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Effect of class-interval size on entropy

V.P. Singh
Department of Civil and Environmental Engineering, Louisiana State University, USA

Abstract: The value of Shannon entropy for a given set of data depends on the class interval chosen
to compute the relative frequency of each class. For three data sets, expressed in dimensional as well
as nondimensional form, the entropy value was computed for different class-interval sizes. Entropy
was found to decrease with increasing class interval as well as with increasing sampling interval. It
is suggested that these intervals should be selected with care.

Introduction

For a continuous random variable X, the Shannon (1948) entropy H(x) is expressed
as

Hx) = —/a f(x)Inf(x)dx (1)

where f(x) is the probability density function (pdf) of X, which varies from a lower
limit a (> —o0) to an upper limit b(>0) and whose specific value is denoted by x.
For a given set of data H is computed with use of a discrete equivalent of equation (1)
which can be expressed as follows: Let X take on values xy, X3, - -, Xm covering the
entire range. We then choose a class interval Ax and arrange the values in different
class intervals. Counting the number of values in each class interval and dividing this
number by the total number of values, the relative frequency or probability associated
with each class interval is obtained. Therefore, equation (1) can be expressed as
- Ax

H(x) = 2:1: f(x;)Axln {f(xl) AX} (2)
where n is the number of class intervals of size Ax and f(x;) is the relative frequency
associated with the ith class interval. Denoting f(x;)Ax by P;, equation (2) can be
expressed as

H(x) = —iZ;:PiAxln Ei—x] (3)
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Equation (3) can be expressed as
H(x) = — 3 PilnPi+ ) PinAx (4)
i=1 i=1

Recalling that

f: P, =1 (5)

equation (4) becomes

H(x) = -—ZPilnPi + InAx (6)

i=1

In usual practice equation (6) is written as

H(X) = —zn:PilnP; (7)

implying that In Ax is equal to zero. Strictly speaking, this is true only if Ax=1. If
Ax < 1, In Ax will be negative and will reduce the value of H. On the other hand, for
Ax > 1, the value of H will increase. The question then arises as to the contribution
of In Ax to the value of H(x). To that end we write equation (6) as sum of two parts

H(x) = Hi+Hy, Hy = =) PilnP;, I, = InAx (8)
i=1

For different class interval sizes it may be interesting to examine the following ratios
H; Hg H2
B - -2 Ry = 2

Ry 0 R gt =g 9)

On the other hand, if we start with the discrete representation of entropy given
by equation (7} as was done by Shannon (1948) then its continuous counterpart in
discrete form takes the form:

H(x) = — Y f(x)AxIn[f(x;)Ax] (10)
i=1

where P; = {(x;)Ax. Equation (10) can be expressed as

H(x) = =) f(x;)AxInf(x;) — InAx (11)
i=1

For Ax being small and replaced by dx, equation (11) becomes
Hx) = ~ /f(x)lnf(x)dx ~ InAx (12)

The right side of equation {12) consists of two parts: the first part is the same as
equation (1) and the second part is —~InAx. Thus,
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H(x) = Hsz +Hy, Hy = —/f(x)lnf(x)dx, H, = —InAx (13)
Note that Hy = —Hj,, and Hz = H;. In terms of ratios,
Hs i Hy H, Hy H,
e —— = e D e e el 14
Re = 5 TR n R = H, (1)

It should again be emphasized that in usual practice the term Hy is neglected, imply-
ing that it is zero and that Ax is unity. This of course is not true. These and related
issues are discussed in what follows.

2 Application

Three sets of discharge data (in cfs units) were used. The measured data available
were at unequal time intervals. First, the measured data were transformed logarith-
mically. Then, the data were interpolated to equal time intervals. The interpolation
was linear, based on two observed values-one previous and the other subsequent to
the reference value. Seven different sampling time intervals were chosen: 1200 s {20
min), 1800 s (30 min), 3600 s (1k), 5400 s (1.5h), 7200 s (2h), 10,800 s {3h), and
18,000 s {5h). With use of these time intervals, the effect of sampling or observa-
tional time was evaluated. Clearly, there would be more data points in a data set if
the sampling time was small. Corresponding to each time interval there would be one
data subset. The original data set corresponding to the smallest time interval was
thus transformed to seven data subsets.

A data subset corresponding to a given time interval was arranged in different
classes for a chosen class-interval size. The probabilities associated with the class
intervals were computed. Then the value of entropy was computed for the sample
(data subset) corresponding to the specified class-interval size. Both H; and H, as
well ds the ratios Ry, Ro, and R; were computed. Similarly Hs and H, and ratios
R4, Rs, and Rg were also computed.

The above analysis is based on dimensional (units) values of the data. To elim-
inate the effect of units the data were nondimensionalized by dividing each value
by the mean of the sample data. Then the computations were performed as in the
dimensional case for all three data sets. It was found that the value of entropy in
the dimensionless case was the same as in the dimensional case. This was also true
with the pattern of variation with sampling interval as well as with class interval.
Therefore, the results of calculations will be presented for dimensional data only.

Comparing equations (6) and (12) it is seen that depending upon the class interval
size the two equations may yield very different values of entropy as shown in Figures
1 and 2 and Table 1 for data set 1. This is because the term, In Ax, may assume a
significant value. In general, this is seen from columns 5 and 6 as well as columns 8
and 11. Indeed this term may becorme dominant in the extreme when Ax is large. In
general, equation (12) is used most frequently in practice.

The value of entropy decreased with increasing class interval. This was true for
all sampling intervals of set 1, as shown in Figure 1 and Table 1, if the entropy was
defined by equation (12). This was also true if the entropy was defined by equation
(6), except for the 5-h subset, where the entropy value increased with increased class
interval. Comparing the decrease of entropy of different subsets, it is observed that
the rate of decrease with class interval depended on the subset and was not the same
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Figure 1. Variation of entropy defined by equation (12) with class interval size for data set



427

4.4
Dimensional dataset-1 (H1+H2)
+ 1200s
40— < 1800s
® 2400s
436008
I~ X 5400s
v 7200s
710800 s
361 018000 s
>
Q.
£ 32
s
)
2.8 —
24—
29 ) ! ] ] P | i | i
0.2 0.4 0.6 0.8 1.0
AX

Figure 2. Variation of entropy defined by equation {6) with class interval size for data set 1.
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for all subsets. There appeared to be considerable loss of information when the
sampling interval was increased from say 1200 s to 3600 s. For a subset the loss of
information was greatly accentuated when the class interval was quadrupled. This
was seen to be true for all three data sets.

For the second data set, the entropy values followed a similar pattern as in case of
the first data set, except that entropy began to increase’ for more sampling intervals
when the class interval reached a particular value. In case of data set 3, the increase in
entropy beyond a certain class interval was more pronounced. The point of increase,
however, depended upon the sampling interval. For lack of space figures and tables
for these two data sets are not included.

3 Conclusions

The following conclusions are drawn from this study: (1) The value of entropy de-
creases as the class interval increases. The rate of decrease, however, is not uniform.
(2) In general the entropy value decreases as sampling interval increases meaning loss
of information. The rate of decrease, however, is not uniform. (3) The class interval
size has a pronounced effect on entropy. Therefore, its accurate selection is important.
(4) The sampling interval exercises a great deal of significant influence on entropy and
therefore its optimum selection is important for design of sampling schemes. (5) The
dimensionality of data has little influence on entropy.
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