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Summary, Mathematical models for excitable membranes may exhibit bursting so- 
lutions, and, for different values of the parameters, the bursting solutions give way 
to continuous spiking. Numerical results have demonstrated that during the transition 
from bursting to continuous spiking, the system of equations may give rise to very 
complicated dynamics. The mathematical mechanism responsible for this dynamics 
is described. We prove that during the transition from bursting to continuous spiking 
the system must undergo a large number of bifurcations. After each bifurcation the 
system is increasingly chaotic in the sense that the maximal invariant set of a cer- 
tain two-dimensional map is topologically equivalent to the shift on a larger set of 
symbols. The number of symbols is related to the Fibonacci numbers. 

Key words, bursting oscillations, excitable membranes, Fibonacci dynamics. 

I. Introduction 

In a recent paper [17] we considered certainsystems of differential equations which 
model excitable membranes. These'include models for electrical activity in pancreatic 
fl-cells; see [3], [4], and [16]. We demonstrated that the eqiaations must give rise 
to sustained oscillations of the burst type and, for larger values of a parameter, the 
bursting gives way to continuous spiking. In Figure 1A we see an example of a bursting 
solution. It is characterized as a periodic solution whose behavior alternates between 
near steady-state behavior (the passive phase) and trains of spike-like oscillations (the 
active phase). The bursting solutions correspond, for example, to the pancreatic/3- 
cell's response to the presence of glucose [2], [I0], and this activity is correlated 
with their release of insulin [15]. Continuous spiking corresponds to stable periodic 
solutions which always oscillate in the active phase; it is analogous to the sustained 
excitation seen physiologically in the presence of high concentration of agonist, An 
example of such a solution is shown in Figure lB. Each solution shown in Figure 1 
is a solution of the system (A.1) that is described in the Appendix. 
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Fig. 1. Solutions of (A.1) with e = .002, and (A) k = - .23,  (B) k = - .13,  and (C) 
k = - .  1306. The solution in (A) is bursting, the solution in (B) corresponds to continuous 
spiking, and the solution in (C) demonstrates the chaotic transition from bursting to continuous 
spiking. 

In this paper we study how solutions of the equations make the transition from 
bursting to continuous spiking as parameters in the equations are varied. Numerical 
results [5] have demonstrated that during this transition the system gives rise to very 
complicated dynamics. Such a solution is shown in Figure 1C. This solution is "burst- 
like" in the sense that its behavior alternates between near steady-state behavior and 
spike-like oscillations. However, there is no fixed period for each burst; the amount 
of time each burst spends in its active phase is very irregular. Note that there may be 
very long active phases followed by relatively short active phases. 

Our goal is to describe the mathematical mechanisms responsible for the irregular, 
or chaotic, solution illustrated in Figure 1C. We prove that for the class of models 
considered in [17], chaotic dynamics must arise during the transition from bursting 
to continuous spiking. The dynamics is characterized in terms of a two-dimensional 
map, 7r, which is defined in Section 3. We say that the system gives rise to chaotic 
dynamics if the maximal invariant set of ~ is topologically equivalent to the shift map 
on the set of bi-infinite sequences o f j  symbols where j > 2. We prove that during the 
transition from bursting to continuous spiking, the system must undergo a large num- 
ber of bifurcations. After each bifurcation, the system gives rise to increasingly more 
complicated dynamics in the sense that the maximal invariant set of ,r is topologically 
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equivalent to the shift on a larger set of symbols. One interesting feature of our results 
is that the number of symbols is related to the Fibonacci numbers. 

The models which we consider are autonomous systems of ordinary differential equa- 
tions. They are typically expanded versions of the classical Hodgkin-Huxley [9] descri- 
ption of nerve excitation. The first such model for electrical activity in pancreatic/3- 
cells was due to Chay and Keizer [4]. Later, Chay [3] and Sherman, Rinzel, and Keizer 
[16] introduced three variable models. The three variables represent the membrane 
potential, the intracellular free calcium concentration, and a potassium state variable. 

The systems considered here consist of fast and slow subsystems. If we think of 
the variables of the slow subsystem as parameters, then the fast subsystem has a 
branch of stable rest points and a branch of stable periodic solutions. The bursting 
solution then corresponds to a closed orbit in phase space which, in the passive phase, 
passes close to the branch of stable rest points. The trains of rapid spikes correspond 
to the closed orbit passing close to the branch of periodic solutions. See Figure 2. 
This geometric description of bursting was first proposed by Rinzel [13]. Continuous 
spiking corresponds to a stable closed orbit in phase space which always lies close to 
the branch of periodic solutions. 

w/ 

stable rest points 
\ ,  

/ 

homoclinic orbit 

7 

~ ' ~  stable periodic solutions 

bursting solution 

Y 

Fig. 2, Geometric model for bursting. The slow variable is y. Ify is considered as a parameter, then 
the fast subsystem (v, w) has a branch of stable rest points and a branch of stable periodic solutions. 
The bursting solution passes close to the branch of stable rest points in the passive phase and passes 
close to the branch of stable periodic solutions in the active phase. 
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An important feature of the systems which we consider is that in the fast subsystem 
the branch of periodic solutions terminates at a homoclinic orbit. A key step in under- 
standing how the chaotic dynamics emerge is to understand how solutions near this 
homoclinic orbit behave as parameters in the equations are varied. There have been 
several papers recently concerning homoclinic bifurcations; see [18], [6] and the ref- 
erences cited there. These results, however, usually assume that the homoclinic point 
is hyperbolic. For the systems which we consider, the homoclinic orbit exists when 
a singular perturbation parameter is equal to zero. The homoclinic point is contained 
in a one-parameter family of fixed points; it is, therefore, degenerate. 

In [17] we demonstrated that chaotic dynamics may arise during the process of 
adding a spike to the active phase of the bursting solutions. The chaotic dynamics 
described in [17] is, however, quite different from the chaotic dynamics discussed 
in this paper. The Smale horseshoes constructed in [17] exist for extremely narrow 
ranges of the parameters. Moreover, most trajectories which, at some time, lie close 
to the horseshoe will eventually leave a small neighborhood of the horseshoe and 
never return. The chaotic dynamics considered in this paper, however, has a certain 
attracting property: Suppose that the map vr, which was introduced earlier, gives rise 
to chaotic dynamics, and A is the maximal invariant set of ~. Then there exists a small 
neighborhood of A in phase space such that every trajectory lies in this neighborhood 
infinitely often. 

The existence of the chaotic dynamics described here was first recognized by Chay 
and Rinzel [5]. Their numerical studies suggest that the dynamics can be reduced to 
a one-variable, logistic-type map. This approach was also taken by Alexander and 
Cai [1]. The reason that the three-dimensional system can be studied in terms of a 
one-dimensional map for a large range of parameters is that the system has a strong 
dissipation property. This will follow from our analysis and is described in further 
detail in Section 4; see Remark 4G. 

An outline of the paper is as follows. Section 2 consists of three parts. In Section 
2A, we state precisely what assumptions are required for our systems of equations. In 
Section 2B, we describe some basic properties of a class of two-dimensional maps. 
In particular, we define the notion of Fibonacci dynamics. This notion is used in the 
statement of the main result which is given in Section 2C. In Section 3 we formally 
define the two-dimensional map ~r. It will be a first-return map and is defined by 
solutions of the equations which lie close to the homoclinic orbit of the fast subsystem. 
Basic properties of 7r are also proved in Section 3. The proof of the main result is 
given in Sections 4 and 5, with the more technical aspects of the proof reserved for 
Section 5. 

2. Assumptions, I~bonacci Dynamics, and Results 

A. Assumptions 

We consider a system of ordinary differential equations of the form 

v'  = f i ( v ,  w ,  y), 
W' = f2(v, W, y), 

y '  = Eg(v, W, y, k), 

(2A.I) 
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Fig. 3. Objects that appear in assumptions A1-A6. If e > 0, lyl < 8,, and Ikl < ak, 
then (0, 0, yk) is a fixed point of (2A.1). If y = 0, then (0,0) is a homclinic point of 
(FS). A branch of stable periodic solutions of (FS) exists for y > 0 and terminates at 
the homoclinic orbit yh(t). 

Here • is a small positive constant, and f l ,  f2, and g are smooth functions. If we let 
f(v, w, y) = (f l ,  f2) r ,  then by fast subsystem we mean the equations 

( v )' = f(v, w, y). (FS) 

In (FS), the slow variable y is thought of as a parameter. 
In [17] we gave conditions on the nonlinear functions in (2A.1) which guarantee 

that there exist bursting solutions and, for other values of the parameters, continuous 
spiking. The object of this paper is to demonstrate that chaotic dynamics must arise 
as the parameters in (2A. 1) vary from the range of bursting solutions to the range of 
spiking. The existence of the chaotic dynamics does not depend, however, on all of the 
assumptions needed for the existence of bursting solutions or continuous spiking. We 
first describe only those assumptions needed for the existence of the chaotic dynamics. 
We shall see that the chaotic dynamics arises from the perturbation of an orbit which 
is homoclinic to a degenerate fixed point. After we state these assumptions, we shall 
briefly describe the further assumptions and results in [17] concerning the existence 
of bursting solutions and continuous spiking. 

We now state six assumptions (see Fig. 3). The first four are concerned solely 
with the fast subsystem (FS). Our first assumption is that there exists a curve of fixed 
points of (FS) in the (v, w, y) phase space. By a suitable change of variables we may 
assume that at these fixed points (v, w) = (0, 0). 
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Fig. 4. The phase space of (2A.1). LB, MB, and LIB are the 
branches of rest points of (FS). For y > h, there is a branch of sta- 
ble periodic solutions, which surround UB. This branch terminates 
at the homoclinic orbit M~(t) as y ~ h. 
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A1. There exists a 8y > 0 such that (0, 0) is a fixed point of  (FS) for each y E 
(-By,  By). Each of these fixed points is a saddle. 

A2. Suppose that AI and -A2 are, respectively, the positive and negative eigenvalues 
of (FS) linearized at (0, 0) when y = 0. Then )q < A2. 

Remark. This last condition is satisfied for the models discussed in the introduction. 
For tYl < By, let qy = (0,0, y) and let S = {qy :tyl < By}. The union of the 

stable (resp. unstable) manifolds of each qy forms an invariant, center-stable (resp. 
center-unstable) manifold which we denote by WCS(resp.WCU). 

A3. There exists a solution yh(t) of (FS) with y = 0 which is homoclinic to 
q0. This homoclinic orbit arises from the transverse intersection of W cs and 
W C~ , 

A4. For each y E (0, By) there exists a stable periodic solution of (2A.1). The union 
of these periodic solutions forms a smooth manifold which terminates at yh(t) 
as y --> 0. 

Our final assumptions are concerned with the slow dynamics. 
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A5. There exists 8k > 0 such that if Ikl < 8k, then g(v, w, y, k) = 0 if and only if 
v = h(w, y, k) for some smooth function h(w, y, k). Moreover, g(v, w, y, k) < 
0 if and only if v > h(w, y, k). 

For Ik[ < 8~, let = {(v, w, y) : v = h(w, y, k)} and M~ = {(v, w, y) : v > 
h(w, y, k)}. 

A6. If Ikl < 8k, then there exists Yk E (--8 r, By) such that Mk f3 S = qYk. More- 
over, Yo = 0, and, for Ikl < t~k, dyk /dk  < 0. Finally, if k E (-Bk, 0], then 
"yh(t) E M~ for all t. 

Remarks. (a) Assumption A6 implies that for each k E (--¢~k, 6k) and e > 0, (2A.1) 
has one fixed point in the set where [yl < 8r. This fixed point is qy~. Since dyk /dk  < 
0, this fixed point moves to the "left" as k is increased. Moreover, if k E (--Bk, 0], 
then ?/h(t) lies in the set where y' < O. 

(b) Assumptions A2 and A3 imply that there exists a smooth manifold of periodic 
solutions which terminate at 3'h (t). Our assumption that these periodic solutions exist 
for y ~ (0, By) instead of y E (-By, 0) is, of course, arbitrary. However, if in A4 
we had assumed that the periodic orbits exist for y ~ (-By, 0) then, for our results, 
it would have been necessary to assume in A6 that dyk /dk  > 0. Chaotic dynamics 
will not arise from a homoclinic bifurcation if either (a) the periodic solutions exist 
for y ~ (0, By) and dyk /dk  > 0, or (b) the periodic solutions exist for y E (-Sy,  0) 
and dyk /dk  < O. 

We conclude this section by reviewing the results in [17]. Our goal now is to 
describe the relationship between assumptions A1-A6 and those assumptions required 
for the existence of bursting solutions and continuous spiking. In order to avoid 
too many technical details, the discussion here is somewhat informal. The precise 
assumptions required for the existence of bursting solutions and continuous spiking 
are listed in the Appendix. In what follows, the reader is referred to Figure 4. 

The assumptions required for the existence of bursting solutions and continuous 
spiking are the following. We first consider the fast subsystem (FS). We assume that 
the fixed points of (FS) consist of a smooth, S-shaped curve, 5 °, in phase space. That 
is, there exists A < p such that if either y < A or y > p, then (FS) has precisely 
one fixed point. If A < y < p, then (FS) has precisely three fixed points. Each fixed 
point on the lower branch of 5 ~ is assumed to be stable with respect to (FS), while 
each fixed point on the middle branch of 5 ° is a saddle. 

We next consider the set of periodic solutions of (FS). We assume that there exists 
h E (A, p) such that for each y > h, there exists a unique, stable periodic solution 
of (FS). The union of all of these periodic solutions forms a manifold ~ which 
terminates at an orbit which is homoclinic to the fixed point of (FS) that lies on the 
middle branch of 9 ~ for y = h. It is this homoclinic orbit that corresponds to the 
homoclinic orbit described in Assumption (A3). In Figure 5, we illustrate the phase 
planes corresponding to (FS) for three different values of the parameter y. 

The remaining assumptions needed for bursting solutions and continuous spiking 
are concerned with the slow equation; this is the last equation in (2A. 1). We assume 
that Mk -- {(v, w, y) : g(v, w, y, k) = 0} is a smooth, two-dimensional manifold that 
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Fig. 5. The phase plane of (FS) for three different values of y. If A < y < h, then each 
trajectory in the unstable manifold of m, approaches l, as t ~ oo. If y = h, then one of these 
trajectories is the homoclinic orbit. If h < y < p, then this trajectory approaches the periodic 
solution, p~, as t --~ oo. 

intersects 50 at precisely one point. We denote this point by Pk and assume that it lies 
on the middle branch of 50 for each k. We assume that g(v ,  w, y, k) > 0 for values 
of (v, w, y) that lie "below" Mk, and g(v,  w, y, k) < 0 for values of (v, w, y) that lie 
"above" Mk. Note that if E > 0, then Pk is a fixed point for the full system (2A.1). 
Our final assumption is concerned with how the surface M~ changes with respect to 
the parameter k. We assume that there exists kh such that if k < kh, then Pk lies 
"below" the homoclinic point on the middle branch. If k > kh, then Pk lies above 
the homoclinic point. 

In [17], we prove that if k < kh and e is sufficiently small, then (2A. 1) gives rise 
to a bursting solution. Intuitively, we expect this to be true for the following reason. 
Suppose that k < kh, E is small, and 7 ( 0  is a solution of (2A.1) that begins near the 
lower branch of 5 °. Because y '  = eg(v ,  w, y, k) > 0 near the lower branch of 50, this 
trajectory will slowly drift to the "right" along the lower branch until it reaches the 
right knee of 50. This corresponds to the passive phase of the bursting solution. The 
fast dynamics will then force the trajectory close to the manifold ~ of stable periodic 
solutions of (FS). Because k < kh, it follows that y '  < 0 near ~ .  The trajectory 
therefore drifts to "left," near ~ ,  until it reaches near to the homoclinic point on the 
middle branch of 50. This corresponds to the spiking phase of the bursting solution. 
In [17], we prove that eventually the fast dynamics forces the trajectory back to near 
the lower branch. This then completes one period of the bursting solution. 

We also prove in [17] that if k > kh and E is sufficiently small, then (2A. 1) gives 
rise to continuous spiking. This corresponds to a stable peroidic solution of (2A.1) 
that always lies near the manifold ~ of periodic solutions of  ~S) .  

Remark. In order to prove the existence of bursting solutions or continuous spiking, 
we need to assume that E is sufficiently small. The size of  E depends on the choice 
of k. In particular, we have that E --~ 0 as k --* kh. Therefore, there must exist 
two curves E = ~.b(k) and E = •s(k) with eb(kh) = 0 = es(kh) and the following 
properties: If  k < kh and 0 < E < Eb(k), then (2A. 1) gives rise to bursting solutions. 
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Chaotic Dynamics 
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kh k 

Fig. 6. The (k,~) parameter plane. I f0  < k < k~ and 0 < ¢ < eb(k), then (2A.1) 
gives rise to bursting solutions, while ifkh < k < k0 and 0 < ~ < ~s(k), then (2A.1) 
gives rise to continuous spiking. (2A. 1) must give rise to chaotic dynamics for values 
of (k, ¢) which lie between the curves e = eb(k) and e = es(k). 

If kh < k and 0 < ~ < ~s(k), then (2A.1) gives rise to continuous spiking. This is 
illustrated in Figure 6. We see in Figure 6 that there is a wedge-shaped region which 
lies between the curves e = eb(k) and e = es(k). This region separates the values of 
the parameters where bursting and continuous spiking occur. This paper is primarily 
concerned with the dynamics associated with parameter values in this wedge-shaped 
region. We demonstrate that in this region, chaotic dynamics must arise. 

B. Fibonacci Dynamics 

In Section 3 we demonstrate that solutions of (2A. 1) give rise to a two-dimensional 
map 7r(e, k). The chaotic dynamics are described in terms of the properties of this 
map. It is well known that chaotic dynamics can arise from two-dimensional maps; 
the Smale horseshoe is perhaps the most famous example. The maps which we are 
interested in, however, are not topologically equivalent to the Smale horseshoe. They 
are topologically equivalent to other maps which we describe in this section. 

Consider the squares 7.0 = [0, 1] x [0, 1] and 7,1 = [ - 2 ,  - 1 ]  x [0, 1]. Let 7. = 
7.0 U El.  We define a map rr : 7. ---> R 2 as follows. As with the Smale horseshoe map, 
we think of ~r as performing a linear vertical expansion and a horizontal contraction 
of 7.0 and 7.1 followed by a folding. The foldings are such that V00 -- ¢r(Eo) O Eo 
consists of one vertical strip and r~] = zr(~0) n Xl consists of one vertical strip. See 
Figure 7. Moreover, Vlo ~ ~'(El)N ~o consists of one vertical strip, and ~r(~l)n ~1 
is empty. We assume, for now, that restricted to 7. n ~r-l(E), the map is linear. 

Note that 7r-l(Vo0) and ~'-l(VoP are horizontal strips which lie in Eo, while 
~r-l(Vlo) is a horizontal strip which lies in El .  

For k >- 1, let A k = {p E Eo : (~.k)n(p) E 7.o fo reaeh  n}. That is, A k 
is the maximal invariant set of the map 7r k restricted to 7.o. We claim that for each 
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Fig. 7. A map, 7r : Xo U Xl --> R 2, which gives rise to Fibonacci dynamics. Note that 7r(Xo) 
intersects both Xo and El along a verticle strip, while zr(•l) only intersects Xo along a verticle 
strip. 

k -> 2, A k is a Cantor set. Moreover, the dynamics of ~.k restricted to A k can be 
described using the Fibonacci numbers. Therefore, let ~;k be the k th Fibonacci number. 
That is, ~0 = 1, ,~l = 1, and, for k > 1, ~k = ,~k-1 + 57k-2- Let Fk be the set of  
bi-infinite sequences on ~k symbols.  

Propos i t ion  2B.1. For each k - 1 there is a one-to-one correspondence ~Pk between 
A k and Fk such that the sequence b = ~pk(Trk(p)) is obtained from the sequence 
a = ~k(P)  by shifting one place bi = a i+l .  Moreover, A k is hyperbolic. 

Remark .  Each ~k is actually a homeomorphism if we endow A k and Fk with their 
natural topologies (see Guckenheimer and Holmes [8, pg. 233]). 

We do not prove this proposition at this point; instead we state and prove a more 
general result in which we weaken the assumption that ~r, restricted to ~ f3 ~r-l(X),  
is linear. Our presentation is similar to that given in Guckenheimer and Holmes  [8]. 
See also Moser  [11]. 

Definition 2B.1. A vertical curve x = v (y )  in 2~o is a curve for which 

0 <- v ( y )  <- 1, )v(YO - v(ya)l <- t z l y l  - y z l  if 0 --< Yl --< Y2 --< 1 

for some 0 < p~ < 1. A horizontal curve y = h ( x )  in Eo is one for which 

0 <- h ( x )  --< 1, [h(xi)  - h(x2)[ <-- I~[Xl - x21 if 0 --< x1 -< x2 ~--- I .  

In a similar manner we can define a vertical curve in 2~1 and a horizontal curve 
in Xl. 
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If v l ( y )  < v2(y), y ~ [0, 1], are two nonintersecting vertical curves in Xo, then 
we can define a vertical strip in Xo as 

V = {(x, y) : x ~ [vl(y), v2(y)], y ~ [0, 1]}, 

and if h i ( x )  < h2(x) ,  x ~ [0, 1] are two nonintersecting horizontal curves in ~0, 
then we can define a horizontal strip in ~0 as 

H = {(x, y) : x ~ [0, 1], y ~ [hi(x) ,  h2(x)]}. 

In a similar manner we can define a vertical strip in El and a horizontal strip in E l ,  

We now state the assumptions on the map ~r : ~ ---> R 2 

h l .  There exist disjoint vertical strips Voo and V~o in Eo, a vertical strip Vol in E l ,  
horizontal strips Hoo and Ho~ in Eo, and a horizontal strip Hlo in El with the 
following properties: 

(a) 7r(E0) f~ Eo = (Voo) and ~r-l(Voo) = Hoo, 
(b) "n'(X,o) 71 El = (Vc~) and 7r-l(Vo~) = Ho~, 
(c) 'n'(Xi) f"l Eo = (V~o) and 7r-l(Vlo) = Hlo, 
(d) "n'(Xi) f"l ~,~ = QS. 

Let V = Vo0 t2 ~1 t3 Vlo and H = Hoo t3 Hoi t J Hi0. 

h2. There exist / ,  E (0, ½) and sets (sector bundles) S u = {(~:, 77) : 1~1 < /-t[rl[} 
defined over V and S s = {(~, rl) : lr/[ <  t£1} defined over H such that D~r(S ~) C 
S u and DTr-I (S  s) C S s. Moreover, ifD1r(£o, rio) = (~:l, ~i)  and DTr-i(£o, "qo) = 
(~:-l, r / - i ) ,  then [r/tl ----- (1/ )I,7ol and 1£-11 -> (1/~)]£ol. 

h3. If  p ~ H ,  then tdet DTr(p)[, ldet Drr-~(p)l -< t/2~-2. 

We can now state the main result of  this section. 

Proposi t ion 2B.2. Assume that 7r : ~ ~ R 2 satisfies (hl) ,  (h2), and (h3). For 
k - 1, let A k equal to the maximal invariant set of 7r k restricted to ~o. Then A k is 
topologically equivalent to a shift o" on Fk. Moreover, A k is hyperbolic. 

Proof. The proof is based on a theorem of Moser [11]; see also [8, Theorem 5.24]. 
This theorem, together with our assumptions, implies that the result follows once we 
prove that ~rk(Xo) f7 Eo is the union of  ~;k distinct vertical strips in Eo. (It is then clear 
that the preimage of  these vertical strips under ~k consists of  ~:k horizontal strips in 

Xo.) 
Let  ao = 1. For k >-- 1, let a~ equal to the number of distinct vertical strips in 

7rk(Eo) N ~o, and let bk equal to the number of  distinct vertical strips in 7rk(Xo) n El .  
From our assumptions it follows that a i  = bi = 1. Moreover, since ~r(~o) N ~o and 
~'(2~1)N~o each consists of  one vertical strip in ~o, we conclude that ak+l = ak +bk .  
Finally, since ~(E0) f'l ~l  consists of  one vertical strip in Et  and ~r(~l) 71 E1 = ~ ,  
it follows that bk+l = ak. Hence, ak+l = ak + bk = ak + ak-1,  and the result 
follows. 
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Fig. 8. A map, Ir : ~0 U ~1 U~2 --~ R 2, which gives rise to generalized Fibonacci dynamics. 

We now generalize the preceding analysis to other maps. Fix N --> 0, and let ~o 
= [0, I] × [(3, I] be as before. For N > 0 and 1 <- j <-- N,  let Ej  = [ - 2 j ,  - 2 j  + 1] 
x[o, 11. 

Let ~ = U N ~j .  We now consider a map ~ : ~ ---* R 2 with the following j r 0  
properties (see Figure 8): 

a. I f0  -- j ----- N, then 7rU(~j)fq~,O = Vj0 is a vertical strip in ~o and 7r~l(Vj0) = Hjo 
is a horizontal strip in Ej .  

b. If N > 0 and 1 -< j <-- N - 1, then rrN(Ej) f3 Ej+l = Vj+I is a vertical strip in 
~j+l  and ~r~l(l~+l) = Hj+I is a horizontal strip in ~ j .  

c. I f N > 0 , 0 - < j < - - N a n d k ~ { 0 ,  j + l } , t h e n T r N ( E j )  C1Ek = O. 
d. Let V and H be, respectively, the union of all the vertical and horizontal strips 

described in (a) and (b). Then (h2) and (h3) are satisfied with 7r replaced with 7rN. 

For k --- 1, let A k equal to the maximal invariant set of ~.k restricted to ~0. We 
claim that A~ is a hyperbolic set which is topologically equivalent to the shift map 
on the set of bi-infinite sequences of ~;~ symbols. Here ~k is a generalized Fibonacci 
number which we now define. 

If N = 1, then let ~ = 1 for all k. If N = 2, then let 9 ;k = ~;k be the usual 
Fibonacci numbers. Suppose that ~ - 1  has been defined for N > 2; we shall now 

define ~ .  If 0 --- k --< N, let ~:~ = ~:k_ 1 . For k > N, let ~ = ~-jflN $;~-j. That 

is, for k > N,  ,~k is the sum of the preceeding N generalized Fibonacci numbers. 
Let F k equal to the set of bi-infinite sequences on ~ symbols. We prove, in a 

manner similar to the proof of Propositions 3B.2, that A k is topologically equivalent 
to the shift map on F~. Our assumptions, together with Moser's Theorem, imply 
that it is only necessary to count the number of vertical strips in 7rk(~0) (3 ~o- For 

0 --< j ---- N,  let A j equal to the number of distinct vertical strips in ~'t~(~0) f) Ej .  
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Certainly A~ = 1, and A~ = 0 for 0 < j --< N. From (2B. la) it follows that if k > 0, 
then a ° = ~-~.~=la~_l. From (2B.lb,c) it follows that if k > 0 and t < j -< N,  

then A~ = A~__.I 1 . Therefore, if k > N, then 

N N N 
"40 = ~ A~-I = Z a~.~ . . . . .  ~ A°_j .  

j=t  j= l  j=l  

Using induction, we conclude that A ° = ~;~. 

Definition. We say that a map ~rs : X --> R 2 which satisfies (2B.1) gives rise to 
N-Fibonacci dynamics. 

Remark. If N = 1, then A~ is simply one point. This point corresponds to a periodic 
solution of 7rN. 

C. The Main Result 

Throughout this section we assume that (A1)-(A6) are satisfied, Ikl < 8k, and e is 
sufficiently small. Our main result is stated in terms of a certain return map ,r(e, k) 
which is defined in Section 3. This map is defined by solutions of (2A.1) near the 
homoclinic orbit ~/h (t). 

Theorem 2C.1. Assume that (A1)-(A6) are satisfied and e is sufficiently small. Then 
there exists an integer N = N@) and real numbers {k j}, ! <- J <- N(e), with the 
following properties: 

a. --Sk < kj < kj+l < Sk for each j ,  1 <-- j <-- N - 1, 

b. for k ~ [k2j-i, k2j], ~(~, k) gives rise to j-Fibonacci dynamics, 
c. N(e) ~ o0 as e ---> 0, 
d. each kj  ---> kh as ~ --~ O, 
e. when k = k j ,  1 <- j <- N ,  (2A. I) gives rise to a homoclinic orbit. 

Remarks. (a) It is possible that N(e) = o0. We do not consider this question, in 
detail, in this paper. 

(b) Suppose that, after changing variables if necessary, both (A1)-(A6) and (HI)-  
(H8) are satisfied. Here, (H1)-(H8) are the assumptions listed in the Appendix that are 
required for the existence of bursting solutions and continuous spiking. Theorem A. i 
implies that when k = --Sk and ~ is sufficiently small, (2A.1) gives rise to burst- 
ing solutions. When k = +Sk, (2A.I) gives rise to continuous spiking. Theorem 
2C. 1, therefore, describes how chaotic dynamics must arise during the transition from 
bursting to continuous spiking. The reason that there exist solutions such as those 
shown in Figure 1C is the following. Suppose that (k, E) is chosen so that (2A. 1) 
gives rise to Fibonacci dynamics, and let A be the maximal invariant set of the map 
~'(~, k). We shall see in the next section that A lies close to the homoclinic point 
qo. That is, if U is any neighborhood of q0, then, for e sufficiently small, A must lie in 
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U. The results in [17] imply that if 7(0  is any solution of (2A.1), then there must 
exist {t j} with tj --~ o~ as j --~ oo such that "y(tj) ~ U. Therefore, every solu- 
tion of (2A.1) must lie close to A infinitely often. Near A, solutions of (2A.1) are 
extremely sensitive to initial conditions. In particular, the number of times which a 
typical trajectory winds around the upper branch before it falls to the lower branch 
depends very sensitively on initial conditions. Since each spike corresponds to the tra- 
jectory winding once around the upper branch, it is almost impossible to predict how 
many spikes the trajectory 3'(0 contains each time it passes close to the homoclinic 
point. 

Figure 9 schematically illustrates our result. This figure displays the (k,e) parameter 
space. When (k,G) = (kh, 0), (2A.1) gives to the homoclinic orbit 7h(t). Infinitely 
many wedge-shaped regions emanate from (kh, 0). We denote these sectors by $1, 
$2 . . . . .  Each sector may only be defined for G sufficiently small. Hence, each line 
segment e = eo may only intersect finitely many sectors. However, the number of 
sectors which the line segment e = e0 intersects becomes unbounded as e0 --> 0. 

Now fix G0 sufficiently small. We begin at (-Sk, E0) and increase k until we 
reach (Bk, a0). As we increase k, at(G0, k) gives rise to increasingly more complicated 
Fibonacci dynamics. In each odd sector S2j-l ,  7r(E0, k) gives rise to j-Fibonacci 
dynamics. In each even sector S2j, ~'(a0, k) undergoes a transition from j -  to j + 1- 
Fibonacci dynamics. In these sectors, a large number of (global) bifurcations take 
place. We do not give a detailed description of the nature of these bifurcations in this 
paper. 

As we increase k, (k, e0) eventually passes completely through the sectors {S j}. 
This will happen for a value of k less than 8k. There is then another transitional period 
until continuous spiking is achieved. During this transitional period, the dynamics 
must shed its complexity. We discuss this transition region in Section 4(3. 

bursting "~ 
inuous 
ing 

kh k 

Fig. 9. The main result. The (k, E) parameter plane is divided into countably many sec- 
tors. In each odd sector, $2/-1, the map 7r(e, k) gives rise to j-Fibonacci dynamics. The 
boundaries of each sector correspond to homoclinic solutions of (2A. 1). 
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3. Flow-Defined Maps 

A. Introduction 

In this section we define the map ~r(e, k) that appeared in the statement of Theorem 
2C.1. This map is defined by solutions of (2A.1) near the homoclinic orbit ~/h(t); it 
enables us to understand how solutions of (2A. 1) near 3'h(t) perturb for E positive and 
k near 0. The map 7r(¢, k) is the composition of two other maps; that is, 7r(¢, k) = 
~b(e, k)o~b(e, k). The map ~(¢, k) is defined by the flow near the homoclinic point q0. 
This map, for E positive, is a singular perturbation from the case ~ = 0; however, 
by introducing local coordinates near q0, we are able to express this map almost 
explicitly. The second map ~(E, k) is defined by the flow near Yh(t) but away from 
a small neighborhood of qo. This map, for ~ positive, is a regular perturbation from 
the case e = 0. 

B. The Flow,Defined Map q~(e, k) 

The map q~(e, k)' is defined by the flow in a small neighborhood of the homoclinic 
point q0. We shall simplify matters by assuming that it is possible to change variables 
near qo so that in the new variables (2A. 1) is of a simple linear form. This assumption 
will simplify the already tedious computations which follow. It is not difficult to see 
that the results can'y Over to the more general case; see Remark 5B.5. 

We now briefly describe the changes of variables which transform (2A. 1) to a 
simple linear form near qo. Recall that each fixed point qr = (0, 0, y) is a saddle. 
Denote the positive and negative eigenvalues of (2A. 1), linearized at qy, by hi(y) 
and -A2(y), respectively. We may then change variables in the fast subsystem so that 
for (v, w, y) near q0, (2A.1) becomes 

x '  = Aj(y)x + h.o. t . ,  

z'  = -A2(y)z + h.o.t . ,  (3B.1) 

y '  = E~(x, z, y, k). 

Here, ~(x, z, y, k) = g(v, w, y, k). By "h.o.t," we mean C(x 2 + z2). We now 
introduce a new slow variable and rescale • and k, for e small and Ikt < 8k, so that 
in the new variables (3B. 1) becomes 

x'  = )q(u)x + h.o.t . ,  

z'  = -A2(u)z + h.o.t . ,  (3B.2) 

u' = e(u + k) + e(h.o.t .) .  

In (3B.2), Ai(u) = Ai(y), i = 1, 2. By "h.o.t . ," we now mean O(x 2 + z 2 + (u + k)2). 
To simplify matters we drop the higher-order terms in (3B.2) and assume that, for 
i = 1, 2, Ai(u) = AI(0) = Ai are constant. The constants Al and A2 are the same 
as in (A2). Therefore, we assume that for (v, w, y) near q0, ~ small and tk[ < 8k, 
(2A.1) can be written in the form 
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X t = A I X  , 

z '  = -A2z,  (3B.3) 

u' = ~(u + k). 

We assume that these equations hold in some box 

= {(x, z, . )  : lxl  -< 8~, Izl -< 8~, lul -< 8.}.  (3B.4) 

Restrictions on the constants 8x, 8z, and 8u are given as we go along. 
We assume, without loss of generality, that the homoclinic orbit 3,h (t) leaves 

through its "front" face 

= { ( x , z , u ) ~ : x  = 8x}, 

and 3,h(t) enters ~ through its "top" face 

O = { (x ,  z ,  u) ~ ~ : z = 8~}. 

It will be necessary to consider the following subsets of the boundary of ~ :  

~;' = { ( x , z , u ) ~ : z  >0}, 
~" = { ( x , z , u ) ~ f f  : x  >0}, 
~ '  = ( x , z , u )  ~ a ~  :O < x , O  < z}.  

We assume throughout the remainder of  this section that e is sufficiently small and 
Ikl < 8..  Then ~(~, k) : ~"  --> ~ '  is defined as follows. Fix 3'0 E if", and let 3'(t) 
be the solution of (3B.3) with 3,(0) = 3,0- There must exist to > 0 such that 3,(0 E 

I 
Z 

A 

I ii / H,,, 

X 

r U  

Fig. 10. The map ~b(~, k). This map is defined by solutions 
of (2A. 1) near the fixed point qk. When ~ = 0, ~b(~, k) maps 
if '  onto 5~'. 
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for t E (0, to) and ?/(to) ~ ~ ' .  We set ~p(e, k)(~/0) = ~/(to). See Figure 10. This 
defines a smooth map from 3" onto ~ ' .  Let 

T(e, k) = ~p(~, k) - l (~ ' ) .  

It is not hard to show that T(~, k) ---> 3-' as • ---> 0. 
Since OB.3) is of such a simple form, we can express q~(e, k) explicitly. A simple 

calculation shows that if  (x, 8z, u) ~ T(e, k), then 

~p(e, k ) (x ,  8z, u) = (Sx, ~Oz(X, u), ~p~(x, u)) (3B.6a) 

where 

u:'" I-t-]'"' ~Pz(X, u) = 8z ~Sx ] and ~u(x,  u) = - k  + [u + k] . (3B.6b) 

We will be particularly interested in the image, under ~p(~, k), of a line segment of 
the form 

e = {(x,8 z ,u )  E 3 - ' : x  = m ( u - b ) } .  

Here, Ibl < 8u, and m # 0. A straightforward computation shows that q~(E, k)(e) n 
is a curve which can be written as 

~(~, k)(e) n ~ = {(sx, z, u) ~ ~ : u = h(z)} 

where 

, . : ,  ___ + . .  1 :z i 
LS:J + m \ ~ ]  

(3B.7) 

The curve u = h(z)  is illustrated in Figure 11. Note that the qualitative features 
of this curve depend on whether k < - b ,  k = - b ,  or k > - b ,  and whether 
Al < A2 or Al > A2. If k < - b ,  then h(z)  is an increasing function, while if 
k > - b ,  then h(z)  has a unique local minimum. If k = - b  and A1 < A2, then this 
curve is tangent to the u-axis at the point (u, z) = ( - k ,  0). If k = - b  and A1 > A2, 
then this curve has a vertical tangent at (u, z) = ( - k ,  0). These qualitative differences 
play a crucial role in the analysis which follows. 

We conclude this subsection with some simple observations concerning the map 
~(~, k). The following result follows from the explicit formula for ~p(e, k) given in 
(3B.6). Let ~z(X, u) and ~u(x ,  u) be the maps defined in (3B.6b). 

Lemma 3B.1. Assume that Pl = (x I, 8z, ul)  and P2 = (x 2, 8z, u 2) both lie in 
T(e, k). I f  x 1 < x 2, then ~pz(X I, u 1) < q~z(x 2, u2). I f  x I = x 2 and u 1 < u 2, then 

~u(x ~ , u ~) < ~pu(x 2, u2). 
The following two corollaries are immediate consequences of the preceding lemma. 

Corollary 3B.2. Assume that & = {(x, 8z, u) ~ 3-' : u = a(x)} is a smooth curve 
in 3-'. Then ~ m ~(~, k)(&) n ~; is a smooth curve in ~;' which can be written in the 

form/~ = {(Sx, z, u) E ~;' : u = fl(z)}. 
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zl j " 
A) b < - k  B) b <  - k  zT  

~1 < )'2 ~'1 >' ~'2 

i ; u I u 
b - k  b - k  

z I z T C) b = - k  D) b = - k  

)'1 < )'2 ~.1 > ~.2 

U U 
b = - k  b = - k  

Z l / Z l / E) b > - k  F) b > - k  

~.1 < ~.2 )'1 > )'2 

I I > u  i 
-k b -k b 

> U  

l~g. 11. The function u = h(z) given by (3B.7). If k < - b ,  then h(z) is increasing. If 
k > - b ,  then h(z) has a unique minimum. If k = - b  and Aa < A2, then this function has a 
horizontal tangent at (u, z) = ( - k ,  0). If k = - b  and Aa > A2, then this tangency is vertical. 

Corollary 3B.3. Assume that ol i = { ( X ,  8Z ,  U) : U = Ol i (X)}  , i = 1, 2, define 
smooth curves in g'' such that al (X)  < a2(x)  for each x.  Let [3i - qffE, k)(&i) A 

= {(Sx, z, u) E ~ '  : u = fli(z)}. Then/31(z) < fl2(z) for each z for which 
ill(z) and fl2(z) are both defined. 

We also need the following result. 

Lemma 3B.4. Assume that & = {(x, 8 z, u) ~ T'  : u = a(x)} is a smooth curve in 
3- such that or(O) < - k  and a '(x)  > O for each x.  Then, for ~ sufficiently small, 
[3 = ~(E, k)(&) f) ~;' can be written as / )  = {(Tx, z, u) E ~:' : z = fl(u)}. Here, 
~(u) is an increasing function defined for u E ( - 6 , ,  ~o) for some ~o E ( - 8 , ,  8,). 

Proof. This result is proved by considering the linearization of  the map q~(a, k). The 
linearization can be computed explicitly using (3B.6). The details of  this computation 
are straightforward but somewhat tedious, so we do not give the details. The reason 
that the last statement in the lemma is true is that the assumption that a(0)  < - k  
implies that 

~(~, k)(0, 8~, a(0)) ~ {(x, z, u) ~ a~t : u = - 8 . } .  
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C. The Flow-Defined Map ~(e ,  k) 

The map ~b(e, k) is a diffeomorphism from a subset of 9; into 9 .  Since ~b(e, k) is a 
regular perturbation from the case e = 0, we consider this case first. Throughout this 
discussion we assume that [k[ < 8, .  Recall than when e = 0, the homoclinic orbit 
"/h(t) leaves ~ ~rough ~; and then enters ~ through ~'. This homoclinic orbit inter- 
sects ~: at the point (~x, 0, 0) and intersects gF at the point (0, 8z, 0). Therefore, when 
E = 0, the flow defines a diffeomorphism from a small neighborhood of (Sx, 0, 0) in 

onto a small neighborhood of (0, 0, 8z) in ~'. We denote this map by ~b(0, k), even 
though it does not actually depend on k. By continuous dependence of solutions of an 
ordinary differential equation on a parameter, this map perturbs to a diffeomorphism 
for E sufficiently small. More precisely, choose 3'o ~ ~ ,  and let 7 (0  be the solution 
of (2A.1) with 7(0) = 7o. If 1170 - (~x, 0, 0)11 and ~ are sufficiently small, then there 
must exist to > 0 such that 7(0  ~ ~ for 0 < t < to and 7(t0) E ft. We define 
~(~, k) by q,(~, k)(3,0) = V(t0), Of course, ¢(~, k) may only be defined on a subset 
of ~.  However, if 8x is fixed, then it is possible to choose 8z and 3, so small that, 
for • sufficiently small, g,(¢, k) defines a diffeomorphism from 

~;o = { (~x,z,  u) ~ ~; : lu[ <- l s , }  (3C.1) 

into if. Note that ~b depends smoothly on ~ and k, even up to ~ = 0. 
We now wish to estimate D~b(~, k), the linearization of ~b(~, k). In what follows, 

we assume that 

~(E, k ) (~ ,  z, u) = (~O~(z, u), 8z, ~,(z ,  u)), (3C.2) 

and let ~(~, k)(z, u) = (~x(Z, u), ~bu(z, u)). Of course, the functions g'x and ~b, also 
depend on ~ and k; however, in order to simplify the notation, we do not express this 
dependence explicitly. 

Since ~(¢, k) is a regular perturbation of ~b(0, k), we first consider the case ¢ = 0. 
Let p = ( ~ ,  z, u) E ~;o. The last equation in (2A. 1) implies that if ~ = 0, then 
~u(z, u) = u. Therefore, if E = 0, then 

0~u = 0 and 0~b,,= 1. (3C.3) 
~z 3u 

In order to compute the partial derivatives of ~bx, we use (A3) which states that W c" 
and W cs intersect transversely. From (3B.3) it follows that 

e.  = w~o"~ ~ ~ = {(~,  z ,  u) ~ ~ : z = 0}, 

e, -- WfoS~ f3 if" = {(x, ~z, u) ~ ~" : x = 0}. (3C.4) 

The assumption that W c" and W cs intersect transversely implies that there exists a 
smooth function x = h(u) with h(0) = 0 and h'(0) = m ~= 0 such that 

~(0, k)(e,)  = {(x, ~ ,  u) ~ ff : u = h(x)}. (3C.~) 

Note that (A4), together with our assumption that 7h(t) leaves ~t through ~ ,  implies 
that m > 0. Together with (3C.4), it now follows that (a~bx/Ou)(O, O) = 1 /m > O. 
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Finally, let/3 = (atpx/3z)(O, 0). Clearly, /3 ~: 0. In fact, it is not hard to see that 
/3 > 0. We have now demonstrated that when ~ = 0 and (x, u) = (0, 0), 

[ 
The following result now follows because ~(e, k)(p) depends smoothly on each of 
its arguments. 

Proposition 3C.1. Fix 8 > 0. The constants 8x, 8z, and 8, can be chosen so that if 
E is sufficiently small and (Sx, z, u) E 9;0, then 

u ,  u ,  '-lm u, t u ,  , I t s ,  
A consequence of this proposition is that 8x, 8z, andBu can be chosen so that, for 

e sufficiently small, the following result holds: 

Corollary 3C.2. Assume that z = a(u) is a smooth function such that a'(u) >- 0 
for each u and & = {(Sx, z, u) ~ 9;0 : z = a(u)} defines a smooth curve in 9;0. Then 

= ~b(E, k)(&) is a smooth curve in 5- which can be written as/~ = {(x, 8z, u) E 
5- : u = fl(x)}. Moreover, /3'(x) > O for each x.  

Remark 3C.3. The maps ~(E, k) preserve a natural ordering of curves in 9;0. By this 
we mean the following: Suppose that &l and &2 are smooth curves in 9;0 defined by 
~ i  = {(Sx, Z, U) ~ 9;0 " Z = OLi(//)}, i = 1, 2. Assume that for each u, t~l(u) < 
a2(u) and ct~(u) >__ 0, i = 1,2. Let ~i = tp(e,k)(&i) = {(x, Sz, u) E T : u = 
/3i(x)}. We claim that/31(x) -> /32(x) for each x for which each function is defined. 
This follows easily because the union of all of the trajectories through points in 
&l and t~2 defines two smooth manifolds which cannot intersect. It is impossible for 
one of  these manifolds to "wrap around" the other. One can extend this remark to more 
general curves; the assumption that a~(u) >- O, for example, is not really necessary. 

We conclude this section with the following important result. 

Proposition 3C.4. For each E sufficiently small, there exists k = k(e) such that 
Ik(e)t < ½8. and (2A.1) gives rise to a homoclinic orbit. 

Proof. For E > 0 and Ikl < 8u, let qk be the unique fixed point of (2A.1). Let 
W s = Ws(E, k) and W" = W"(~, k) be the stable and unstable manifolds of qk, 
respectively. We need to prove that if ~ is sufficiently small, then there exists k 
with Ik[ < ½8, such that WS(e, k) N W"(E, k) ~: 0 .  It follows from (3B.3) that 
Wfoc(e, k) = W ~". Moreover, if e ,  is as in (3C.4), then 

Wfoc(~, k) N 9; = e .  = {(Sx, z, u) ~ 9; : z = 0}, 

W[o~(~, k) n 9- = {(0, 8z, -k )}  --- p~. (3C.7) 
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Therefore, it suffices to prove that for each • sufficiently small, there exists k, with 
Ikl < ½8., such that Pk E ~b(e, k)(eu). 

Recall, from (3C.5), that ~0(0, k)(e.) defines a smooth curve, which we denote by 
/~(0, k), in ft .  Since tp(e, k) depends smoothly on each of its arguments it follows 
that if e is sufficiently small, then O(e, k)(e,) defines a smooth curve H(e, k) in ~-. 
Moreover, from Corollary 3C.2, we can write H(e, k) as 

B(~,  k) = {(x, 8~, u) ~ ~" : u = H(~, k)(x)}. (3C.8) 

Here, H(e, k)(x) is a smooth function such that H(e, k)(x) ~ H(O, k)(x) uniformly 
as e ~ 0. In particular, H(e, k)(0) ---, H(0, k)(0) = 0 as e ~ 0. Therefore, there 
exists E0 such that if 0 < e < e0 and Ikl --- ½8., then [H(e, k)(0) I < ½8u. 

We have now shown that if 0 < e < e0, then H(e, ½6,)(0) > -½8,  and 
H(e,-½Bu)(0) < ½B,. It then follows that there exists k = k(e) such that 
Ik(e)l < ½8. and H(e, k(e))(0) = -k(e) .  This completes the proof because we have 
now shown that the point (0, 8z, -k(e)) lies in both W"(e, k(e)) and WS(e, k(E)). 

Remarks. (a) The existence of this homoclinic orbit does not depend on the assump- 
tion A2. 

(b) The homoclinic orbit obtained in the preceding Proposition has winding number 
one in the sense that its trajectory in phase space "winds around" the upper branch 
just once. Another way to say this is that its trajectory intersects ~; or ~- just once. 
In the next section we demonstrate that if A~ < )t2 (that is, (A2) is satisfied), then 
(2A. 1) gives rise to many more homoclinic orbits as the parameter k is varied. These 
homoclinic orbits can be characterized by their winding number. 

(c) It is possible that k(e) is not the only solution of the equation H(e, k(e))(0) = 
-k(e ) .  However, in order to avoid further notation we assume that k(e) is the unique 
solution. There is no difficulty in adjusting the proof of Theorem 2C. 1 if this is not 
the case. Note that 

H(e, k)(0) < - k  if and only if k < k(E). (3C.9) 

D. The Flow-Defined Map ~(e, k) 

As before, we assume that ~ is sufficiently small and [k I < ½6,. Let ~r(e, k) = 
O(e, k) o ~(E, k). There is no problem in showing that the domain of 7r(e, k) is 
nonempty. In fact, for each k, 

dom~'(O,k) D ( (x, tz, y) ~ ff : x > O, [u[ < l tu} , 

and dom~r(e, k) --* domTr(O, k), in an obvious uniform sense, as e --> O. We shall 
abuse notation, slightly, as follows: Suppose that D C ~ .  By ~r(e, k)(D) we mean 
It(e, k)(D n dom~r(¢, k)). 

In this section we state a very important result. The statement and proof of this 
result are quite technical; however, once we have this result, the analysis of the chaotic 
dynamics, as described in Theorem 2C. 1, will be straightforward. In this section we 
shall try to motivate and then state the result. In the next section we show how it is 
used to prove Theorem 2C. 1. The proof of the result is given in Section 5. 
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We now try to motivate the statement of the following proposition. Perhaps the 
most important ingredient in the proof of Theorem 2C.2 is to keep track of W~k, the 
unstable manifold of the fixed point qk, as it loops around in phase space. Trajectories 
in W~k which lie close to the original homoclinic orbit "/h(t) may wind around the 
upper branch many times. These trajectories cross the set ~" many times. Now recall 
that dim Wffk = 2. Therefore, each time that Wffk loops around the upper branch it 
will intersect ~ along a curve, or possibly several curves. These curves partition ~- 
into several sectors. From these sectors, we will construct the sets corresponding to 
~y, j = 0, 1 . . . . .  that appeared in Section 2B. 

In the following proposition we begin with a curve & in ~" and analyze the image 
7r(E, k)(&) 1"3 ~". When we apply this proposition in the later sections, & will corre- 
spond to one of the curves in Wffk I"1 ~-'. An important consequence of the following 
proposition is that ~'(e, k)(&) f3 ~" may consist of two curves. When we discuss the 
proof of the proposition in Section 5, we will see that the mason that there are two 
curves is because of the stretching and folding properties of the map qr(e, k). These 
properties are, of course, crucial to the existence of the chaotic dynamics. 

In the statement of the following proposition, let/~/(e, k) and H(e, k) be as in 
(3C.8), and let k(e) be as in Proposition 3C.4. Recall that H(E, k(e))(0) = - k ( e ) .  Let 
hi and ),2 be as in (A2), and let m be as in Proposition 3C. 1. We always assume that 
Ikl < ½8~ and ~ is sufficiently small. In what follows, the constants Ci, i = O, 1 . . . . .  
do not depend on E or k. We set 

A -  A2-A15 and r = ( A 2 - A 1 - 2 A )  A 2 " h l  (3D.1) 

Proposition 3D.1. Assume that (A1)-(A6) are satisfied. Then there exist positive 
constants Co, C1, C2, C3, and C4 with the following properties: Suppose that 0 < 
H(~, k)(0) + k < e (A2-a)/x~ and eCl < C < Co. Assume that u = t~(x) is a smooth 
function which satisfies - k  < or(0) < H(e,  k)(0) and (m/2)  < a'(x)  < 2m for 0 ----- 
x <_ C. Let 

= {(X, Sz, U) E ~ ' : u  = a ( x )  for 0 < x < C ) .  

Then or(e, k)(t~) A i f '  = &l t2 t~ 2 where c~1 and &2 are disjoint, smooth curves which 
can be expressed as 

t~ i ---- ( (X,  ~Z, U) ~ ~-t : U ---- O~i(X)}, i = 1, 2. 

Moreover, 0 < C 2 ( 1 and 

a. a l (x )  is defined for 0 --< x < C2C, 
b. (m/2) < a~(x) < 2m for 0 ----- x < C2C, 
c. a2(x) is defined for 0 ----- x -< Co, 
d. (m/2)  < a~(x) < 2m for 0 -< x --< Co, 

e. a l (x )  < a2(x) < H(e,  k)(x) for 0 -< x < C2C, 
f. H(e,  k)(0) - C3e ~'2/al < cq(O) < H(e, k)(0) - C4 ~A2/'hl, 

g. H(e, k)(0) - [H(~, k)(0) + k]~ rl" < a2(0) < H(e,  k)(0). 

(3D.2) 
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ŝ  ~ H(e, K)(O) 
:'" al &a 

O~ 

Fig. 12. Objects which appear in the statement of Proposition 
3o.1.  Here, ~ = ,~(~, k)(~) and ÷(~, k)(/~) n ~-' = ,~  U,~2. 
The point P is the vertex of fl and Q = ~(¢, k)(P). Note that 
Q ~ ~',. 

In Figure 12 we illustrate some of the objects which appear in the statement 
of Proposition 3D. 1. The most boldly drawn curves in Figure 12 are & and/3 = 
q~(e, k)(&). Note that ~ resembles the curve u = h(z) in Figure l iE.  This is to be ex- 
pected since - k  < o~(0) and hi < A2. The point labeled P corresponds to the vertex of 
the curve/3. Here a = 0(¢, k)(P) is the vertex of the curve 0(• ,  k)(~) = ~r(•, k)(&). 
It is crucial to our analysis that Q lies in the set {(x, 8 z, u) ~ 3. : x < 0}. That is, 
Q ff 3". From this, it follows that ~r(e, k)(~) N 3.' consists of two disjoint curves; 
these are denoted by &l and &2 in the Proposition and Figure 12. We note that the 
properties of ~1 and &2 described in (3D.2) guarantee that we can apply the proposition 
again with & replaced with either fil or &2. 

4. Transition to Continuous Spiking 

A. Introduction 

Throughout this section we assume that e is sufficiently small, Ik[ < ½8u, and Propo- 
sition 3D. 1 holds. We demonstrate how Proposition 3D. 1 is used in the proof of 
Theorem 2C. I. The key ingredient in understanding how the chaotic dynamics arise 
to follow the unstable manifold, Wu(e, k), of the fixed point qk as it loops around 
in phase space. This manifold intersects the faces ~ and 3. of fit a large number of 
times. Each intersection defines a curve in ~ or 3 .  It will be necessary to determine 
how the qualitative features of these curves change as k is varied. 

Since • is assumed to be fixed throughout this section, we drop the dependence 
on • in our notation. Hence, we let ~r(k)(.) = ~r(•, k)(.), W=(k) = W"(•, k), and 
s o  o n ,  
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Let eu = W~oc(k) fq ~ and Pk = W[oc(k) N if be as in (3C.7). Let G O = eu 
and H°(k) = $(k)(Go) fq if'. We then define recursively for j -> 1, GJ(k) = 
~(k )(HJ-l(k )) N ~o and Hi(k) = ~b(k )(GJ (k )) N ~". This defines, for some integer 
N(~, k), two finite sequences of sets {Hi(k)} and {GJ(k)}, 0 <- j <-- N(E, k). Note 
that each Hi(k) or GJ(k) may be a union of many curves in if- or ~;, respectively. 
In what follows we describe the qualitative features of  these sets, in detail. We will 
drop the dependence on k in our notation if the value of k is understood. 

B. The Case: k < k(~) 

Let k(e) be as in Proposition 3C.4, and assume that - ½ 3 ,  < k < k(e). If  the 
assumptions H1-H8 are satisfied, then for these values of  the parameters, (2A.1) 
will give rise to bursting solutions; (2A. 1) does not give rise to the Fibonacci-type 
dynamics described in Section 2B. We note that even if k < k(e), then the horseshoe- 
type dynamics described in [17] may exist. The values of (k, e) considered in this 
subsection correspond to values of the parameters which lie to the left of the wedge- 
shaped regions in Figures 6 and 9. 

Proposition 413.1. There exists N = N(~, k) which becomes unbounded as e ---> 0 
such that if 0 -< j -< N,  then each H j and G j consists of a unique curve in ~ '  and 
~0, respectively. These curves can be written as 

H ~ = {(x, 8z, u) ~ ~r' : u = Hi(x)},  

G j = {(t~x, z, u) E ~0 : z = GJ(u)}. (4B.1) 

Each Hi(x) and GJ(u) is a nondecreasing function. If  i < j ,  then Hi(x) > Hi(x) 
whenever both of these functions are defined, and Gi(u) < GJ(u) whenever both of 
these functions are defined. 

Remark. Each Hi(x) may not be defined for all x ~ (0, 8x), and each GJ(u) 
may not be defined for all u ~ ( -Su ,  8,) .  What is true, however, is that for each 
j ,  0 <-- j --< N,  there exist positive constants xj  and uj such that Hi(x)  is defined 
for 0 <- x <- xj and GJ(u) is defined for -Su <- u <- uj. 

Proof of Proposition 4B.1. In what follows, the reader is referred to Figure 13A. 
We first consider the case j = 0. Since G O = (u, it follows from (3C.7) that 
G O = {(~x, z, u) ~ ~0 : z = 0}. We, therefore, set G°(u) - O. Corollary 3C.2 
implies that H ° -- ~b(G °) fq if" is a smooth curve in if" which can be written as 
H ° = {(x, Bx, u) ~ °d" : u = H°(x)}. Here H°(x) is a smooth increasing function. 
Recall from (3C.9) that k < k(E) implies that H°(0) < - k .  

Now suppose that for 0 -- j --  J ,  each H j and G j c a n  be written in the form 
(4B.I) where HJ(x) and GJ(u) are nondecreasing functions. We also assume that if 
i < j ----- J ,  then Hi(x) > HJ(x) whenever both of these functions are defined and 
Gi(u) "< GJ(u) whenever both of these functions are defined. This implies that if 
0 < j <- J ,  then Hi(O) < H°(0) < - k .  
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We apply Lemma 3B.4 with & replaced with H J to conclude that ~ / + i  = ~o(H 1) 
can be written as ~,s+1 = {(Sx, z, u) E 3; : z = GJ+l(u)}. Moreover, G"+l(u) is 
an increasing function. Since Ha(x) < HJ-1(x) ,  it follows from Corollary 3B.3 that 
GJ(u) < G1+l(u) whenever both functions are defined. It is possible that ~ ' + l  fl 
3;o = O; that is, GJ+l(u) is only defined for u < -½8u. In this case we set N = J ,  
and the proof is complete. If G J +l Ct 3;0 # O,  then we set G ~' + 1 = ~.t + 1 N 3;0. 

Assume that GJ+i N 3;o # O. Corollary 3C.2, with & replaced with G '+1 , implies 
that H J+l = ~b(G J+i) fq 3' '  can be written in the form H ~'+l = {(x, 5z, u) E 3'' : 
u = HJ+l(x)} where (HJ+l)'(x) >-- O. Since G~'(u) < G}+l(u), we conclude from 
Remark 3C.3 that HJ+l(x) < HJ (x). 

It is not hard to prove that there exists a constant C1, which does not depend on e or 
k, such that N(~, k) > CI/¢.  This is equivalent to proving that there exists a constant 
Co such that, for each j and x,  IHi(x) - HY-l(x)l < C0E and IGJ(u) - GJ+l(u)[ < 
CoE. These estimates are proved inductively; the estimate for the GJs follows from 
the explicit formula for 60 given in (3B.6) while the estimate for the H i s  follows from 
the third equation in (2A. 1) together with the fact that the time it takes a trajectory 
to get from 3; to 3- is bounded independently of e and k. A more precise statement 
and proof of the result needed here ale given in Lemma 5A. 1. 

C. The Case: k = k(e) 

We briefly discuss the nature of the curves {Hi} and {G j} when k = k(e). Recall, 
from Proposition 3C.4 that when k = k(e), (2A.1) gives rise to a homoclinic orbit. 
We shall see that the qualitative features of the curves {H J} and {G J} are precisely as 
in the preceding subsection, except for the curve G l . We do not give a detailed proof 
of every statement in this subsection, since this subsection is presented mostly for the 
sake of completeness; the results presented here are not necessary for the description 
of the dynamics presented later. 

As before, G O = {(Sx, z, u) ~ 3;o : z = 0}, and, by Corollary 3C.2, H ° = 
~(G °) f3 3-' can be written as H ° = {(x, 8z, u) ~ ~-' : u = H°(x)}. Let Pk = 
(0, 8z, H°(0)). Since k = k(e), it follows that Pk E W u N W[o c and H°(0) = - k .  

We next consider G 1 = ~(H°). Since H°(0) = - k ,  this curve is qualitatively 
similar to the curve shown in Figure l lC .  That is, G 1 = {(Sx,z ,u)  E 3;o : z = 
GI(u)} where Gl(u) is a smooth function defined for u -> - k  such that G l ( - k )  = O, 
(G i ) ' ( - k )  = O, and (Gl)'(u) > 0 for u > - k .  Let ql = (Sx, 0 , - k )  and q2 = 
$(ql) ,  Since ql E G °, it follows that q2 ~ H °. 

Suppose that q2 = (x2, 8z, u2). In Figure 13B, we have placed q2 so that x2 < 0. 
This fact will follow from Lemma 5A. 1. Corollary 3C.2 now implies that H 1 = 
~(G i) Iq 3-' can be written as H 1 = {(x, 8 z, u) ~ 3 '  : u = Hi(x)}. Here, Hi(x)  
is defined for 0 <- x --- x0 for some x0 > 0. Moreover, Hi(x)  < H°(x)  for 0 <-- x 

----- x0. 
We now proceed as in the preceding subsection to conclude that there exists N 

such that if 1 < j <-- N(e), then {1-1 j} and {G j} satsify the conclusions of Proposition 
4B. 1. 
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A) 

H2 W~=¢(H~O) ~ / 
i ii 

GO=/u 

B) 
~Pk , /s ,, 

J I / / G2 / 

G°:/u, V 
Fig. 13. The curves H i and G i for (A) k < k(e), and (B) k = k(e). Note 
that when k = k(e), the curves H 1 and G l end along the curves H ° and G °, 
respectively. 

D. The  Sector  $1 

We now increase k past k(e) and demonstrate that there exists kl(e) > k(6) such 
that if k E (k(~), kl(E)), then (2A.1) gives rise to a periodic solution. This range of 
parameters corresponds to the sector S1 in Figure 9. 

As before, we let G o = ~u and H ° = ¢ (G ° ) f 3 9 . '  = {(x,8 z ,u)  E 9"  : 
u = H°(x)}. We assume that k > k(e); recall, from (3C.9), that this implies that 
H°(0) > - k .  We also assume that0 < H ° ( 0 ) + k  < e(xz-~)/;h where k is as in (3D.1). 
We now apply Proposition 3D.t  with ,~ = H °. It follows that Ir(Ho)A 9. '  = Hi  U / / 2  
where HI  and He are disjoint curves which can be written as Hi = {(x, 8 z, u) E 
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~" : u = Hi(x)} , i  = 1,2. Moreover, Hi (x )  and H2(x) satisfy (3D.2) with tei(x) 
and a2(x) replaced with Hi(x )  and H2(x), respectively. Let H 1 = Hi t3 HE. Recall 
that each of these curves depends on the parameters E and k. 

We conclude from (3D.2f) that 

H°(O) - C3~ '~21;'' < Hi(0) < H°(0) - C4~ '~U'~' . (4D. I) 

This implies that if H°(0) + k < C4~. xUxt, then HI(0) + k < 0. Moreover, if e is 
sufficiently small and 

Cae ~2/~ < H°(0) + k < e (~2-~)I~, 

then (4D. 1) implies that H i (0 )+  k > 0. Therefore, there must exist k = k l (E) > k(e) 
such that 

C4 6A2/AI • n°(0) -4- kl(e) < CaE x2/~`~, 

and Hi(O) + kl(e) = 0. Note that when k = kl(e),  (2A. 1) gives rise to a homoclinic 
orbit. This homoclinic orbit has winding number two in the sense that it intersects 
both ~; and ~ twice. It is possible that k = kl(e) is not the only solution of the 
equation HI(0) + kl(e) = 0. We assume, however, that the solution of this equation 
is unique. This is to avoid more notation; the proof of Theorem 2C. 1 extends easily 
to the case when kl(E) is not uniquely determined. 

We assume throughout the remainder of this subsection that k(e) < k < kl(e). It 
follows from (3D.2g) that//2(0) + k > 0. Therefore, 

H°(0) - C3E ;'Ux' < Hi(0) < - k  < H2(0) < H°(0). (4D.2) 

Note that (3D.2c) implies that H2(x) is defined for 0 -< x <- 8x. Let Co be as in 
the statement of Proposition 3D. 1. We may assume, without loss of generality, that 
Co - 8x. Let 

~0 = {(x, 8:, u) E ~" : H2(x) < u < H°(x),  0 --- x < Co}. (4D.3) 

This is the region which corresponds to the .Xo in Section 2B. We claim that ~- = 
~(e, k) has a fixed point in ~o. 

To prove that ~r has a fixed point in So, we consider ~'(~o) fq (~0). Since S0 lies 
between H ° and H2, we first determine ~r(H °) and ~'(H2). From the definitions it 
follows that 7r(H °) fg ~o = H2 fq S0. This is shown in Figure 14. Moreover, Proposi- 
tion 3D.1 and (4D.1) imply that ~(H2) f3 ~" = /-]21 I_J H22 where H21 and H22 are 
smooth curves in ~" which can be written as H2i = {(x, t~ z , u) ~ ~" : u = H2i(x)}, 
i = 1, 2. From the (3D.2c), H22(x) is defined for 0 -< x ---< Co. Moreover, Corollary 
3B.3, Remark 3C.3, (4D.2), and (3D.2g) imply that 

H21(0) < HI(0) < H2(0) < H22(0) '< H°(0). (4D.4) 

Therefore, H2(x) < H22(x) < H°(x)  for 0 --< x -< Co, and 

tr(~0) A ~0 = {(x, 8 z, u) : H2(x) < u < H22(x), 0 <- x ~ C0} ~ V00. (4D.5) 
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; \  ........... / 

lu 

Fig. 14. The case k(e) > k3(E). The set ~0 lies between the 
curves H ° and H 2. The set E0 I-1 7r(~0) lies between H2 and 
H22. 

In order to complete the proof that 7r contains a hyperbolic, periodic solution 
we must consider 7r-I(~0) and prove that, restricted to ~r-~(~o), Dcr satisfies the 
contraction and expansion conditions given in (h2) and (h3) of Section 2B. This 
analysis is carried out in Section 5. 

E. The Sectors S2 and $3 

As in the preceeding subsection, we assume that 0 < H°(O) + k < e (a2-A)/A1. Let 
H °, HI,/-/2, Hi2 and H21 be as defined earlier. Recall that 7r(H2) I-1 ~"  = H21 U/'/22. 
Moreover, each of  these curves depends on the parameters E and k. We must now 
consider ~-(H~) fq i f ' .  

From Proposition 2D.1, we conclude that ~r(Hl) N i f '  = Hll  U H12 where 
Hll  and HI2 are smooth curves in ~" which can be written as Hli = {(x, 6 z, u) E 
~ : u = Hli (x)} ,  i = 1, 2. Using Corollary 3B.3, Remark 3C.3, (4D.4), and the 
definitions, we conclude that 

Hl1(0) < H21(0) < Hi(0) < / / 2 (0 )  < H22(0) < H12(0) < Ho(0). (4E.1) 

These curves are illustrated in Figure 15. Each curve may not be defined for all 
x ~ [0, 8x]. However, from (3D.2b), we conclude that each curve is defined for 
X ~ [0, C2C0]. 

Recall that kl(e) is such that H2(0) = - k l ( e ) .  Analysis similar to that given 
before demonstrates that there exists k2(e) and k3(E) such that 

kl(e) < k2(e) < k3(E), /'/21(0) = --k2(E), HII(0) = -k3(~) .  

Moreover, for i = 2 or 3, C4e )'2/'h < Ho(0) + ki(F-) "(  C3~ '~2/a~ . This last state- 
ment follows from (3D.2f). Note that when k = k2(e) or k3(E), (2A.1) gives rise to 
a homoclinic orbit of winding number three. As with k(e) and kl(e),  we cannot 
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l~g. 15. Here ~r(~, k) gives rise to Fibonacci dynamics. Note that ~r(~o) ffl 
~o = Voo and ~'(~0)ffl~ = ~ are vertical strips in ~o and ~z, respectively. 
Moreover, ~r(~) Iq Y-,o = Vo~ is a vertical strip in ~o and ~'(~) f'l ~ = ~ .  

conclude that k2(~) and k3(e) are the only solutions of the equation H21 (k)(0) = - k  
and Hll(k)(O) = - k ,  respectively. We assume that they are uniquely determined; 
there is no problem in extending the proof in case they are not. 

The region {(k, e) : kl(e) < k < k2(e)} corresponds to the sector $2 in Figure 9, 
while the region {(k, e) : k2(e) < k < k3(e)} corresponds to the sector $3 in Figure 9. 
We assume that k2(e) < k < k3(e) throughout the remainder of this subsection. We 
demonstrate that for these values of the parameters, (2A. 1) gives rise to the Fibonacci 
dynamics described in Proposition 2B.2. 

Let ]~0 be as in (4D.3), and let 

El = {(x, ~z, u) E ~" : 0 <-- x <-- C2Co, H21(x) < u < Hi(x)}. (4E.2) 

We must now study the sets ~'(Ei) I'1 ]~j, i and j = 0, I. In (4D.5) we saw that 

Voo ~ "/r(~o) n ~0 = {(x, 8 z , u) ~ ~0 : n 2 ( x )  < u < H22} C ~0. 

We show later, in Section 5D, that this is a vertical strip in Eo. From the definitions 
it follows that ~1 -= 1r(~o) N ~l = ~1. In particular, Vol is a vertical strip in El. 

We must still consider ~(~j) .  Since ~1 lies between the curves H21 and H1, we 
must study ~r(H2z). From Proposition 3D. 1, it follows that ~r(H21)fq~-' = H211 t-JH212 
where H21i = {(x, 8z, u) ~ i f '  : u = H21i(x)}. The function H212(x) is defined for 
0 <-- x <-- 8x. Using Corollary 3B.3 and Remark 3C.3, we conclude that//2]](0) < 
H21(0) and H12(0) < H212(0) < H°(0). This implies that ~'(~l) A ~i = O, and 

rfi0 - n Y.o = {(x ,  u) : 0 ,<- x <- Co, H 2(x) < u < H m ( x ) } .  

We demonstrate in Section 5 that V~o is a vertical strip in ~o. 
Let V = Voo U V1 U V~0 and H = ~r-l(V). In order to complete the proof 

that ~" gives rise to Fibonacci dynamics, we must show that on H,  D~r satisfies the 
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contraction and expansion properties described in Section 2B. These properties are 
verified in Section 5D. 

F. The Case: C3E A:I~' < H°(0) + k < • (x~-~)l~t' 

As k increases, (2A.1) gives rise to increasingly more complicated dynamics. The 
sets Ej in Figure 8 correspond to components of rrJ(Eo) n ~", j >- 0. As k increases, 
the point Pk = (0, 6z, - k )  = WEo c n ~- passes through more and more of these 
components. As this happens, (2A.1) gives rise to increasingly more complicated 
Fibonnacci dynamics, as described in Theorem 2C. 1. The dynamics is, in some sense, 
the most interesting when 

C3e ;~2/x' < H°(0) + k < ~(~-x)/~,. (4F. 1) 

The constants C3 and A are as in the statement of Proposition 3D. 1. This range of 
parameters corresponds to the region just to "right" of the sectors {Si} in Figure 9. We 
now describe the dynamics for this range of parameters. As before, we often drop, in 
our notation, the dependence of various objects on e and k. 

We now describe the iterates vrJ(~0), j - 1, in order to define the sectors ~j 
that appear in Figure 9. Note that each iterate of ~0 must lie between two iterates of 
H °. We also recall, from the statement of Proposition 3D.1, that 0 < C2 < 1. What 
follows will help clarify the remark preceding Figure 9 that while there exist infinetly 
many sectors, each line segment e = e0, constant, may only cross finitely many of 
these sectors. 

Let Z1 be as in (4E.2). Recall that 

~1 = {(x, 6z, u) ~ ~" : 0 <- x < C2Co, H21(x) < u < Hi(x)}. 

In order to describe ~'(~1), we must study 7r(H1) and It(H21). These curves were ac- 
tually considered in the preceding subsection. Proposition 3D. 1, together with (4F. 1), 
implies that 

"n'(Hl) n ~ '  = Hll  U H12 and 'rr(H21) n ~ '  = H211 U/-/212 

where each of the curves H~,/3 ~ {11, 12,211,212}, can be written in the form 
HI3 = {(x, 6z, u) E ~" : u = Ha(x)}. The functions H[~(x) satisfy the conclusions 
of Proposition 3D. 1. Moreover, 

H211(0) <: HI1(0) < HI2(0) < H212(0). 

This is shown in Figure 15. Since HI(x) and H21(x) are only defined for 0 -- x -< 
C2Co, we can only conclude from Proposition 3D.I that the functions H211(x) and 
HH(x) are "well behaved" (that is, satisfy (3D.2a, b)) for 0 <- x -< C2Co. Let 

~2 = {(X, 62, U) E i f '  : 0 <-- X <: C2C0, H211(x) < u < Ha,(x)}. 

Note that (4E 1) and (3D.2f) imply that 

- k  < H0(0) - C3e ~/~'~ < H2~(0) < H,~(0) < H°(0) - C4e x~/x', 

and we apply Proposition 3D.1, once again, to H2n and HH. 
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~k_~( F1 ~'(P)" 

' 

Fig. 17. Objects needed in the proof of Lernma 5B. 1, FI is the subset of 
~ '  which lies to the right side of the curve ~-l(l,).  Note that/3 = ~b(a) 
intersects Fl along two disjoint curves. These are denoted by Bl and B2. 

Now assume that ~ j ,  j >-- 1, has been defined, We demonstrate how to define 
~j+j .  We assume that ]~j is that of the form 

X s = {(x, S:, u) c ~"  • 0 <- x <- C~Co, H~j (x )  < u < H ~ ( x ) }  

wherea j  = 211- . .1  and/3j = 11.- -1 .  In b o t h a j  andf l j ,  the number of 1 'sis  
j .  We assume that for 0 < x < CJ2Co, the functions Haj(x)  and H3j(x)  satisfy the 
conclusions of Proposition 3D. t. Moreover, 

~j  = ~-(~j_]) N 3" A (compliment of :~1). 

That is, 7r(:~j-l) f'/~-' consists of two components. One of these is contained in ~l .  
The other component is ~ j .  Finally, we assume that H,~j(x) < H & ( x )  < H,~s_,(x) 
for each x for which all of these functions are defined, and 

- k  < H0(0) = C3~ ;~:/~' < H,~(0) < H~j(0) < H°(0) - C,~e "h/a~. 

We have already proven that each of these conditions is satisfied if j = 2. 
We now wish to define ]~j+~ and demonstrate that it satisfies each of the condi- 

tions described in the preceding paragraph. To do this we must consider qr(H,~j) and 
7r(Hz~). However, since H ~  and H~j may only be defined for 0 -- x --< C~ Co, we 
are only able to apply Proposition 3D. l ,  with & replaced with either H, j  or H~j, if 
cJ2Co > eC1. Therefore, we must assume that j < N = N(e)  where 

1 N(e)<_ - n t -~o  ) /  lnC2. 

If j < N(e), then according to Proposition 3D. 1 we have that 

H~+, ~ 7r(Ha~) fq ~" fq (compliment of) El, 

H&+~ --- 7r(H/b+~) n ~" f3 (compliment of) ~l ,  



168 D. Terman 

are smooth curves which satisfy all of the conditions of the preceding paragraph. We 
then set 

~j+ l  = {(x, 8~, u) ~ ~"  : 0 < x <- C~+~C0, H~j+~(x) < u < H~+~(x)}. 

We note that for each j , O  <<- j <-- N ( ¢ ) -  1,~r(~j) N if" consists of two 
components, say Vj+t and Vj0 From our construction we have that Vj+t N Ej+I = 
~j+j ,  and Vj0 is a vertical strip in ~0. In Section 5D we consider D~r and prove that 
it satisfies the contraction and expansion conditions described in (h2) and (h3). It then 
follows from the considerations in Section 2B that (2A. 1) gives rise to N-Fibonnacci 
dynamics. 

G. Transition to Continuous Spiking 

We now briefly discuss how (2A. 1) makes the transition from the Fibonacci dynamics 
described earlier to continuous spiking. We do not give a detailed, rigorous analysis 
of all of the bifurcations which must take place during this transition, since such a 
description is beyond the scope of this paper. Our description is in terms of how the 
unstable manifold of the fixed point qk intersects the sides, ~ and ~,  of ~t. In the 
previous sections we saw that these intersections consist of collections of curves. We 
increase k and study how the qualitative features of these curves change. This allows 
us to understand how continuous spiking arises. Of course, we assume throughout 
this discussion that e is sufficiently small. In what follows we drop the dependence 
on k in our notation. 

We begin where we left off in the previous section; that is, assume that 0 < 
H°(k )  + k < e(~-~)/~.  This case is illustrated in Figure 16A where we show H ° = 
H°(k) ,  G ~ = ~p(H°), and H 1 = ~b(G l) = zr(H°). Note that G l can be written 
as G 1 = {(~x, z ,  u) : u = Gl(z)}. The function G l ( z )  has a unique minimum at, 
say, z = z0. Let P = (Sx, zo, Gl(zo)) and Q = O(P). We assume that Q = 
(Xl, 8z, ul) .  Of course, all of these quantities depend on the parameter k. Recall 
that since 0 <. H ° + k <- e (x2-~)/~ , x l  = xx (k )  < 0. This is equivalent to the 
saying that Q = Q(k )  q~ ~-'. This fact was very important in our previous analysis. 
Because Q ~ if", we were able to conclude that H 1 N 5 r' is the union of two, disjoint 
empty curves. These curves were denoted in Section 4D by HI and H2. A key step 
in understanding how continuous spiking arises is to follow the point Q(k)  as k 
increases. We wilt see that as k increases, Q(k)  must eventually cross ~s into ~". As 
Q(k)  progresses deeper into if ' ,  the Fibonacci dynamics disappear until continuous 
spiking is achieved. 

We now assume that there exists k, such that x l ( k , )  = 0 and x l ( k )  > 0 for 
k > k.. We shall not verify this assumption in this paper; however, it follows from 
proof of Theorem 5.1 in [17]. In what follows the reader is referred to Figure 16. 
In Figure 16 we illustrate H °, G I, H 1, G 2 = ~p(Hl), and H 2 = ~(G 2) for different 
values of k. These figures are meant to illustrate how the complex behavior of the 
unstable manifold "unwinds" as k increases. 

Note that in Figure 16A, H I N i f '  consists of two disjoint curves, while H 2 N ~" 
consists of four disjoint curves. This situation changes as k increases. As the point 
Q(k)  moves further into if ' ,  Pl (k )  = q~(Q(k)) eventually lies in ~ and Ql(k )  = 
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~b(P1(k)) lies in 3".  This case is illustrated in Figure 16B. It is now the case that 
H a f'l if" consists of three disjoint curves instead of four. For larger values of k, the 
point Ql crosses £s into ~'\9-', and then crosses £~ again until Q1 lies in 9".  It is 
then the case that H 2 f'l i f '  consists of just one curve. This is shown in Figure 16C 
where we also illustrate G 3 = ~p(H2), H 3 = qJ(G3), Pz = ~(Ql) and Q2 = ~b(P2). 
With increasing k, the point QI moves into ~" and the point P2 moves into ~;. As 
this happens, Q2 = ~O(Pz) enters ~" as shown in Figure 17C. For larger values of k, 
Q2 crosses £s into ~ \ 3 '  and then crosses ~¢s again so that it is back into ~". In this 
case, H 3 (3 ~" consists of one curve as shown in Figure 16D. 

As k increases, each family of curves H j "unwinds" as described in the preceding 
paragraph. Continuous spiking (or, perhaps, "chaotic" continous spiking) is achieved 
when each set H j consists of one curve which lies in 3-'. This is illustrated in Figure 
16D. Note that the set of curves {H i} converges to an invariant, two-dimensional 
manifold which we denote by O(e, k) As described in [17, Section 5], continous 
spiking corresponds to a stable periodic orbit on this invariant two-dimensional man- 
ifold. This invariant manifold can be obtained as a perturbation of the manifold 
that is described in (A4) of Section 2. See [7]. 

Remark 4G. Because ~(e,  k) is an invariant two-dimensional manifold, one can 
describe the dynamics on ~ in terms of a one-dimensional map. This is done by con- 
sidering a one-dimensional cross-section of ~ .  It is welt known that one-dimensional 
maps (the logistic map, for example) may give rise to "'chaotic" behavior. If this is 
the case for (2A.1), then we refer to such a behavior as chaotic continuous spik- 
ing. Computer simulations, see [5] and [1] for example, suggest that (2A.1) under- 
goes chaotic continuous spiking during the transition from bursting to continuous 
spiking. 

Our analysis demonstrates that even if 7r(e, k) gives rise to Fibonacci dynam- 
ics, then the maximal invariant set of ~r(E, k) lies very close to an invariant, two- 
dimensional manifold. Recall that if zr(e, k) gives rise to Fibonacci dynamics, then 
the maximal invariant set of ~-(e, k) lies in the region Eo that was defined in (4D.3). 
Each point in E0 lies within a distance of order e r/" to the curve H °. Since H ° is 
contained in the unstable manifold W~k, it follows that the maximal invafiant set of 
~-(e, k) is extremely close to the invariant, two-dimensional manifold Wq~. In the 
next section, we compute explicitly the eigenvalues and eigenvectors of the linearized 
flow near the maximal invariant set of ~-(e, k). This will further demonstrate that this 
invariant set is strongly dissipative. 

5. Proof of Proposition 31).1 

A. Properties of  t~ 

The proof of Proposition 3D. 1 is broken up into a number of lemmas. It is necessary 
to understand detailed properties of the maps ~p and ~b and then fit them together. 
The most delicate part of the analysis is concerned with the map ~, since it is the 
singular part. This map is considered in the next subsection. Here we prove important 
properties of ~/,. We always assume that e is sufficiently small. 
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Lemma 5A.1.  There exist positive constants 8o, No, and N1 such that i f  0 < e < 

30, Ikl < 30, !1(8~, z, ,  ul)  - (8~, 0, 0)11 < 30, and ~b(Sx, z l ,  ui)  = (x2, 8z, u2), then 
eNo < ul - u2 < eN1. 

Proof. We first consider the case e = 0, and then we perturb e. Let Yh (t) be the 
homoclinic solution of  (2A.1) with e = 0. We assume that t = 0 is chosen so that 
yh(0) E ~:. Recall, from (A6), that g(Yh(t) ,  0) "< 0 for all t. Choose To so that 
yh(To) = q/(0, 0)(yh(0)). Then 

N2 =- g(yh( t ) ,  O) d t  < O. 

It follows from the continuous dependence of  solutions that there exists 8o > 0 with 
the following property: Suppose that 0 < e < 30, Ikl < 80, q = (vl,  wl, Yl) E 9; and 
llq - yh(0)ll < 60. Let  y l ( t )  be the solution of  (2A.1) with ]/1(0) = q,  and choose 
T1 > 0 so that TI(T~) = ~(e,  k)(q) .  Then 

I :  1 I -2N2  < g(~,~(r~), k) d t  < - ~ N 2 .  

Suppose that ~/1(T1) = (v~, w2, Y2). From the last equation in (2A.I )  we have that 

I? Y2 - Yl = ~ g(~l( t ) ,  k)  d t .  

Therefore, (E/2)N2 < Yl - Y2 < 2eN2. The result now follows because the change 
of  variables described in Section 2A can be chosen so that u = y + e h ( p ,  k),  p = 
(v, w, y),  where Ih(p, k)l ~ 0 as Ilpll - ,  o. 

In what follows, we let ~ '  be as in (3B.5) and H ° = 0(~, k)(eu) be as in Section 
4. Recall that/ . /0 = {(x, 8:,  u) ~ i f '  : u = H°(x)}.  

Lemma 5A.2.  Let No be as in Lemma 5A.1. Then there exists mo > 0 such that 

~1 ~ ~!  r"l ~.t(~, k ) - l (~  ' ') C {(Sx, z ,  u)  ~ ~ff~ : u ~> - m o z  + Ho(0) + eNo, z > 0}. 

Proof. Let qo = (0, 8:, H°(0))  and Po = ~ - l ( q o ) .  Then, for each k, qo "--'> (0, 8 z, 0) 
and Po ---> (Sx, 0, 0) as e --> 0. This was demonstrated in the proof of  Proposition 
3C.4. Hence, we can choose e sufficiently small so that [lPo - (Sx, 0, 0)It < 3o for  
each k, [kl < 8o. From Lemma 5A.1 it now follows that if Po = (Sx, 0, p), then 

eN0 < p - H°(0)  < eNi .  (5A.1) 

Let  es = W[oSc f') ~" be as in (3C.4). Of  course, qo E es.  It follows from 
Proposition 3C.1 that $ - l ( e s )  is a smooth curve in ~ which can be written as 

~0-1(e~) = {(8~, z, u) ~ ~ : u = G(z)}. 

Moreover, there exist constants mo and ml ,  which do not depend on e or k,  such that 

- m o  < G ' ( z )  < - r o t .  (5A.2) 
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Note that G(0) = p, and @-1(~-,) = {(6x, z, u) C ~: : u -> G(z)}. Hence, ~ '  N 
0 - 1 ( ~  -') = {(6x, z ,  u) E ~ : z > O, y >-- G(z)}. The result now follows from (5A.1) 
and (5A.2). 

Corollary 5A.3. {(6x, z, u) : z > 0, H°(0) + eNl < u < ½6.} C ~1. 

Proof. This follows immediately from the proof of the preceding lemma; see (5A. 1) 
and (5A.2). 

B.  Properties o f  

We assume throughout this section that the hypotheses of Proposition 3D. 1 are sat- 
isfied. We always assume that e is sufficiently small. We first prove the proposition 
in the case when a (x)  is of the form a ( x )  = g x  + b. Here, m / 2  < or < 2m and 
- k  < b < H(E, k)(0) = H°(0). After we prove the proposition in this case, the 
general case will follow easily. In this subsection we prove important properties of 
~(a). 

Lemma 5B.1. Assume that or(x) = crx + b where m / 2  < (7 < 2m and - k  < b < 
H°(0). Let a = {(x, 6 z, u) ~ °3" : u = a(x)}. Then ¢ (a )  N 9;1 is the union o f  two 
disjoint, nonempty smooth curves. 

Proof  It follows from (3B.7) that/3 = q~(a) N ~; is of the form/3 = {(6x, z, u) 
~; : u = /3(z)} where 

( / -'/~2 
/3(z) = - k  + 8x z (x2-~)/x2 z (5B.1) 

"~" (6z'--'~ + (b + k) \6z ) " 

Note that/3(z) has a minimum at (Zmin, Umin) where 

k.[ ,(b + k) l - ' / * '  8~ [ e(b + k) l (z'-')/~' 
u ~ . =  - k  + ( b +  ) [ ~ - ~ l : - ~ ) j  + ~ k g ~ = ~ ) J  ' 

[ e(b + k) ]a2/a, 
Z m ~  = a Z k ( Z Z . : ~ 3 g  x . (5B.2) 

I f z  < Zmin, then fl ' (z) < 0, while i f z  > zmin, then/3'(z) > 0. Hence,/3 = /31 U/32 
where /31 = /3 N {z > zr~n} and /32 = /3 N {z < Zmin}- We may express each 
/3i, i = I, 2, as/3i  = {(6x, z ,  u) E ~; : z = /31(u)}. To complete the proof of  the 
lemma, we shall demonstrate that fli Cl .~1 4= 0 ,  i = 1, 2, and (6x, Zrain, Umin) ~ ~l- 

We first prove that (6x, zr~n, Umi,) ~ ~;1. Recall from the hypothesis of Proposition 
3D.1 that 0 < k + H°(0) < e (x2-x)/a'. Since - k  < b < H°(0) it follows that 

0 < k + b < e (x2-~)/~ . (5B.3) 

From (5B.2) we conclude that there exists C O > 0, which does not depend on e, such 
that 

0 < umin + k < C°e  (~2-~)/~ and 0 < Zmin < C°e  ~2/~. (5B.4) 
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Therefore, if • is sufficiently small, and mo and No are as in Lemma 5A.2, then 

Umin -- H0(0) = Umin + k - (k + H°(0)) 

< (C O + l)e (~2-~)I~ 

--moZmin + •No. 

It now follows from I.emma 5A.2 that (Sx, Zmin, Umln) ~ ~l. 
We next prove that/32 N ~;I ~: ~. From (5B.I) it follows that limz--,0 fl(z) = ~. 

Hence, fl2(u) is defined for all u E (unan, 8u). Together with I.emma 5A.2, this 
implies that ~2 must intersect ~I. See Figure 17. 

Finally, we prove that fll f'l ~;i ~ O. Here we use the assumption in Proposition 
3D.I that a(x) is defined for 0 < x <- eC1 where CI is to be detem~ned. We 
demonstrate that if CI is sufficiently large, • is sufficiently smaU, eC1 < C < 6x, 
and p = (C, 8z, a(C)),  then ¢(p)  E ~;l N ill. 

Let p = (C,Sx ,a(C))  and ¢p(p) = (Sx, z~, uO. From (3B.6)we conclude that 

:c:. 
zl = 8Z~6x] and ul = - k + ( c t ( C ) + k )  . (5B.5) 

The assumptions of Proposition 3D. 1 now imply that if C1 is sufficiently large, e is 
sufficiently small, and C > eCj ,  then 

u~ > a(C) > go-C~ + b 

> - k  + ~rC~ 

= - ( k  + H°(O)) + H°(O) + ~o'Cl 

> _•~2-z)/~, + Ho(O) + ~o'Cl 

> H°(0) + eN1. 

Together with Corollary 5A.3, this implies that ~(p)  E ~l .  The reason that ~(0) E/31 
is that (5B.4) and (5B.5) imply that if CI is sufficiently large, then zl > zmi~. 

L emma  513.2. Let fll and f12 be as in the preceding lemma and [3i = [3i fq if% i = 
1, 2. Let r = [(A2 - ;q - 2A)/A0]A2 be as in (3D.1). Then 

a. if (8~, z, u) E [31 t.J f32, then u > - k  + eNo/2, 

l~  {o'(u + k ) )  ;~J(a'-`) (o'(u + k ) )  x2/(;t'-`) 
b. ~oz~ 2~x <-- fl1¢u)--< 26z "67 on fl,, 

c. 0 <-- fl2(u) <-- 28z \u  + k ] <-- 28z~ r/e on/32. (5B.6) 
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Proof. We write (5B.1) as f i ( z )  = - k  + fla(t) + f in(t)  where 

fiA(Z) = ~- ~ ]  and fin(z) = (b + k) (5B.7) 

Let zl  = 8z[tr(y + k ) /Sx]  a2/(a'-'). Then fig(z1) = y + k and Ifi~(zl)l --- 
2E (~2-x)/a~ . It easily follows that f i l (u)  --~ zl  as ~ ~ 0. In particular, if e is suffi- 
ciently small, then (5B.6b) holds. 

We next prove (5B.6a). Suppose that u = - k  + ENo/2,  Using (5B.6b) we have 
that for some constant Co, independent of E, 

0 < fi:(u) < fi~(u) -< 2 ~  \ 8x ] 

Moreover, for e sufficiently small, 

u - H ° ( 0 )  = u + k - ( k + H ° ( 0 ) )  

< eNo + e(~,2_~)/a ~ 
2 

< ~No. 

It now follows from Lemma 5A.2 that if u = - k  + ~No/2 ,  then 

(8~, fi~(u), u) ~ ~l  and ( ~ ,  fi2(u), u) ~ ~;1. 

From this (5B.6c) easily follows. 
Finally, we prove (5B.6c). Let z2 = 6z [(b + k ) / ( y  + k)] ad ' .  Then fiB(z2) = y + k, 

while Ifia(z2)l <- (Sz/O')e °i~-~''-3~')/~ for ~ sufficiently small. Using (5B.6a) it follows 
that if e is sufficiently small, then 

Z2 <-- 6z \ ENo <-- 8z~'r/~!" 

From this, (5B.6c) follows. 

/.,emma 5B.3. Suppose that ~ ( x ,  8 z, u) = (Sx, z l ,  u l )  E ~1. Then [u - u j[ --~ 0 as 
~---~0. 

Proof. Recall, from (3B.6), that zl = 8 z ( x / S x )  ~2/~ and x = 8x(Z/Sz)  ~1/~2. From 
(5B.6), it follows that for some constants KI and K2, 

x >- K l (u  + k) x~/(xl-~) - K2E xl/(xl-~). (5B.8) 

Now (3B.6) also implies that ul = - k  + (u + k ) ( S x / x )  "/al . Together with (5B.8), 
this implies the desired result. 

Remark. The preceding lemma is not true if ~1 is replaced with f12. 
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We now estimate fl{(u) and/3~(u). Recall from the statement of Proposition 3D. 1 
that we only assume that a(x)  is defined for 0 - x --< C where eCl - C - Co. The 
constant C1 was defined in the proof of Lemma 5B. 1. In the next lemma we show 
how to define Co and explain why it is necessary.^For Co > 0, to be determined, let 
T, = {(x, 6z, u) ~ ff : 0 <- x <-- Co}. Let fl0 = fll f3 q~(g',) and flo = /32 f'l q~(g',). 

Lemma 5B.4, Let a(x)  = trx + b be as before. For each ~ > 0 we can choose 
Co such that i f  ~ is sufficiently small, then Ifl{(u)l < 8 for (6x, z, u) E flo, and 
t/3~(u)l < ~ for ( ~ ,  z, u) ~ /3o. 

Remark. (a) For each Co > 0 we can choose ~ sufficiently small such that Ee l  < Co. 
If this is the case, then the proof of Lemma 5B. 1 demonstrates that/3i fq f(Sr,) 
O , i  = 1,2. 

(b) It is necessary to introduce Co because it may not be true that ifl~(u)i < 6 for 
(8~,/3:(u), u) ~/37,/3~ °. 

Proof of Lemma 5B.4. From (5B.1) we have that 

+ 7 
; ' ( z )= t~ i t -~ i t~  / ~,><sz ~,&'z,} . (SB.9) 

Suppose that (Bx, z, u) ~ f12 °. Using (5B.6) and (5B,8) we find that for constants Ki, 
which do not depend on E, and e small, 

f lS(Z ) = 

A l - ~  6x /`1//`2 b + k  /`,14 ,. r,.r  +'</l<-":+:"" 
A.2& j 

<- - K l e ( b  + k)-XU~(u + k) (/`:+')I~ 

_< -KI~(H°(0)  + k)-/`U~(~No) c/`2+'V" 

<--- - -  K 2 E  (/,2 +2~)/~  ~ [-/`2(/`2-/`)]/;tl 

Therefore, if (Sx, z, u) ~ / 3  °, then we can make I/3~(u)l = lC /3 ' ( z ) ) - ' l  as  small as we 
please by choosing e small. 

Now suppose that p = (6x, z, u) E /30, and let q = (xi ,  8z, ul) = q - l ( p ) .  
From Lemma 5B.3, we have that lu - utl ~ 0 as E ~ 0. It therefore follows that if 
0 ----- xl  --< Co and e is sufficiently small, then 

lu + k t -  lu - . t l  + lu, + kl 
- lu - . , t  + I,.x, + b + kl 
- o'Co + lu - u,l + tb + kl 

-- 2o'Co. 
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Therefore, for constants Ki which do not depend on e, 

÷ t ] 

>--- KI(u + k)CX~-;t2-')/;~3-'[K2 - K3e(b + k)(u + k) -'W<x'-')] 

>--- K4(u + k) ~x~-;~)/x~ [Kz - K3~(H°(0) + k)(u + k) -a~/<x~-')] 

>- Ko(u + k)  ~ - ' ~ / ~ '  

> 2crKoC(oX~-'~)/at. 

We now conclude that/3'(z) is as large as we please by choosing Co small; the choice 
of Co does not depend on ~. On fl0,/3[(u) = [/3'(z)] - l .  This, therefore, completes 
the proof. 

Remark 5B.5 For each result in this section, we assumed that near the homonclinic 
point qo, (2A.1) can be written in the simple form (3B.3). Since (3B.3) is linear, we 
were able to compute ~(e, k) explicitly, and the results of this section were proved 
using the explicit expression for g,. These results extend, in a straightforward way, to 
the full system (3B.2) using the variation of constants formula. 

C. Completion of  the Proof  o f  Proposition 3D.I  

We now completes the proof of Proposition 3D. 1. For the moment we continue to 
assume that a (x)  is of the form ~(x)  = crx + b. It then follows from Lemma 5B.1 
that ~r(~) N ~-' = ~(~(a)  N ~l)  is the union of two disjoint, nonempty curves in if ' .  
L e t  o~ i : t~(/~i). From Lemma 5B.4 and Proposition 3C. I, we conclude that each 
a i  can be expressed as ai = {(x, ~=, u) ~ ~" : u = ai(x)}. Recall, from the proof 
of Lemma 5B.1, that/32(u) is defined for each u E (Umin, ~u). The function/31(u) 
is not, however, defined for each u E (Umin, ~u) .  Lemma 5B.3 implies that/31(u) is 
defined for u E (Umin, U) w h e r e  /~ ---> C 0 as  E ---> 0 .  

Lemma 5B.4 and Proposition 3C. 1 imply that the functions ai(x) ,  i = 1, 2, satisfy 
m / 2  < a~(x) < 2m for each x for which ai(x)  is defined. From Proposition 3C. 1 
we now conclude that there exists C2 E (0, 1) such that a l ( x )  is defined for x 
[0, C2Co). Since 0 < /31(u) < /32(u), it follows from Remark 3C.3 that ~1(x) < 
a2(x) < H°(x)  for 0 < x < CoC. Finally, Proposition 3C.1 and Lemma 5B.2 imply 
that (3D.2f) and (3D.2g) hold. 

This completes the proof of Proposition 3D. 1 in the case when vz(x) is linear. 
Now suppose that ~(x)  is any function which satisfies the hypothesis of  Proposition 
3D.1. It then follows that a (x )  < a (x )  --< fi(x) for 0 < x -< Co where a (x)  = 
( m / 2 x )  + a(0) and ~(x )  = 2rex + a(0). Let 

a_ = {(x ,  8z, ~_(x)) : 0 <- x <- Co} and a = {(x ,  ~ ,  a ( x ) )  : 0 <- x <- Co}. 

Since a lies in the subset of ~-' bounded by a_ and t~, Corollary 3B.3 and Remark 3C.3 
imply that cr(a) f') ~" lies in the subset of ~" bounded by 7r(_q.) I"1 if" and ~r(~) f'l ~". 
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Since Proposition 3D. 1 applies to both a_q_ and t~, it follows that this region consists 
of two components. It then easily follows that ~'(a) tq if" is the union of two disjoint 
curves which satisfy (3D.2 a, c, e, f, g). 

To prove (3D.2b) and (3D.2d) we consider the lineaxized map Dzr. The desired 
estimates are then easily obtained using Proposition 3C.1 and Lemma 5B.2. The map 
D~r is computed more explicitly in the next section. 

D. Hyperbolic Structure 

We now demonstrate that the maximal invariant act of 7r(e, k) is hyperbolic. Our 
calculations verify that 7r satisfies the conditions (h2) and (h3) that are described in 
Section 2B. Together with the discussion in Section 4, this will complete the proof of 
Theorem 2C. 1. 

We verify (h2) and (h3) by computing the eigenvalues and corresponding eigenvec- 
tors of the linearized map D~- = D~/, oD~p. The properties which we need concerning 
D~b are stated in Proposition 3C. 1, while the properties which we need concerning 
Dcp will follow from the explicit formula for ~p given in (3B.6). 

We assume throughout this section that e is sufficiently small and 0 < H°(0) + k < 
e <x2-x)/AI . Recall, from Proposition 3D. 1, that it is for these values of the parameters 
that we expect the Fibonacci dynamics to arise. 

Let ~ = {(x,6 z, u) C ~' : - k  + (m/2)x < u < H°(x)}. Our discussion in 
Section 4 demonstrates that the interesting dynamics takes place for ~ restricted to E; 
that is, i rA is the maximal invariant set of ~r, then A C ~. Let B = ~(E) fq ~/,-I(E). 
It follows from Lemma 5B.2 that B C B1 U B2 where 

{ eN0 1 (m(u_+_.k)) xd(~q-~) 
BI = (6x, Z, U) E g; : u > k + -~--, ~6z \ 26x 

<- z <- 26z\_(2m(u+k)) x 2 / ~ * ' - ' ) } t x  

{ "N° O < z < 2 8 z e r / ' }  (5D.1) B2 = (Sx, Z , U ) ~ : u > - k + " ~ ' ,  - -- 

Let H1 = <P-I(B1) and H2 = q~-l(B2). 
Let p = (x0, tx, uo) E ~, and let q 

follows that 

/ \A:/AI 
Zl = tpz(Xo, Uo)= 8z|~--~°| and Ul 

/ -lip ^ t 

kOx/ 

Therefore, 

D~(p) = 

= ~(P) = (Sx, zl, ul). From (3B.6) it 

= u(xo, uo)= - k  +(uo+ k)(Sxl'lx' - -  , 

\Xol 
(5D.2) 

~ z  O~Pz 1 
Ox Ou (xo, uo) 
O~Vu a~u 
ax ~u 
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8z A2 (xo ~(~-~)/~ 
8x A1 ~ ]  0 

(xoV" + t,) ] 

[ r, Cp o ] 
= -K:~a(ul + k)xo 1 K3xff ~1~ (5D.3) 

where K1, K2, and K3 are positive constants which do not depend on ~ or k. 
According to Proposition 3C. 1, D ~  is a regular perturbation of the matrix 

['] M = fl m (5D.4) 
0 1 

We prove the desired estimates for the case when D~b = M.  The proof for the more 
general case is then straightforward. Therefore, assume that 

where 

A flKiX(o x2-)tO/x' 1 = - --K2e(Ul + k)xo I 
m 

B = 1K3xo' /X '  
rn 

C = -f lK2E(ul + k)xff 1 
D = K3xff ~/(;~-1) 

Now assume that p E H2 or, equivalently, q = ~o(p) ~ B2. 
It follows from (5D.1) that us > - k  + (eN0/2) and 0 <-- zl <- 28z~ r/~ <- 28ze r/" 

where r = [(A2 - A1 - 2A)/AdA2 is as in (3D.1). Together with (5D.2) this implies 
that 

<- t3x2;q/a2~. (;t2-'h-2'W" <- E ('~2-'h-3'We (5D.6) 

and 

a(ul + k)xo 1+(Elxl) >- e [(j2-x'-4a)/El (5D.7) 

for e sufficiently small. 
We now wish to compute the eigenvalues and eigenvectors of D~r(p) and determine 

their behavior as ~ ---> 0. Note that (5D.4) implies that each term in D~r(p) becomes 
unbounded as ~ ---> 0 except for the term flKlxCo ~2-~t)/x in A. This term ---> 0 as 

--> 0. Therefore, in order to determine the asympofic behavior of D~r(p), we may 
ignore the term flKi XCo xz-a~)/'~ and consider the matrix 

M 1  = XO'/AIMo 
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where 

[ - I K 2 E ( u  I + k)xo 1+'/~' 
Mo = m 

- f lg2~ . (Ul  + k ) x o  l+'/'h 

The eigenvalues of  Mo are 

- K3] 
m ° 

K3 

-T race  Mo +- x/(Trace Mo) 2 - 4 det Mo 

2 

-T race  M0 - Trace Mo x/1 [4 det Mo/(Trace Mo) 2] 

Now, using (5D.7), we have that 

detMo _ (1 /m)K2Ka( f l  - 1)E(Ul + k ) x o  t+'/;tl 

Trace Mo K3 - ( 1 / m ) K 2 ~ ( u l  + h ) x o  l+'/x~ 

-'> K3(/3 - 1) as e ~ 0 

and det Mo/(Trace M0) 2 -~  0 and e ~ 0. Therefore, 

4 det Mo Trace 2 det Mo 
Trace Mo 1 (Trace Mo) 2 = M0 Trace-Mooo + h.o.t .  

= Trace M0 - 2K3(/3 - 1) + h.o.t .  

It follows that 

and 

A + = K3(1 - f l )  + h.o. t .  (5D.8a) 

A- = - T r a c e  Mo + Ks( f l  - 1) + h.o. t .  

1 
= - -K2E(u l  + k ) x o  l+'/xi - Karl + h.o. t .  (5D.8b) 

m 

From (5D.7), it follows that A+/A - ~ 0 and e --~ 0. Eigenvalues corresponding to 
Ml are /2  ± = Xo'/XIA ± . We therefore conclude that if  p ~ H2, then D~r(p) has two 
real eigenvalues, /z + and IX-, which s a t i s f y / ~ + / / ~ -  ~ 0 as E ~ 0. 

We now wish to compute eigenvectors of  D~r(p)  which correspond to /~+ a n d / z - .  
These eigenvectors are perturbations of  eigenvectors of  Mo. Note that if 

a±  = Ks, 

K2e(ul  + k ) x o  1+~/~' +- mA ± '  

i )  T are eigenvectors corresponding to A ± . Now (5D.7) and (5D.8) t h e n  e ~- ~ ( a  +- 

impty that 

a+ = Ks --->0 as E---~0, 
K2e(ul  + k ) x o  1+~/~' + m(Ks  - f l )  + h.o. t .  
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and 

1 
a-  = ...... + h.o.t. (1~rot 1) "r 

m3 

Therefore, e + ~ (0 1) T a sE  ~ 0, a n d a -  ~ (1/m[3 1) "r a s a  ~ 0. We 
recall, from Section 3, that m/3 ~ 0. 

We now assume that p ~ HI .  It then follows from (5D.1) that ul > - k  + (EN0/2) 
and 

Since, by (5D.2), x0 = 5x(zl /Sz)  adx~, there exist constants Ki, i = 1, 2 . . . . .  such 
that 

Kl(ul + k) ad(~-~) <- xo <- K2(ul + k) xd(xl- ').  

Now (5D.1) and (5D.2) imply that, for a sufficiently small, 

/No \ ~ I ~ - ' ~  
x0 --> Kl(Ui + k) ~'1`~-'~ >-- K 3 ~ , )  >-- K4a 

and 

(5D.9) 

xo <- K2(ul + k) A d ~ - ~  = K2(uo + k ) [ ~ o )  

-< K3(uo + k) <- K3(H°(0) + k) 

--< K3~. 

Moreover, (5D.9) implies that (ul + k)xo 1 is bounded; say 

0 ~ (Ul + k)Xo ! <- K4. 

These estimates imply that as E --~ O,A ~ O,B ~ ( t /m)K3,  C ~ O, and D ~ K3. 
Therefore, the eigenvalues and corresponding eigenvalues of  D1r(p) approach the 

eigenvalues and corresponding eigenvectors of the matrix 

M2 = K3 

as E ~ 0. The eigenvalues of  M2 are, of course, 0 and K3. Corresponding eigenvectors 
a r e ( l  0) r and(1 m) "r. 

The preceding estimates demonstrate that (h2) and (h3) are satisfied if we chose 
/x small, let S" be a sufficiently small sector around e ÷ , and let S s be a sufficiently 
small sector around e - .  
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Appendix 

Each solution shown in Figure 1 is a solution of the following system due to Rinzel 
and Ermentrout [14]. It is based on the model of Morris and Lecar [12] for electrical 
activity in the barnacle muscle fiber. 

u '  = y - . 5 ( v + 5 ) -  2 w ( v + . 7 ) - m ~ ( u ) ( u  - I) 

w' = 1 . 1 5 ( w = ( v ) - w ) z ( u )  

y '  = E(k - v) 

where 

(A.1) 

1[ (u,)] 
w ~ ( u ) =  ~ l + t a n h  

1 [ [u + .01 \] 
= tanh  

~'(u) = cosh u - . 1  

For each solution in Figure 1, ~ = .002. For the solution shown in Figure 1A, 
k = - .23 ,  for the solution shown in Figure 1B, k = - .13 ,  and for the solution 
shown in Figure 1C, k = - .  1306. 

The following are the precise assumptions that were required in [17] for the exis- 
tence of bursting solutions and continuous spiking. Further remarks concerning these 
assumptions are given in [17]. 

H1. The fixed points of (FS) consist of a smooth, S-shaped curve, 5¢ in phase space. 
That is, there exists A < p such that 
a. If y < A then (FS) has precisely one fixed point, which we denote by ey. 
b. If y > p, then (FS) has precisely one fixed point, which we denote by Uy. 
c. If )t < y < p, then (FS) has precisely three fixed points, which we denote by 

ey, my, arid Uy. 
d. The fixed point at the "left knee," for y = A, is denoted by K~, and the fixed 

point at the "fight Pmee" is denoted by Kp. 
e. The union of all of these fixed points forms a smooth curve, which we denote 

bye. 

1-12. Each of the fixed points ~r is an attractor as a solution of (FS), and each of 
the fixed points my is a saddle. We denote the two trajectories in the unstable 
manifold of each m r by M;'(t)  and My( t ) .  

H3. There exists h E (A, p) such that M~(t )  is homoclinic to Mh. If y ~ (h, p), 
then limt.-,®M~'(t) = e r. I f y  E (h, h), then limt--,= M+ (t) = e r. 

H4. There exists 80 > 0 such that if h < y < p + 80, then there exists an asymptoti- 
caUy stable periodic solution py(t) of (FS). This periodic solution surrounds u r, 
but neither e r nor my. The union of all of these periodic solutions form invariant, 
normally hyperbolic manifold ~ ,  which terminates at M~-(t) as y ~ h. 
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Remark. In Figure 4, we illustrate the phase planes corresponding to (FS) for three 
different values of the parameter y. In each of these figures, limt--,®My(t) = ey. In 
Figure 4A, we assume that h < y < h. In this case, limt-.,®My(t) = ey. In Figure 
4B, y = h, and My(t) is the homoclinic orbit. Finally, in Figure 4C, h < y < p. 
In the case, My(t) approaches the periodic orbit, py(t),  as t ---> ~. 

We now need an assumption which allows us to conclude that for small E, solutions 
of (2A. 1) which pass close to the right knee must then pass close to the left knee 
must then pass close to the lower branch. In what follows, w(3~o) wilt be the omega 
limits set of the solution of (2A.1) which passes through Y0- 

H5. There exists a neighborhood 0~p of Kp such that if Y0 = (Vo, yo, wo) E ~b~p, then 
either co(y0) = myo, OJ(3~o) = er0,a~(~/0) = Pyo. There exists a neighborhood 
~ x  of Ka such that if Y0 E 0~ ,  then wither ~o(y0) = my o, eo(~/o) = ey o, or 
~(y0) = Uyo. 

The final assumptions are concerned with the slow dynamics. 

H6. There exists kp < ka such that i f k p  < k < kx then g ( v , w , y , k )  = 0 i f  
and only if v = h(w, y, k) for some smooth function h(w, y, k). Moreover, 
g ( v , w , y , k )  < 0 if and only if u > h(w,y ,k) .  I fMk = {(v ,w,y)  : v = 
h(w, y, k)}, then Mk CI 9 ~ = My k for some Yk E (A, p). 

Let M~- = {(v, w, y) : v > h(w, y, k)} and M k = {(v, w, y) : v < h(w, y, k)}. 

H7. If kp < k < kx, then {~y : y < p} C M~-. Moreover, there exists a unique 
kh E (kp, k,O such that Ykh = h. If kp <-. k <- kh, then ~ C M~. 

This last assumption implies that if k ~ (kp, kx), e > O, and (v, w, y) lies near the 
lower branch, then y '  = Eg(v, w, y, k) > 0. If kp < k < kh, ~. > 0 and (v, w, y) 
lies near ~ ,  then y '  < 0. Note that if k = kh and E > 0, then the fixed point of 
(2A.1) is Mh. This is the homoclinic point of (2A.1) with e = 0. 

H8. If kh < k < kx, then (Og/Ok)(v, w, y, k) > 0 in some neighborhood of the 
homoclinic orbit My(t). 

Remark. The last assumption (H8) is satisfied for the t -cel l  models discussed in the 
introduction. For these models, c~g/c~k > 0 everywhere. 

Note that, after a suitable change of variables, the assumptions A1-A6 follow 
from H1-H8 if we impose the additional assumption that the center-stable and center- 
unstable manifolds to the middle branch intersect traversely at the homoclinic orbit 
M~(t). 

A bursting solution is defined as periodic solution of (2A.1) whose trajectory in 
phase space alternates between passing close to the lower branch (the passive phase) 
and passing close to @, the branch of periodic solutions (the active phase). We say 
that (2A. 1) gives rise to continuous spiking if there exists a stable periodic of  (2A. 1) 
whose trajectory in phase space always lies near @. In [17] we prove the following. 
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T h e o r e m  A.1.  (a) Fix k ~ (kp, kh). I f  E is sufficiently small, then there exists a 
bursting solution of (2A.1). 

(b) There exists ko > kh with the following property: Fix k E (kh, ko). I f  6 is 
sufficiently small, then (2A.1) gives rise to continuous spiking. 
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