,  3`) = 0 for all 3  ̀~ R m. We assume that the system is operated at x = 0 and 
that zero is asymptotically stable for 3  ̀ = h0. Write Etc for the set of 3  ̀ for which 
the Jacobian f x  [(0,,) has a zero eigenvalue and write ~;~ for the set of 3,. ~ Ete for 
which fx].  has a unique simple zero eigenvalue with corresponding right and left 
eigenvectors v. ,  w. and satisfying the transversality conditions (2.2) and 

w, fxx l , v ,  v s O. (6.1) 

There is a smooth function/z defined in a neighborhood of 3`, with/x(3`,) = 0 and 
/z(3`) an eigenvalue of fx](0.a)- 3`, E E tc implies (Sotomayor 1973, Sect. 3.3) that 
there is an open set V ~ 3`, such that E~ n V = E t c n  V is a smooth hypersurface 
given by/z(3`) = 0. It follows that Ztc has a normal vector N(3`,) at 3`, ~ E~ and the 
Gauss map N : E~ --~ S m-1 is smooth. Moreover, 

N(3`,) = /3 w,fx,~t,v,, (6.2) 

where/3 is a nonzero real scale factor and v, and w, are normalized so that w , v ,  = 1. 
]/31 is chosen so that IN(3`,)I = 1 and the sign of/3 is chosen so that changing 3  ̀in 
the direction of N(3`,) leads to the instability of zero. Formula (6.2) is proved in the 
same way as the formula (2.6) for the Hopf bifurcation. 

The formula for the normal vector for the pitchfork bifurcation hypersurface is also 
(6.2) and is derived similarly except that the transversality conditions for the pitchfork 
are (6.1) and a condition on triple derivatives of f (Guckenheimer and Holmes 1983). 

Formula (6.2) together with any method for computing a transcritical or pitchfork 
bifurcation along a given ray are sufficient to implement the iterative method. A direct 
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method to compute transcritical or pitchfork bifurcations is 

FtC(v, h, W, k) = 0, 

F ~c : JR" x ~ X R ~ x ~ ---> ~2,,+~+1, 

(6.3) 

where 

{ fx](o,a)v (6.3.1) 

vrv - 1 (6.3.2) 

FtC(v, w, A, k) = Wfxl(O,h)Tr (6.3.3) 

wv - 1 (6.3.4) 

k(h - Xo) r - wfxhl(o,x)v (6.3.5) 

and 7r is a projection of R 'n onto R,(n-1) whose kemeI satisfies kerTr A rangefxrl. 
= 0. Appendix 2 proves that (6.3) is regular at solutions satisfying (6.1). 

It is also straightforward to compute the closest bifurcations of smooth parametrized 
maps g : R n x N" ~ Nn because the bifurcation theory of maps parallels the bifur- 
cation theory of differential equations (Guckenheimer and Holmes 1983; Sotomayor 
1973). Saddle node bifurcation of g occurs when gx has a simple eigenvalue one 
and the formulas and methods for saddle node bifurcations of f apply to saddle node 
bifurcations of g if g(x, A) - x is written for f throughout. For example, f~ becomes 
gx - I and fxx becomes gxa. Hopf or period doubling bifurcations occur when gx 
has a simple pair of complex eigenvalues on the unit circle or a simple eigenvalue - 1 
respectively (Guckenheimer and Holmes 1983; Sotomayor 1973). The formulas and 
methods for the Hopf bifurcation of f apply to Hopf or period doubling bifurcations 
of a map g if g(x, A) - x is written for f throughout except that the Hopf theory for 
maps requires the additional genericity conditions/x 2 ~ 1 and/z 3 ~ 1. 

7. Formulas for the Saddle Node Bifurcation Set Curvature 

This section derives computable formulas for the curvature II of E~. n. (Recall that 
the direct method requires II and km,,x to be computed for use in (3.1).) Numerical 
methods for computing hypersurface curvature are described in Rabier and Rheinboldt 
(1990). 

The first task is to deal more carefully with the specification of vectors in the range 
space of the Gauss map N. Write il for the injection of the unit sphere S m-1 into N" 

and i2 for the injection of E}~ into Nm and i3 for the injection of the unit sphere S ,,,-1 
into the dual space R 'm. Note that we can identify DiItN(AW with Di2t;t. since the 

tangent spaces TS'-llNfaW and TE},nlA. are parallel. (N(A.) r ~ S m-I is the vector 

dual to N(A,) ~ S 'm-1 C N,m ,) Moreover, Di3 ~ is the projection TR '~ ~ TS '~-i 
along N(A.) and its dual is the injection D i l: TS m- 1 _., TRm. Formula (2.3) describes 
N(A.) by a vector in R'm; the corresponding formula describing N(A.) by a vector in 
S tin-1 is 

N(A.) = i31 (aw.fAt.).  (7. t)  
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In this section, it is convenient to assume that w, is scaled and oriented so that 
I ( w , f ~ l , ) l  - -  1 and o~ = 1. Then 

Na, = D i ;  ~ ((w,fx)x.) = (w,fx)x. Di l  = (w,fx)x. Di2 

= w,;t,f;tDi2 + w,f;t;~.Di2. 

Use fx. = f xDi2  to obtain 

II = N),. = w,;t.f~, + w.f~.x,. (7.2) 

Now we seek to express the term involving w.x. in terms of more readily computable 
quantifies. Differentiating f ( u (A . ) ,  A,) = 0 with respect to A. yields 

f ,:ux. + fx. = 0 (7.3) 

so that (7.2) becomes 

II = -w,~t . fxUx.  + w , f x ,  x,. (7.4) 

Differentiating w , f x  = 0 with respect to A, gives 

w,x . f x  + W,fxxUx. + W,fxx,  = 0 (7.5) 

so that (7.4) becomes 

II = w,fxx(U;~., u;t.) + w, fxx .u~.  + w,f;t.:t.. (7.6) 

It remains to calculate the quantity ua. appearing in (7.6). ux. satisfies (7.3) but this 
is not sufficient to obtain u,~. since fx l ,  has rank n - 1. Differentiating w , f x v ,  = 0 
with respect to 3., gives 

w,f:,~(u;t., v ,)  + w,f~;~, v, = 0 (7.7) 

which, together with (7.3), is sufficient to calculate ux.. A numerical example of the 
computation of II for ~sn five-dimensional is given in Dobson and Lu (1992a). 

8. Illustrative Computation in a Simple Electric Power System 

In large scale electric power systems, the system state includes the circuit node 
voltages and the load powers are often modeled as slowly varying parameters, Saddle 
node bifurcation of the operating equilibrium of the power system is associated with 
a "voltage collapse" in which system voltages decline catastrophically (Dobson and 
Chiang 1989; Fink 1989; Fink 1991). Since voltage collapse causes blackouts, there 
is a strong economic incentive to avoid saddle node bifurcation by monitoring the 
proximity of the current load powers relative to Esn and taking corrective action 
if the load powers are too close to Esn. (Note that load powers are controlled by 
the consumers and are generally not controlled by the utility except when selectively 
disconnected in emergencies.) The distance in the load power parameter space from the 
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current operating load powers to a closest saddle node bifurcation is a measure of the 
proximity of the system to voltage collapse. 

We sketch the computation of a closest saddle node bifurcation in a simple electric 
power system example. The example has a two-dimensional parameter space which 
is convenient for easy illustration. However, we expect to use higher dimensional 
parameter spaces in most applications. For example, Dobson and Lu (1992a) use 
the direct and iterative methods to compute a closest saddle node bifurcation in the 
six-dimensional load power parameter space of an electric power system. 

Consider a simple power system model of a generator slack bus, lossless line and 
a load with real power P and reactive power Q (Bergen 1986). The system state 
x = (o~, V) where Ve ic' is the load voltage phasor. The static (load flow) equations 
governing the system equilibria are 

0 = - - 4 V s i n c ~ - P ,  

0 = - 4 V  z + 4Vcosc~ - Q. 

(The generator voltage is 1.0 and the line admittance is 4.0. All quantities are 
in per unit except that angles are in radians.) The parameter vector h = (P,  Q) 
contains the real and reactive powers consumed by the load. Note that the pa- 
rameters enter linearly and that f a  is the negative of the 2 × 2 identity matrix. 
The system is operated at )~0 = (Po, Q0) = (0.5, 0.3) (see Fig. 1) and the corre- 
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Fig. 1. Parameter space of a two-bus power system. 
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Table I. Convergence of iterative method. 

I. Dobson 

r nr p(nr) 

0 (0.585, 0.811) (0.869, 0.811) 
1 (0.398, 0.917) (0.744, 0.862) 
2 (0.349, 0.937) (0.713, 0.873) 
3 (0.336, 0.942) (0.705, 0.876) 
4 (0.333, 0.943) (0.703, 0.876) 
5 (0.332, 0.943) (0.703, 0.877) 
6 (0.331, 0.943) (0.703, 0.877) 

sponding equilibrium is x = (s0, 1~) = (-0.138,  0.908). The closest bifurcation at 
h. = (P,, Q.)  = (0.703, 0.877) was computed using the iterative method (4.1) (see 
Table 1). The same answer is obtained in Dobson and Lu (1992a) by solving the 
direct method equations (5.1) by Newton's method. The normal vector to £ at A. is 
N(A.) = (0.331, 0.943) and the minimum distance to bifurcation is [h, -a0]  = 0.611. 

As discussed in Sect. 4, the convergence of the iterative method to the solution 
demonstrates that h. is a locally closest bifurcation. This may also be checked by 
computing the curvature kmax = II, = 0.420 of £sn at A, using the formulas of 
Sect. 7. The curvature of the dashed circle in Fig. 1 is k, = 1.636 and since k, 
exceeds kmax, condition (3.i)  is satisfied, confirming that the solution is a locally 
closest bifurcation. 

9. Sensitivity to A0 of the Distance to Bifurcation 

If the distance A = tA, - h0t to a bifurcation instability is dangerously small, it is 
desirable to change h0 to increase A. The optimum direction of first order changes 
in )to to increase A is obtained from the sensitivity A,o. For example, Dobson and 
Lu (1992b) assume a fixed direction n for one-parameter variation along Ray(n) = 
{)to + t n  I t >-- 0} and compute the sensitivity 

Aao = - ( N ( A , ) .  n )  - I  N(A,) 

and use this to compute control actions to avoid saddle node bifurcation instability 
of an electric power system. (The parameter space can be augmented with system 
controls if they are not already considered as system parameters.) 

It is also straightforward to compute the sensitivity to )to of the distance A to 
a locally closest bifurcation. It is convenient to regard h(Z',, A~) = IA', - a4[ as a 
function A : E r  x R '~ -+ R. Suppose A, ~ ET is a strict local minimum of A(A', ;to) 
with respect to A',. Then 

Ax:l(a.,a0) = 0 (9.1) 

and 

Aa:a:l(a,,a0) = A - l I  - IIa.. (9.2) 
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((9.2) may be obtained from A< = A - l  [ (A' . -  ) to ) -  ((A',-  Ao).N(A'.))N(h'.)],) 
Equation (9.2) and the curvature condition (3.1) imply that dl,,.<[(h.,ao) is positive 
definite and invertible. 

Since AA,.a,.IA , is invertibte, the implicit function theorem and (9.t)  imply that 
there is a neighborhood U ~ )to and a smooth function A. : U ~ 2;T such that 
A<I(A.(~4),a~ ) = 0 for h~ E U. Since 1I< is continuous, U may be shrunk so 

that A.(h~) is also a strict local minimum of dl(h'., h~) with respect to h'.. Then 
h°(A~) = A (A,(,~), A~) gives the distance to a locally closest bifurcation as a func- 

tion of A~ ~ U and the required sensitivity is given by 

A~,lx 0 = A~l(x.,xo)+ Aa.,](a.,xo)A.,ql, ~ = -N(h.), 

This conclusion is also stated in Galiana and Jarjis (1978). The geometric content is 
clear: the optimum direction to move away from a closest bifurcation is antiparallel 
to the normal vector N(A.). 

10. Conclusions 

We address in this paper the general problem of finding bifurcations of a stable equilib- 
rium which are closest to a given parameter vector )to in a high dimensional parameter 
space. Reliable and efficient solution of this problem would be especially useful in 
engineering applications in which the distance to a bifurcation instability should be 
monitored during operation or design of the system. 

We show how to construct novel iterative and direct methods to compute bifurca- 
tions which are locally closest to A0. Methods for closest saddle node, Hopf, trans- 
critical, and pitchfork bifurcations are proposed, and methods for closest bifurcations 
of maps are sketched. These bifurcations are codimension one and are assumed to be 
generic. The set of parameter values 2; at which the system loses stability has the form 
of hypersurfaces in parameter space. We give conditions on the curvature of 2; for 
convergence of the iterative method and regularity of solutions of the direct method. 
Particularly useful is the property of the iterative method that if it converges exponen- 
tially to a solution h,,  then A, specifies a locally closest bifurcation and second order 
curvature conditions need not be checked. However, the iterative method does not 
converge to a locally closest bifurcation specified by h, if £ is sufficiently concave at 
h,.  The direct method requires good initial solution estimates and the curvature of 
to be checked at the solution. We supply suitable formulas for the curvature of 2; in 
the case of a closest saddle node bifurcation. These formulas are also of independent 
interest since the curvature and the normal vector of £ describe the local geometry 
of £ to second order. Both the iterative and direct methods are extensions of stan- 
dard one-parameter methods to the multiparameter case. In particular, the iterative 
method is easy to implement since it consists of repeatedly computing one-parameter 
bifurcation problems and normal vectors to £. 

The paper does not address the effectiveness of the proposed methods in specific 
applications but does provide some basic theory to show that the proposed methods 
are sensible. The proposed methods have been used to find the closest saddle node 
bifurcation instabilities of electric power systems with small numbers of buses and the 
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initial results are good (Dobson and Lu 1992a). If )to is close to several portions of 
E, it would be desirable to compute a locally closest saddle node bifurcation on each 
of the portions of £.  This could be attempted by searching in several initial directions 
with the proposed methods. More needs to be known about the structure of ~ specific 
to each application in order that these methods can be shown effective or improved 
to take advantage of this structure. 

Computing a closest bifurcation might also be useful in finding realistic sets of 
parameters at which mathematical models bifurcate. (This can be difficult by trial and 
error or by intuition if there are many parameters.) If realistic parameters Ao are chosen, 
then a closest bifurcation allowing many parameters to vary yields a bifurcation which 
is least unrealistic. 

Little has been done on computing the proximity to codimension one bifurcation 
instabilities in higher dimensional parameter spaces while allowing all the parameters 
to vary independently, despite the practical importance of this computation. The iter- 
ative and direct methods we propose appear to be new and our aim here is to derive 
and explain the methods and provide some theoretical foundation so that their testing 
and development in applications is encouraged. 
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Appendix 1: Smoothness of the Iterative Map h 

We prove that the iterative map h is smooth and that its domain Asn is open for 
the saddle node and Hopf bifurcations. The proof for the transcritical and pitchfork 
bifurcations is exactly parallel to the proof for the Hopf bifurcation. 

Lemma 1. Suppose n ~ Asn and write p(n) = ~, = ;to + n t ,  E E~ and V for the 
neighborhood of A, such that Esn n V is a smooth hypersurface containing A,. Then 
there is a neighborhood U of  n with U C Asn, p(U) C ~sa n v and p smooth on U. 
It follows that A sa is open and that h is smooth on U. 

Proof. Since the saddle node bifurcation at A, satisfies the transversality condi- 
tions (2.1),(2.2), there is a ball B C V centered on A, of radius 2e such that there 
is a saddle node bifurcation of x for A ~ B iff A ~ B n Esn Moreover, B n Esn 
divides B into two connected components B +, B -  with x simple for A ~ B - ,  and 
no equilibrium near x ,  for A ~ B + (Sotomayor 1973, Sect. 3.1; Chow and Hale 
1982, Sect. 6.2). For each t E [0, t ,  - e], the definition of p ensures that x is 
simple if A = Ao + nt and t ~ [0, t ,  - e]. Indeed x is simple for ~ in a ball cen- 
tered on h0 + nt.  Since [0, t ,  - E] is compact, there is an el > 0 such that x is 
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simple for A ~ V 1  = { A [ ] X - - ( ) t 0 + t n ) ] < e l  for s o m e t  ~ [ 0 ,  t . - - e ]  }. Now 
choose an open set U C Sin- l ,  U ~ n such that for n'  ~ U, )to + n ' t  E !11 U B for 
t ~ [0, t .  + E] and Ray(n') intersects B 71 5;sn transversally, p is defined on U and 
p(U) C B 71E sn C V N E sn. It follows that U C Asn. The transversality of  Ray(n')  
and B 71 5;~n and the smoothness of  B N E sn imply that p is smooth. [] 

~,hopf and V for  Lemma 2. Suppose n ~ A h°pf and write p(n) = A, = ho + n t .  ~ " r  
the neighborhood o f  A. such that E~- °pf A V is a smooth hypersurface containing h . .  
Then there is a neighborhood U o f  n with U C A la°pf, p(U) C ]~h°Pf CI V and p smooth 
on U. It follows that A h°pf is open and that h is smooth on U. 

Proof. Since the Hopf bifurcation at A, satisfies the transversality conditions (2.4,2.5), 
there is a ball B C V centered on A, of radius 2e such that there is a Hopf bifurcation 
of x for A ~ B iff A E B ('1 5;hopf. Moreover, B N 5;hopf divides B into two connected 
components B + , B -  with x exponentially stable for A ~ B -  and unstable for A ~ B + 
(Sotomayor t973, Sect. 3.4; Chow and Hale 1982, Sect. 9.5). For each t ~ [13, t , - E l ,  
the definition of p ensures that x is exponentially stable for A = ho + n t and t E 
[0, t ,  - el. Indeed x is exponentially stable for A in a ball centered on 3,o + nt .  
Since [0, t ,  - e] is compact, there is an el > 0 such that x is exponentially stable for 
h ~ V1 = { A I t h - ()to + tn)[ < E1 for some t ~ [0, t ,  -- e] }. Now choose an open 
set U C S m-l,  U ~ n such that for n '  ~ U, A o + n ' t  ~ V1UB fo r t  E [0, t , + e ]  and 
Ray(n ') intersects B ('15;hopf transversally, p is defined on U and p(U) C B N 5;hopf C 
V N 5; h°pe. It follows that U C A h°pf. The transversality of Ray(n') and B A 5;hopf and 
the smoothness of B f) Ehopf imply that p is smooth. [] 

Appendix 2: Regularity of the Direct Method at Solutions 

We prove that the closest bifurcation systems (5.1), (5.4), and (6.3) are regular at 
solutions if A, ~ 5;r and the curvature condition (3,1) is satisfied. The proof is more 
transparent when generalized; we assume extended system equations G = 0 for one- 
parameter variations which are regular at solutions and prove that their generalization 
to closest bifurcation equations F = 0 is regular at solutions. This general argument 
applies to the methods (5.1), (5.4), and (6.3) because the one-parameter extended 
system methods on which they are based are regular at solutions. 

To define the one-parameter variation for the extended system equations G = 0, 
fix n ~ S m-I and let A = A0 + nk ,  k >-- 0. The extended system equations to be 
solved for (,y, k) are 

G(y, ~o + nk)  = O, 

G : ~P X ~m ._~ ~p+l. 
(A2.1) 

Note that the vector y contains the state vector x and eigenvectors of fx .  (Y = (x, w) 
for G corresponding to equations (5.1), y = (x,  oo, Vl, v2, wt ,  w2, u) for G corre- 
sponding to equations (5.4), and y = (v, w) for G corresponding to equations (6.3).) 
If  A, ~ 5;r there is an open set V ~ A, such that 5;r N V is a smooth hypersurface 
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and there is a smooth u : E r  71 V ~ R p with u()t,) = y ,  and G(u()t',), ,V,) = 0 for 
3,' ~ V. We assert that if the bifurcation at )t, satisfies the transversality conditions 

N(A,)n # 0 (A2.2) 

and (2.2) in the case of  saddle node and (2.5) in the case of  Hopf and (6.1) in the case 
o f  transcritical or pitchfork, then G is regular at the solution (y,,  A,). This assertion 
is justified in the following three paragraphs. 

In the saddle node case of  equations (5.1.1)-(5.1.3),  the regularity of  G at solutions 
under conditions (A2.2) and (2.2) is proved in Moore and Spence (1980). 

In the Hopf case of  equations (5.4.1)-(5.4.10),  it is sufficient to show that at a 
solution satisfying conditions (A2.2) and (2.4), DGt,z = 0 implies that z = 0 where 
z = (Zl, z2, z3, z4, zs, z6, ZT, zs) (~ R 6n+m+lo The results of  Roose and Hlavecek 
(1985) prove that (5.4.1)-(5.4.5) are regular at a solution satisfying conditions (A2.2) 
and (2.4) and we can deduce from the structure of  DG that DGI.z = 0 implies that 
zl = z2 = z3 = z4 = z5 = 0. Now DGI,z = 0 reduces to 

( z ~ f  xl .  - o ~ z r ) ~  = o, (A2.3. I) 

z r . o~zr)~r 0, ( T f ~ J  + = (A2.3.2) 

zffvl + zrv2 = 0, (A2.3.3) 

zrv2 - zrvl = 0, (A2.3.4) 

fxJ.Z8 = 0. (A2.3.5) 

z8 = 0 follows from (A2.3.5) and the invertibility of  fx[,. Equations (A2.3 .1)-  
(A2.3.4) may be rewritten as 

(z~ - izTr)(fxl .  - io))7r = 0, (A2.4.1) 

(z r - i z r ) ( v l  + iv2) = o. (A2.4.2) 

Equation (A2.4.1) and kerrr n range(fffl,  - i~o) = 0 imply that z6r _ Iz7" r = a(wl -- 
i w2) for c~ E C. Substitution in (A2.4.2) gives c e ( w l -  i wz)(Vl + i v2) = 0 and (5.4.8) 
implies that o~ = 0. Hence z6 = z7 = 0 and z = 0 as required. 

In the transcritical or pitchfork case of  equations (6.3.1)-(6.3.4),  it is sufficient to 
show that at a solution satisfying conditions (A2.2) and (6.1), DG[,z = 0 implies 
that z = 0 where z = (zl,  z2, z3) ~ R 2n+t. DGI,z = 0 may be written 

A t , z l  + A~(v, n)t,z3 = O, 

2 v T z l  = O, 

(A2.5.1) 

(A2.5.2) 

z r  A l . ~  + z 3 ( w A ~ t . n ) , ~  = o, 

WZl -t" vTz2  = O. 

(a2.5.3) 

(A2.5.4) 
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Multiplying (A2.5.1) on the left by w yields 0 = wfx,ffv, n)l.z3 = N(A.)nz3 so that 
(A2,2) implies that z3 = 0. Hence (A.2.5.1) implies that zl = o~v for some ~ ~ N. 
Then (A2.5.2) implies that c~ = 0 so that z1 = 0. z3 = 0 and (A2.5.3) imply that 
zr  fx l ,  ~ ker~r. But kervrA range f r ] ,  = 0 so that zr2fx], = 0 and z r = /3w for 
some fl ~ R. Finally (A2.5,4) and vrw = 1 imply that/3 = 0 and z2 = 0 so that 
z = 0 as required. 

The generalization of  the extended system equations G = 0 to closest bifurcation 
equations is 

F :  

F (y ,  A, k) = 0, 

~P x tR" x R----> ~p+,,,+l, 
(A2.6) 

where 

A, k) = { G(y, A), F(y,  
- k ( A  - Ao) r + N(y ,  A). 

We assume a solution (y, ,  ,~., k . )  of  (A2.6) so that F (y , ,  A., k . )  = 0, A. ~ E r  
and the curvature condition (3.1) is satisfied. Consider the one-parameter varia- 
tion 3. = ~ + N(A.)k.  The transversality condition (A2.2) is satisfied for this pa- 
rameter variation so that G(y, )to + N(A.)k)  is a regular function of y and k at 
(y, ,  k .) .  It follows that G(y, A) is a regular function of  y and A at (y. ,  X.) and that 
G - l ( 0 )  is locally a smooth manifold H of  dimension m - 1 containing (y. ,  A.), 
The manifold (u x i ) (Er  f3 V) = { (u(A~,), A'.) I A'. E E r  N V } is contained in 

H since G(u(A',), A',) = 0. In fact (u x i)(~;r fq V) = H since the dimension of  
(u x i ) (~ r  fq V) is m - 1. It follows that tangent vectors to H have the form (uz. (z2), z2) 
for z2 ~ T ( E r  fq V). 

To prove that F is regular at solutions, we compute 

N a - k I  A-.fro " 

Suppose that DFI,(z~, z2, z3) T = 0; to prove that F is regular at (y,, A,, k ,)  it suffices 
to prove that zl = z2 = z3 = 0. (Gyzl + GAz2)I, = 0 implies that (zl ,  z2) ~ T H t ,  
and hence that z2 E T(Er  N g) l ,  and z~ = ua.z2. Equation (A2.6) and projection 
onto T ( E r  fq V)t, along N(y, ,  h,) of 

0 = (NyZl + (N~. - k , l )z2  + (A, - A0)z3)], (A2.7) 

yield 

(Nyu;~.z2 + Nzz2)I ,  - k,z2, 

and since z2 ~ T ( E r  f'l V)I. , N,~z2 = N;~.z2, and 

(Nyu~,. + NA.)I.Z2 -- k,z2, 

= k.z , 

II[.(z2, Z2) : zrO;t.(N(u(A.), A,))i.z2 : k .z f z2 .  

(A2.8) 
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Equation (A2.8) and the curvature condition (3.1) imply that Z 2  = 0. NOW Zl = 
Ux.ZZ = 0 and (A2,7) gives ()t. - ho)z3 = 0 and z3 = 0 since Ao ~ A.. 
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