
J. Nonlinear Sci. Vol. 3: pp. 1-33 (1993)

Nonlinear
Science

© 1993 Springer-Verlag New York Inc.

Numerical Integration of Ordinary Differential
Equations on Manifolds

P. E. Crouch 1 and R. Grossman 2
Center for Systems Science and Engineering, Arizona State University, Tempe, AZ 8528%
76O6, USA

2 Laboratory for Advanced Computing, University of Illinois at Chicago, Chicago, IL
60680, USA

Received August 15, 1991; accepted for publication July I3, 1992
Communicated by Paul Channell

Summary. This paper is concerned with the problem of developing numerical inte-
gration algorithms for differential equations that, when viewed as equations in some
Euclidean space, naturally evolve on some embedded submanifold. It is desired to con-
struct algorithms whose iterates also evolve on the same manifold. These algorithms
can therefore be viewed as integrating ordinary differential equations on manifolds.
The basic method "decouples" the computation of flows on the submanifold from the
numerical integration process. It is shown that two classes of single-step and multistep
algorithms can be posed and analyzed theoretically, using the concept of "freezing"
the coefficients of differential operators obtained from the defining vector field. Ex-
plicit third-order algorithms are derived, with additional equations augmenting those
of their classical counterparts, obtained from "obstructions" defined by nonvanishing
Lie brackets.

Key words, numerical integration, manifold, differential equation flow, lie algebra,
algorithm, symbolic computation, frozen coefficients

AiMS Subject Classifications. 34A50, 34A34, 65L06, 93C15, 58F99

1. Introduction

1.1. Numerical Algorithms and Constraints

The flow of many systems of ordinary differential equations preserves certain con-
straints. For example, a conservative mechanical system preserves energy, a rotating

E E. Crouch and R. Grossman

rigid body in space preserves angular momentum, a Hamiltonian system of equations
preserves the symplectic structure, and the configuration variables of a spherical pen-
dulum are confined to a sphere. As these examples illustrate, the dynamical variables
may be constrained by a conservation law, a manifold or a group structure. More
generally, there may be some mixed algebraic-differential equation constraining the
dynamic variables. A general-purpose numerical algorithm usually does not preserve
these constraints, although there is a large variety of algorithms that do. Without
trying to be complete we mention the following:

Perhaps the oldest algorithms of this type are those that preserve energy, see Chorin,
Hughes, Marsden, and McCracken [6] and the references contained there for examples
and further discussion of algorithms of this type. Algorithms that preserve symplectic
invariants are also important and quite old. Work in this area began with de Vogelaere
[11] several decades ago. Important contributions have been made by Deprit [12],
Dragt and Finn [13], Feng [14], and Ruth [25]. Recently, there has been a resurgence
of interest in this area, sparked by the paper of Channell and Scovel [5]. The paper
by Scovet [27] contains a recent survey of this work.

Several years ago, motivated by the work of Channell and Scovel on symplectic
integrators, Zhong and Marsden [16] introduced a class of Poisson integrators, that is,
a class of integrators that preserve the Poisson structure of a system. A selection of
other recent works on symplectic and Poisson integrators includes [I,4,30] Oftentimes
familiar algorithms automatically preserve more invariants. For example, Sanz-Serna
has investigated Runge-Kutta algorithms that are also symplectic [26].

Beginning with the work of Gear [15], a number of authors have developed nu-
merical algorithms that integrate general differential-algebraic systems, (see [23,24]
and the monograph [18]).

Our interest here is to introduce a class of numerical algorithms that naturally
evolve on a constraint manifold. The basic idea is to define the numerical algorithm
using certain primitive flows, obtained from the original problem, which have the
property that they can be integrated numerically to arbitrarily high order. It turns out
that this provides sufficient structure to solve our problem and at the same time is
general enough to find application to a variety of interesting examples as described
below.

One approach to dealing with the constraint manifold is simply to introduce local
coordinates and integrate the corresponding set of differential equations. This leads
to difficulties, however, especially if trajectories of the system leave the coordinate
chart where the local representation of the system is valid. To overcome this diffi-
culty it has become common practice to embed the system, represented by a vector
field on the manifold, into a higher-dimensional Euclidean space in which trajectories
of the system can be represented globally. However, this presents a new problem in
which the trajectories of an ordinary differential equation evolving iri some Euclidean
space are naturally constrained to some submanifold. A common approach here is
simply to project back to the submanifold after one or several integration steps. An-
other approach is to treat the dynamical equations and the constraint equations as a
differential-algebraic system. It would be useful, in these cases, to develop numerical
integration procedures in which iterates of the integration algorithm always evolve on
this submanifold. This is the approach we will take in this paper.

Numerical Integration of ODEs on Manifolds

In the remainder of this introduction, we give a more technical description of our
approach and give some examples. In Section 2 we recall some classical integration
algorithms, and in Section 3 we introduce our corresponding versions of these algo-
rithms. We shall only describe the rudimentary aspects of these algorithms but do not
envisage any great difficulty in extending our work to the more refined algorithms
met in practice, The main concept that we wish to develop in this paper is that of
the order of an algorithm, since obtaining an algorithm of a particular order dictates
the choice of many constants in the algorithm. To do this in the general setting that
we have introduced here, we must study the approximation of flows of vector fields
by the flows of a fixed frame El En ; this we do in Sections 4 and 5. The gen-
eral situation is considered in Section 4, while some particular computations with
parameter-dependent vector fields are given in Section 5. In Section 6, we shall give
specific details of third-order algorithms and relate them to the classical third-order
algorithms. We make some concluding remarks in Section 7.

1.2. Vector Fields with Frozen Coefficients

Throughout this paper, we consider differential equations in the form

n

= F(t , z) = 2 f i (t , z)Ei(z), Z ~ R N, (1)
i = I

where E1 En are real analytic vector fields on R N and f i are real analytic
functions on R x R u. The basic idea we use is to define a numerical integration
algorithm using flows of the "more elementary" system obtained by freezing the
coefficients f i (t , z) to obtain a system of the form

= 2 aiEi(z), z ~ R N. (2)
i = 1

Let z(t) = A(t, a, z0) denote the solution of this equation where defined, and satis-
fying A(0, a, z0) = zo, where a = (al an) ~ R n. The principal assumption of
this paper can be expressed in the following way:

Assumption 1. The numerical values A(t, a, zo) may be computed "off line," to
arbitrary accuracy for all t E R, a E R N, zo ~ R N.

Formally, we define a vector field F(r,p) with coefficients frozen at (~, p), relative
to the frame E1 En by

n

F(r,p)(Z) = 2 f i(r, p)Ei(z), Z E R N. (3)
i=1

Clearly Assumption 1 means that we may compute the solutions of the system (1),
with "frozen" coefficients, to arbitrary accuracy. Our aim in this paper is to devise
algorithms that compute solutions of the system (1) in terms of the solutions of the
same system with "frozen" coefficients.

R E. Crouch and R. Grossman

To demonstrate the link between this problem and the one stated earlier, concerning
systems of ordinary differential equations evolving on manifolds, we introduce the
Lie algebra k generated by the frame of vector fields El En. Let L(z) denote the
subspace of R N spanned by all elements of L, evaluated at z ~ R N . The mapping z
L(z) is said to be a (real analytic) distribution on R u. A theorem of Herman/Nagano
[21] shows that there exists a partition of R N = U~M~ by real analytic submanifolds
of R N such that for each z ~ M=, L(z) spans the tangent space to M,, at z. It follows
that if zo ~ M~, then

A(t, a, zo) ~ Me

for all (t, a) ~ (R x R N) where A(t, a, zo) is defined. Indeed, if the system (1) is
initialized at zo ~ M~, then its solution also evolves on Ma, and the vector field F
may be restricted to the manifold Me. It follows that any algorithms that compute
solutions of the system (1) in terms of the system with "frozen" coefficients will
naturally yield iterates that, when initialized at z0 ~ M~, evolve on M~, at least to
the accuracy with which the values of A may be computed.

As described above there is a considerable literature devoted to the numerical
solution of differential-algebraic equations. This literature certainly includes discussion
of numerical techniques dedicated to the solution of differential equations evolving
on manifolds, described as the level sets of a set of given functions. This work,
however, takes as iN premise that the basic numerical integration methods remain the
classical integration schemes and endeavors to specialize these schemes to the given
situation. On the other hand, with respect to differential-algebraic systems, we are
endeavoring to tackle the problem using an entirely new premise, where "simple"
integration schemes that obey the constraints are already given, and the task becomes
that of using these schemes to integrate more complicated systems, which also satisfy
the constraints, Clearly, once this new class of algorithm has been established in works
such as this, the algorithms need to be analyzed and compared to existing schemes,
such as those for solving differential-algebraic systems. No attempt has been made to
accomplish this second task in this paper, but it will be the focus of further papers by
the authors.

It is important to note, however, that our algorithms can also be used when the
simpler systems, defined by the vector fields with frozen coefficients, are not tangent
to any manifold, and hence techniques for solving differential-algebraic systems are
not applicable.

1.3. Two Examples

We shall give two example applications of equations with the structure described in
equation (1). The first example may be written in the form

= S(f(R))R, R ~ c~e(3, R) C R 3x3, (4)

where f (R) = (fl(R), f2(R), f3(R)) T, f i are real-valued functions on ~e.(3, R), the
group of nonsingular 3 × 3 matrices, and

Numerical Integration of ODEs on Manifolds

I 0 a3 --a2]
S(a) = -a3 0 al

a2 - a l 0

for every a = (a l, a2, a3)r ~ R 3" The skew symmetry of S implies that each solution
of (4) satisfies the following constraints:

Rr(t)R(t) = R~Ro, R(O) = Ro. (5)

Defining the vector fields (o
E~(R) = 0 0 R,

0 - t

E3(R) = - 1 0 R
0 0

(00
Ez(R) = 0 0 R,

1 0
(6)

we may rewrite equation (4) in the form

3

k = Z f i (R) E i (R) .
i = I

(7)

Explicit formulas are available for the expressions A(t, a, Ro) in this case [23]. Note
that in the case R0 = I , the 3 × 3 identity matrix, the solution of equation (4) evolves
in the special orthogonal group S0(3 , R). The equations (4) may then represent the
evolution of the attitude of a rigid body, although the function f is typically re-
lated to the angular velocity of the body [7]. The constraints (5) may be eliminated
from the equation (4) to obtain a system of differential equations evolving in a lo-
cal (three-dimensional) coordinate chart for S0(3 , R), typically taken to be defined
by the Euler angles, [7]. However, singularities in these local coordinate versions
of the equations force the use of equations such as those given in equation (4).
Our aim is to use the formulas for A, obtained from the corresponding equations with
"frozen" coefficients, relative to the frame El, Ez, and E3 in (6), to integrate the equa-
tions (7).

With the next example, we wish to illustrate another application of our proposed
algorithms. Instead of viewing the vector fields with frozen coefficients as tangent to
a particular manifold, it is also useful to view them as just objects that are simpler
to integrate than the original vector field. In the classical case the frozen coefficient
vector fields are constant, and so integrating them is very easy. However, there are
other vector fields that are relatively easy to integrate, such as linear vector fields.
Certain linear vector fields may be integrated explicitly, as in the example above,
while for others the flow may be approximated to arbitrary accuracy, with little effort.

The example is a version of Duffing's equation, considered in [8], whose exposi-
tion we follow here. We are not advocating integrating Duffing's equation with this

E E. Crouch and R. Grossman

algorithm, but rather we include this example as a particularly simple application of
our viewpoint. The version of Duffing's equation considered,

5c1(t) = x2,

.~2(t) = - - 'F I IXI - - ~2X13, (8)

is a simplified model describing the buckling of a beam, with a cubic nonlinearity.
Here xl denotes the deflection of the beam from equilibrium, x2 is the velocity of
the beam at this point, 771 and r/2 are positive constants.

We split the dynamics of the Duffing system into two pieces F0 + F1, where

0 0
F0 = x2a-- - n l X l a x 2 ,

a
F1 = x l a (X) ox 2, a (x) "~ - -TI2X 2.

Note that the system :~ = Fo(x(t)) is a linear system and can be explicitly integrated.
"Freezing" the coefficient a (x) of F1, yields a linear system F that is explicitly
integrable involving simply the evaluation of a sine and cosine. Thus the expressions
for A can easily be computed.

2. Classical Numerical Integration Algorithms

In this section we shall review some classical numerical integration algorithms for a
system of differential equations written in the form

= F (z) , z E R ~, z(0) = zo. (9)

Note that we have not considered time-dependent vector fields F , as we did in equation
(I), in order to simplify the notation. However, extension to time~ependent systems is
straightforward. We first consider the Runge-Kutta methods described by the following
equations•

2.1. Classical (Explicit) Runge-Kutta Algori thms

v l (z) = z ,

v2(z) = z + hc2,~F(z) ,

t.'3(z) = z + h(c3,1F(z) + c3,2F(I.'2(z))), (10)

vr(Z) = z + h (c r , l F (z) + Cr,2F(v2(z)) + "'" + cr .~- IF(v~- t (Z))) ,

Zk+l = Uk+J(zk, h)

= Zk + h (c l F (z k) + c2F(v2(z~)) + . . . + c~F(vr(Zk))). (11)

Numerical Integration of ODEs on Manifolds

The algorithm described by the equations (10) and (11) will be said to be an
r-stage algorithm. We may also consider implicit r-stage algorithms by including in
the expression for vk (z) , terms like ck , k+jF(vk+j (Z)) , 0 <-- j <-- r -- k .

Let us denote the flow of the vector field F by the mapping

(t , z) ~ e t e z , (t, z) ~ R x R N,

where the exponential notation should not be given any explicit sense at present. Thus,
the solution of equation (9) may be written as

z (t) = etFzo. (12)

We shall assume that the flow o f F is defined for all (t , z) ~ R x R N+I , for simplicity.
For any particular choice of the constants ck,j, cm, 2 --- k - r , 1 -< j < k, 1 --- m <--
r , which in the future we denote simply by c, we may define the order of the algorithm
as follows:

The algorithm (10) and (11) has order q if for all z ~ R N and for all vector fields
F , the Taylor series expansions of Uk+l(Z, h) and ehFz about h = 0 coincide up to
and including terms involving h q.

The equations obtained by equating powers of h may themselves be separated into
equations involving independent differential operators formed from F , since these
equations must hold for all F . These operators are sometimes called "elementary
differentials" in the numerical analysis literature; see, for example, [19], page 145.
These equations in turn yield equations for the constants c, which must hold in order
for the algorithm to have a particular order.

In the case of explicit third-order algorithms, with three stages, q = r = 3, we
obtain the following independent equations:

(i) C 1 q" C 2 "J- C3 = 1,

(ii) c2c21 + c3(c31 + c32) = 1/2,

(iii) c2 _2 c3 -~-c'21 + -~-(c31 + c32) 2 = 1/6,

(iv) c3c32c21 = 1/6.

(13)

These equations have many solutions, as described in detail in [19]; see page 141.
We have taken as a test case the following solution of the equations (13), attributed
to "Kutta."

1 2 1 1
cl = ~, c2 = ~, c3 = ~, c31 = - 1 , C32 = 2, c21 = ~. (14)

The classical "Runge-Kutta" algorithms are fourth order, q = 4, and have four stages,
r = 4. We now consider one class of multistep method, although other classes could
be treated using the methods described in the paper with more effort.

P. E. Crouch and R. Grossman

2.2. Classical (Expl ic i t) Mul t i s t ep A l g o r i t h m s

Zk+l = Uk+I(Zl , ,Zk- I , Zk - r)
(i5)

= Zk + h(c~oF(zk) + a l F (z k - 1) + . . . + a r F (Z k - r)) .

We say that the algorithm (15) has r + 1 steps. Implicit algorithms may be obtained
by including terms

h a r F (z k - r) , r < 0

in the expression (15). In these cases we must rearrange the update equations in some
way in order to solve for the most recent iterate. Again, for any particular choice of
the constants ok, 0 -< k --- r , which in future we refer to as the constants o~, we may
define the order of the algorithm as follows:

The algorithm (t5) has order q, if for all z ~ R N and for all vector fields F , the
Taylor series expansions of

Uk + I(Z, e-hF z e-rhF z)

and

ehF z

about h = 0, coincide, up to and including terms involving h q .

The same remarks, concerning the equations for the constants c, apply to the
equations that determine the constants a .

In the case of explicit third-order algorithms, with 3 steps, r = 2, and order 3,
q = 3, we obtain the following independent equations:

o~o + czt +o~2 = 1,

1
- a l - 2a2 = ~, (16)

I
o~1 + 4¢x2 = - .

3

These equations have a unique solution given by [19]:

5 4 23
az=~, al=-3 , n0=--.12 (17)

3. Numerical Integration Algorithms Adapted to Frames

In this section we shall define our generalizations of the (explicit) Runge-Kutta and
multistep algorithms described in the previous section. The adaptation to implicit
algorithms is self-evident, even if this implementation would be more problematic than
their classical counterparts. In this section we shall deal with an ordinary differential
equation described by the equations

Numerical Integration of ODEs on Manifolds

n

= F(z) = Z f i (z) E i (z) , z E R N (18)
i = 1

with respect to a fixed frame E~, Ez E,, of vectors on R u. In particular, Fp will
denote the vector field F with coefficients frozen at p , as described in Section 1.
Note that, for simplicity, we will not treat time-varying vector fields F; this will not,
however, make the following analysis conceptually more difficult. Our generalization
of the Runge-Kutta algorithms may be described as follows.

3.1 Explicit Runge-Kutta Algorithms Adapted to a Frame

vl(p) = p, F~(h)(z) = Fp(z),

uz(h, p) = ehC~'~F~p, F~(h)(z) = F~z(h,p)(Z) ,

~'3(h, p) = ehc3'2F~ehc3'lFpp, F3p(h)(z) -= Fv3(h,p)(Z), (19)

v r (h , p) = e hc IF~'-~ e hc''r-2F~-2 . . . e hcr'lF~ p , F~p(h)(z) = Fvr (h ,p) (Z) ,

r r - I uk+l(h, p) = ehc~Fpe hc''~Fp ...ehc~F~ P,

Zk+l = uk+t(h, zk) (20)

Note that Vk (0, p) = p, so that F~ (0) = Fp, and the update rule (20) is defined by
flows of the vector field F with frozen coefficients. It follows that if the vector fields
El En are tangent to a submanifold Ms, as described in the introduction, then
the iterates zk will also evolve on Ms, assuming that z0 E M~.

Another important fact about the algorithm (19) and (20) is that it reduces to the
classical algorithm under appropriate circumstances, namely,

O
- , 1--< k - < n = N . (2 1) E~(z) aZk

We shall denote the conditions (21) as the Euclidean case. Let ek denote the kth
standard basis vector in R.NThen under the conditions (21) we have

etE~ p = p + tek,

and identifying vector fields on R N as vectors in R N as usual, we may write

Fvk(h,p) -= F~(h) = F(uk(h, p)).

It follows that in the Euclidean case (21), the algorithm (19) and (20) does indeed
reduce to the classical algorithm (10) and (11). We now describe our multistep algo-
rithm.

10 E E. Crouch and R. Grossman

3.2. Expl ic i t Mul t i s t ep A l g o r i t h m Adap ted to a F r a m e

j + l , eh,,Jo&k eh,~{ F=k_i . . . eh,~l F j + l uJ(h , Zk, Zk-1 Zk-, ' , U~) = z~_~u k ,

(0_< j--< / - 1) ,

u~ = Zk, (22)

= u ° (h , z k - 1

In this paper we shall be mostly concerned with the case I = 2, although the general
case may be analyzed using similar techniques. In the Euclidean case (2t) we easily
establish that

• j + l )

= h f (Z k) + a{ f (Zk-1) + "'" + o~F(Zk-r) + ~k "

It follows that under the identification

1--I

o~i = ~ ' a k i , 0 <-- i <- r ,
k = 0

the algorithm (22) does reduce to that of the classical algorithm with update rule given
by equation (15).

Our next step is to identify a unified setting in which to examine the order of both
of the algorithms identified in this section. This may be achieved' by defining vector
fields Gk, 1 <-- k <-- s, as follows:

/1

Gk(h , p) (z) = Z g) (h , p) E j (z) , (23)
j = l

k where gj are analytic functions on R × R Iv. Construct a mapping ~ : R x R te --+ R N
as follows

xle(h ' p) = e~(h , p) eC~(h, t,) . . . eGs(h, p) p . (24)

Assume that the coefficients g~ are determined in some fixed way from only the

coefficients f i and vector fields Ek, as well as (h, p) E R x RN; note that F , defined
in equation (18), depends only on f i and Ek. We are interested in simultaneously
approximating all vector fields F while the frame of vector fields El E, is fixed.
We therefore make the following definition:

The mapping ~ simultaneously approximates all of the vector fields F (relative to
the frame E1 En) , to order q, if for all p ~ R ~ and all choices of coefficient
functions fi the Taylor series expansions of ~ (h , p) and ehYp about h = 0 coincide
up to and including terms including h q .

Using this definition, we may define the notion of order for the algorithms intro-
duced above, simply by identifying the approximate mappings ~ . In the case of the
Runge-Kutta algorithms (19) and (20), we simply set

• (h, p) = uk+~(h, p) , (25)

Numerical Integration of ODEs on Manifolds 11

in which case the vector fields Gk can be identified with hciF~,(h) for some j , 1 -----
j --< r. The algorithm (19) and (20) has order q, if and only if the mapping • in
(25) simultaneously approximates all of the vector fields F to order q.

In the case of the multistep algorithms (22) the mapping • is defined by setting

• (h, p) = u ° (h, p, e-hFp e-rhFp, U~), (26)

in which case the vector fields Gk can be identified with ho~{Fe-~he for some j , 0 <
j < l - 1 and some i, 0 <-- i < r. The algorithm (22) has order q, if and only if the
mapping • in (26) simultaneously approximates all of the vector fields F to order q.

It tbllows that we may investigate the problem of choosing the constants c or
a to obtain algorithms of order q, by first analyzing the problem of simultaneous
approximation of vector fields F by general mappings • in (24) and then specializing
to the two cases described above. Sections 4 and 5 of this paper deal with the general
problem and Section 6 deals with the specific cases where q = 3.

We finally remark that the algorithms identified above have been described in R N.
However, if the vector fields El En are tangent to a manifold M,~, as described
in the introduction, our invariant description of the algorithm enables us to view them
as iteration processes on M~ itself. The definition of the order of algorithm can now
be given, just as above, by noting that we may view ~ in (24) as a mapping

~ : R x M~ --> M~.

In this case, however, the notion of Taylor series, as used above, is no longer well
defined. This notion is modified by choosing any coordinate mapping 0

0 : M~ --> R dim(M')

and considering the mappings ~p o ~ : R x M,~ --~ R dim(M~), whose Taylor series in
h about h = 0 are well defined. The definition of simultaneous approximation now
becomes the following:

The mapping • simultaneously approximates all of the vector fields F (relative
to the frame E1 E,, on the manifold M,~) to order q if, for all p E M~, and a
coordinate mapping 0 with domain including p, and all choices of coefficient functions
FilM,,, the Taylor series expansions of ~O o ~ (h , p) and ¢¢(ehFp) about h = 0 coincide
up to and including terms including h q.

4. Simultaneous Approximation of Flows by Flows of Fixed Frame

In this section we study the problem of determining when a mapping ~ , as in
equation (24), approximates all of the vector fields F , relative to a fixed frame
E = [El En}, to order q. In particular, we are interested in computing the

Taylor series expansions about h = 0 of the expressions e hF p and ~ (h , p).
Thus, we must find necessary and sufficient conditions for the following relations

to hold:

dk h--0 dk P) h dhJ:~(ehFp) - d h k ~ b o ~ (h , , 1 < k < q, (27)
=0

12 R E. Crouch and R. Grossman

over all coefficient functions (fl f ,) , p ~ R u . We let F(O) denote the Lie deriva-
tive of q~ by F , and then set

Fk(~O) = Fk-l(F(qJ)), FI(O) = F(~O).

It follows that the Taylor series expansions of t~(ehfp) about h = 0 may be written
in the form

O(ehF p) = ~O(p) + hF(tp)(p) + F2(tp)(p) + " " . (28)

In order to express the differential operators F k in a convenient form and calculate the
derivatives on the right-hand side of equation (27), we must introduce some further
notation. Let Xk denote one of the vector fields El En, so that Xt = Ei, for
1 - ik -< n. Let X ~ denote the differential operator defined by the equation

X'~(~o) = x i , x i ~ . . . (x i~(O)) . . .) ,

where a = (il ik) is a multi-index of length [~x[= k. We say D is a differential
operator based on the frame E if

DOP)(z) = Z d~(z)X~(~O)(z)'
¢2l

where d~ is an analytic function on R ~, for each multi-index a . (d~, -= 0 for all but
a finite number of indices a .) If

D(O) = Z d~X~(O),
I~l=k

o/

then we say that D has order k (relative to. E). We introduce two operations on the
set of differential operators based on the frame E. Let Dl and D2 be two differential
operators based on the frame E with orders kl and k2. Then

(DI " D2)0P)(Z) =

la'21 = k2

d I 2 otl a2 ,~,(z)Gdz)X (x (¢))(z),

and

(DffD2))(gO(z) =
l~lf=kl
1~2[=k2

d~,(z)X a~(d2 2)(z)X ~2(ff)(z).

Thus DI • D2 has order kl + k2 and DI(D2) has order k2. Recalling that

n

F(t~) = Z f i E i (t)) ,
i = 1

Numerical Integration of ODEs on Manifolds 13

we see that F is a first-order differential operator based on the frame E . By Leibnitz
rule we have

F2(~) = (F (F)) (~) + (F . F) (~) ,

F3(q)) = (F(F(F)))(t~) + 2 (F - F(F))(tp)

+ (F(F) . V)(~b) + (F . F .F)(@),

and so on.
We introduce the notation

F (k) = F (F (F (" . (F) . . .)

to denote the first-order component of F k, relative to E . Thus,

F 2 = F (z) + F - F ,

F 3 = F (3) + 2 F . F (2) + F (2) - F + F • F . F ,
(29)

and so on.
In general, if D is a differential operator, D = ~-'~ d,~X '~, then we set

(Dp~)(z) = Z dct(p)Xa(~)(z)"

Dp is the operator D with coefficients "frozen" at p .
A differential operator is said to be of depth I if it is in the linear span of the

following set of operators D:
D is a composition of 1 vector fields, under the operations ' - ' and ' (.) , ' chosen from

the set {fiE1 fnE ,} where {fl fn} is a fixed set of real analytic coefficient
functions.

Let V(F) denote the vector space of all differential operators generated by the
single vector field F = ~-~i= 1 f iE i , under the operations • and ' (.) ' . We denote the
subspace of V(F) composed of differential operators of order k and depth l by V](F).
Note that this space plays the role of the vector space of elementary differentials in
the Euclidean case; see [19]. We similarly denote the vector spaces of differential
operators, obtained by freezing the coefficients of operators in V(F) and V~ (F) at p ,
by V(F)(p) and V](F)(p). We set

Vt(V) = Vtl(V) + Vz~(F) + . . . + V/(F)

and hence, also define Vf(F)(p), by freezing coefficients at p. We also set

f f (F)(p) = VII(F)(p),

l-1
Ll(F)(p) = Vll(F)(p) + Z [V t k (F) (p) , f f -k(F)(p)] . (30)

k = l

14 E E. Crouch and R. Grossman

We have F l ~ VZ(F), F (l) E Vii(F), and F~ ~ VI(F)(p), F~ l) E Vll(F)(p), as well
as the identities

V/(F) . Vf(F) C Vf.fsl(F), V/(F)(p). Vf(F)(p) C Vf+sl(F)(p),

V/(F)(Vf(F)) C VJ+k(F),

Lt(F)(p) C Vt(F)(p).

I f F = Z7=t f iEi , we set/~ = (f l fn) ~ C°'(RN) " and denote by D(F) any
element of V(F).

We denote by V the vector space of all mappings D defined by the assignments:

P, , D(P), (31)

under pointwise addition. Similarly, V] and V t will denote those subspaces of V

obtained by restricting D(F) in (31) to lie in V~(F) and VI(F), respectively. There is
a natural notion of linear independence in V : if D 1 D *, are elements of V, then
D 1 D * are linearly independent if for all r - tup tes of real numbers (Yl ~ / r)

T

Z yiDi(p)(q') - 0, VO ~ C°)(RN), j0 E C'°(RN)"
i = 1 (32)

Yl = Yz yr = 0.

We denote by V(p) the vector space of mappings

P ~ Dp(P),

under pointwise addition, where Dp is any operator in V(F)(p). We obtain subspaces
of V(p) by restricting the range of the mapping above, for each fixed p, to Vt(F)(p),
V~(F)(p) and Lt(F)(p), and denote them by Vt(p), V~(p), and Ll(p), respectively.
We extend the notion of linear independence in these spaces: if Dip D~, are
elements of V(p), then Dip D~ are linearly independent, if for all r-tuples of
real numbers (YI Yr)

2 yiDip (p)(~O)(p) = 0, V~O ~ C'°(RU), p E R N, f U C°~(RN)"
i = t (33)

" 3"1 ----- Y 2 'Yr = 0 . i

It is interesting to list spanning sets for the spaces V l and i f (p) for small I. By
slight abuse of notation we shall use F to denote the mappings in V defined by

n

[z , ' Z fiEi.
i = 1

We have the following spanning sets for Vk t

V11 = Sp{F}, V12 = Sp{F(F)}, V22 = Sp{F-F},

Numerical Integration of ODEs on Manifolds t5

gl

=

V3

Sp{(F(F))(F) , (F . F)(F)} V23 = Sp{F. F(F) , F (F) . F},

S p { F - F . F},

Sp{((F(F)(F))(F) , ((V • F)(F))(F) , (F . F(F)) (F) , (F (F) . F) (F)

(F . F . F)(F)}, (34)

Sp{((F(F))(F)) . F, ((F . F)(F)) " F , (F(F)) . (F(F)) , F . ((F . F) (F))

F . (F(F)(F))} ,

Sp{F(F) .F . F , F " F (F) " F , F " F " F(F)},

S p { F - F . F - F } ,

and so on.
It is interesting to observe that the operators F (t) E Vlt(F) may be easily expressed

in terms of these spanning sets, as follows:

F (1) = F,

F (z~ = F(F) ,

F (3) = F (F (F)) = (F • F) (F) + (F(F))(F) , (35)

f (4) = (F . F . f) (f) + 2(F . F(F)) (F) + (F (F) . F) (F)

+ ((F(F))(F)) (F) + ((f . f) (f)) (f) .

Spanning sets for V t, ~ (p) , and Vt (p) may be constructed in a similar way. In
particular, from equation (30) and (34) we may write down spanning sets for Lt (p)
for small l as follows:

Ll (p) =

LZ(p) =

L3(p) =

L4(p) =

Sp[Fp} = Vt'(p),

Sp[F(F)p} = t']2(p),

Sp{ V13(~b), [Fp, F(F)p]},

Sp{ Vl'(p), [Fp, V13(p)], [Fp, [Fp, F(F)p]]},

(36)

and so on.
The spanning sets of V l, Vi (p) , and U (p) as described above are not necessarily

independent in the sense of definitions (32) or (33), depending on the structure of the
fixed frame E = {El En}. However, for the purposes of this paper we make the
following assumption:

Assumption 2. The spanning sets of V l, Vt(p) , and L l (p) generated as in (34)
and (36) from F are maximally independent in the sense of definitions (32) and (33)
respectively.

We note that in the Euclidean case (21), all of the Lie brackets occurring in the
spanning sets for Ll (p) vanish, since they involve only Lie brackets of the frame
E = {O/3z, O/Oz~}. Thus in the Euclidean case we have

Ll(p) = V~(p). (37)

16

In general we set n I = dimV s = dimVl(p) , N z

1 andn~ dimVk/(p). Thus, we have n t = ~-.~=1 nk
now define a sequence of differential operators:

E E. Crouch and R. Grossman

= d i m f f (p) and n~ = dimVk t =

= N z if condition (37) holds. We

Fk+l = F (F ~) + F ' F k + F ' F (k),

F1 = 0.

k >-- 1, (38)

dThktP(ehFp) h=0 = [Fp(k) + F~(Fe ' F(21 F(pk-1))IOP)(P)" (40)

[]

We now define a parameter-dependent vector field A(h) by setting

d
-.d-~O o ~ (h , p) = (A(h)t~) o ~ (h , p). (41)

We note that each derivative OkA(h)/Oh k is also a vector field, which we denote by
A(h) (k), with

A(h) = A(h), A(h) (~ = A(h), A(h) (2~ = 5d(h), A(h) o~ = ~(h) .

As we will show in Section 6, for the classes of algorithms introduced in the
previous section, we have

A(0) (k) ~ Lk+t(F)(p), k >- O. (42)

Viewed as a differential operator based on the frame E, A(h) (k) has frozen coeffi-
cients. We therefore calculate

d 2
dh 2 d/o 'tit(h, p) -- (A(h) " A(h))(O) o ~ (h , p) + ,4(h)(0) o ~ (h , p) ,

d 3
dh 3 O o ~ (h , p) = (A(h) " A(h) " A(h))(O) o ~ (h , p) +)~(h)(O) o ~ (h , p)

+ 2(A(h)" A(h))(~O) o T(h , p) + (A(h) -A(h))(t)) o ~ (h , p)

L emma 1.

Thus,

F2 = F - F , F3 = F (F ' F) + F ' F ' F + F ' F (2) = F (2) ' F + 2 F ' F (E) + F ' F ' F

and so on. We may deduce that

Fk = Fk(F, F (2) F(k-1)),

and because of Fk's structure we have

Fk(V, r (2) V(k-1))(O)(p) = Fk(Fp, V(p 2~ F(pk-1))(0)(p). (39)

By comparing equations (28), (29), (30), and (39) we deduce the following result:

Numerical Integration of ODEs on Manifolds 17

From equations (28) and (29) and Lemma 1, the calculations above demonstrate the
following result:

Lemma 2.

dk P) h=0 dh k 0 o ~(h, = [A(0) (~-l) + F~(A(0), A(0) (1) A(0)(k-2))](0)(p). (43)

From the definition of the spaces Vk(F)(p) and Lk(F)(p), it is clear that Lem-
mas 1 and 2 express their respective derivatives as expressions (DO)(p) where D
V~(F)(p). Recalling that equation (27) requires that these expressions are equated over
all F ~ C°'(RN) n, 0 ~ C'°(R N) and points p ~ R N, our definition of independence
of differential operators in Vk(p) shows that the sufficient conditions (27) for a qth-
order algorithm are equivalent to equating the coefficients of independent differential
operators in the right-hand sides of equations (40) and (43); that is:

A(0) (k-l) + rk(A(0), A(0) (i) A(0) (k-2)) = F(k)+ r,(Fp, F (2) F(k-i)), (44)

l < _ k < _ q ,

viewed as expressions in V(k)(p). Our assumption (42) and the independence assump-
tion (Assumption # 2), together with equation (30), imply that we may decompose
A(0) (k-l) uniquely into two components

k k (45) A(0) (k-l) = Ap + B p,

where

and

k Ap ~ Vlk(p)

k-1

Bpt ~ 2[VlJ (p) , Lk-J(p)] C Vzt(p) G V3k(p) G " " • V~(p).
j = l

Further, from the definitions of Fk we observe that
Fk(A(0), A(0) (1) A(0) (k-2)) and Fk(Fp, F(p 2) F(e k-l)) both lie in the space

V~(p) ~ V3k(p) ~ " " Vkk(p). We therefore, by equating the differential operators in
(44) for I --< k ---< q and invoking the independence assumptions, obtain the following
result.

Theorem 1. Under the Assumption 2, necessary and sufficient conditions for a map-
ping • to approximate all of the vector fields F, relative to a fixed frame E =
{El En} to order q, are given by the following two equivalent conditions:

= F(p k) Vlk(p), 1 <-- k <-- q. . (i) (a) Ap as elements in (46)

k-1

k Z (47) (b) Bp = 0 as elements in [VII(p), Lk-J(p)], 2 <- k <-- q.
j = l

18 R E. Crouch and R. Grossman

(ii) (a) Akp = F(p k) as elements in Vlk(p), 1 <-- k <--- q.

k F k (A l p + B p , a p + B p ap +Bp) (b) B p + 1 2 2 k - I k - I

(p2 .. /z(k-1)~ 2--< k--< q (48) = Fk(F m F) p ,,

as elements in Vlk(p) ~ V2k(p) ~) " " ~]~ Vkk(p), E3

Under our independence assumption (Assumption #2) , the conditions (i)(a) yields
n~ equations, while (i)(b) yields N k - n~ equations; and the condition (ii)(a) again
yields n~ equations, while (ii)(b) yields ~kj=2 njk equations. Inspection of the span-
ning sets in equations (34) and (36) demonstrate that in general

k
k N k - << Z nj

j = 2

or N k << n k.

The total number of equations obtained by using the conditions (i) is ~ 'q= 1 Nk ,

while using the conditions (ii), the total number of equations is S'.~= 1 nk.
Note that in the Euclidean case (21) conditions (i)(b) and (ii)(b) are vacuous, since

for condition (i), equation (37) holds, and for condition (ii) B~ = 0 implies that the
resulting condition (ii)(b) is satisfied as a consequence of condition (ii)(a). Thus, in
the Euclidean case we simply have the conditions

k (pk), (49) Ap = F l < - k < - q.

These can be simply interpreted as the classical conditions, as we demonstrate in
Section 6.

In the next section we deal with the problem of obtaining expressions for the
operators A(0) (k), and Akp, B~, in terms of the vector fields Gk, and their derivatives.

5. Calculus of Parameter-Dependent Vector Fields

The definition of the differential operator A(h) is given in terms of the mapping ~ ,
as described in equation (24), as follows:

d -~¢, o ~t,(h, p) = (A(h)O) o ~t,(h, p).

The purpose of this section is to characterize A(h) and its derivatives in terms of the
operators Gk(h, p) that define ~ . We have the following expansion:

c~

~(etGk(h' p) p) = Z (G k (h, p)i ~)(p)(t i / i !) ,
i=0

with the series converging for small ttl and appropriate conditions on the coefficient
functions of Gk(h, p) = ~ ' = 1 g~(h, p)Ej. Note that Gk(0, p) is the zero vector
field. Rather than use the geometric interpretation of (p, t) ~ etG~(h'p)p as the flow

Numerical Integration of ODEs on Manifolds 19

of the vector field Gk, it is more convenient to use its interpretation as a formal sum
of differential operators. Because of the reduced importance of the parameter p, in
this section we shall suppress it in many expressions; thus we set

t ~

z~(h) = ~ (t i / i !) G k (h) i.
i=0

Thus, in suitable domains (and conditions on the coefficient functions of Gk) we have
the following:

Z k_.t(h)(O)(p) = ~b(etG~(hl p) . (50)

If G and H are arbitrary vector fields, we set

adG(H) = [G , H] = adIG(H),

adiG(H) = adG(adi-lG(H)), i >- 2,
¢o

Adz~(h)(G) = Z(t i / i !)adiGl:(h)(G).
i=0

We may view Adztk(h) as a formal isomorphism of the Lie algebra of analytic vector
fields, its series expansion converging on suitable domains. The following result is
responsible for this latter observation, and again holds on suitable domains of con-
vergence:

Ad zkt (h)(G)(~b)(p) = d(u(e -tGkfh) * G(e t°~<h) p)),

where * is the differential operator of mappings. We set (as we did for the operator
A(h))

ai Gk(h) = Gk(h) (i),
ah ~

Gk(h) (°) = Gk(h)

and

Gk(h) O) = Gk(h) Gk(h) (2) = Gk(h) Gk(h) (3) = Gk(h).

We may now define another formal differential operator by setting

(G~(h, p) =)G~(h) = Adz~(h)(dk(h))ds. (51)

Denote the derivatives of G~ with respect to h, in the same way as we did for the
derivatives of Gk and A. We now obtain two intermediate results.

Lemma 3. As formal differential operators, tb ~ C~°(RN), p ~ R N

f-~ zkt (h)(t~)(p) = Adz~t(h)(G~(h))(~)(e tck(h) P), (52)

20

or analytically

Proof.

E E. Crouch and R. Grossman

-~eta~(h)p = e (t-s)6~(h~ * G~(h)(eSa~(h)p)ds. (53)

f--7~(et°k(h) p) = Gk(h)(O)(etCk(h) p)

by definition of the flow of a vector field. It follows that

O---d O--~et~(h)~ = + d(Gk(h)(~O))(~---~etO,(h) p) . Ot ~O (Oh e) G~(h)(~)(etGk(h~P)

It follows that (O/Oh et~k(h)p) satisfies a differential equation, whose solution is seen
to be given by equation (53), by uniqueness of solutions of differential equations.
Equation (52) is simply a restatement of equation (53), in terms of the formal differ-
ential operators z~ and G~.

Lemma 4. I f G is an arbitrary vecTor fieM, ~ ~ C~°(R~V), p ~ R N, as formal differ-
ential operators

-~Ad = z k_t(h)(ad G~(h)(G))(t~), (54) z~t(h)(G)(O) ~md

or analytically

Io et~(h)*G(e-ta~(h) p) = --etGk(hl* [e-~G~(h)*Gk(h)oeSC~(h), G](e-t~k(h) p)ds .

(55)

Proof. Let z(h, 7, p)(~) = e rc~(h) * G(e-t°~(h)p)(O). Thus,

Oz (h, -~ t, P)(O) = z(h, t, p)(Gk(h)(t))) - Gk(h)(p)(z(h, 7, .)(t))).

Hence,

O cTz "h, dZ (h -Gk(h)(p)(-~-~(h, t, .)(~)) a t - ~ (t, p)(~b) = - ~ , t, p)(Gk(h)(~O)) Oz

+ z(h, t, p)(Gk(h)(O)) - Gk(h)(p)(z(h, t, .)(~))

(O Z ' h , ')) (t ~) (p) a d d k (h) (z (h , t , ')) (~) (p) . = -adGk(h) ~ (t,

By uniqueness of solutions of differential equations, we find that

fo '
Oz "h, * - ~ (t, p)(t~) = -- e Gk(h)(t-s) [G~(h), z(h, s, ")](e-G~(h)(t-S)p)(O) ds.

Numerical Integration of ODEs on Manifolds 2t

Using the fact that Adzs~(h) is a Lie algebra isomorphism, the above expression
reduces to equation (55). The expression (54) is simply a restatement of equation (55)
using the formal differential operators zt g and Gt k. []

We are now in a position to compute the derivative in equation (41). Note that we
may express the mapping • in equation (24) in terms of the operators z~ as follows:

O o xIr(h, p) = zS(h)(zS-1(h)(... (zl(h)(~b).. .)(p)

where

Similarly we set

and

and

zk(h) = zf(h), 1 <-- k <- s.

Gk(h) = G~(h), 1 <-- k <- s

~ k (h) = Adzl_l(h) o Adz21(h) o - . . o Adzt_.l(h)

Ak(h) = ¢rk(h)(Gk(h)). (56)

We may now describe the derivative in equation (41) in terms of these operators.

Lemma 5.

$

0 Z Ak(h)(~)(gr(h' P))" - ~ 4, o ,I, (h , p) =
k = l

Proof. By Lemma 3,

0 z k (h k) (z k _ l (h) (. . . (z l (h) (@) . . .) (e Gk+t(h)eGg+z(h)... eG(h)P) hk h
3hk =

Now

(57)

= Adzkl(h)(Gk(h))(zk-l(h)(. . .z l(h)(@). . .)(e c*(h) .. .eG(h~p)
k-I k = Ad Z~ 1 (h)(Ad z 2 _ 1 (h)(. . . Ad z - 1 (h)(Ad Z- 1 (hk)(G~ (h)...)(t~)

o ('t~(h, p)) .

O ~ = 2 "'" eG(h)P) o ~(h , p) O---~--zg(h,)(... zt(h)(@)...)(e °k+~(h)
3h k=l Ohk hk=h

= 2 zr~(h)(Gk(h)(Gk(h))(t~)(~(h' p))"
k = I

The derivatives of the operators A k (h) with respect to h are denoted as for the operators
A(h), Gk(h), and G~t)(h). We have a preliminary result in this regard:

22 E E. Crouch and R. Grossman

Lemma 6, For any vector field G

k
---~Trk(h)(G) = - Z [T r J (h)(GJ (h)), ~rk(h)(G)]. (58)

j= l

Proof.

k c~ I

(evaluated at h j = h).

By Lemma 4, this may be evaluated as

k

- Z ~rJ - l(h)(Ad z {1 (h)(ad G j (h){Ad z ~ ~(h)(... Adz k_l(h)(G)...)})).
j = l

Since Adzi (h) are Lie algebra isomorphisms, we may write this expression in the
form

k

- Z 7r] - l (h)(ad (Ad zJl (h)(GJ(h)){Ad zJ_1 (h)(. . . Ad Zk_dh)(G).. 3})).
j = l

Iterating this observation yields the required expression (58). []

Corollary 1.

k-1

~-~ak(h) - 7rk(h)(Gk(h))] + 7rk(h)(Gk(h)). (59)
j = l

Proof. Apply Lemma 6 to the case where G = Gk(h), and note that the final term
in the series vanishes since the Lie bracket of two equal vector fields is zero. D

We may now apply these results to obtain a description of the derivatives Ak(h) ~°.

Lemma 7. Ak(h) (t) is a Lie polynomial in the quantities 7rk(h)G'~(h) (j), 1 <- m <---
k, 1 <--- j <- I. In particular, Ak(h) (t+l) is obtained from Ak(h) Ct) using the substitu-
tion:

m

7rk (h)(G m (h)Cj)) ~_> 7r k (h)G m (h)(j + l) _ Z [T r i (h)(G ~ (h)), 7r k (h)(G m (h)(J))]. (60)
i = I

D

Our main goal is to derive formulas for the derivatives Ak(0) (t) and hence A(O) (1).
Since we assume Gk(h, p) = Gk(0) = 0, the operators zkr(h), Adz~(h) and ~k(h),
all reduce to the identity operators at h = 0. Thus we may derive from Lemma 7 the
following special cases.

Numerical Integration of ODEs on Manifolds 23

Corollary 2. Ak(O) (t) is a Lie potynomial in the quantities G'n(O) (j), 1 <- m <- k, 1 <-
j <-- l. In particular, A k (0) (z + 1) is obtained from A ~ (0) (t) using the substitution:

tn

Gm(o)(J) ~-> G,-(0)(J+I) _ Z[Gi (O) , G"(0)(J)].
i = t

(61)
[]

Corollary 3.

k -1

J~k(0) = 0h(0) - Z [G J (0) , Gk(0)], (62)
j = l

k - I

Ak(0) = Gh(0) + [Gh(0), Gk(0)] + Z(2[Gk(0) , GJ(0)] + [Gk(0), GJ(0)])
j = l

k -1 k - I m-1

+ ~'[GJ(O), [GJ(0), G~(0)]] + 2 ~ ' ~([GJ(0), [G~(0), Gk(0)]]).
j = l m = 2 j = i

(63)

Proof. Formula (62) follows directly from (59) by evaluating at h = 0. Formula (63)
can be derived by using the substitution (61) in the formula (62). This gives

k-1 k - I k

~k(0) = 0k(0) - Z [G J (0) , Gk(0)] - 2 [G) (0 1 , Or(0)] - Z[GJ(O) , Gk(0)]
j=l j=l j=l

k - I j - I k - I k -1

+ Z ~'~ [[c~ (o), c~(o)I, ~k(o)] + Z Z [~(°), [G ~ (o), ~k (o)]I.
j = l m = l j = l m = l

This expression reduces to that in equation (63) after simplifying using the Jacobi
identity, c~

Lemma 7 and Corollary 2 reduce the problem of evaluating Ak(O) (t) to one of
evaluating the derivatives Gk(0) (0, or G~(O) (t), where Gkt(h) is defined by formula
(51). Evaluating these derivatives turns out to be fairly complicated, so we only
compute the first two derivatives, without obtaining explicit formulas for the general
case. From' (51) and (54) we obtain

d ~ (h) = fo' fo 1 k k Adz~(h)Gk(h) ds - Ad zs (h)[G-s(h), Gk(h)] ds +

Iol fo ~ Adz~(h)[Adzk_~(h)(Czk(h)), Gk(h)] do"ds

+ ad zks(h)(Gk(h)) ds.
s

24

Differentiating with respect to h once more gives

Thus,

E E. Crouch and R. Grossman

fo 1 fo 1 O~h) = Adzks(h)(Gh(h))ds - Adzks(h)([G~s(h), Ok(h)])ds

folo + {Adz~(h)([Adzk_~(h)(Ok(h)), dk(h)l)

+ Ad z~(h)([Ad zh_~(h)(dk(h)), Gk(h)l)

- Ad zks(h)([Gk_s(h), [adzk_~(h)(dk(h))]])
- Ad z~(h)([Ad z[¢(h)([G~(h), Gk(h)]), Ok(h)])} do, ds.

o Ad zks(h)(Gk(h)) ds

+ foli:{Adzts(h)([Adz~,(h)(Ok(h)), Gk(h)])

+ 2Ad zsk(h)([Ad zk¢(h)(Ga(h)), Ck(h)])} do. ds

fo ;; + { Ad zsk(h)([Ad z~o.(h)(d,(h)), lad Z[,(h)(Ok(h)), 0,(h)]])

+ Ad zsk(h)([Ad Zk_r(h)(Ot (h)), lAd Z~,r(h)(Ok(h)), Ok (h)]])

+ Ad Zks(h)([Ok(h), Ad zk_c,(h)([Ad z~(h)(Ok(h)), Ok (h)])])} 3"r do" ds.
(64)

From these expressions we deduce the following result.

Lemma 8. Gk(O) q) is a Lie polynomial in Gk(O) (j), 1 <-- j <-- l + 1, with no constant
term, with linear term equal to Gk(0) (t+D and higher-order terms involving only
Gk(O) Cj), I <-- j <-- l. In particular, we have

Gk(O) = Gk(O), Gk(o) = Gk(O),
(65)

1

4k(o) = ~k(o) + 2 [G(o) , ¢k(o)]. []
We may now put together the results of Corollary 3 and Lemma 8 to give explicit

formulas for the lowest derivatives of Ak(h).

Corollary 4.

Ak(0) = Gk(0),

k-I
d~k(0) = 0k(0) - Z [0 s (o) , 0k(o)],

j = l

Numerical Integration of ODEs on Manifolds

1 -- 0 Ak(0) = Gk(0) + ~[Gk() , Gk(0)]

25

k - I

+ Z ([G k (0) , Gj(0)] + 2[Gk(0), G j(0)]) (66)
j = I

k - I

[dj(o), dk(o)]]
j = I

÷

k - 1 m - 1

Z Z 2([Gj(0), [Gm(0), Gk(0)]]).
m = 2 j = l

÷

6. Specific Examples of Algorithms on Manifolds

In this section we shall apply the analysis of the previous two sections to obtain
third-order Runge-Kutta and multistep algorithms, adapted to a frame E, as explained
in Section 3. The analysis will also demonstrate that third-order algorithms are the
first instance of algorithms where the non-Euclidean structure of the frame E, plays a
nontrivial role; or in other words, all second-order Euclidean algorithms are second-
order with respect to any frame.

To apply the analysis of Sections 5 and 4 we need only compute the derivatives
Gk(0) (~ using the specific form of the algorithm in question. We first consider the
Runge-Kutta algorithms. For third-order algorithms we consider three-stage algorithms
as described by equations (19) and (20), explicitly:

ul(p) = p, Flp(h)(z) = Vp(z),

uz(h, p) = ehc2,1F~,p, FZ(h)(z) = Fu~(h,p)(Z),
(67)

u3(h, P) = ehc~,2F~ ehc3,1r~ p , F3(h) (z) = V~(h,p)(Z),

Zk + l = e hc3F3zk e hc2F~k ehClF~ Zk = u k + l (h , Z k) .

Thus, as in the definition of ~ for the Runge-Kutta algorithms, equation (25), we
obtain

Gl(h, p) = hc3F3(h), Ge(h, p) = hc2F2(h), G3(h, p) = hclFlp(h). (68)

Lemma 9. For the Runge-Kutta algorithm (67) we have

= o , = o ,

F2(O) = c2,1F(F)p, /63(0) = (c3,2 + c3A)F(F)p,

P2p(O) = cZA(F " F)(V)p ,

F3(O) = 2c3.2c2,1(F(F))(F) e + (c3,1 + c3,z)Z(F • F)(F)p.

26 R E. Crouch and R. Grossman

Proof. We apply the general expansion (28), while noting that the vector fields Fp k
have "frozen coefficients," to obtain

2 1 1 1 Fp = Fp + hc2,1F~(F)p + (hc2,1)2~.(Fp " Flp)(F)p + o(h2),

Fp = Fp + hc3,zF~(F)p + (hc3,2) 2 (F 2" FZ)(F)p

Jr h3,1gl(F)p q-(hc31)21(f 1 " Flp)(F)p
' 2 .

+ h2c3,1c3,2(flp "F2)(F)p + o(h2).

Since F~ does not depend on h, we obtain

"2 2 1 Fp = c2,1F]j(F)p + hCE, l(F p " FI)(F)p + o(h),

2 2. F2)(F)p + c3,,F)(F)e f73 = c3,2F2(F)p + hc3,z(Fp

2 I 2hc3,1c3,z(vlp. y2)(F)p + hc3,1(F p • F~)(F)p +

+ hc3,zp2(F)p + h2c3,,c3,2(F~ . P~)(F)p

+ (hc3,z) 2 I ((~ "2" F2)(F)p + (F~" F2)(F)p) + o(h).

Noting that F2(0) = F p I = Fp we obtain

F2(O) = c2,1F(F)p, i~p3(0) = (c2,1 + c3 ,)F(F)p,

/~pz(0) = (c2,,)2(F "F)(F)p,

/};3(0) "= (C3,1 -I- c 3 , 2) 2 (F "F)(F)p + 2c3.z/~(0)(F)p.

Finally, substituting the value of/+p~(0), we obtain the stated result.

Using the formulas for the vector fields Gk(h, p) in equation (68) we deduce from
Lemma 9 the following result.

Corollary 5. For the Runge-Kutta algorithm (67) we have

G3(0, p) = "ciFp, a2(0, p) = c2Fp, G I (0 , p) = c3Fp,
~3(o, p) = ~3(o, p) = o,

G2(0, p) = 2c2c2,1F(F)p, G2(0, p) = 3c2c2,1(F " F)(F)p,

Gt(0, p) = 2c3(c3,2 + c3,1)F(F)~,

GI(0, p) = 6c3c3zc31(F(F))(F) e + 3e3(c3,1 q- c3,2)2(F • F)(F)p. [2

Note that we could obtain the expressions for the derivatives Fpk(0) (0 by applying
the theory of Sections 4 and 5 to the expressions F~,(h,p)(tP), rather than the expression

Numerical Integration of ODEs on Manifolds 27

o ~(h, p). However, the preceding analysis demonstrates the type of computation
that those sections are generalizing.

We may now use the result of Corollary 5 in Corollary 4 to obtain explicit formulas
for the derivatives A(0) (z) = ~ k- - t Ak(0) ~1), in the case s = 3, l = 0, 1, and 2. Much

simplification is obtained since Gk (0) are all multiples of the same vector field Fp.

Corollary 6. For the Runge-Kutta algorithm (67), we have

A(O) = (cl + c2 + c3)F e, A(0) = 2(c2c2,1 + c3(c3,2 + c3,1))F(F)p,

A(0) = 3(c2c2,1 + c3(c3.1 + c3,2)2)(F .F)(F)p

+ 6c3 c3,2 c2,1 (F(F))(F)p (69)

+ {4C2C3C2, I + C2C2,1 + C2(C3,2 + C3,1)

- 2(clc2c2,1 + c3(cl + c2)(c3,z + c3,1))}[F(F)p, Fp].

We now repeat these calculations for the multistep algorithm (22). For third-order
algorithms we consider only the case l = 2, with 3 steps, that is:

zk + l = e ha°F~k ehCt°Fzk-~ eha°Fzk-z ehat°Fzk ehc~]Fz~-~ eha~F~k-z Zk • (70)

Thus, using the definition (26) of ~(h, p) for multistep algorithms we have s = 6
and

Gl(h, p) = hot°Fp, Gz(h, p) = ha°Fe-hp p,

G3(h, p) = ha°Fe-2,r p, G4(h, p) = hot~Fp, (71)

Gs(h, p) 1 = hcel2Fe_z~F p, = ho~lFe-he p, G6(h, p)

Lemma 10.

c~) h = j F ~) (- m) j-1. (72) c~hJ hFe-"Mr P =0

Proof. By induction and the definition of the vector field Fp ~) (Section 4) one can
prove

oJ I ~7(J) - (j+l)
OhJ (hFe-'hF P) = J (- m) J - -e-mhr P + h(-m):Fe-~h~ P' j - > l .

Equation (72) is obtained by evaluating at h = 0.

The derivatives of Gk(h, p) in equation (71), with respect to h, are now easily
obtained from Lemma 10. We may now obtain the required derivatives A(0) (t) =
~'~=1Ak(0) ~I) in the case of the multistep algorithm (70) by applying the results of
Corollary 4, Lemma 10, and equations (71).

28 E E. Crouch and R. Grossman

Lemma 11.

A(0) =

A(0) =

A(o) =

For the multistep algorithm (70) we have

(a ° + a ° + a ° + ot~ + o~ 1 + a~)Ft,,

- 2(a ° + a~ + 2(c~ ° + o4))Fp (z),

1 ~ ~ F (3) ° + + ° +

1 2 + {((a°) 2 + (c~]) z + 2((a°) 2 + (a2)))

2(ot0°(2al ° + 4a ° + 2o~1 + 4 ~) + a°(3a° 2 - o~ a + ~ + 3o 4)

+ oe2°(-2a~ + 2a21) + 04) + oe01(2czl + 4o4) + =I(34))}EG,

(73)

We wish to apply Theorem 1 to Corollary 6 and Lemma 11 in order to obtain
algorithms adapted to an arbitrary frame E. However, this first requires that we verify
the claim A(0) (k) ~ L~+I(F)(p); k >- O. To do this, we introduce the notion of weight
for parameter (h) dependent vector fields and their Lie polynomials. Referring to
Corollary 2, we say that the vector fields Gin(0) (j) have weight j + 1 and that a Lie
monomial in these vector fields has weight equal to the sum of the weights of the
constituent vector fields. A Lie element that is the sum of Lie monomials all of the
same weight j is said to have weight j also.

Similarly, we can define weight for Lie monomials in the vector fields G,~(O) (j),
by insisting that Gin(O) (j) has weight j . A Lie element that is a sum of Lie monomials
in the vector fields Gin(0) ~j~, all of weight k, is said to have weight k also.

From Corollaries 2 and 3, we see that A(0) (j) is a Lie element of weight (j + 1),
with respect to Gin(0), while Lemma 8 and the preceding calculations demonstrate
that Gin(O) {j) has weight j , with respect to G~(0). It follows (see Corollary 4), that
A(O) (j) is a Lie element of weight (j + 1), with respect to the vector fields Gk(0).

Now Lemma 10 and Corollary 5 show that for the Runge-Kutta and multistep
algorithms adapted to a frame, we have that

Gk(O, p)(J) ~ VIJ (F)(p).

A(O) 0) ~ LJ+I(F)(p) now follows from the definitions of LJ(F)(p) and the fact, as
demonstrated above, that A(0) (j~ has weight (j + 1), with respect to the vector field
GkO, p) = Gk(O).

To apply Theorem 1 we must obtain the decompositions

k k A(0) (k-I) = Ap + Bp,

as in equation (45). Under the Assumption 2, and the fact that in both algorithms (67)
and (70), Gk(0) are multiples of Fp, Corollary 4 gives

3 3 3

AlP = Z Gk(O)'A2 = Z Gk(O)'A3 = Z Gp(O),
k = l k = l k = l

1 2 B e = B p = 0, (74)

Bp = [Gk(0), Gk(0)] + Z ([Gk(0) , Gj(0)] + 2[Gk(0), Gj(0)]) .
~=1\ j=l

Numerical Integration of ODEs on Manifolds 29

Theo rem 2. Under Assumption 2 the Runge-Kutta algorithm adapted to a frame E,
given in equation (67), is of order 3 if and only if the Euclidean equations (13) are
satisfied together with any one of the following equations:

(i) 4czc3c2,1 + c22c2,1 + c~(c3,2 + c3,1)

- 2(clc2cz.1 + c3(cj + c2)(c3,2 + c3,1)) = 0. (75)

(ii) 3(c22cz.1 + c2(c3,2 + c31)) + 6c3(cl + c2)(c3,2 + c3.1) + 6clc2c2,1 = 2.

(iii) 3(c22c2,1 + c~(c3.2 + c3,1)) + 6c2c3c2.1 = 1.

The three sets of equations obtained by adjoining one of the equations (i), (ii), or
(iii) to the Euclidean Runge-Kutta equations (13) have identical solutions.

Proof. Applying Theorem I, part (i) to Corollary 5, and equations (74), or equiva-
lently Corollary 6, yields the equations (13) and equation (75(i)).

Alternatively, we may apply part (ii) of Theorem I. We obtain the equations (13)
again by applying part (ii)(a) for 1 -< k --- 3. Part (ii)(b) is vacuous for k = 1, 2. For
k = 3 we have

Be3 + F3(A~, A2p) = F3(Fp, F(p2)).

But from equations (38) we may rewrite this in the form B 3 + aZp • Z~ + 2alp - a2p +

-(2) + Fp • Fp • Fp, which reduces to the condition Alp.Alp.alp = F(p2).Fp + 2Fp . l ' p

3 z t 2Ap • Ap _p Bp + Ap • Ap + 2 = F(2). Fp + 2Fp • F (2). (76)

Using Corollary 5 and equation (74) we may rewrite the left-hand side of equation
(76) in the form

3(d2(0)- G(0) + G3(0). G(0) + G(0)" 02(0) + 02(O)-G(0))

3(02(o) • d2(o)-+ G(o)-G(o) + 02(o)- G2(0) + G(0)" G~(0)). +
z

Using this result and Corollary 5 once more, equating coefficients of the (independent)

vector fields Fp • F(p 2) and F(p z) • Fp gives the equations (75)(ii) and (iii) respectively.
However, equations (75)(ii) and (iii) are not independent, given the equations (13);

indeed we have

(75)(ii) + (75)(iii) = (13)(i) x (13)(ii) x 6.

Moreover, we have

3 x (75)(i) = 2 x (75)(iii) - (75)(ii).

This proves all assertions of Theorem 2.

Applying "Mathematica" to the solution sets of equations in Theorem 2 yields five
distinct solutions for the constants c; two one-parameter families depending on c3 and
three distinct isolated solutions. These are summarized in the table on page 30.

We now consider the muttistep algorithm (70).

30 R E. Crouch and R. Grossman

TABLE 1. Constants Defining Runge-Kutta Algorithms Adapted to Arbitrary Frames

Classical Runge-Kutta Algorithms
"kutta" Adapted to Arbitrary Frames

Algorithm SOLN1 SOLN2 SOLN3 SOLN4 SOLN5

c3 = 1 c3 = 1
c~ 1/6 0.264 - 1.264 1 13/51 7/24
c2 2/3 -0 .264 t.264 - 2 / 3 24/17 - 1/24
c3 1/6 1 1 2/3 - 2 / 3 3/4
C2,1 1/2 0.858 --0.0583 -- 1/24 289/456 24/17
c3.1 - I 0.532 3.434 161/24 21669/21964 1079/1836
c3,2 2 O. 194 -2.860 - 6 - 114/289 17/108

Theorem 3. Under assumption (2) the multistep algorithm adapted to a frame E,
given in equation (70), is of order 3 if and only if the following equations are satisfied:

(i) a ° + o ~ ° + a ° + a ~ + a ~ = 1.

1
(ii) a ° + a l 1 + 2 (~ ° + a z / = - ~

1
(iii) a ° + a I + 4(a2 ° + a~) = ~. (77)

(iv) (~o)2 + (~I)2 + (~o)2 + (~)2 + ~o(2=o + 4,~o + 2~I + 4 4)
2

+ o~ ° + (3a ° - ce~ + a~ + 3a~) + a ° (- 2 ~ + 2cz21)

+ ~a(2~l + 4 4) + ~I(3,4) = o.

Proof. We apply Theorem 1, part (i) to Lemma t 1 and equations (74) directly. The
equations (77) are obtained as required, n

One notes that if we set

/30 = ~o + ~o' /3, = ~o + ~I /3, = ~0 + 4 ,

then if the constants a satisfy equations (77)(i), (ii), and (iii), the constants/3 satisfy
the equations (16) for the Euclidean, third-order, multistep algorithms. The equations
(77) therefore do indeed generalize the equations (16) for the Euclidean algorithms.

Applying "Mathematica" to the solution of the equations (77) yields three distinct
sets of solutions, two of which are complex. The real solution is parameterized by a~
and a~ as follows:

a° o = 17 + 216a~ + 552~ + 144ee~o~

72(1 + 2a~ I + 404) '

ce o _ - 4 - 3al 5 - 12a~
3 ' ~o = 1 ~ '

121 + 60a I - 144a~a~
ce~=

72(1 + 2a~ + 4a~)

Numerical Integration of ODEs on Manifolds 31

In particular, we have a solution

17 4 5 121
a ° = 7"2' c ~ ° = - 3 ' a 2 ° - 1 2 ' a ~ - 7 2 '

= = o .

Note that

23 4 5
i 7 ' ,

which corresponds to the unique solution of the Euclidean third-order multistep equa-
tions (16) as given in (17).

We note the Theorems 2 and 3 illustrate two distinct means of achieving algorithms
adapted to arbitrary frames.

7. Concluding Remarks

Clearly the work above represents only the beginning of a vast program of work,
replicating the usual analysis of numerical integration algorithms for ODEs, Butcher
[2,3], and others [19.20]. However as is clear from Section 6, any attempt to an-
alyze algorithms of order greater than three will be very complex, and our current
work is aimed at precisely this problem. We make some observations concerning this
issue:

7.1. Computing the Constraint Equations

The derivation of the equations constraining the c constants in the Runge-Kutta algo-
rithms, cf. Theorem 2, and the ce constants in the case of the multistep algorithms,
cf. Theorem 3, involve implicit computations of the higher-order derivations F k,
k -- 0, as well as certain operators with "frozen" coefficients. There are several ways
in which these computations can be organized. One means is to keep careful track of
the spanning sets V~ t. Another method is to use the calculus of rooted trees, labeled
with the vector field F as in [9, 17]. It turns out that the vector space, whose basis is
the set of such trees, has an algebraic structure that can be exploited to yield efficient
algorithms for manipulating the higher-order derivations F k. Some of the computa-
tions in this paper were done in this way using trees. This point of view is exploited
systematically in the companion paper [10]. We have implemented the code to manip-
ulate trees corresponding to the higher-order derivations in Maple, Mathematica, and
Snobol.

7.2. Solving the Constraint Equations

Solving the constraint equations for the c or a constants has been done so far using
an ad hoc mixture of symbolic and numeric techniques. At present, we know how to
do this only for low-order systems and are currently developing algorithms to solve
these equations for higher-orders.

32 R E, Crouch and R. Grossman

7.3. Integration of the Flow

As we observed, our Assumption 1 is equivalent to the assumption that we can
compute flows of "frozen" vector fields to arbitrary accuracy. In the case where M =
SO(3), as we observed in the introduction, explicit formulas are available to compute
the required flows of left invariant vector fields. However, although there are other
explicitly integrable geometric objects in this sense (see [28, 29]), their occurrence
in practical applications is likely to be limited. It follows that "good" choices of the
approximating frame E must be made so that the resulting flows can be calculated
off line to arbitrary accuracy with relative efficiency. This seems to be feasible in
some cases where M is the tangent space to a Lie group such as SO(3). "Nilpotent"
approximating frames might be another choice.

Acknowledgments

This research is supported in part by the NSF grant INT 891-4643 and DMS 910-1964
(PEC) and by NASA grant NAG2-513, NSF grant DMS 910-1089, and the Laboratory
for Advanced Computing, (RG).

References

1. M. Austin, P. S. Krishnaprasad, and L.-S. Wang, Symplectic and Almost Poisson In-
tegration of Rigid Body Systems, Proceedings of the 1991 International Conference on
Computational Engineering Science, ed. S. Atluvi, Melbourne, Australia, August, (1991).

2. J. C. Butcher, An Order Bound for Runge-Kutta Methods, SIAM J. Numerical Analysis,
Vol. 12, pp. 304-315, (I975).

3. J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations, John Wiley,
(1986).

4. R Channell, Symptectic Integration for Particles in Electric and Magnetic Fields, (Accel-
erator Theory Note, No. AT-6: ATN-86-5). Los Alamos National Laboratory, (1986).

5. E Channell, and C. Scovel, Symplectic Integration of Hamiltonian Systems, submitted to
Nonlinearity, June, 1988.

6. A. Chorin, T. J. R. Hughes, J. E. Marsden, and M. McCracken, Product Formulas and
Numerical Algorithms, Comm. Pure and Appl. Math., Vol. 31, pp. 205-256, (1978).

7. R E. Crouch, Spacecraft Altitude Control and Stabilization: Application of Geometric
Control to Rigid Body Models, [EEE Transactions on Automatic Control, Vol. AC-29, pp.
321-331, (1986).

8. R E. Crouch, and R. L. Grossman, The Explicit Computation of Integration Algorithms
and First Integrals for Ordinary Differential Equations with Polynomial Coefficients Us-
ing Trees, Proceedings of the 1992 International Symposium of Algebraic and Symbolic
Computation, ACM, (1992).

9. R Crouch, R. Grossman, and R. G. Larson, Computations Involving Differential Operators
and Their Actions on Functions, Proceedings of the 1991 International Symposium on
Symbolic and Algebraic Computation, ACM, (1991).

10. P. Crouch, R. Grossman, and R. Larson, Trees, Bialgebras, and Intrinsic Numerical Integra-
tors, (Laboratory for Advanced Computing Technical Report, # LAC90-R23). University
of Illinois at Chicago, May, (1990).

Numerical Integration of ODEs on Manifolds 33

I 1. R. de Vogelaere, Methods of Integration which Preserve the Contact Transformation Prop-
erty of the Hamiltonian Equations, Department of Mathematics, University of Notre Dame
Report Vol. 4.

12. A. Deprit, Canonical Transformations Depending upon a Small Parameter, Celestial Me-
chanics, Vol. 1, pp. 1-31, (1969).

13. A. J. Dragt, and J. M. Finn, Lie Series and Invariant Functions for Analytic Symplectic
Maps, J. Math. Physics, Vol. 17, pp. 2215-2227, (1976).

14. K. Feng, The Symplecfic Methods for Computation of Hamiltonian Systems, Springer
Lecture Notes in Numerical Methods for P.D.E. 's, (1987).

15. C. W. Gear, Simultaneous numerical solution of differential-algebraic equations, 1EEE
Transactions on Circuit Theory, Vol. 18, pp. 89-95, (1971).

16. Ge-Zhong, and J. Marsden, Lie-Poisson Hamiltonian-Jacobi Theory and Lie-Poisson Inte-
grations, Phys. Left. A., Vot. 133, pp. 134-t39, (1988).

17. R. Grossman, and R. Larson, The Symbolic Computation of Derivations Using Labeled
Trees, J. Sympolic Computation, to appear.

18. E. Halter, C. Lubich, and M. Roche, The Numerical Solution of Differential-Algebraic
Systems by Runge-Kutta Methods, Springer-Vedag, Berlin, (1989).

19. E. Hairer, S. E Norsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff
Problems, Springer-Verlag, Berlin, (t987).

20. E. Isaacson, and H. B. Keller, Analysis of Numerical Methods, Wiley, (1966).
21. A. J. Krener and R. Hermann, "Nonlinear Observability and Controllability," IEEE Trans-

actions on Automatic Control A.C.-22, pp. 728-740, (1977).
22. G. Meyer, On the Use of Euler's Theorem on Rotations for the Synthesis of Attitude

Control Systems, (NASA Technical Note, NASA TN.D-3643). Ames Research Center,
Moffet Field, California, (1966).

23. L. R. Petzold, Order Results for Implicit Runge-Kutta Methods Applied to Differen-
tial/Algebraic Systems, S I ~ Journal of Numerical Analysis, Vol. 23, pp. 837-852,
(1986).

24. W. C. Rheinboldt, Differential-Algebraic Systems as Differential Equations on Manifolds,
Mathematics of Computation, Vol. 43, pp. 473-482, (1984).

25. R. Ruth, A Canonical Integration Technique, IEEE Transactions on Nuclear Science, Vol.
30, p. 2669, (1983).

26. J. M. Sanz-Serra, Runge-Kutta Schemes for Hamiltonian Systems, Bit, Vol. 28, pp. 877-
883, (1988).

27. C. Scovel, Symplectic Numerical.Integration of Hamittonian Systems, Proceedings of the
MSRI Workshop on the Geometry of Hamiltonian Systems, to appear.

28. E Silva Leite, and J. Vitoria, Generalization of the De Moivre Formulas for Quaternions
and Octonions, Estudos de Matematica in the Honour of Luis de Albequerque, Universidade
de Coimbra, pp. 121-t33, (1991).

29. E Silva Leite,'C. Simoes, and J. Vitoria, Hypercomplex Numbers and Rotations, Univer-
sidade Do Minho, 4-8, Vol. 3, pp. 636--643, (1987).

30. Dao-Liu Wang, "Symplectic Difference Schemes for Hamiltonian Systems on Poisson
Manifolds," Academia Senica, Computing Center, Beijing, China, (1988).

