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Summary,  The famous Ginzburg-Landau equation describes nonlinear amplitude 
modulations of a wave perturbation of a basic pattern when a control parameter R 
lies in the unstable region O(e 2) away from the critical value Rc for which the system 
loses stability. Here e > 0 is a small parameter. G-Us equation is found for a gen- 
eral class of nonlinear evolution problems including several classical problems from 
hydrodynamics and other fields of physics and chemistry. Up to now, the rigorous 
derivation of G-Us equation for general situations is not yet completed. This was 
only demonstrated for special types of solutions (steady, time periodic) or for special 
problems (the Swift-Hohenberg equation). Here a mathematically rigorous proof of 
the validity of G-Us equation is given for a general situation of one space variable 
and a quadratic nonlinearity. Validity is meant in the following sense. For each given 
initial condition in a suitable Banach space there exists a unique bounded solution of 
the initial value problem for G-Us equation on a finite interval of the O(1/eZ)-long 
time scale intrinsic to the modulation. For such a finite time interval of the intrinsic 
modulation time scale on which the initial value problem for G-Us equation has a 
bounded solution, the initial value problem for the original evolution equation with 
corresponding initial conditions, has a unique solution O(e 2) - close to the approxi- 
mation induced by the solution of G-L's equation. This property guarantees that, for 
rather general initial conditions on the intrinsic modulation time scale, the behavior of 
solutions of G-Us equation is really inherited from solutions of the original problem, 
and the other way around: to a solution of G-Us equation corresponds a nearby exact 
solution with a relatively small error. 

Key words, nonlinear stability theory, modulation equations, approximation on a long 
time scale, error estimates 

1. Introduction 

In many experimental situations one observes that by changing a control parameter R, 
a basic state loses stability and a nearby state with a more or less periodic structure 
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is formed. Classical examples from hydrodynamics are Taylor-Couette flow between 
rotating cylinders, Poiseuille flow between parallel plates, Rayleigh-Brnard convection 
in heated fluids, etc. (cf. [1],[2],[3],[4],[5],[6]). This phenomenon is also found in 
several other areas such as chemical reactions, combustion, plasmas, liquid crystal, 
population dynamics, etc. (cf. [7],[8],[9],[10]). Behind these observations lies a well- 
known unified explanatory mechanism. Situations as mentioned can be modeled by 
nonlinear partial differential equations with appropriate boundary conditions. The basic 
state ~ b  corresponds to a stationary solution of the model. A necessary condition for 
stability is that the linearized problem for perturbations of the basic state has only 
eigenvalues with negative real parts, so that eigenfunctions as initial conditions vanish 
exponentially. At the critical parameter value R = Re, the linearized problem has a 
critical eigenvalue iw¢, i.e., with real part = 0, corresponding to a wave in  an 
unbounded direction, say the x-direction, with a wavenumber kc. If R lies in the 
unstable region close to Rc with I R - R~ I = E2, 8 ~> 0 a small parameter, the critical 
eigenfunction gives rise to exponential growth in the linearized analysis. This leads 
to the conjecture that instead of the basic state, solutions of the following type will 
now become relevant: 

= al2"b + ~Ae i(k~x+°j~t) + c .c .  + ' " .  (1.1) 

It is heuristically plausible that the amplitude A will evolve not only as predicted by 
the linearized instability theory, but that in addition its evolution will be affected by 
the nonlinearities and by mode interactions. The effect of nonlinearities is analogous 
to bifurcations, where a single, isolated mode becomes unstable. However, in cases 
as considered where for e > 0 a continuous band of modes becomes unstable, there is 
a severe complication and mode interactions have to be taken into account. A formal 
analysis is possible and is based essentially on a search for significant degenerations. In 
[23],[26],[11],[12],[13] it is shown that in combination these effects lead to amplitude 
modulations on a long time scale T = eZt and a long space scale moving with group 
velocity X = e(x  + eVl t ) .  It is found that these amplitude modulations are governed 
by the Ginzburg-Landau equation 

3A ,92A 
3T  - (r2 - i v 2 ) - ~ 5  + (to - /3[AIZ)A.  (1.2) 

Explicit expressions for the coefficients r2, 1,2, r0 and/3 are known. In G-L's equation 
the diffusion term represents the effect of mode interactions, the term with coefficient 
r0 represents the linearized instability and the term with coefficient - /3  is due to 
nonlinear effects. 

Though the derivation of G-L's equation is usually only formally justified, there is 
a firm general belief that various solutions of G-Us equations are indeed found in ex- 
periments, cf. [14],[15]. However, rigorous mathematical proofs to support this belief 
are still in progress, since they are restricted to special cases as the steady Navier- 
Stokes equations, cf. [16], time-periodic solutions of the Navier-Stokes equations, cf. 
[24], or a special prototype of a dynamic problem described by Swift-Hohenberg's 
equation, cf. [25]. In this paper we present a method to demonstrate the validity 
of the dynamic version of G-Us equation for a general autonomous nonlinear partial 
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differential equation with one space variable and a quadratic nonlinearity. We focus 
on this specific problem as a prototype since it contains all elements essential to the 
derivation of G-Us equation. In our opinion this problem is better suited as a prototype 
than the Swift-Hohenberg equation, since starting with a quadratic nonlinearity in the 
original equation and ending up with a cubic nonlinearity in G-L's equation is typically 
what happens in Navier-Stokes-like problems. It is caused by a type of nonlinear 
interaction, which is simply not present in S-H's equation, since it starts with a cubic 
nonlinearity itself. We are confident that our case can be looked at as a first step toward 
dealing with more complex problems, with two or more space variables, arising in 
most applications. From now on we shall take 

apb___0, kc = 1. (1.3) 

This can be done without loss of generality in a situation with one space variable, 
where ~ b  is homogeneous in space. Furthermore, for notational simplicity we drop 
the index c of Wc. 

Let us now somewhat elaborate on the concept "validity of G-Us equation". What 
is meant is that for a rather general class of initial conditions for G-L's equation the 
following result holds true. 

Given: 

Air=0 = A(X) (1.4) 

then one can prescribe initial conditions for the original evolution equation 

~[t=0 = ~ ( x ; ~ )  (1.5) 

where ~ is explicitly determined in terms of ,4 such that 
(i) both G-L's equation and the original evolution equation have a unique bounded 

solution on a finite time interval of the O(1 /e  2) long time scale associated with the 
modulation 

(ii) the approximation error is relatively small in some norm 

II~ - e . {a(x ,  T)e i(x+a't) + c.c}l I = O(~2). (1.6) 

For example one can think of the sup-norm in this estimate. In case the solution of 
G-Us equation remains O(1)-bounded for all time the length of the finite interval can 
be taken to be arbitrary but O(1) on the intrinsic modulation timescale. In case of 
exploding solutions of G-L's equation the result is valid on any O(1) interval on the 
T-scale where the solution is O(1)-bounded. 

To conclude this introduction we give a brief survey of our method to attack the 
validity problem. First, in Section 2, the original nonlinear PDE is introduced, as 
well as its Fourier transformed version. The latter equation, a sort of ODE containing 
nonlinear convolution terms, is what we shall mainly work with. Next, in Section 3, 
a construction of a formal approximation is given. The highest-order terms of the ap- 
proximation correspond to mode clusters of O(e)-width at k = + 1. However, mode 
clusters excited by the nonlinearity at k = -+2 and k = 0 will also be important. 
Together these mode clusters satisfy a Fourier transformed version of G-L's equation. 
It is interesting that this derivation of G-L's equation possesses a strong similarity to 
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early work on nonlinear stability theory in [11],[17]. Using a fixed-point argument this 
principal modes equation can be solved in a suitable Banach space on an O (1/eZ)-long 
time scale. This is the subject of Section 4. 

An exact solution of the Fourier transformed original equation can then be found 
by adding corrections to the principal mode clusters as well as taking into account 
the excitation of all mode clusters at k = m E Z with Iml -> 3. In Section 5 the 
problem for these corrections is formulated and it is shown that a solution exists in 
a suitable Banach space. Again this is done by applying a fixed-point theorem. As a 
consequence we obtain the desired error estimate, which shows that the remainder is 
relatively small compared with the highest-order mode clusters and this implies the 
validity of G-L's equation. 

The structure of this proof is pretty straightforward from the point of view of 
asymptotics, where it is often used, cf. [18]. 

Nevertheless, it is a priori clear that certain details of the proof have to be techni- 
cally involved. After all it will be necessary to deal on the way with: 

(a) the fact that generally G-L's equation has a lower order than the original equa- 
tion, which means that the validity problem has a singular perturbation character 

(b) the fact that operators have a continuous spectrum and, what is worse, that 
stable and unstable manifolds are not well separated. 

The clue in our approach will be the choice of the Banach spaces in which the 
Fourier transformed solutions lie. "Good" Banach spaces should satisfy a number of 
potentially conflicting requirements. 

Principally, one should for each mode cluster require a sufficiently fast decay in 
intensity in order to control the interaction between different mode clusters. 

Also, the B-space should be invariant under convolution in order to be compatible 
with the Fourier transformed equation, which contains convolution terms. 

And, last but not least, the B-space should be large enough to accommodate all 
interesting Fourier transformed solutions of G-L's equation. 

In an intermezzo between Section 3 and Section 4 we shall discuss some B-spaces 
satisfying these requirements in more detail. 

To conclude this introduction we discuss some of the main differences between our 
approach and results and those in [25] in some more depth. 

In [25] Collet and Eckman give a proof of the validity of G-L's equation in the 
case of Swift-Hohenberg's problem working directly in x-space. For our more general 
case we prefer working in Fourier transformed k-space since it clarifies the relation 
between properties of the spectrum and the structure of the solution. It shows that the 
mechanism by which G-L's equation in the Swift-Hohenberg problem is produced is 
essentially different from the usual Navier-Stokes-like problems. 

In S-H's problem the nonlinearity lul2u in G-L's equation arises because of direct 
self-interaction of the main mode clusters at k = -+ 1. Other mode clusters are not 
involved. This implies that a full solution can be found by correcting the behavior of 
the main mode clusters at k = ± 1 with a remainder covering all other mode clusters. 

In Navier-Stokes-like equations the nonlinear term in G-L's equation is due to a two- 
step process. Self-interaction of the main mode clusters at k = ± 1 produces "slaved" 
mode clusters at k = 0, ±2. Next, interaction of these "slaved" mode clusters with 
the main mode clusters gives rise to the nonlinearity in G-L's equation. 
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As a consequence the proof of validity will be more complex than in S-H's problem. 
The mode clusters at k = +- 1 and k = 0, - 2 must now be dealt with in a special way, 
and this complication reflects itself in the structure of the problem for the remainder. 

In the problem of the remainder all mode clusters with k ~ Z will play a role, 
anyway, since they are generated by the nonlinearity through higher-order interactions. 
Detailed information on this infinite mode-cluster structure is necessary for the fol- 
lowing reason. A mode cluster at k ~ Z with Ik[ # 1 will be decaying, but, though 
its magnitude is exponentially small near k = +_ 1, it is still present. 

Detailed information on the structure of the remainder is necessary to control the 
overlap with the main unstable modes. 

But, for sure, the results in [25] for S-H's problem are very satisfactory. Validity 
of G-Us equation is shown for a general class of initial conditions with derivatives up 
to order 4 in L=. 

In our more general problem we shall work in spaces with more regularity, namely 
analyticity on a strip along the real x-axis, in order to control the interaction between 
mode clusters. Nevertheless, though more difficult to show, these spaces will contain 
the most interesting special solutions of G-Us equation: periodic solutions, quasi- 
periodic solutions, homoclinic orbits with exponential decay at + ~ ,  and heteroclinic 
orbits with front-like behavior. 

2. The PDE and Its Fourier Transformed Version 

Here we consider solutions of the following PDE in one space variable x. 

0,tr 
- L ~  + N(Xt r) (2.1) 

dt  

L is a real, linear operator with constant coefficients and N is a real, quadratic operator 
with constant coefficients. Both operators depend on a control parameter R. 

{1 0 R ' ~  
L .  = " 72;x' ) (2.2) 

Ix(k, R) is the symbol of the operator L and p(k, R) plays an analogous role for the 
quadratic operator N. Both are polynomials in k with coefficients depending on R 
in a smooth way. Now the following natural conditions should be satisfied by these 
symbols. 

Let us denote r = Re/x and v = Im/z.  

degree(r) = 2d and ~- ~ -oo for Ikl ~ ~ (2.4) 

degree(p) < 2d (2.5) 

Hence, the linear operator is of higher order than the derivatives in the quadratic 
terms. Moreover, the initial value problem ~ t  = LW, ~1,=0 = '~ is well posed, 
because of the sign condition on z. This can easily be checked by Fourier transform. 

Next, we suppose that linearized stability analysis of the basic state ~ b  = 0 yields 
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Fig. 1. The neutral stability curve has a parabola-like mini- 
mum. The system is considered for values of R just above the 
critical value Rc 

a neutral stability curve r (k ,  R) = 0 as indicated in Figure 1. We assume that the x 
variable has been scaled such that the critical wavelength is kc = 1. 

As a matter of  fact, only the local behavior near the critical wavelength k = 1 

will be important. For the global shape of  the neutral stability curve various situations 
are allowed. For example,  the curve might have an asymptote for Ikl ~ 0 or it might 
turn around at a certain k with Ikl > 1. 

The basic requirement is that for R = Rc + e 2 the function r has the graph shown 
in Figure 2. 

Let us define K1 = (k - 1 ) /e .  Then r has a Taylor expansion at k = 1, the 
critical wavelength, of  the form 

o(a 2) 

o(¢) 

/ , \ ,  .\ 
\ 

\ 

Fig. 2. For values of R O(e 2) above the critical value Rc, an 
O(E)-band of wavenumbers becomes unstable with an exp(E 2 t) 
growth in time for the corresponding eigenmodes in the lin- 
earized problem. 
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~" = e2(% - ~'2K~) + " ' .  (2.6) 

For the imaginary part of the symbol of L we get an expansion 

u = oJ + eZvzK ~ + . . . .  (2.7) 

We assume that a coordinate transformation x ~ x + e u l t  has been applied. As a 
consequence the linear term eulK1 in (2.7) drops out. 

Instead of working with the PDE as given in (2.1) it will be more convenient to 
study its Fourier transformed version. 

Define 

= ~ (2.8) 

where ~ denotes a Fourier transform with respect to the variable x, i.e., alP(k, t) = 
f ~ ( x ,  t )e  - ikx d x .  

For • we find the following equation 

0@ 
- Iz(k)~P + p(k)c~ • cb (2.9) 

3t  

with p~ and p the symbols defined before in (2.2), (2.3). However, from now on we 
shall usually suppress the parametric dependence of these symbols on R. 

In (2.9) the * operator denotes the usual convolution product. The quadratic convo- 
lution term in (2.9) is due to the fact that a Fourier transform converts multiplications 
into convolution products. 

The advantage of (2.9) over the PDE in (2.1) is that (2.9) can be dealt with as if 
it were a set of ODE's parametrized with k. 

Furthermore, after the Fourier transform, the complication of the continuous spec- 
trum, the O(e) band of unstable eigenvalues, and the mode clustering at integer 
multiples of kc = 1 becomes much more transparent. 

3. Construction of a Formal Approximation 

Consider the Fourier transformed version of the PDE given in (2.9). The structure 
of a formal approximation of a solution can be deduced along the following line of 
reasoning. 

The real part ~- of the symbol of L describes the growth or decay of the Fourier 
modes in the linearized problem. Because of the graph of ~- given in Figure 2 it 
is obvious that a formal approximation has to contain mode clusters of width O(~) 
at k = - 1 .  The magnitude of these mode clusters can be derived after inverse 
Fourier transform since it has to correspond to an O(e) perturbation of the basic 
state -= 0. Consequently the mode cluster intensity at k = 1 should be of the form 
e .{e - l f ( (k  - 1)/e)}, which gives rise to a peak height of O(1). In order to get a real 
solution, the mode-cluster intensity at k = - 1  must be  ~ . { ~ - l f ( ( 1  - k ) / ~ ) } .  

Next, putting this mode intensity into (2.9), we observe that there is a balance of 
the growth rate of the magnitude given by ~" near k = 1, which is O(s 2) according 
to (2.6) and the time derivative i f f  varies on a long time scale T = 82t.  
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In order to satisfy equation (2.9) it is also clear that additional terms have to be present 
in the formal expansion. The reason is that the nonlinear convolution term produces 
mode clusters at integer multiples of  k = ± 1. For example, convoluting the mode 
cluster intensity e . { e - l f ( k  - 1)/e} at k = 1 with itself produces a mode cluster 
intensity of  the form e2 .{e- lg( (k  - 2)/8)} centered at k = 2. Convolution of  O(e) 
mode clusters centered at k = 1 and k = - 1  respectively, produces a mode cluster 
of  magnitude O(e 2) at k = 0. 

Next, convolution of  an O(e) mode cluster at k = 1 with an O(e 2) mode cluster 
at k = 2 produces an O(e 3) mode cluster at k = 3, etc. 

With induction we get a spectral density for the total formal approximation as 
shown in Figure 3. 

Let us proceed with an explicit representation for the formal approximation. Only 
one piece of  information is still missing. Until now we focused on the mode intensity 
without worrying about the phase evolution. According to (2.7) the mode cluster at 
k = 1 has a phase factor e i¢°t as well as a slow phase evolution on the O (1/e  2) 
timescale. By the same argument as before this yields extra phase factors e i m w t  in 

mode clusters centered at k = m. 
Hence, we look for a formal asymptotic approximation of  the following form: 

~ Z elmleim°Jtdpm(k' T) + eZdP0(k, T) (3.1) 
m # 0  

with T = e2t and dP-m(k, T) = 6Pm(-k,  T). 
~m describes the normalized mode cluster at k = m, i.e., (I)m lies O(e) close to 

k = m with an O(e -1) peak and is quickly decaying outside this region. So dPm has 

a representation 

o ( 1 )  . . . . . . . .  

mode intensity I 

o(~) 

o(a 2) 
°(~3) 

o 

0(£) width ......... 

1 2 3 4 

Fig. 3. The wave spectrum of a solution has a very special structure charac- 
terized by a main peak at the critical wavenumber k = 1 (and k = -1 )  and 
induced higher order peaks at k = 0, 2, 3, etc. 
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or to put this in a more convenient way: 

dP m = 1smq~m(K, T) (3.2) 

with K = k / ¢  and S the unit shift operator. Next, in its turn 6m is expanded in 
powers of ¢: 

ao 

Z n , T). (3.3) 6m-  6,.( 
n = 0  

Herewith the representation of the formal asymptotic approximation is complete. 
Substitution in (2.9) provides us with relations between the coefficients 6 n by 

collecting terms of equal powers of e centered at the same place. 
For the highest-order terms at m = - 2 ,  - 1 , 0 ,  1, 2 one obtains the following 

coupled system of equations 

( a )  /Zo6 ° + 20o6 °*  6°_1 = 0 

(b) (#2 - 2i~o)6 ° + P26 ° * 60 = 0 (3.4) 

a6 o 
(c) aT - (ro - r2K 2 + iv2K2)6  ° + 2p1.{6 ° . 6  ° + 6  ° . 6 ° 1 }  

with 

and 

6°_1(K, T) = ~ ° ( - K ,  T) 

6 ° 2 ( K ,  T) = ~ ° ( - K ,  T). 

The coefficients to, r2 and v2 were already defined in (2.6)-(2.7). By definition/x0 = 
/z(0, Re) and /z2, Po, Pl, P2 are defined in an analogous way. 

It is important to notice that * in (3.4) has the interpretation of convolution with 
respect to the K-variable, whereas before it was used for convolution in the k-domain. 

Throughout the paper * means convolution in the natural variable domain. 
Of course, changing variables in a convolution operator from k to K = k / ~  gives 

rise to an extra factor g. 
The system of equations in (3.4) can easily be reduced to a single equation for 6 o 

a6 o 
a-T = (-"r2 -t- it,2)g260 q- .-r060 - ~60 • 60 • 6°1 (3.5) 

with 6 ° l ( K ,  T) = ~ ° ( - K ,  T). 
The coefficient 13 is given by 

13 = 2pl.{2p0/xo 1 + pz(/X2 - 2io9)-1}. 

This equation (3.5) is the Fourier transformed version of the Ginzburg-Landau equa- 
tion in (1.2). Note that all coefficients have explicitly been expressed in terms of the 
symbols/z  and p. 
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As for the other terms 4~]. it is not difficult to see that the construction can be 
extended up to any order of  e. 

The scheme by which these other coefficients can be determined is given in Figure 
4. 

To conclude this section we mention that an application of  inverse Fourier transform 
gives a formal asymptotic approximation for the solution of the original PDE of  the 
following form: 

Z elmleim(x+°)t)Am(X' T)  + e2Ao(X, T)  (3.6) 
rn ~O 

with X = ex ,  T = e2t and 

oc 

Am ~ - l d f l m  ~-" Z n n = 8, A m , 
n--O 

072~-- 1 n A,~ = ~ ~b,n. 

The relatfons ~)n_m(K T)  = ~b~m(-K T)  imply that A~, -n , , = A_ m and as a consequence 
qr is real. Because of  (3.5) it is now clear that Ginzburg-Landau's  equation is found 
for the coefficient A °. After  an intermezzo with some preparatory functional analysis, 
we shall show the solvability of  the initial value problem for G-L's equation in Fourier 
transformed form as given in (3.4). 

n 4 ~ ~, ~ • • • • • 

\ 

1 ~, = e ii Q I1 • 

0 1 2 4 5 6 7 

m 

Fig. 4. The nodes represent O n . In the figure it is indicated how 
groups of coefficients can be recursively found. The type of equation 
is indicated as A = algebraic convolution equation, GL --- GL's equa- 
tion Fourier transformed, L = linear convolution equation, LGL = 
linearized Ginzburg-Landau equation Fourier transformed. 
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I. Intermezzo on Suitable B-Spaces 

In order to study the solvability of the Fourier transformed version of G-L's equation 
in (3.4) we must define suitable B-spaces to host the ~ ' s .  A good B-space should 
fulfill the requirements 

• exponential decay of its elements for ]kl ~ 

• invariance under convolution 

• richness to accommodate all interesting solutions. 

To start with, let us analyze the latter requirement. 
One should realize that even almost stationary solutions of G-L's equation in (1.2) 

can have a rich structure in space. Periodic, quasi-periodic, homoclinic, heteroclinic 
solutions are found, cf. [13],[19]. It is also known that space-periodic solutions can 
have complicated dynamic behavior, cf. [13]. 

But, for all these solutions it is reasonable to suppose that they satisfy the following 
conditions: analyticity on the strip S~ = {z = x + iy Ix E R,  y ~ ( - a ,  a)} and 
continuity and uniform boundedness on S~. Now let us introduce the spaces 

H,~ = {~  E C(S~)]aP analytic on S, ,  sup I'I'(z)l < o~} 
~ (I.1). 

B~ = { u ~ ~e'(R)[ u = o~ : l y=0  for some • E Ha] 

Here ~(R)  denotes the Schwartz space of test functions and S°'(R) is its dualization. 
It is well-known that H,~ is a Banach space with respect to the sup-norm over S~, 

cf. [20]. Let us denote 

II'I'llsu0 = supl (z)l. 

An element u ~ B~ has a unique representation u = ~ [ y = 0  and we denote ~ = 
~ - l u .  It is clear that B,~ becomes a Banach space, if we provide it with the norm 

tl.ll /l -'.lls.p. 
Let us now check the requirements specified before. 

Intrinsic to the construction of B~ is that it will contain solutions of (3.5) of the 
types as mentioned before. For example, B~ contains elements of the form 

u(s)  = f ( s ) e  -c't4 + Z gie-c~ls'lS(s - Si) (I.2) 
iEZ  

with f ~ LI(R) and g E l l (Z)  for arbitrary sequences si, i E Z. 
It is easy to check that space periodic solutions g with wavelength a of G-L's 

equation have a Fourier transform in this class B,~ if their Fourier coefficients gn are 
such that 

Z [gn]exp(2arr[nl/h) < oo. 
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An analogous criterion can be derived for quasi-periodic solutions of G-L's equation 
with two incommensurable periods of the type gl(X) • g2(X) with gl,  g2 periodic. 

However, Be contains certain distributions of a more complex nature, as well. 
For example, heteroclinic orbits, front-like solutions of the type tanh x give rise to 
distributions with a P(1/k ) - l i ke  behavior, where P denotes the principal value. 

Anyway, we shall demonstrate that the ~-transform of G-L's equation is solvable 
for each initial condition in Be. This gives rise to a class of solutions which extends 
far beyond the ones mentioned before. 

Let us now discuss the exponential decay of elements of B,~. For u ~ B,~ and 
6 ~ D(R) (i.e., C ® with compact support) we obtain 

116" Sr ul] <- C . [lull" e-elf[" (I.3) 

Here S r denotes translation over r.  The constant C depends only on 6 and a .  We 
choose for this form to express exponential decay, because it plays an important role 
in controlling the mode-cluster interaction later on, cf. (5.12). This estimate holds, 
since 

~ - 1 ( 6  " s r u ) ( Z )  = f R [ ~ - I 6 ] ( Z  -- X')" [ ~ - l u ] ( X ' )  " e ix'r d x '  

= I [~-16] (Z  -- Z')"  [ ~ - l u ] ( z ' )  " e iz'r dz ' .  
JR -4-io L 

Note that these expressions are well-defined for all z E C. The latter expression is 
found by changing the path of integration. This is allowed because of the analyticity 
of the integrand and its decay for [Re z'l ---' ~. Now take the integration path R + i a  
for r -> 0 and R -  ia  for r -< 0. 

As a consequence we have 6 "  S r u E Be and 

116" s r  ull <- e-e[r[ " I]~-lUltsup " lyr~axll°~--l(6eYk)llL, 

= c Ilull e-elr[ 

with C = max[[~-l(6eYk)[lL~. 
lyl-<2e 

Using partition of unity we see that (u, e ikz) is well-defined for z E Se. This 
provides us with a direct way to express ( ~ - l u ) ( z )  in terms of u. 

Next, we shall check the remaining requirement: invariance of Be under convo- 
lution. This is a trivial consequence of the invariance of He under multiplication. 
Moreover, it follows immediately that 

Ilu * vii <- Ilull. H (i.4) 

Hence, convolution is a continuous bilinear operation with norm -< 1. 
In addition we define Banach spaces Be,r which are related to Be by a simple 

transformation on the elements: 

u E Be,v ~ yM~,(u) E Be (1.5) 

II.IIBo  --IIz'M (u)IIBo- 
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M r is the operator associated with the scaling of the coordinate s = y~. Again the 
natural convolution operator on B~,~ satisfies 

Ilu * vllBo, <- IIulIBo,~ • HvlIBo~. (I.6) 

In Section 4 we use B,~ since we shall work with K as our variable. In Section 5 
we use B~,~, for there we prefer working with k instead of K as our variable, where 
k = s K .  

In the sequel we shall also need information concerning the properties of mul- 
tiplication f u  for u E B,~ and a function f ( k ) ,  which is sufficiently regular and 
exponentially decaying for Ikl --,  ~.  Specifically it will be necessary to estimate 
integrals of  the form 

(Iu)(k, t) = f ( k ,  t - ~') u(k, ~) d~ (I.7) 

with u E C([O, T] --~ B~). 
Here f ( k ,  t) equals exp(t/x(k)),  p(k)exp(tll(k)),  exp(t/2(k)) or p(k)exp(t/2(k)) 

with /x as in (2.2) and / i (k)  = /x(k) for Ikl - 2 and Re/2(k) _< - o -  with o- > 0, 
everywhere. Let us denote the operators on C([0, T] ~ B,~) defined in (1.7) for these 
respective choices of  f as I1, Ip, I1 and ip. As a preparation we shall prove the 
following lemma. 

L e m m a  3.1. (a) If f E H~ for some fl > 0 and f is exponentially decaying for 
]Re k[ ~ ~ then u E Be implies f u E B~ with 

Ilful[ ~ I]~-lfllL~ • Ilull (I.8) 

(b) The operators Ii, Ip, [1, and ip are bounded on C([O, T] ~ B~) provided with 
its usual norm Ilull = supl lu( , ,  t)ll, and for 0 <- T <- To/s 2 the following estimates 

[0,T] 
hold true: 

H/mull ~ crllull. (1.9) 

IIIpull ~ c max(Tr, T).  Ilull- 

Ili, ull - C min(T, 1).  Ilull (I.10) 
Ilipull ~ c min(T r,  1).  Ilull 

with: a constant C independent o fT ,  u and y = (2d) -1 with d as in (2.5). 

Proof. (a) This fact follows from the identity 

fR(~- lu) (z  -- ( ~ - l f ) ( x )  dx [ ~ - l ( f u ) ] ( z )  X)" 

which can be derived analogous to the lines directly after (1.3). 
As a consequence o ~ - l ( f u )  E Ha and (1.8) is immediately found. 

(b) The basis for the estimates in (I.9) is insight into the behavior of  ~ - 1  [exp(t/x(k))] 
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and ~-l[p(k)exp(tlx(k))]. Now/x (k )  behaves as - rk  zd for Ikl ~ ~ and 

~-l[exp(--rtk2d)] -- l(rt)r go ((~t)~) 

ff_l[knexp(rtk2d)]- 1 ( x ) 
(at)(n+l).y gn ( - ~  

with go = ~;-1 exp(_k2a)  and g.(y) = [(1/i)(d/dy))" go(Y). Hence, 

I]~-l[exp(--rtkZd)]llL1 <-- C min[1, t -v]  

I I~ - l [k"  exp(--rtk2d)]llL 1 <-- C min[t - " r ,  t - ("+l)r] .  

Analogous estimates hold if instead of the principal part of the symbol /x (k)  one uses 
the full symbol /z (k ) .  This is a consequence of the following estimates. 

, exp( - t /x (k ) ) l  <- Cexp(-13tk 2d) -exp(2eZ~-ot) f o r t > _  1 

,exp(-ttx(k))-exp(-t3tk2d), <- Ctrexp(-~6tk 2d) f o r t e  [0, 1] 

i.e., for 0 <- eEt <- To: 

I1~ -~[exp(-  ttx(k))]llL~ -< c min[1, t - r ]  ([. 11) 

I[~-l[k n exp(-t/z(k))]llL1-< C min[t -nr, t-(n+l)r]. 

It is obvious that (I.9) is a direct consequence of (I. 11). 
In an analogous way we obtain estimates 

I I~- l [exp(- t~(k))] l lL1 <_ c exp( -O ' t )  (I. 12) 

I[~ - t  [k n e x p ( - t ~ ( k ) ) ] l L  <- c min[t -he, e x p ( - 0 t ) ]  

with a constant 0 < 6" < o'. This implies (I. 10). 

Finally, it is worthwhile to keep in mind that in the next sections we discuss smooth 
bounded solutions in the space variable of  G-L's equation and the original PDE. Even 
all their derivatives are bounded, since these solutions lie in H~. 

4. The Initial Value Problem for the Fourier Transformed 
Version of G-L's Equation 

Here we consider the solvability of  the system of equations given in (3.4). For nota- 
tional convenience we shall drop the superscript 0 in 4)o m = 1, - 1, O, 2, - 2  from 
now on. As initial conditions we pose 

~bl]t = 0 = 0 E B~. (4.1) 
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This immediately induces initial values for the other unknowns: 

4)-11, - o = 0 

where the superscript A denotes complex conjugation combined with reflection M - t ,  
and 

4)0t, = 0 = /300" g 

4)21, = 0 = /320  * 0 

4 ) _ +  = 0 = ~2~  * 

with/30 = - 2po lxo  1,/32 = - P2(tx2 - 2iw) -1.  
To show solvability of  (3.4) we reformulate the differential equation in (3.4) as an 

integral equation analogous to the standard procedure to show existence of a unique 
solution in the ODE case. 

4)1 = Oe Ar +/31  (492 * 4)-1 + 4)0 * O-1)e  A(r-r ')  t iT '  

4)-1 = ~1 (4.2) 

4'0 = / 3 0  4'1 * & 

4)2 = 132 4)1 * 4)1 
- ^ 

4 ) - 2  = /324)1 * ~ 1  

where we use the shorthand notation t31 = 2pl and 

A(K) = ro - (r2 - i v2)K 2. 

Then we interpret (4.2) as search for a fixed point 4) = (41, 4)-1, 4)o, 4)2, 4)-2) of  the 
map A defined by the right-hand side of  (4.2). 

4) = A(4)) (4.3) 

To solve this fixed point problem we work in the following B-space 

B = {4)J4)m E C([0, To] ~ B~), m = 1, - 1 , 0 ,  2, - 2 }  

equipped with the norm 

114)11. = max max][4)m(., z)ll. 
trnl -<2 [0,7"01 

To obtain this fixed point we shall apply the well-known contractive mapping theorem, 
cf. [22]. As a matter of  fact we shall not use (4.3) itself but we iterate once more, 
i.e., we consider the problem 

4) = (_4 oA)(4)). (4.4) 

The advantage is that this problem is of  the form 

4) = X + A2(~b) (4.5) 

where all terms in A2(4)) contain an integration fo r .  The smallness of  A2 and its 
Lipschitz constant can then be manipulated by choosing To sufficiently small. 
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More explicitly we obtain: 

X - 0(1, )(1,/30XI * ~1,/32X1 * )(1,/~2Xl * ,~1) 

with 

and: 

~1 -~ OehT 

(4.6) 

A2,1(~b) = 31(/3o +/32) (~1 * I~1 * (])1 e a(r - r ' )  dT' 

f ;  - A2,-1(4~) = ~1 (~2 * 4~-1 + ~o * 4~-1)e a ( r - r ' )  d r '  

fo A2,o(4) =/3{ ¢7121 * (~2 * ~-1 + ~o * 4)-l)eX(r-r ' )dr ' (4.7) 

+/31~I * (4~2 * 4~-1 + 4)o * ~ - l ) e  A(r-r') dT' 

+ I~112" ((~2 * (~-1 + 1~0 * ~-1) e)t(T-T') dT'* 

r(4)2 * (~-, (~0 ~b-1)e x(T-r') + dT'} . 

Of course, A2,m(Ck) denotes the component of  A2(~b) corresponding to ~bm in (4.5). 
For A2,m(~b) with m = 2, - 2  one has expressions analogous to A2,0(q~). 

It is now a straightforward matter to show that A is a contraction mapping from 
B(X, P), the sphere around X with radius h in B,  into itself if To is chosen sufficiently 
small. The details of the (somewhat tedious) calculation can easily be filled in by the 
reader. Hence, now we have proven the following result. 

T h e o r e m  4.1. The Fourier transformed version of Ginzburg-Landau's equation (3.4) 
with initial conditions in B~ has a unique solution in C([O, To] ~ B. )  for some 
T 0 > 0 .  

In the original time-coordinate this solution is defined on a finite interval of  the 
O(1/sZ)- long time scale intrinsic to modulations. Of  course, by repeated application 
of Theorem 4.1 the solution of (3.4) with a given initial condition in B ,  has a 
uniquely defined maximal existence interval in B ,  say [0, Tmax) with Tmax > To > 0. 
Presumably the case of exploding solutions with Tm~x < ~ only arises if Re~3 < 0 
with/3 the coefficient of  the nonlinear term in G-Us equation as specified in (3.5). 

It is also important to realize that this solution as found is smooth with respect to 
time in the sense that it defines a smooth trajectory in B e, with a '  < a .  This follows 
from (3.4) by induction and repeated differentiation with respect to T. The decrease 
in the index from a to a '  is due to the fact that for u E B~ multiplication with a 
polynomial q results iia qu E B~, for any choice of a '  < a .  
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Keeping this fact in mind as well as the remark made at the end of the intermezzo, 
it is clear that the solutions of  G-L's equation are smooth in X and T. 

Now we are ready to discuss the validity question. 

5. Validity of G-L's Equation and an Error Estimate 

The basic idea behind validity is to find a solution of the Fourier transformed version 
of the PDE close to a solution of the Fourier transformed version of G-L's equation as 
found in the previous section. This will be done by working with the original Fourier 
coordinate k and time t instead of K ,  T as in Section 4. 

First we introduce a notation for the approximation ~b ° represented by a solution 
~b ° of the Fourier transformed version of G-L's equation (3.4), i .e.,  

dP 0 = ~ ~lrn[eimwtr'm~"03 "Mm -~- /~2(I)0 (5.1) 
me0 
I,nl<2 

with 0 dPm(., t) = (l/e)M1/~b°m( ", e2t), i.e., alP°( ., t) E B~,~. Now we look for a 
solution dp of the Fourier transformed PDE in (2.9) as a perturbation of dP° 

dp = ~b ° + W (5.2) 

with W [t=0-- 0. Moreover the structure of  W will be 

W ~--- 82~"m=_1,1 almieimwtSmwm +/33Zlrnl~l almleimwtSmwm. (5.3) 

The constant a is independent of e and 0 < a < 1. 
With respect to the structure of  W it should be noted that for the main mode clusters 

with Ira[ -< 2 the order of  the correction agrees with the next order terms found in 
the formal approximation in Section 3. For the mode clusters with Iml -> 3 the order 
is fixed as O(~3). From the formal approximation in (3.1) one would expect that the 
order of  the correction near k = m with [ml - 3 is o(elml), but we suppress this fine 
structure. The reason is that it concerns lower magnitude effects only. Furthermore, 
demonstrating the validity of  this fine structure would seriously complicate the proof 
of  correctness. 

However, it is easy to incorporate a weaker form of exponential decay of the mode 
clusters for Iml --,  ~.  In (5.3) we allow for a decay rate O(a In1) with 0 < a < 1 and 
a = O(1). 

There is another interesting aspect of  the decomposition of  W in terms of  the 
functions win, m E Z, worthwhile to mention: namely its nonuniqueness. 

For example,  a small part of  Sewa living near k = 1 might be included in Slwl.  
At first sight this sort of  freedom might look alarming, but it works out precisely in 
the opposite direction: it is very helpful. This freedom induces hat the "projection 
process," which provides us with equations for the wm's such that (2.9) is satisfied 
and contains some freedom as well. This allows us to redefine these equations in such 
a way that the growth of the Wm'S in time can be fully controlled. 
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Of course this nonuniqueness of the decomposition implies that once the wm's are 
determined, one still has to show the uniqueness of a solution of (2.9) by a separate 
argument. 

The following validity result will be proved. 

Theorem 5.1. Given a formal approximation d90 existent for 0 <- e2t < Tmax and 
related to the Fourier transformed Ginzburg-Landau equation by (5.1) there is a 
unique solution of the Fourier transformed PDE with the same initial conditions 
of the form (5.2), (5.3)for t E [0, To/e 2] for each To such that To > O, To = 
O(1), To < Tmax and 09o, [ml -< 2 O(1) bounded for t ~ [0, To/eZ]. The coefficients 
Wm satisfy with Wm E C([0, T0/e 2] --> Ba, e) where ~' < a and Ilwmll uniformly 
bounded independent of m and ~. The approximation error is O(e z) and is relatively 
small compared with the main O(e)-terms of 09 °. 

Note that this validity result is indeed valid on finite time intervals of the O (~)- 
long time scale intrinsic to the modulations. The convergence of the series in (5.3) 
is exponentially fast; hence, the error estimate follows directly from the bound on the 
Wm 'S. 

Proof. 5.1 In order to prove the first part of the theorem we continue with the fol- 
lowing steps: 
(i) Derivation of equations for the Wm'S 
(ii) Reformulation as integral equations 
(iii) Application of a contraction mapping theorem 
(iv) Demonstration of uniqueness of the solution of (2.9). 

(i) As a first step we substitute (5.2), (5.3) into (2.9). Collection of equal powers of 
centered at the same location leads to the following equations for win, m E Z, 

Owm 
- Amwm + e2~Zpm(k) "{Lmw + eNm(w)} + eZRm for Im] = 1 (5.4) 

Ot 

C~Wm 
-- ArnWm -}- 2 p m ( k ) "  {Lm(w-1, Wl) + 8Nm(w)} -t- Rm fo r  Iml ~ 1. 

c?t 

Here we denote w = {Wm;m E Z)}, Am(k) = tz(m + k) - imw and pm(k)  = 

p(m + k). 
If we use the notation Pm in this section it refers to pro(k) in contrast with the 

notation in (3.4), but there is hardly a risk of confusion. The interpretation of the terms 
is as follows: terms with Lmw, Lm(w-1, wI) come from linearization of nonlinear 
convolution terms present in (3.4), eNm(w) is a weak nonlinearity coming from the 
nonlinear convolution in (2.9) and Rm is an inhomogeneous term. First we specify 
the terms of (5.4) for the case a = 1 in (5.3). 

Llw = w2 * 09-1 + Wl * 090 at- w0 * 091 at- w - 1  * 092 (5 .5)  

L o ( w - 1 ,  Wl) = w - 1  *tffi)l -[- Wl * ( I ) - I  

L2(w-1,  Wl) = (I)1 * Wl 
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L m = O  for Iml---3 
R1 = 8 -2 ( ) t l  --  /~)(I)1 q- /3-1(pl  -- p l ( 0 ) )  " (qr~2 * di)-I 4- (I)0 * di)l) (5.6) 

Ro = - 8 - 1  o(I)0 -1- 8 - 1 ( / ~ 1  - /~l(0))lff~o 
Ot 

+ 2/3-1(po - po(0)) " ~bl * ~ - 1  + /3po(2~2 * alP-2 + qb0 * dPo) 

/3-1 O~z R2 = - "4-/3-1(t2 12(0))(I)2 
Ot 

+ 8-1(p2 - p2(0))(I) 1 * (I) 1 + 28p2dPo * (I) 2 

R3 = 2p3~1 * di)2 

R4 = 8p4qb2 * dlb2 

R m = O  for [ml->5 

Nl(w) = w3 * (I)-2 q- wo * w1 -1- w2 * w - 1  + 8 Z  Wn * W l - n  (5.7) 
n>_3 

1 2 ~ "  
N o ( W  ) = W 1 * W -  1 "}- 8(W 2 . ( I ) _  2 + W 0 *(I) 0 J- W_ 2 . ( I ) 2 )  --}- 7/3 Wn * W _  n 

Inl¢l 

1 
N 2 ( w )  = w3 * (I)-1 + ~ W l  * wt  + 8(w2 * d£D0 + W0 * (I)2 

q- W4 . * _ 2  "}- W3 * W _ I ) - } -  ~/32 ~-~  Wn * W 2 _ n  

Inl~l 
N 3 ( w )  = Wl * (ID2 "[- w2 * (I)l -}- W4 * Iff~-I 

q- 8(W 5 . ( I ) -  2 q- W 3 . ( I )  0 q- W 1 * W  2 q- W 4 * w _ l )  - 

1 z 

1.1~1 

and for m --- 4: 

N m ( w )  = W m - 1  * f~ l  q- Wm+l * di)-I  

8 ( Win -2  * 1ff~2 "~- Wm * f~O + Win+2 * f ~ - 2  

+ W1 * Win_ 1 -q- W _  1 * Wm+l)  

1 2 
+58 

1.1~1 

In the notation we dropped the superscript 0 of  d~ ° . Further we introduced the notation 
A = 82('ro - ('r2 - iv2)K 2) with K = k/8. Of course the specifications for terms 
with a negative value of  m ( L - b  R-2, N-3(w),  etc.) are found from the expression 
for Iml by changing the sign of all indices in the right-hand side. 
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In the case of  a value a < 1 in (5.3) one obtains analogous expressions as given in 
(5.5), (5.6), (5.7) but all terms get a multiplicative factor depending on a,  according 
to the following rule. I f  the index is m then for a term independent of  w in Rm the 
factor is a -Iml, for a term linear in w dependent on wk the factor is a [kl-I'nl, and for 
a term quadratic in w dependent on wk and we the factor is aN+lel-lml. 

It is easy to check that the largest multiplicative factor that plays a role is a -4 .  
Hence, qualitatively in its dependence on w, especially for the purpose of  conver- 

gence properties of  the infinite sums in (5.7) the situation with a < 1 is the same 
(even somewhat better) than for a = 1. Note that the inhomogeneous terms given in 
(5.6) are O(1)-bounded elements of  C([0, To/e 2] --~ B~,,~) for a '  < a ,  since they are 
made up from elements of  C([0, To/e 2] --> B~,~) multiplied with polynomials with 
O(1) coefficients in K = k /e .  Also a term like e-lOebo/Ot has this property, because 
of  the equation (3.4) which qb0 satisfies: 

~-1 ~CI)o t~(I)0 I °~(I)l t~(I~-I l 
- e = -2epo/Xo 1 • * dP-t + dPl * 

ot  o r  l 

where 

OT 
- (To - (~'~ - ivz)K2)qbl + 2p1(0){~0 * ~ l  + ~2 * (I)-1} 

and 3dg_:/OT is given by an analogous expression. 
As a consequence it is logical to search for W m in this space. Because of  the infinite 

sums in Nm(w ) it is also logical to work in a space where the norms of the Wm'S are 
summable. Therefore we choose now as the Banach space in which w lies: 

B --- e l (Z --> C([0, To/e  2] --> B,~,,~)) (5.8) 

with Ilwlb -- Z sup {Iwm(', t)llBo, . 
mEZ~[O,To/ d] 

But before we go on there is a preparatory step that has to be made to get rid of  an 
exponentially small but somewhat nasty complication. Consider the coefficients Am in 
(5.4). Of course, the sign of  the real parts of  these hm'S play an essential role in the 
analysis further on. The heart of the matter is, that Re A1 and Re A-1 are at most O(e 2) 
positive, but this is compensated by the extra factor e 2 in the other right-hand side 
terms. Further, ReAm for Iml ~ 1 is 0 (1)  negative where it really matters most, i.e., 
in the region with k = O(e) where win(', t) E B,~,~ lives. But the complication is 
that near k = -+ 1 - m, i.e., in the region where wm is exponentially small [see (1.3)] 
ReAm becomes O(e 2) positive. To repair this we replace for Im[ ~ 1 the coefficient 

Am by h,~ with 

Im Am = Im A m (5.9) 

Re)tin = ReA,~ - ~(k + m + 1) - ~(k + m - 1). 

Here ~: is a smooth function with ~ ( - s )  = ~C(s), ~(s) = 0 for Is{ --> ~7 and ~: > 0 on 
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[ - ~ ,  7/]. Consequently, 

Re Am < -o"  (5.10) 

on all of  R with o- > 0 independent of  e.  The error caused by this change Am ~ A,,, 
for Iml ~ 1 is compensated by an extra term in the equations for In] -- 1. 

Hence, instead of (5.4) we shall from now on work with the set of  equations given 
below. 

OWm 

ot 
-- AmWm -+- 822pm{Lm W q- 8Nm(w)} -t- 82R m q- 6row for [m[ = 1 

OWn 
-- ~mWm "Jr- 2pm{Lm(W-l, Wl) + 8Nm(w)} + Rm for Iml ~ 1. 

Ot 

(5.11) 

These equations are derived analogously to (5.4) by substitution of (5.2), (5.3) into 
(2.9) but now (5.9) is taken into account. 

The expressions for Lm, Nm, and Rm are as before in (5.5)-(5.7) and the additional 
terms 6m w, m = - 1 ,  1 are given by 

61W = e. Z alml-l ei(m-l)wt~(k)Sm-lwrn (5.12) 
Iml~l 

and an analogous expression for 6_lw.  
Using (1.3) it follows that, if the support of  ~: is chosen [ -¼ ,  ¼], then for w E B 

defined in (5.8) it holds true that 

116,wll. <- 6( )llwll  

with ~(e) = e x p ( - r / e ) ,  r > 0 some constant independent of  e, and [I II. the norm on 
C([0, T0/e  2] ~ B~, ,). This norm is defined as in (I.9). Hence, the correction terms 
6mW are indeed exponentially small. Now we shall convert (5.11) into an integral 
equation. (ii) This can be done by inverting the main linearized operator in (5.11) 
with 0 initial conditions. Let us denote 

jm = 132(d )-1 - Am - 2e2pmLm for ]m] = 1 (5.13) 

(0 ), 
Jm = "~  - Xm -- 2p,nLm for Iml ~ 1 

for the components of  this inverted operator. What we shall show is that J = (Jm, Jm) 
defines a bounded operator on B, the space introduced in (5.8). Application of  J to 
(5.11) then yields 

w = JR + 2eJpN(w)  + J6w (5.14) 

where R has components Rm, N has components Nm, p multiplies Nm with Pm and 
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~w has nonvanishing components e-Z•m w for ]m] - 1 only. Note that 6 is still an 
exponentially small operator. 

This equation (5.14) is well suited for application of a fixed point theorem in Part 
(iii) of  the proof. But let us now first show the boundedness of  J and Jp. For the 
inverse of  O/Ot - ) t  m for Iml = 1 and 3/c7t - A,~ for m ~ 1 with 0 initial conditions 
we introduce the notation 13-2Em and/~m, respectively, i.e., 

f0 t ( E m f ) ( t ) = e  2 eXm(t-¢)f(z)dz for [m[ = 1 (5.15) 

fo 
t 

(Emf)(t) = e~m<t-~)f(r)dT for Iml ~ 1. 

These operators are well-defined and bounded from C([0, T0/e 2] ~ B,~,,~) into it- 
self (see Lemma 3.1). Further, the following estimates are important. Considered on 
[0, 1"0/e 2] we have: 

[HEm[[[. <- KT"o, [[[EmPrn[][. <- K max@o, E: 2) for [m[ - -  1 and 

IIIE III. <- M IllL,,pmlll. ~ M for Ira] ~ O. 

Here Ill Ill refers to the operator norm on CC[0, To/e 2] --+ B~,,~). 
The constants K ,  M > 0 are independent of  s ,  and M depends on o- as defined in 

(5.10). 
These estimates are found in an analogous way to those in (1.9-10). 
From these estimates it is clear that {[Emll and {IEmPmI{ for In{ -- 1 can easily be 

manipulated by taking T 0 0 ( 1 )  but sufficiently small. In contrast, norms {IEmI{, [IEmp,n{{ 
for [ml ~ 1 are "fixed" with To . 

Now formally we can express Jm, Jm in terms of  Em, Urn as: 

Jm = (1 - 2EmpmLm)-lEm (5.16) 

J~m = (1 - -  2 E m P m t m ) - l E m  • 

However, in order to demonstrate the boundedness of  (1 - 2EmRmLm) -1, ( 1  - 

2EmPmLm) -1, a rather subtle reasoning has to be applied. The first idea is to ex- 
ploit the special structure of Lm for Iml ~ 1 to control the norm o f  F, mPmLm. 

Let us introduce the following shorthand notation 

e m =  2EmPmLm for [m[ = 1 (5.17) 

em = 2EmPmLm for [rnl # 1. 

Then w with w m =  (1 - e,~)-lfm for lml = 1 and wm = (1 - gm)- l fm for m # 1 
satisfies 

Wm--emW =fro for [m[ = 1 (5.18) 

Wm -- gm(e-lW, exW) = f m  + era(f-l, f l )  for Im[ -~ 1. 
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Using (5.16) it is clear that on [0, l"0/s 2] w is well-defined and O(1) bounded with 
norm -< M0 if  it0 is chosen O(1) but sufficiently small,  since the operator in the 
right-hand side of  (5.18) is the form "ident i ty-smal l -bounded operator." Note that M0 
can be estimated in terms of  the constants in (5.16) and the norms of  (b ° . In order 
to show that w is well defined and O(1) bounded on all of  [0, To/e  2] we iterate and 
we use the Volterra character of  the operator em with m = 1. Hence, we put 

W~ +1) ---~ f m +  em W(n) for Ira[ = 1 (5.19) 

W(m n+l) = f m  q- era( e 1 W(n), e l w " )  for  Iml ~ 1 

and we start the iteration with w~ ) = f,n for Iml = 1, W(m °) = fm for Iml ~ 1, with 
fm = f m  + ~,n(f-1,  f~).  With induction it can be shown that for 0 --< e2t ----- To 

II(w~.+,~ - w(n~)(, t)ll~ <-- M .  (c~2~ n+l • [max(t,  tT)] n+l (5.20) 
(n!)~' 

with 3' = (2d)  -1 as in Lemma 3.1, and [[v][1 = Z Ilvml] for v ~ / l ( z  ~ n~, ~). 
In principal,  this is a straightforward calculation using (1.8) and (I. 11). 

For I ml = 1 and 0 < t -< 1, the induction step from n - 1 to n follows from 

f0 t II(w~ +~) - w~)) ( . ,  t)ll = I]2~ 2 eX"(t-r)pm Z~(w<"~ - w<n-~)(', r)  drl l  

M • (C/32) n ( t  
" (2e2C1) • (1 + (t - ~-)-P) • ~.n~ . d r  

)0 ( ( n  - ! ) ! ) ~  

<-- M • (Ce2)n • (2e2C2) • t(n+l)7 

((n - 1)!)z' n~ 

Here we denote p = 1 - y .  

In the first inequality we used (I.8), (I. 11), and in the latter inequality we change 
r into t~-' and we observe, that 

Io s Z ( l - s )  -p  ds  <- + 1  . l z, 

by splitting the integration interval in (0, 1 - 1 / l )  and (1 - 1 / l ,  1). For ]m] = 1 and 
1 < t <- Toe -2 and also for ]rn] # 1 we proceed in an analogous way. 

It is clear that (5.19) implies the convergence of  the sequence w (n) in the space B 
introduced in (5.8). 

As a consequence (1 - 2Emp,~Lm) - l  and (1 - 2EmPmLm) -1 are indeed bounded 
on B and because of  (5.16) the required boundedness of  J and J p  on B has thus been 
demonstrated. 

Now we are ready to apply a fixed point argument. 
(iii) The equation (5.14) can be read as a search for a fixed point w in a Banach space 
B as introduced in (5.8) for it has the form 

w = ~7 + A(w) (5.21) 
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with r/ = JR  and A(w) = 2eJpN(w)  + J r w .  It is possible to show that r / +  A(w) is 
a contractive mapping from B(rl, R) into B0?,/~), where B(r/,/~) denotes the sphere 
around r /with radius/~ in B. 

Of course this fact depends heavily on the fact that each term of A is asymptotically 
small for e $ 0. 

The details of the calculations to show the "into" and "contraction" properties are 
straightforward. 

Let us discuss just one aspect of it and leave further details to the reader's imagi- 
nation. This aspect is the fact that 

a = 2~IIJpN(w)IIB ~ 251111pllIB" Z IINm(w)ll 
rn E Z  

as it arises in the "into" part of the proof can be estimated. 
This is due to the fact that Nm(w) contains only terms dPk * we and wk * we with 

k + f = m. As a consequence 

G -< 45 .  III/PlII~ • C2 ~" ~" {11~ * well + Ilwk * well.} 
m ~ Z  k + £ = m  

<- 4elllJ plll~c={lldpllellwtlB + llwtl2B} 

with C2 the maximal coefficient in Nm(w) = 2a -2. The conclusion is that the infinite 
sums can indeed be dealt with. As a consequence of the contraction mapping theorem 
the main part of Theorem 2 has now been proven. 
(iv) What is lacking is the proof of the uniqueness statement in Theorem 2. 

Of course, the contraction mapping theorem guarantees uniqueness of the solution 
w of (5.20), and using (5.3) this provides us with a solution of the Fourier transformed 
PDE in (2.9) with the correct initial conditions. 

But this does not yet show the uniqueness of the solution of the initial value 
problem for this Fourier transformed PDE. 

However, this is no real problem; it can be done in a direct way. 
The constructed solution dp of (2.9) is an element of C([0, Tl] ---> Be) for a 

sufficiently small. Suppose that there is another solution dp + v, then v has to satisfy 
an integral equation 

v = E{p(2dp • v + v * v)} (5.22) 

with ( E f ) ( t )  = ~o e~(t- ') f(~')  d r  for f E C([0, T1] ----> Be). Along the same lines as 
before one can now show that the operator in the right-hand side of (5.19) defines a 
contraction on a sphere with radius R1 if T1 is chosen sufficiently small. 

This does demonstrate the uniqueness of the solution of the Fourier transformed 
PDE by repeated application of this argument. 

Herewith the proof of Theorem 5.1 is complete. [] 

In addition to Theorem 5.1 it is worthwhile to mention that the constructed solution 
dp of (2.9) is smooth in t, in the sense that w defines a smooth trajectory in ~?I(Z ---> 
B~,,,~) with a "  < c~'. This follows by repeatedly applying (5.11). This shows that all 
derivatives of dp and dPo are also O (e 2) mutually close. 
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Hence, in the original x,  t coordinates we have not only that ~ 0  = ff-lqb0 ' the 
approximation based on G-L's equation, and qb = ~ - l ~ ,  the solution of  the PDE 
with the same initial condition, are O(e 2) close in the supnorm, but this result is also 
true for all their derivatives with respect to x and t. 

This result is quite strong and it extends the validity result announced in (1.6). 
To conclude this section we remark that the error estimate given in Theorem 5.1 

can be somewhat improved to IlWmll <-- CeZt for m = - 1  and HWmH _ Cmax( t ,  1) 
for Iml 1, with a constant C independent of m. This follows from (5.4) by taking 
the right-hand sides as given quantities and integrating from 0 to t. 

Hence, qb and qb ° start with the same initial conditions and the error grows in time 
with O(• 4) speed, i.e., I1 , - °11 = o( 4t) 

This result is somewhat stronger than the one given in [25] for Swift-Hohenberg's 
problem, since in our case there is no regularity problem for t ~ 0. Finally, it should 
be noticed that Theorem 5.1 is an optimal result in the sense that compared with 
(3.1)-(3.3) the error coincides with the order of  the terms not included in qb °. In fact, 
Theorem 5.1 provides us with rigorous information on the structure of  the solution qb 
consistent with (3.1)-(3.3). The O(e2)-part of  the remainder is completely localized 
at k = --- 1. All other mode clusters in the remainder are of order O(e3), at least. 

6. Discussion of Some Generalizations 

The theory developed in this paper can be extended almost at once to a PDE as in 
(2.1) 

O,t r 
- L ~  + N ( ~ )  (6.1) 

0t  

with a general quadratic polynomial 

N ( ~ )  = ~ p.t,.2~ntq~n2, (6.2) 
O<_nl<_n2<_2d-1 

Here ",Irk denotes Ok~/Oxk .  
This can be done by taking ~0 . . . . .  ~ e  with p = 2d - 1 (or p the highest 

derivative in (6.2)) as a vector of  unknown functions. From (6.1) we deduce: 

0~k  0 k 
L ~ k  + ,--2T.~N('tr0,. ~ p )  for k = 0 . . . .  p .  (6.3) 

dt  o.~- . . . .  

This system of equations can be dealt with in the same way as the single equation in 
(2.1). Also the generalization to 

N ( ~ )  = polynomial of  general degree in ~1 . . . . .  q~2d-1 (6.4) 

with nonvanishing second-order part can be dealt with in this way. More severe prob- 
lems arise for the generalization of  our work to PDE's with more space variables or 
if one tries to obtain a validity result on a time scale [0, ~). 

These problems will be an interesting subject for further research. 
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