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Effect of class-interval size on entropy 

V,P. Singh 
Department of Civil and Environmental Engineering, Louisiana State University, USA 

Abstract:  The value of Shannon entropy for a given set of data depends on the class interval chosen 
to compute the relative frequency of each class. For three data sets, expressed in dimensional as well 
as nondimensional form, the entropy value was computed for different class-interval sizes. Entropy 
was found to decrease with increasing class interval as well as with increasing sampling interval. It 
is suggested that these intervals should be selected with care. 

I n t r o d u c t i o n  

For a continuous random variable X, the Shannon (1948) entropy H(x) is expressed 
a s  

/? H ( x )  = - f ( x ) l n f ( x ) d x  (1) 

where f(x) is the probabi l i ty  density function (pdf) of X, which varies from a lower 
limit a (>  - c o )  to an upper limit b(>0)  and whose specific value is denoted by x. 
For a given set of da t a  H is computed with use of a discrete equivalent of equation (1) 
which can be expressed as follows: Let X take on values xl, x2, - . - ,  Xm covering the 
entire range. We then choose a class interval Ax  and arrange the vaIues in different 
class intervals. Counting the number of values in each class interval and dividing this 
number by the to ta l  number of values, the relative frequency or probabi l i ty  associated 
with each class interval is obtained.  Therefore, equation (1) can be expressed as 

H(x)  = - f(x )ZXxln f(xi) (2) 
i = t  

where n is the number  of class intervals of size Ax  and f(xi) is the relative frequency 
associated with the i th class interval. Denoting f(x~)Ax by Pi, equation (2) can be 
expressed as 

H(x) = - PiAxln ~xx (3) 
i=l 
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Equation (3) can be expressed as 

H(x) = - ~ P i l n P i + ~  PilnAx 
i = 1  i = l  

Recalling that 

~ Pi = 1 
i = 1  

equation 

n(x)  = 

In usual 

H ( x )  = 

(4) 

(5) 

(4) becomes 

- ~ PilnPi 4- lnAx (6) 
i = l  

practice equation (6) is written as 

rl 

- ~ PilnPi (7) 
i = l  

implying that In Ax is equal to zero. Strictly speaking, this is true onty if Ax=l .  If 
Ax < 1, in Ax will be negative and witl reduce the value of H. On the other hand, for 
Ax > 1, the value of tt will increase. The question then arises as to the contribution 
of In Ax to the value of H(x). To that end we write equation (6) as sum of two parts 

H(x) = H14-H2, H1 = - ~  PilnPi, H2 = lnAx (8) 
i = l  

For different class interval sizes it may be interesting to examine the following ratios 

R1 H1 H2 H2 
- H '  R~  = - ~ - ,  R 3  - H1 ( 9 )  

On the other hand, if we start with the discrete representation of entropy given 
by equation (7) as was done by Shannon (1948) then its continuous counterpart in 
discrete form takes the form: 

n 

H(x) -- - ~ f(xl)Axln[f(xl)Ax] (i0) 
i = 1  

where Pi = f(xi)Ax. Equation (10) can be expressed as 

n 

H(x) = - E f(xi)Axlnf(xi) - lnAx (11) 
i = l  

For Ax being small and replaced by dx, equation (11) becomes 

H(x) = - / f(x)lnf(x)dx - lnAx (12) 

The right side of equation (12) consists of two parts: the first part is the same as 
equation (1) and the second part is - lnAx.  Thus, 
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H(x) Ha + H4, lie - - ] f(x)lnf(x)dx, H4 = - l n A x  (13) 

Note that H4 = -H2,  and Ha = H1. In terms of ratios, 

H~ It2 R4 - Ha H1 Rs - H4 _ H~ Re . . . . .  (14) 
H H ' H H ' Ha H1 

It should again be emphasized that  in usual practice the term H4 is neglected, imply- 
ing that it is zero and that  Ax is unity. This of course is not true. These and related 
issues are discussed in what follows. 

2 A p p l i c a t i o n  

Three sets of discharge data (in cfs units) were used. The measured data available 
were at unequal time intervals. First, the measured data were transformed logarith- 
mically. Then, the data were interpolated to equal time intervals. The interpolation 
was linear, based on two observed values-one previous and the other subsequent to 
the reference value. Seven different sampling time intervals were chosen: 1200 s (20 
min), 1800 s (30 min), 3600 s (lh), 5400 s (1.5h), 7200 s (2h), 10,800 s (3h), and 
18,000 s (Sh). With use of these time intervals, the effect of sampling or observa- 
tional time was evaluated. Clearly, there would be more data points in a data set if 
the sampling time was small. Corresponding to each time interval there would be one 
data subset. The original data set corresponding to the smallest time interval was 
thus transformed to seven data subsets. 

A data subset corresponding to a given time interval was arranged in different 
classes for a chosen class-interval size. The probabilities associated with the class 
intervals were computed. Then the value of entropy was computed for the sample 
(data subset) corresponding to the specified class-interval size. Both H1 and H2 as 
well as the ratios R1, R2, and R3 were computed. Similarly H3 and H4 and ratios 
R4, Rs, and Re were also computed. 

The above analysis is based on dimensional (units) values of the data. To elim- 
inate the effect of units the data were nondimensionalized by dividing each value 
by the mean of the sample data. Then the computations were performed as in the 
dimensional case for all three data sets. It was found that the value of entropy in 
the dimensionless case was the same as in the dimensional case. This was also true 
with the pattern of variation with sampling interval as well as with class interval. 
Therefore, the results of calculations will be presented for dimensional data only. 

Comparing equations (6) and (12) it is seen that depending upon the class interval 
size the two equations may yield very different values of entropy as shown in Figures 
1 and 2 and Table 1 for data set 1. This is because the term, in Ax, may assume a 
significant value. In general, this is seen from columns 5 and 6 as well as columns 8 
and 11. Indeed this term may become dominant in the extreme when Ax is large. In 
general, equation (12) is used most frequently in practice. 

The value of entropy decreased with increasing class interval. This was true for 
all sampling intervals of set i, as shown in Figure 1 and Table 1, if the entropy was 
defined by equation (12). This was also true if the entropy was defined by equation 
(6), except for the 5-h subset, where the entropy value increased with increased class 
interval. Comparing the decrease of entropy of different subsets, it is observed that 
the rate of decrease with class interval depended on the subset and was not the same 
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Figure  1. Variation of entropy defined by equation (12) with class interval size for data set 
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Figure  2. Variation of entropy defined by equation (6) with class interval size for data set 1. 
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for all subsets. There appeared to be considerable loss of information when the 
sampling interval was increased from say 1200 s to 3600 s. For a subset the loss of 
information was greatly accentuated when the class interval was quadrupled. This 
was seen to be true for all three data sets. 

For the second data set, the entropy values followed a similar pattern as in case of 
the first data set, except that  entropy began to increase' for more sampling intervals 
when the class interval reached a particular value. In case of data set 3, the increase in 
entropy beyond a certain class interval was more pronounced. The point of increase, 
however, depended upon the sampling interval. For lack of space figures and tables 
for these two data sets are not included. 

3 C o n c l u s i o n s  

The following conclusions are drawn from this study: (1) The value of entropy de- 
creases as the class interval increases. The rate of decrease, however, is not uniform. 
(2) In general the entropy value decreases as sampling interval increases meaning loss 
of information. The rate of decrease, however, is not uniform. (3) The class interval 
size has a pronounced effect on entropy. Therefore, its accurate selection is important. 
(4) The sampling interval exercises a great deal of significant influence on entropy and 
therefore its opt imum selection is important for design of sampling schemes. (5) The 
dimensionality of data has little influence on entropy. 
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