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Summary. In the paper we give a mathematical definition of the left and right Lya- 
punov exponents for a one-dimensional cellular automaton (CA). We establish an 
inequality between the Lyapunov exponents' and entropies (spatial and temporal). 
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1. Introduction 

Cellular automata are mathematical idealizations of physical systems in which space 
and time are discrete and physical quantities take on a finite set of discrete values. 
A cellular automaton consists of a regular, uniform infinite lattice with a discrete 
variable at each site C'cell"). The state of a cellular automaton is completely specified 
by the values of the variables at each site. A cellular automaton evolves in discrete 
time steps, with the value of the variable at one site being affected by the values of 
variables at sites in itf~inite "neighborhood" on the previous time step (see Section 2 
for the precise definition). 

Cellular automata were originally introduced by von Neumann and Ulam [ 16] for 
modeling biological self-reproduodon. Since then they have been used for a wide va- 
riety of purposes. For example, any physical system satisfying differential equations 
may be approximated as a cellular automaton by introducing finite differences and 
discrete variables. The dynamical Ising model and other lattice spin systems may be 
considered as cellular automata (see, e.g., [5]). Cellular automata may be used as dis- 
crete models for nonlinear chemical systems involving a network of reactions coupled 
with spatial diffusion (see, e.g., [8]). Many biological systems have been modeled 
by cellular automata (see, e.g., [12]). Cellular automata may also be considered as 
parallel-processing computers (cf. [15]). These are only a few of the numerous fields 
to which cellular automata are being applied. 

From the mathematical point of view cellular automata are considered as discrete 
dynamical systems acting on the set of two-sided infinite sequences of symbols from a 
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finite alphabet. Being furnished with the natural topology, this set--the configuration 
space--turns into a compact, totally disconnected topological space (in other words, 
the Cantor set). Then cellular automata may be (mathematically) defined as continuous 
shift-commuting maps of the configuration space (see Section-2). That is why, in the 
mathematical literature, cellular automata are often referred to as endomorphisms of 
the shift. Mathematical study of cellular automata was initiated by Hedlund [9] and 
then continued in various directions by Coven and Paul [4], Gilman [7], Hurley [10], 
Lind [14], Shirvani and Rogers [19] and others (see also [1], [18]). 

The quantitative characteristics that measure spatial and temporal complexity and 
instability of a dynamical system--the Kolmogorov entropy, the Hausdorff dimension, 
and the Lyapunov exponents--proved to be extremely useful in the smooth ergodie 
theory and differentiable dynamics (see, e.g., [6], [22]). To define the entropy and the 
dimension one does not need any smooth structure in the phase space. On the contrary, 
the definition of the Lyapunov exponents relies heavily on the differentiability. Being 
a Cantor set, the configuration space of cellular automata possesses no differentiable 
structure. The natural question thus arises: how to introduce (in a reasonable way) 
quantities analogous to Lyapunov exponents of smooth dynamical systems that would 
describe local instability of orbits in cellular automata. It is also of interest to explore 
relations between such quantities and the entropies. The importance of these questions 
was pointed out by Wolfram in [21, Problems 2,3]. To the best of my knowledge these 
issues have never been discussed in a rigorous mathematical setting. A simple heuristic 
construction proposed in [20] leads to rather rough, global quantities; meanwhile, the 
classical Lyapunov exponents are essentially local characteristics and, hence, their 
analogue s for cellular automata are expected to be local, too. For another approach 
to the problem see [13]. 

In this paper we define, in the framework of ergodic theory, the left and fight 
Lyapunov exponents for one-dimensional cellular automata that~ like their "smooth" 
counterparts, are invariant (under evolution of the dynamical systems) local quan- 
tifies existing almost everywhere with respect to an invariant measure in the phase 
space. Suppose we are given a spatially homogeneous (i.e., shift-invarian0 probabil- 
ity measure/x on the configuration space X; let/z also be invariant under the map 
f : X ~ X presenting the cellular automaton. We prove that for/.~-almost every 
configuration x ~ X there exists a limit of the average (along the orbit) speed of 
perturbation propagation fight and/or left along the "space axis" as the cellular au- 
tomaton evolves in time. We call these limits the fight and left Lyapunov exponents 
of the cellular automaton at x and denote them A+(x) and A-(x), respectively. If/z is 
ergodie (see [6]) with respect to f, then the exponents are independent of the point x 
and characterize just the chaotic properties of the measure/z. In this ease we denote 
them by A +, A~. Different ergodic measures concentrated, say, on disjoint attractors 
may well have different Lyapunov exponents reflecting different chaotic properties 
of the attractors. Note that Wolfram's "exponents," being global, are not sensitive to 
such phenomena. In the case when/z is ergodic, we establish the inequality. 

h (f) -< + x?,), 

where h~ denotes the measure-theoretic entropy (see, e.g., [2]), and 1" is the shift 
in the configuration space (the values h~(f)  and h~(~') are often called, respectively, 
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the temporal and the spatial entropies of the cellular automaton with respect to the 
measure/z). 

It is a challenging problem to generalize to multidimensional cellular automata 
the definition here introduced for one-dimensional ones. Another interesting question 
related to our results is: for which cellular automata f and measures ~ does the 
inequality above turn into the equality? 

2. Definition of Lyapunov Exponents 

First, we recall the mathematical definition of a one-dimensional cellular automaton 
(cf. [14]). Let S be a finite set of states (one may take S = {0, 1 . . . . .  p - 1}, p --> 2). 
A double-infinite sequence x = (xi)i~;v of elements xi U S is usually called a 
configuration. Thus, the configuration space is the set X = {x = ( x i )~Z  : xi  
S for all i E 7/}. Choose any function (rule) F : S 2r+1 ~ S(r >- 1) and define a 
map f of X into itself by 

( f x ) i  = F(x i - r  . . . . .  xi . . . . .  xi+~), i E 7/. O) 

The discrete time-dynamical system on X generated by such a map is called a one- 
dimensional cellular automaton. Sometimes we also refer to the map f as a cellular 
automaton. 

The shift ~" on X is defined by (~'x)i = xi+l. It is obvious that the mapfgiven by 
(1) commutes with ~', i.e., f~" = r f .  

Let us proceed to the definition of Lyapunov exponents for the cellular automaton 
map f described above; it is not immediate and needs some preliminary consideration. 
Fo rx  E X a n d s E { 0 , 1 , 2  . . . .  } w e s e t W + ( x )  = {y E X : y i  = xi for alli--> s) 
and, similarly, Ws" = {y E X : yl = xi for all i --< -s} .  We have W~(x)  C 

W~-(x) C W~(x)  C . . .  C W+(x) C . . . ,  and the same relations take place for 
WT(x ) , s  E 7/+. For an integer n >-- 0 we define 

A+(x) = min{s -- 0 : fn(W~'(x))  C w+~nx) } ,  

/k~(x) = min{s --> 0 : f " ( W o ( x ) )  C WT(f"x)} .  

The value/k+(x) [/~'(x)] shows how far a perturbation front moves right (left) in the 
cellular automaton defined by f in the time n if the front is initially located at i = O. 
In other words, we arbitrarily perturb the sites x~ for i - 0 of the configuration x, 
subject the perturbed configuration x ' to n iterations of the map f,  and then mark the 
least number s -- 0 such that sites s, (s + 1), and so on in f " x '  stay unperturbed. The 
value A~- (x) has the same meaning with respect to left-moving perturbation fronts. It 
is clear that the values .~+ 0 4 x), A~ 0 4 x ) characterize propagation of perturbations 
of x with the front located at j .  Of course, A~(¢Jx) and fit~(¢J'x) may be different 
for j # j ' .  Then, we consider ¢-invariant quantities by taking maximum of A~(~'Jx) 
over all j. We set 

An+(x) = mag/~n+(¢Jx), A~'(x) = . ~ A ~ ( ~ ' J x ) .  
jE//  j~L 
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Now we are going to prove that the sequence of ftmctions A +, A~ satisfies the 
subadditivity condition. We mention that subadditivity also plays a crucial role in the 
proof of the multiplicative ergodic theorem 1 given in [17]. 

Lemma 1, For every x E X the following inequalities hold. 

A++,,,(x) --< A+(x) + A+(fnx) ,  (2) 

a~+.,(x) ~ h;(x) + h;,(f"x).  (3) 

Proof. We denote s = A+(x), t = A+(fnx). From the definitions of A + and/~+ 
we have 

fn(W~-(x)) C Ws+(fnx) = W~'(v*fnx). 

In turn, 

fm(W~'(~'S fnx))  C W+(fm': f nx )  = W+(vs fm+nx) = W++,ffm+nx). 

Thus, we obtain 

fn+m(W~ (x)) C W++t(fn+mx). 

This implies that l~++m(X) <- s + t = A+(x) + A+(fnx)  and (2) follows from 
v-invariance of + Art+f i t"  

To prove (3) one should only replace + by - in the proof given above. [ ]  

From now on we suppose that a probability measure/z is given on the configuration 
space X. Besides, we assume ix to be spatially homogeneous (i.e., ~'-invariant) and 
f-invariant as well. This means that for each A C X we have/~(~'A) = /z(~'-lA) = 
/~(f:IA) = #(A). 

It turns out that for/x--almost every point x in the configuration space the average 
right and left propagation speeds [(1/n)A+(x) and (1In)An(x)] converge as n ---> oo. 

Theorem 1 (The definition of Lyapunov exponents). There exists a set G C X of 
full measure [i.e., tz(G) = 11 such that for every x ~ G the limits 

A+(x) -  ~- lim 1A+(x) ,  A- (x )~  f lim 1A~(x )  (4) 
n-.-.~oo ?l n---~ez ?~ 

exist. The functions A +, A- are f-invariant (their z-invariance is obvious). We call the 
values A + (x), A-(x) the right and left Lyapunov exponents of the cellular automaton 
f atx. 

Theorem 1 is an immediate consequence of Kingman's subadditive ergodie theorem 
[11] (see also [17]) and of Lemma 1 proved above. 

1 It is well known that this theorem underlies the definition of the Lyapunov exponents for 
smooth dynamical systems. 
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We remark that A+(x) and )t-(x) are constant for /z-a lmost  all x E X, i f /~  is 
ergodic. We shall denote these constant values by A + and )t~, respectively. 

3. A Relation between Lyapunov Exponents and Entropies 

We first recall the notion of local entropy [3], which will be used in Theorem 2 below. 
Let M be a compact metric space with the distance p, and let T : M ~ M be a 
continuous map preserving a probability measure/.~ on M. For x ~ M, ~ > 0, we 
put Bn(T, x, ~) = [y E M : p(T~, Tff) <-- ~ for 0 <-- K --<- n]. The value 

hg(T'x)de--f limlimsupl,--o n--,= [ - l l°gt~[Bn(T'x'e)]} 

is called the local entropy of T at x (with respect to the measure/z), l.xrosely speaking, 
the local entropy may be considered as the rate of diffusion of the measure along the 
orbit of x. It has been proved by Brin and Katok [3] that 

ha(T) = f hg(T, x)diz (5) 

where ha(T) denotes the entropy of T. 
Now we equip the configuration space X with a distance. Let us fix some at > 0 

and define for x, y E X 

pa(x, y) = exp[- tzN(x,  y)] 

where N(x, y) = sup{n : xl = Yi for all i such that 1il < n}. The metric Pa 
defines on X the Tikhonov topology of direct product. The configuration space X is 
compact with respect to this metric. It is easy to see that each cellular automaton map 
f : X ~ X is continuous. 

Now we state an inequality that gives an upper bound on the measure-theoretic en- 
tropy of cellular automaton in terms of the (local) entropy of the shift z and Lyapunov 
exponents of f.  Let f : X --* X be a cellular automaton map and/z  be a probability 
measure on X, invariant under f and z. 

Theorem 2. The following inequality holds 

h~( f )  --< ~ ht~0", x)[)t+(x) + Z-(x)]d/~. 
J 

(6) 

If, in addition, I~ is ergodic with respect to f, then 

h a ( f )  <- + + 

To prove this theorem we need the following technical lemma 

(7) 

Lemma 2. Let {an}n~-o be a sequence of real nonnegative numbers such that 
limn-,®(1/n) an = a*. Let An = maxo_~K__n aK; then limn~®(1/n) An = a*. 
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The proof of  this fact is straightforward. 

Proof of Theorem 2. In view of (5), it suffices to show that 

h~( f ,  x) -< h~,0", x)[A+(x) + A-(x)] (8) 

for p-almost every x ~ X. 
We take any configuration x E G where G is the set of points for which the limits 

(4) exist [/~(G) = 1]. From Lemma 2 we have 

1 
l i r a -  ~ A+(x) = A+(x), 
n-.~w n 0-tc<n 

lira 1 - max h~(x)  = A-(x). 
n "-~°° n O~K'<n 

Fix arbitrary 8 > 0, and choose N such that 

1 
n o-<.-<nmax A+(x) -< A+(x) + 8, 

1 
- max A~(x) --- A-(x) + 8 (9) 
n O<~<n 

for all n > N. 
Now we denote C~(x) = {y ~ X : Yi = xi for q -< i -< p},q <- p. Let us 

show that for each positive integer p and n 

~-t,+A;(~) ~x~ ~ C p f ~C,'_p_an+(x)k ;,1 C _p(X). (10) 

Indeed, we have 

Hence, 

Cp+aZ(x) c~.~ = W~'[7.-e-A+~(~)x] Cl Wo[re+AZ(X)x]. -p-A+(x)X~J 

fn  [,..l,+AZ(x) ¢ ~  c- ~_p_A+fx),~,/-- f~{W~[r-~-A~fx)x]} N f~{Wo [ze+AZfX)x]} 

c W~+(x~[z-P-^,+(~x] n W~:(~)[~-'+Az(X)x] 

= w~(z - ' x )  n Wo(rPx) = cP_/x). 

From (10) and (9) we obtain 

t~  p+[A- (x )+8]n  i _  x Bn(f , x, ep) D ,~ p_i~+(x)+8]n ~ ). 

where ,p = e x p ( - a p )  and Bn~,  n, e) is the set appearing in the definition of local 
entropy (see above). Thus, 

ft[Bn(f,  x, %)] > .r,-,p+EA-(x)+83n ,_~t -- M'I. t'-p-[~+(x)+8]n~-*)J (11) 

(we use the 1"-invariance of/x) .  Observing that lira supra__,® { -  log p[C~(x)]/m} = 
ha(r ,  x), we have from (11) 
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lira s u p { - 1  log/x[Bn(f,  x, el,)] } <-- h~(¢ ,  x)[A+(x) + A-(x)  + 2/~] 
tl*,~0o 

and, hence, h u ( f ,  x)  --< h~,(% x)[A+(x) + A-(x) + 23]. By letting/t go to zero, we 
obtain (8), which implies (6). 

If/X is ergodic, we have A+(x) = A~, A-(x)  = A~ for/x-almost every x. Thus, 
(7) follows immediately from (6) and (5). The theorem is proved. [ ]  

Note that the equality in (7) can be attained. It happens, for example, for the 
cellular automata belonging to the class M introduced in [1]. It would be of interest to 
describe cellular automata f and their invariant measures/X for which the inequality 
(7) turns out to be an equality. 
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