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ABSTRACT--In this paper, we present some analytical and 
numerical results concerning the zero-span testing method, 
frequently used for quality control of cellulose fiber for pa- 
permaking. Of particular interest is the relationship between 
an apparent modulus obtained from the zero-span testing 
method and the elastic properties of the fibers. The apparent 
elasticity modulus is estimated using two energy theorems in 
elasto-statics in which the role of span length is explored. Ana- 
lytical results, derived under the assumption that slippage be- 
tween specimen and clamps does not occur, clearly show that 
the apparent modulus strongly depends on the span length. 
This is verified by the numerical results obtained using the 
finite element method. In addition to the above analysis, the 
effect of slippage is investigated, also by utilizing the finite 
element method, and it is found that for a specific case, the 
contribution from slippage to the total displacement depends 
strongly on the length of the span. Tensile tests at nominal 
zero span were conducted in an effort to further validate the 
analysis with relevant experimental data and it was concluded 
that there is qualitative agreement between the experimental 
results and the result of the analysis. 

KEY WORDS---Zero span, tensile test, fiber properties, 
friction 

Introduction 

It is generally agreed that both mechanical properties of the 
fibers and the strength of the fiber-to-fiber bonds govern the 
strength of paper materials. Consequently, it is desirable to 
be able to measure strength properties of cellulose fibers 
themselves in order to judge the quality of the raw material. 
However, single fiber testing is cumbersome and requires a 
large number of tests in order to reach statistical precision 
and is therefore not considered as being practical as a rou- 
tine testing method. In recent years, interest has grown in 
the so-called zero-span (ZS) testing method for determining 
fiber strength. Hoffman Jacobsen introduced the concept of 
determining fiber strength from ZS measurements as early 
as 1925.1 The idea was to obtain a measure of the fiber 
strength rather than the strength of the paper itself by con- 
ducting tensile tests of paper at a very short span length. This 
has been motivated by the assumption that the majority of 
fibers are clamped at both ends during loading. In the past 
40 years, much work has been done in this field, by several 
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investigators, mainly aiming to improve instrument design, 
develop measurement procedures and explain the fracture 
process. 2-7 In several publications it has been concluded that 
the method is likely a good indicator of fiber strength (e.g., 
Van Den Akker et al. 8 and Clark9). 

Paper essentially consists of a stochastic network of dis- 
continuous cellulose fibers and is usually manufactured by 
dewatering a cellulose fiber-suspension on a wire. The fibers 
have an inherent capability to form bonds between them with- 
out any additives. Since the fibers are much longer than the 
thickness of the paper sheet, the network is planar and al- 
most two-dimensional. In machine-made papers, there are 
more fibers aligned in the machine direction than perpen- 
dicular to it. Consequently, at a macroscopic level, paper is 
often treated as being orthotropic, i.e., having different me- 
chanical properties in three mutually perpendicular planes of 
symmetry. 

A common tensile test of paper materials provides infor- 
mation on a series of mechanical properties. Standard tensile 
test methods are usually based on an ideal view of the phys- 
ical problem. Namely, a slender specimen is subjected to an 
extension (usually at a constant extension rate) and the cor- 
responding load is measured. The basic assumptions are that 
the loading is purely uni-axial and that the deformation takes 
place uniformly, both along the length of the specimen and 
throughout every cross-section. When both the elongation 
and the force are recorded, the stiffness, stress and strain at 
break can be determined. However, in the ZS test method, 
the span length is typically less than the thickness of the 
specimen. 

Even without involving a theoretical treatment of the test 
method, it can be conjectured (according to the Saint Venant 
principle) that the stress state is non-uniform in the free span 
region, l~ Hence, evaluation techniques that are used for uni- 
axial testing are not generally applicable for evaluation of ZS 
test results. There is, however, an absence of work concern- 
ing the stress state developed in the thickness direction of the 
specimen during loading, a serious omission in view of its 
importance for the interpretation of the test results. 

The aim of the present study is twofold. First, models 
which relate the apparent elastic modulus to the actual elastic 
modulus of the material and the span length are considered for 
a comparatively simple and well-defined case. Secondly, the 
influence of slippage between the specimen and the clamps 
is investigated. Additionally, an experimental investigation is 
carded out in order to verify the models. 

Model 

The present study addresses the mechanical response of a 
linear elastic paper during a tensile test with near zero span. It 
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might be argued that the assumptions on which the presented 
model is based are not at all realistic for a real situation. 
However, it is felt that if the ZS testing method can be shown 
to exhibit peculiarities in a well-defined situation, the intro- 
duction of large deformations, slippage, etc., is not likely to 
remove these peculiarities. 

Problem Statement 

A clamped specimen is studied. It is assumed that there is 
a small initial span between the two clamp-pairs, denoted s, 
in Fig. 1. In order to reduce the complexity of the model, it is 
assumed that the thickness of the specimen can be regarded 
as small compared to its width, so that a plane strain situation 
prevails. Thus, the stress and strain fields are dependent on x 
and y only, x being the coordinate in the loading direction and 
y oriented in the thickness direction of the specimen. Due to 
symmetry, only one quarter of the specimen (the upper-left 
quarter) is considered in the analysis and the origin of the co- 
ordinate system (x, y) is located in the lower-left corner of the 
reduced geometry. The dimension of the specimen is defined 
by the parameters s, L and t, i.e., span length, clamp length 
and half of the thickness of the specimen, respectively. All 
deformations are assumed to be small so that linear relations 
for equilibrium and kinematics are applicable. 

For the part of the specimen compressed between the 
clamps, i.e., for 0 ~< x ~< L, a two-dimensional orthotropic 
linear elastic constitutive relation is assumed, i.e., 

Ox = C l l E x  q- C12Ey ( la)  

Oy = C12E x -}- C22Ey (lb) 

"txy = C66Yxy  ( lc)  

where Ox and Oy are normal stresses in the x- and y-direction 
respectively and Xxy is the shear stress in the xy-plane, ex and 
ey are normal strains in the x- and y-direction respectively and 
Yxy is the shear strain in the xy-plane. C11, C12, C22 and C66 
are elastic stiffness constants and can be related to engineer- 
ing elastic constants, according to Appendix A1. Equations 
( la) - ( lc)  can be expressed in the inverted form as 

Sx = SllOx --[- S12oy (2a) 

Sy = S12~ x "}- $22Oy (2b) 

Yxy  = S66xxy  (2c) 

where SH, SlZ, 822 and 866 are elastic flexibility constants. 
For the sake of simplicity, the material in the span region, 
i.e., for L ~< x ~< L + s, is assumed to obey a uni-axial 
constitutive relation according to 

Ox = Es~x (3) 

whereEs is the effective modulus of elasticity in the loading 
direction in the free span domain. Es can be related to the en- 
gineering elastic constants, as described in Appendix A 1. The 
assumption of a region with uni-axial behavior is made since 
in some situations it is common to rewet the specimens prior 
to testing. Rewetting releases fiber-to-fiber bonds, which sig- 
nificantly reduces the coupling between in-plane and out-of- 
plane stresses in the material. With reference to Fig. 1, an 
apparent elastic modulus in the x-direction, Eapp,  can be 

defined as the ratio between the applied bulk stress cr t and the 
mean strain st, i.e., 

Eapp = ot  ~st (4) 

Upper Bound Solution for the Apparent Modulus 

It is assumed that there is no slip between specimen and 
clamps during the process of loading. It is further assumed 
that the clamps can be regarded as rigid. If  an admissible 
displacement field is used together with the theorem of min- 
imum potential energy (cf. Fungi1), an upper bound on the 
apparent modulus can be obtained. Using Fig. 1 for reference, 
the boundary conditions in this context are given by 

Uy ~ -  0 for 0 < x < L + s, y = 0 (5a) 

Ux=ets, for x = L + s ,  0 < y < t  (5b) 

ux=O for 0 < x  < L , y = t  (5c) 

In addition to the above conditions, Uy on the specimen/grip 
interface must not depend on x. 

An admissible displacement field is continuous and satis- 
fies boundary conditions on displacements. Again, with ref- 
erence to Fig. l, the following displacement field is assumed 
for the interval 0 ~< x ~< L 

ux = f ( x ) ( t  2 --  y2), Uy = 8yOY (6) 

where Ux and Uy are displacements in the x- and y-direction, 
respectively, and the function f (x)  and the constant ey0 are to 
be determined. This is the displacement field with the simplest 
y dependence, satisfying the symmetry requirements. Since 
the main interest here is the apparent modulus, the clamping 
pressure Oc can, due to assumed linearity, be put equal to zero. 
With the assumption of no slippage, this means that the faces 
of the paper specimen are assumed to be (adhesively say) 
bonded to the grips. By use of the compatibility relations, 
i.e., 

Ex = OUx/OX,  Sy = OUy/Oy ,  Yxy = Oux/Oy + OUy/OX 

(7) 

the following relationships are obtained for the strains: 

ex = f ( x ) (  t2 - y2), ey = Sy0, Yxy = -2y f (x ) .  (8) 

A prime denotes differentiation with respect to x. The po- 
tential energy U for the model shown in Fig. 1 can now be 
expressed as 

L t 

U = (l/2) f f (oxEx+OySy + Xxyyxy)dxdy 
0 0 

t 

+ (sEs/2) f (st - ux(L, y)/s)2dy - otstts. 

0 

(9) 

The first integral expression on the fight-hand side represents 
the elastic strain energy in the part of the specimen being in 
the clamp region and the second integral is the strain energy in 
the span region. The last term is the potential of the external 
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loading. Note that, according to symmetry, the right paper 
specimen cross-section for the reduced geometry in Fig. 1 
will remain plane. According to the theorem of minimum 
potential energy, the best displacement field is assumed to 
be one that makes U a minimum. A necessary condition for 
that is 

8U = 0 (10) 

where ~U is the first variation of U with respect to admissible 
variations 8f (x)  and ZerO. Combining eqs (5a)-(5c), (8), (9) 
and (10) (for details concerning the variational procedure, 
see Berg and Gradin 15) one will, after some lengthy algebra, 
arrive at a second-order differential equation with the solution 

f ( x )  = A cos h(kx) + B sin h(kx) (11) 

where A and B are integration constants, k is an eigenvalue 
(see Appendix A2) and cosh and sinh are the cosine and sine 
hyperbolic functions, respectively. Together with the solution 
for f ,  four natural boundary conditions result from the varia- 
tional procedure. It can be shown (see Appendix A3) that the 
apparent modulus, Eapp, will attain the value Esl6 when s 
tends to zero. This value constitutes one upper bound for the 
apparent elastic modulus and, by including more unknown 
functions in the assumed displacement field (i.e., creating a 
more accurate displacement field), one can be certain that the 
apparent modulus at zero span will be less than Exit. 

Lower Bound Solut ion for the Apparent  Modulus 

A lower bound on the apparent modulus can be obtained 
from the theorem of minimum complementary potential en- 
ergy (cf. Fung 11). Assume a stress field that satisfies the equi- 
librium equations and boundary conditions on stresses. The 
best stress field is assumed to be one that makes the com- 
plementary potential energy Uc a minimum. The equilibrium 
equations are: 

O(Ix/OX + O~xy/Oy = 0 

OXxy/OX + O(Iy/ay = 0 

(12a) 

(12b) 

It can be shown that the following stress field satisfies the 

equilibrium equations in 0 ~< x ~< L 

(Ix = g(x), (Iy = --g" (x)(t 2 -- y2)/2, 

T.xy = - y g ' ( x )  (13a) 

where g(x)isanunknownfunct ion.  In L ~<x < L + s ,  i t is 
assumed that 

( ix  ~-  ( I t ,  ( Iy  = "txy = O.  (13b) 

The following boundary conditions must be met: 

T.xy ~- O, for 0 < x < L + s, y = 0 (14a) 

(Ix = ( I t ,  Y'xy = 0 ,  for x = L, 0 < y < t (14b) 

(Iy=O,' txy=O for L < x < L + s , y = t  (14c) 

(Iy = 0 ,  for 0 < x  < L , y = t  (14d) 

Xxy=O, o x = O  for x = O , O < y < t .  (14e) 

Note that the boundary condition on O'y (which is identically 
satisfied) comes from the assumption of the clamping pres- 
sure (ic being equal to zero. Equation (14b) comes from the 
assumption that (ix is independent on y, so that the integral 
of Ox through the thickness t will simply be (ixt which for 
equilibrium to prevail should equal (itt. 

The complementary potential energy Uc is given by 

L t 

U c = ( 1 / 2 ) f f ( O x e x + O y e y + X x y y x y ) d x d y  

o o 

t 

+ (s/(2Es))  f (ix(L, y)2dy - Gtstts. 

o 

(15) 

By combining eqs (13) and (15) and by putting 3Uc = 0 we 
have, after some lengthy algebra, a fourth-order differential 
equation with the solution 

g(x) = A cosh(klx) + B sinh(klX) + C cosh(k2x) 

+ D sinh(k2x) 
(16) 

�9 2004 Society for Experimental Mechanics Experimental Mechanics �9 367 



~NNNNN~eeeN~eN~e~Nm~N~N~NN 
~NNNNNNNNNN~N~N~N~NN~NN~N]NiiNN 

NNNNNNNNNN~NNNNNNNNiNiiN~ eN~ ~ I ~ N N N N ~ N N N ~  N NINON ~ N N ~ N N N N N  
eNN~NNNNNNN~NNNeNI~@ 

N N N N ~ N N N N N N ~  @ N N N N N N N N N N ~ N N N N N I ~ @ N  

~ N ~ N N N N  @ ~ N ~ N N ~ N N N ~ N N N N ~ N ~ N ~ I ~ N  
N ~ N ~ N N N ~ N @ ~ @  ~ N N N ~ N N N N N N ~ N ~ I ~ t @ ~  
N N @ N N N @ N N N ~ N N I ~  N@Ng~NN~NNI~NNN~N~NN~ 

N N N N N N N N N N ~ N N t ~  N N I ~ N N N ~ N ~ N ~ I N I N  

N ~ N ~ N ~ N N N N ~ @ N ~  N N N N N N N N ~ N N ~ H ~ N ~ N N N  
N ~ N ~ N ~ N N ~ N N ~  N N N N N N ~ N ~ H N ~ N N  
NNN~@NN~NNN NNNN~NNN~NNNNIHNNN 
NNNNNNNN~NNN N~NNNNH~NNNNNN~NN~ 

. . . . .  ~ m ~  ~ e ~ e ~  . . . . . . . . . . . . . . . . .  

x = L  

Fig. 2--Finite element mesh in the vicinity of the free span 

where A, B, C and D are integration constants and kl and ~-2 
are eigenvalues (see Appendix A2). Combining the general 
solution (16) with the boundary conditions (14a)-(14e), a set 
of algebraic equations results, for the unknowns A, B, C, D 
and oh. Letting s approach zero, it can be shown that the 
apparent modulus, Eapp,  will tend to zero linearly with s so 
that for zero span a lower limit for the apparent modulus is 
zero. 

Numerical Solution for the Apparent Modulus and 
Determination of Stress Profiles 

The problem formulated in the sections "Problem State- 
ment" and "Upper Bound Solution for the Apparent Mod- 
ulus" is solved using the finite element analysis package 
ANSYS. 12 The purpose of the analysis is primarily to ver- 
ify the accuracy of the upper and lower bound solutions, but 
also to study the stress gradients in the thickness direction. 
Additionally, a numerical solution conveniently enables eval- 
uation of different material descriptions for the span region. 
For the sake of comparison, both a uni-axial constitutive rela- 
tion, described by eq (3), and bi-axial, given by eqs (1 a)-(1 c), 
are used to describe the material response in the span region, 
i.e., for L ~< x ~< L + s. The first case is assumed to corre- 
spond to a situation when the fiber-to-fiber bonds are released 
in a wetting procedure prior to testing while the latter is be- 
lieved to correspond to the response of a dry well-bonded 
paper specimen. The boundary conditions on displacements 
are given by eqs (5a)-(5c) and those on stresses are given in 
eqs (14a) and (14c)-(14e). 

The model consists of 8200 quadrilateral plane-strain ele- 
ments (PLANE42) 12 and the theory for small deformations is 
used. The PLANE42 element is defined by four nodes having 
two translational degrees of freedom each. The finite element 
mesh that is used is shown in Fig. 2. 

Numerical Solution of a Model including "Slippage" 
Between Specimen and Clamps 

It has been suggested ] 6 that the influence of slippage on the 
measured specimen elongation could be compensated for by 
performing a ZS test and an additional test at a significantly 
longer span, and subsequently using the displacement for 
the longer span to subtract the influence of slippage from 
the ZS data. Thus, it is tacitly assumed that the effect of 

slippage is independent of the span length. This assumption 
is addressed in this section. Another question of importance is 
how the stress gradient is affected by slippage. The boundary 
conditions (the boundary 0 < x < L, y = t is not included 
since it is a contact boundary) of the problem is given by 

"~xy=O, bly=O for O < x < L + s , y = O  (17a) 

u x ~-- EtS , T.xy = 0 for X = L + s, 0 < y < t (17b) 

ffy~-.O,T, x y = O  for L < x < L + s , y = t  (17c) 

"[xy = 0, fix = 0 for x = 0, 0 < y < t. (17d) 

In the region 0 < x < L, y = t the specimen is in contact 
with the clamp. It is again assumed that the clamps can be 
approximated as rigid bodies. The contact is taken into ac- 
count in ANSYS by the Coulomb friction option, ]2 i.e., the 
standard friction model with a constant coefficient of fric- 
tion. In this model, the interaction between specimen and 
clamp is governed by a contact formulation (CONTA171 
and TARGE169). ]2 The material data, the finite element 
code, types of elements for describing the paper material, 
and the mesh used in this analysis are the same as for the 
"no-slippage" case. In addition to the quadrilateral elements, 
the model consists of 300 contact elements. The loading of 
the specimen consists of two steps. In the first step the clamp- 
ing pressure is applied while the specimen outside the clamps 
is free to elongate. In the second step, the tensile load is ap- 
plied while the clamping pressure is kept constant. A built-in 
iterative Newton-Raphson algorithm is used in the solution 
of governing incremental equilibrium equations. 

Numerical Results 

Some numerical examples are presented in this section. 
Material data, assumed to be realistic for a paper material, 
are listed in Table 1 and geometrical parameters are listed in 
Table 2. The analysis is carried out for a number of different 
span lengths, i.e., s is varied. Note that the parameters t and 
L are kept constant throughout the analysis. 

For definition of Ex and Ey, etc., see Appendix 1. 

TABLE 1--MATERIAL CONSTANTS 
Material 

Constants Values 

Ex 5000 MPa 
Ey 500 MPa 
Gxy 91 MPa 
Vxy 0.5 
Vxz 0.25 
Vyz 0.5 

TABLE 2--GEOMETRICAL CONSTANTS (WITH 
ENCE TO FIG. 11 

Geometrical 
Parameter Values 

REFER- 

L 2 (mm) 
s 0.001-4 (mm) 
t 0.042 (mm) 
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Fig. 3~Normalized apparent modulus versus normalized span length 

Apparent Elastic Modulus 

Figure 3 shows the normalized apparent E modulus as a 
function of the ratio between span and thickness. Both ana- 
lyrical and finite element results are given in the graph. Lower 
bound and upper bound denote the analytical lower and upper 
bound solutions of the apparent elastic modulus. FEM (uni- 
axial) refers to the case when the material in the span region 
is described by eq (3) and FEM (homogenous) the case when 
the span region is described by the same constitutive model 
as the clamp region, i.e., eq (1). The apparent modulus is here 
normalized with respect to Es. 

Stress Profiles in the Thickness Direction 

Figure 4 shows the normalized stress profiles in the spec- 
imen at the cross-section x = Lfor three different span 
lengths. Normalized stress o* is here defined as 

o* = Ox(X = L, y)/Ox(X = L, 0). (18) 

This quantity indicates how many times larger the normal 
stress is in a point along the cross-section compared to the 
stress in the centre of the specimen. Hence, ~* = 1 for all 
curves at y = 0. According to the graph, the stress field 
is very non-uniform and the stress gradient increases as the 
span decreases. In the point y = t, i.e., at the surface of the 
specimen, the normalized stress is 7.32, 48.3, and 112.0 for 
the s / t  ratios 0.1, 5, and 50. 

Effect of Slippage 

Figure 5 shows, for three different values of the coefficient 
of friction IX and three different span lengths, the contribu- 
tion from slippage to the total span elongation as a function 
of the applied tensile stress. The contribution from slippage 
is calculated from the difference in span elongation for the 
case when slippage is assumed and the case of no slippage, 
i.e., when an infinite coefficient of friction is assumed. An 
average clamping pressure of 40 MPa has been assumed in 
the calculations. 

It can be observed that, at least for the cases presented, 
the contribution from slippage is not independent of the span 
length. For the shortest span length, slippage occurs already 
when the clamping pressure is applied. The fact that the distri- 
bution of the normal stress ~x over the cross section x = L is 
very non-uniform when there is no slippage between the spec- 
imen and the clamp has been shown. However, Fig. 6 shows 
that, even though there is a tendency for the stress-profile to 
become relatively flatter when the load is increased, the stress 
is still far from being uniform when slippage is included in 
the model. 

Experimental Details 

Experiments were conducted in an effort to gain additional 
insight into how the span length affects the load-deformation 
response of a paper material tested at nominal zero span. 

Test Method and Specimen Preparation 

Tensile tests were performed using a type of clamp spe- 
cially designed for tensile testing at extremely short span 
length. The design of the clamps is similar to the design 
described by Clark 9 (see Appendix A4). The difference is 
mainly that the clamp pressure is accomplished by a hydraulic 
piston instead of spring loaded clamp screws. The clamps 
were mounted in a MTS Universal Testing Machine. Prior to 
applying clamp pressure, the clamps were brought together 
creating a nominal zero span. During testing, the specimen 
was loaded at a constant crosshead speed of 1 mm min -1 and 
both displacement and load were monitored and recorded. 
The load was measured by the load cell and elongation by 
the moving crosshead. In order to obtain optimal accuracy, 
the compliance of the load frame and clamping arrangement 
was taken into account in the evaluation of the elongation of 
the specimen. The tests were conducted on a commercial copy 
paper, having grammage, i.e., surface weight, of 85 g m -x 
and made of a chemical pulp. The thickness of the sheet 
was 105 I~m. Standard methods from the Scandinavian Pulp, 
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Paper and Board Testing Committee (SCAN) were used to 
test the structural properties. The standards used are SCAN- 
P7:96 for thickness, and SCAN-P6:75 for basis weight. 

The material was tested in the cross-direction, i.e., per- 
pendicular to the manufacturing direction. 

In order to study the effect of  varying the thickness of  
the specimen, tests were carried out where multi-ply speci- 
mens were used, i.e., where each specimen consisted of  one 
or several layers of  paper stacked on top of  each other, see 
Fig. 7. The number of  layers was varied. One, two, three, four, 

five, and ten layers were tested. The climate used was 23~ 
and 50% RH and is in accordance with SCAN-P2:75 1975.13 
The specimens were conditioned for at least 48 h in this cli- 
mate prior to testing and the clamping pressure was estimated 
to be 40 MPa. Now, since the layers are not glued together 
there is a possibility for relative movement between the lay- 
ers, which will give a situation different from what one will 
have if a homogeneous paper sample is considered. However, 
from the finite element method results in Fig. 3 it can be seen 
that at least the apparent modulus is almost the same for the 
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uni-axial (completely independent layers) and the homoge- 
neous case, which might support the fact that the numerical 
and experimental results can be compared. 

Experimental Results 

Figure 8 shows the load-deformation curve for the case 
when several stacked paper sheets are tested at an extremely 
short span length. Here, the average force on each paper layer 
is plotted against the deformation. This average force may be 
interpreted as average stress acting in the loading direction 
of the specimen. The results show that peak load decreases 
as the number of layers increases. Further, the displacement 
at peak load increases as the number of layers is increased. 
The experimental results reported are limited to CD. How- 
ever, similar "overall" load-displacement response has been 
observed for tests in MD for the same paper material, and 
also for handmade isotropic sheets. 

In Fig. 9, the initial part of the load-deformation curve has 
been magnified and a straight line has been fitted to experi- 
mental data. Note that the slope of the line decreases for an 
increasing number of layers. Hence, assuming that the very 
small initial span is independent of the thickness of the spec- 
imen, i.e., number of layers, the apparent modulus strongly 
depends on the thickness of the specimen. 

Discussion and Conclusions 

It has been shown analytically (and confirmed using finite 
element analyses) that, in one particular situation, i.e., when 
there is no slippage and when linear elastic material behavior 
can be assumed, the ZS testing method has some inherent 
problems in that the apparent modulus of elasticity depends 
strongly on the span length and that the stress field in the 
specimen is far from uniform, for near ZS lengths. It has 

Lo 0 

/ I F, I F, \ 
Clamps Paper 

layers 
Fig. 7--Schematic diagram of the specimen configuration 

been shown that gap p will be in the interval [Es/6, O] for a 
span length equal to zero. 

If it is accepted that the apparent modulus and the mea- 
sured fracture strain are dependent not only on the true ma- 
terial properties but also on the geometry, this complicates 
the evaluation of the material properties. For instance, two 
paper specimens having identical properties but with differ- 
ent thickness will show different apparent modulus at a given 
span length. This effect was observed in the experimental part 
of this study. Further, if the two specimen types are loaded 
until failure the thinner specimen will most likely exhibit a 
relatively high breaking stress because of a flatter stress pro- 
file. The latter is to some extent supported by the experimen- 
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tal results presented in this paper and also in an earlier work 
by Wink et al.,14 where it was found that the ZS strength 
decreases for increasing surface weight at surface weights 
above 60 g m -2. 

It can be argued that these conclusions are based on a 
model which is not adequate for a real situation. However, it is 
unlikely that the introduction of  large deformations, nonlinear 
material behavior, etc., would remove all problems discussed 
above. 

Furthermore, since slippage is likely to occur at some stage 
of  loading, a finite element analysis with slippage included 
was carried out. It was found from this analysis that the con- 
tribution from slippage to the total span elongation depended 

strongly on the span length, thus making uncertain any eval- 
uation scheme assuming the opposite. For the non-slippage 
model, it has been assumed that that the material in the span 
region can be regarded as a number of  independent layers. 
This was done in order to obtain analytical models amenable 
to relatively simple calculations. It was shown through a finite 
element analysis of  a specific case that the conclusions based 
on this assumption will probably hold also for the case when 
the material in the span region is homogeneous, i.e., when 
the fibers are perfectly bonded. To conclude, the remedy for 
most of  the objections raised in this paper would be to use a 
very large s/t ratio, i.e., for a given span length to use as thin 
a paper specimen as possible. 
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Appendix A1 

With reference to Fig. l, Ex and Ey are the elasticity mod- 
ules in the x-  and y-direction, respectively, and Gxy is the 
shear modulus in the x - y  plane. Vxy, Vxz and Vyz are the 
Poisson ratios. In particular, 9xy is defined as minus the ratio 
between the strain in the y-direction and the strain in the x-  
direction, when the paper material is loaded in the x-direction 
only. The z-direction is orthogonal to the x-  and y-directions. 

Stiffness and Flexibility Constants in Terms of 
Engineering Constants 

By putting the strain in the z-di rec t ion,  ez, equal to zero 
in the general orthotropic constitutive relation, it is straight- 
forward to derive the plane strain relations. 

Stiffness constants: 

t t t '2 2 
C11 = 1 / ( E y ( 1 / ( E x E y  - Vxy/Ex)  

t t t '2 2 C22 1 / ( E x ( 1 / ( E x E y  = -- ~Oxy/Ex) 

t t t '2 2 
C12 = C21 = Vxy / (Ex (1 / (ExEy  - Vxy/Ex)  

C 6 6  = Gxy  

and flexibility constants: 

Sll = 1/E~x 

$22 = 1/Ery 

S12 = S21 = -Vxy/Etx 

$66 = 1 / axy  

where 

EIx = Ex/ (1  - VzxVxz) 

t 
Ey = Ey/ (1  - -  ~ Z y ~ ) y z )  

! 
~)xy = ~xy + ~zy~xz �9 

Relation Between "Effective" Modulus E and 
Engineering Constants 

Assuming that the strain in the z-direction and the stress 
in the y-direction are zero, we obtain 

Es = Ex/ (1  - VzxVxz). 

Appendix A2 

Determination of the Eigenvalues 

Upper bound 
The eigenvalue, ~. for the upper bound problem is defined 

by the following relation 

)~ = x/4C6613/(C1111) 

where 

Is = f ft 2 - y2)2dy = 8t2/15 

13 = f y2dy = t3/3. 

Lower bound  
The eigenvalues, ~-1 and ~-2, for the lower bound problem 

are defined by the following relation 

where 

and 

~-1,2 ----- ~/Ct "4- V/-~- + ~ 2 

t~ = 2(S1212 + $6613)/($2211) 

= 4S11 t/($22 Is ) 

I s  = 

12 = 

13 = 

t 

f (t -- y2)2dy =-_ 8t2/15 

0 

t 

f (t -- y2)dy = 2t3/3 

0 

t 

f y2dy = t3/3. 

o 

Appendix A3 

The four natural boundary conditions obtained through the 
variational procedure are 

CI212(f  ( L ) - f ( 0 ) )  + C22t Leyo = 0 

C1212eyO + Cll II f ' ( 0 )  = 0 

C1212EyO + Cll l l f '  (L )EsI2et + E s l I f  (L ) / s  = 0 

Esstet - E s l E f  (L ) = chst. 

Is and/2  are defined in Appendix 2. With the solution for f ,  
i.e., eq (11), the natural boundary conditions will become 

A(cos hO.L) - 1) + B sin h (kL)  + C22tLEyo/(C1212) = 0 

Cl212eyO + CIIII~.B = 0 

A(Cl l  ~. sin h(kL)  + Es cos h ( k L ) / s )  + B(Cl l  X cos h (kL)  

+ Es sin h ( k L ) / s )  + Cl212eyo/ll - Es l2e t / l l  = 0 

A cos h (kL)  + B sin h (kL)  - stet/12 = -cr t s t / (Es /2) -  

If  it is assumed that A, B and eyO depend linearly on s and that 
et is independent of  s, this would be consistent with the first, 
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Fig. A1--Drawing of the clamps 

second and fourth equations but not, in general, with the third 
equation. However, when s approaches zero, the assumption 
will be consistent with the third equation also. Utilizing the 
above assumption and by letting s approach zero, the third 
and fourth equations will give 

12 et = - ~ t t / ( E s I 2 )  

and by the definitions of 11 and 12 we will obtain 

~t /e t  = E s / 6 .  

Appendix A4 

Figure A1 shows the design of the clamps used in the ex- 
periments. A side view of the clamping arrangement is shown. 
The design of the clamps is essentially the same as was de- 
scribed by Clark. 9 The main improvement is that the clamp 
pressure is applied by two pneumatic cylinders, instead of 
spring loaded clamping screws. 
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