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ABSTRACT--A mathematical method is proposed for calcu- 
lating residual stresses from hole drilling electronic speckle 
pattern interferometry (ESPI) data, independent of rigid-body 
motions. Even though the signal-to-noise ratio of typical ESPI 
data is modest, the method achieves good computational sta- 
bility by averaging a large amount of data. It does this without 
excessive numerical effort by exploiting known trigonometric 
relationships among the data. The resulting stress calcula- 
tions are very rapid, and are well suited for future application 
to non-uniform stress measurements. 

KEY WORDS--Residual stress, hole drilling, ESPI, laser 
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Introduction 

Practical convenience, reliability, and modest damage to the 
test specimen makes the hole drilling method an attractive 
choice for measuring residual stresses in materials. The mea- 
surement principle was introduced in 1934 by Mathar. 1 How- 
ever, the mechanical extensometer that was originally used 
did not provide a very stable measure of surface deforma- 
tions. The subsequent application of strain gages 2'3 greatly 
improved the accuracy and reliability of the measurements. 
Now, the strain gage procedure is formalized as an Ameri- 
can Society for Testing and Materials (ASTM) Standard Test 
Method. 4 

Electronic speckle pattern interferometry (ESPI) 5,6 pro- 
vides additional opportunities for measuring surface dis- 
placements for the hole drilling method. 7 The non-contact 
nature of the technique avoids the significant time taken to 
install strain gages, associated wiring and surface coatings. 
In addition, ESPI provides a much richer, full-field data set 
than is available from strain gages. However, the benefits of 
this "richness" are only realized if an effective mathematical 
method can be used to extract a small number of results, 
typically the three in-plane stress components, from among 
the many thousands of available ESPI data. This challenge is 
compounded by the presence of significant noise among the 
measurements. 
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Nelson and co-workers 7'8 introduced the use of three 
pairs of diametrally opposite points for evaluating residual 
stresses. This method was subsequently generalized to the 
use of many manually selected points by Schmitt and Hunt. 9 
The increased number of data used improves averaging, re- 
duces noise, and enhances calculation accuracy. In another 
approach, Focht and Schiffner 1~ used all the data along a con- 
centliC circular line surrounding the hole, thus avoiding the 
manual data selection. Most recently, Steinzig and Ponslet 11 
presented a least-squares procedure that uses the entire set of 
available surface displacements, thereby greatly increasing 
data averaging and significantly enhancing calculation accu- 
racy, However, the associated calculations are numerically 
intensive, and become substantially more so when extended 
to non-uniform residual stress evaluation. 

In this paper we present an alternative numerical tech- 
nique for calculating residual stresses from ESPI data. The 
proposed method uses most of the available data and there- 
fore retains the averaging advantage. It achieves substantial 
computational economy by exploiting known mathematical 
relationships within the measured data. This approach en- 
ables the many thousands of displacement data to be reduced 
to a small number (typically 3-10) of representative values, 
from which the associated residual stresses can be calculated. 
The small number of these quantities greatly reduces the nu- 
merical effort required and makes the method practicable for 
non-uniform residual stress calculations. 

ESPI Measurements 

The ESPI technique is well documented elsewhere 5'6' 12,13 
and will be only briefly summarized here. Figure 1 schemat- 
ically shows a typical ESPI setup. The light from a laser 
source is split using a half-silvered mirror. One part passes 
through a piezoelectric actuator to provide a phase-stepped 
reference light to a CCD camera. The other part of the laser 
light (the "illumination beam") is used to illuminate the spec- 
imen, which is imaged (the "object beam") through a zoom 
lens onto the CCD. The object beam interferes with the refer- 
ence light to produce a speckle pattern on the CCD, the local 
phase of which varies with displacement of the specimen 
surface. By taking a series of phase-stepped images before 
and after surface deformation, it is possible to evaluate both 
the size and sign of the deformation at every pixel in the 
CCD image. The data at each pixel correspond to the com- 
ponent of the three-dimensional surface deformation in the 
direction of the "sensitivity vector". This vector bisects the 
directions of the illumination and object beams. In the present 
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Fig. 2--Hole drilling residual stress geometry 

Fig. 1--Schematic diagram of the ESPI setup (reproduced 
from Steinzig and Ponslet 11) 

application, the image contains the area around the drilled 
hole, and the measured deformations are those caused by 
hole drilling. 

Hole Drilling Deformations 

Figure 2 schematically shows a circular hole of  radius 
a drilled into a specimen subject to in-plane residual stress 
components C~x, Cry, and Xxy. As a result of  hole drilling, the 
specimen surface around the hole deforms in three dimen- 
sions. For each surface point, there are axial, radial, and cir- 
cumferential displacement components. 

For in-plane loadings around an axisymmetric feature such 
as a circular hole, it is convenient to transform the axial resid- 
ual stresses into equivalent isotropic and shear stresses: 14 

P = (Crx + Cry)/2, Q = (cr x - cry)/2, T = txy. (1) 

This transformation is useful because, for linear elastic 
material properties, the associated deformations have simple 
trigonometric forms. The trigonometric relationships in the 
following equations are "exact", 15 and not approximate as 
sometimes reported. 

For isotropic loading, P acting alone, the deformations 
are 

Uz(r, O) =Uz(r) ,  Ur(r, O) = u r ( r ) ,  Uo(r, O) = 0 ,  
(2) 

where Uz(r, 0) is the axial (out-of-plane) displacement at a 
surface point with cylindrical coordinates (r, 0). uz(r) is the 
radial profile of  the axial displacement. This profile can be 
evaluated by finite element analysis.14" 15 The first two equa- 
tions of  eq (2) indicate that the axial and radial displacements 
Uz(r, 0) and Ur(r, O) are independent of  angle 0, i.e., it is ax- 
isymmetric. This is as expected because the isotropic loading 
associated with P is non-directional. For this axisymmetric 
case, all circumferential displacements Uo (r, 0) are zero. 

For shear loading at 45 ~ to the x - y  axes, Q acting alone, 
the deformations are 

Vz(r, 0 ) = v=(r) cos20, Vr(r,O) = Vr(r) cos20, 

Vo(r, O) = - v o ( r )  sin 20, (3) 

where V:(r, 0) is the axial displacement corresponding to Q, 
and v= (r) is the profile of  axial displacements along the radius 
at O = 0. Analogous trigonometric relationships apply to the 
radial and circumferential displacements. 

Similar equations apply for shear loading in the axial di- 
rections, T acting alone, 

Vz* (r, O) = v: (r) sin 20, Vr* (r, 0) = v r (r) sin 20, 

V~(r, O) = vo(r) cos 20, (4) 

where the superscript * is added instead of  using a separate 
symbol to indicate that the deformations for T loading are 
essentially the same as for Q, but with a rotation of 45 ~ 

In addition to the above elastic deformations, ESPI mea- 
surements may also include arbitrary rigid-body motions 
caused by small relative movements of  the components in 
Fig. 1. Local temperature change and bulk movement  of  the 
part caused by drilling are common causes of  these move- 
ments. These rigid-body motions include translation and ro- 
tation about the x and v axes. The corresponding axial dis- 
placements are 

W (r, O) = wo + w I r /a  cos 0 + w2r/a sin 0, (5) 

where w0, wl, and w2, respectively, are the normalized am- 
plitudes of  the rigid-body translation and rotations around the 
x a n d y a x e s a t r = a .  

The Cartesian components of  the surface displacements 
for the combination of cases described by eqs (2)-(5) are 
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P ( Ur(r,O) cosOi4-Ur(r ,O)s inOj  ) 
d (r, O) = -~ 4-U z (r, O) k 

Q G (r, O) cos Oi - VO (r, O) sin Oi \ 
+ Vr (r, 0) sin Oj 4- Vo (r, 0) cos 0j ) 
4- Vz (r, O) k 

V* (r, 0) cos 0 i - V0* (r, 0) sin 0i \ 
+ V *  (r, 0) sin0 j + V0* (r, 0) cos0j  ) + v? (,-, o) k 

(6) 

r COS 0 4-  W2 r s i n  0) k 4 - ( w 0 4 - w 1  a a 

where i, j ,  and k are unit vectors in the x - y - z  directions. 
The normalization with respect to Young's modulus in eq (6) 
allows the displacements Ur (r, 0), etc., to be expressed in 
dimensionless form. However, these quantities are not com- 
pletely material-independent because there remain complex 
dependences on Poisson's ratio. Although some approxima- 
tion of this dependence is possible,16 to be more conservative, 
a numerical scheme was adopted here to interpolate between 
displacements calculated at discrete values of Poisson's ratio. 

Residual Stress Calculation Method 

The ESPI observed surface displacement D(r, 0) is the 
component of the surface displacement vector d(r, 0) in the 
direction of the sensitivity vector c = Cx i + Cy j + cz k. The 
direction of this vector bisects the directions of the illumi- 
nation and object beams in Fig. 1. Combining eqs (2)-(6), 
and using trigonometric identities gives the ESPI observed 
surface displacement: 

D (r, O) = d (r, O) �9 c 

P { 2(CxCOSO+cysinO) ur ( r )  } 
= 2---E +2czu z (r) 

O 

[(Cx cos 0 - Cy sin O) 
+ (Cx cos 30 + Cy sin 30)] v r ( r )  

+ [(Cx cos0 - Cy sin0) 
- (Cx cos 30 + Cy sin 30)] vo (r) 
+2Cz cos 2OVa (r) (7) 

T 

[(Cx sin O + Cy cos 0) 
+ (Cx sin 30 - Cy cos 30)] v r (r) 
+[(cxs inO+cyCOSO)  
--(Cx sin30--CyCOS30)]vo (r) 
+2c z sin 20v z (r) 

+ ( w 0 +  w, ~ cos0 + w2 ~ sin0) Cz. 

In eq (7), the displacement field D(r, O) is experimentally 
determined, and the quantifies Ur (r), etc., are known through 
finite element calculations. The objective is to calculate the 
residual stresses P, Q, and T (and possibly rigid-body mo- 
tions w0, wl, and w2). The mathematical challenge (and op- 
portunity) is to evaluate these few quantities from the many 
thousands of measured data D (r, O). 

Despite its substantial length, eq (7) is algebraically sim- 
ple. It retains in linear form the trigonometric characteristics 
of its origin in eq (6). This feature makes eq (7) amenable to 

Fourier analysis, by which means it can be divided into man- 
ageable parts. In addition, and very importantly, the Fourier 
method reduces the thousands of measured D(r, 0) data to a 
much smaller number of representative quantifies. 

The analysis proceeds from the orthogonality properties 
of the trigonometric functions: 

2~ 2 ~ x f o r m = n = 0  
f cosn0cosm0d0 ~ f o r m = n # 0  

0 otherwise 
0 
27r 

f sin nO sin m0 dO r~ for m = n 7~ 0 (8) 
0 otherwise 

o 
23T 

f cos nO sin m0 dO 0 always. 

o 

The solution procedure involves weighting the measured 
D(r, 0) data using a trigonometric function, say cos 20, and 
integrating over an annular region around the hole bounded 
by inner and outer radii Q and r2. These radii are chosen so 
that they enclose the region of significant surface displace- 
ment. All the integrals corresponding to the individual terms 
in eq (7), except the one containing cos 20, equal zero be- 
cause of the orthogonality properties in eq (8). Equation (7) 
reduces to 

r2 27I r2 

f f  rtQfvz(r)rdr (9) D(r ,  0) r d r d 0 =  E 

r l  0 rl 

from which Q can be evaluated explicitly. A similar calcula- 
tion using sin 20 as a weighting function yields T. However, 
there is no similar direct way of evaluating P because all as- 
sociated trigonometric terms also appear elsewhere in eq (7). 
Even without this limitation, it turns out that eq (9) is not 
an ideal way of proceeding because the calculation uses only 
the axial displacements v z (r). These displacements are much 
smaller than the in-plane displacements Vr (r) and vo (r), and 
so are more sensitive to measurement noise. A different ap- 
proach is therefore required. 

The idea of using orthogonality to divide the terms in eq (7) 
can be generalized beyond the direct application in eq (9). 
When carrying out practical calculations, it is useful to define 
the following dimensionless "calibration constants": 

r2 

A z -- a(r2_r2) f (r) u z (r) r dr 
rl 

r2 

i f  A r - -  a ( r 2 _ r 2 )  f (r) Ur (r) r dr 

rl 
r2 

Bz 1 f (r) r dr 
- -  2 2 f (r) v z a(r2-q) 

r l  
r2 

i f  Br -- a(r2_rZl) f (r) Vr (r) r dr 
rl 

BO -- a(r2 r2) f (r) vo (r) rdr. 
rl 

(it) 
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A radial weighting function f ( r )  is included in eq (10) to 
provide for future mathematical needs. The displacement 
profiles uz(r), etc., can be determined from finite element 
calculations, and f ( r )  and other quantities are explicitly 
known. Thus, Az, Ar, etc., reduce to dimensionless numbers. 
These "calibration constants" are functions of hole depth and 
Poisson's ratio, and appropriate values of these latter two 
quantities must be used for the associated finite element 
calculations. However, these calculations need only be 
done once. The results can be organized in tabular form, 
from which future needed values can be extracted by 
interpolation. 

The following weighted integrals of the measured data are 
useful 

r2 271" 

' f /  CO -- 2rCa(r~-r]) f (r) D (r, O) r dr dO 

rl 0 
r2 2"JI 

, i f  Y C a ( r ~  f (r) D(r ,O)cosOrdrdO (11) 

rl 0 
r 2 23"[ 

2 2 f ( r )  D(r ,  0) s i n 0 r d r d 0  
r 2 - - r  I ) 

r l  0 

and similarly for analogous integrals using cos 20, sin 20, 
cos 30, and sin 30 as circumferential weighting functions. 
In eq (11), the radial weighting functions f ( r )  are the same 
as chosen for use in eq (10). The additional factor 2 in the 
definition of CO corresponds to the same factor appearing in 
the first of the orthogonality conditions (8). 

In practice, eqs (11) are evaluated from CCD data, which 
are in discrete pixel format. In terms of pixels, the second 
equation of eqs (11) becomes 

N 
1 

C1 = ~ Z f (ri) Di cos0i (12) 
i=1 

where i is a pixel index and N is the number of pixels within 
the integration area. The other integrals can be evaluated in 
the same way. Equations (10) and (11) were defined including 
a division by the integration area to normalize eq (12) and to 
make it independent of pixel density. 

The main obstacle to the direct extraction of P, Q, and 
T from eq (7) is the sharing of trigonometric terms with the 
rigid-body motions w0, w], and w2. This obstacle can be 
removed by generalizing the orthogonality idea contained in 
eq (8) to the radial direction, by requiring 

r2 

f f (r) r = (13) dr 0. 

rt 

Use of an appropriate weighting function eliminates the 
integral associated with the w0 term. Any function f ( r )  obey- 
ing eq (13) is acceptable. Here, a simple polynomial is chosen 

a 
f ( r ) =  r -- 13 

where for CO, C2 and $213 - -  2a r~ +r2 (14) 

3a(rl +r2) 
and for C1, S1, C3 and $3 13 = 2(r~+rlr2+r~) " 

The two different values for 13 shown in eq (14) are chosen 
to accommodate the additional factor r in the Wl and w2 
terms of eq (7). The first value of 13 in eq (14) is used for the 
out-of-plane constants in eq (10), and for the even numbered 
integrals in eqs (11) and (12). The second value of 13 is used for 
the in-plane constants in eq (10), and for the odd numbered 
integrals in eqs (11) and (12). 

There are seven different trigonometric terms in eq (7), 
and so seven weighted integrals can be evaluated. Using the 
quantities defined in eqs (I0) and (12), the results of the seven 
integrations can be expressed compactly in matrix form: 

czAz 0 0 CO 

0 c: Bz 0 C2 

0 0 c: B: $2 

Q / E  = 
cxAr cxBr cxBo T I E  C1 + C3 " 

cxAr cxBo cyBr C1 - C3 

cyAr -cvBo cxBr S1 + $3 

cvAr  - c y B r  cxBo S1 - $3 
(15) 

The three rows above the dashed dividing line refer to 
out-of-plane displacements, and the four rows below refer to 
in-plane displacements. Three unknowns, P, Q, and T are re- 
quired, and a total of seven equations are available. A solution 
can be found using any three rows. The upper three rows form 
a diagonal matrix, and therefore provide a particularly sim- 
ple solution. However, as already observed, the associated 
out-of-plane displacements are relatively small and conse- 
quently are more sensitive to measurement noise. Choosing 
from among the lower (in-plane) rows gives a better solution. 
Even better is to choose all the rows because this more fully 
uses the available data. The least-squares method 17 provides 
a convenient way of achieving that objective. The procedure 
involves pre-multiplying both sides of eq (15) by the trans- 
pose of the left-side matrix to form the "normal equations". 
These comprise a 3 • 3 matrix equation whose solutions are 
P, Q, and T. The Cartesian stresses can then be determined 
using 

ox = P + Q, o r = P - Q ,  Xxy = T. (16) 

Rigid-body Motion Calculation 

The principal objective of hole drilling is to determine 
the residual stresses in the specimen. The presence of rigid- 
body motions is an unwanted artifact whose effects need to 
be excluded from the evaluation. The radial orthogonality in 
eq (13) excludes rigid-body motion effects at source, causing 
the associated variables to be entirely absent from eq (15). 
However, for some applications, it is useful to know the rigid- 
body motions explicitly, and for this case, eq (15) is not 
suitable. 

Rigid-body motion is retained simply by not enforcing 
radial orthogonality, for example by using a weighing func- 
tion that does not obey eq (13). The resulting formulation 
gives a set of seven equations similar to eq (15), but with 
the unknowns increased to six with the inclusion of w0, w], 
and w2. However, even though there are more equations than 
unknowns, this procedure does not provide a solution be- 
cause the resulting normal equations are singular. A similar 
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singularity was observed by Focht and Schiffner 1~ when per- 
forming calculations using data along a circular line. 

The singularity suggests that the information content of the 
data is not being fully used. One way of extracting further 
information is to use several different weighting functions. 
These can be chosen to be similar in shape to the physical 
cases to which they correspond. For example, all the displace- 
ment profiles uz(r), ur (r), etc., have shapes that are approxi- 
mately inversely proportional to radius. Thus, f (r) = a / r is 
an appropriate choice for associated calculations. Similarly, 
the rigid-body rotations wl and we are proportional to radius, 
so f ( r )  = r/a is an appropriate choice for these terms. Like- 
wise, f ( r )  = 1 is appropriate for rigid-body displacements 
associated with w0. To accommodate these extensions, the 
notations in eqs (10) and (12) need to be expanded. Super- 
script numbers in brackets following the symbols A z, C0, etc., 
indicate the power of normalized radius used for the weight- 
ing function. For example, A z evaluated with f ( r )  = a / r  
is written Az[-1]. Using this notation, eq (15) can be ex- 
panded to 

czA~ -1] 

0 

0 

A[-1] Cx r 

cxA~ -1] 

cyA~  11 

cyA~ -l] 

c z A ~Ol 

Cx A~ 1 ] 

A [11 
CJc r 

Q / E  
T / E  = 
wo/a 
w l /a  
tu2/a 

0 0 

c #[-1] 
u z 0 

0 czB~ -1] 

cxB  -1] cyBto- l 
cxB~ -1] cyBr -1] 

-cyB -ll cxB}- l 
B [-1] cxB[ -1] --Cy r 

0 0 

cxB[r 11 cyB; 1] 

cxB; 1] cyB~ 11 

C0[-ll  

C2[-]1 

S2[-U 

C1 [-1] 4- C3[-U 

CI [ -U _ C3[-11 

S1 l-1] + $3 [-1] 

S1[-11 _ S3[-ll 

C0[01 

CI. [11 + C3 [tl 

CI[I] _ C3[]] 

K1 0 0 

0 0 0 

0 0 0 

0 K2 0 

0 K2 0 

0 0 K2 

0 0 K2 

K2 0 0 

0 K4 0 

0 K4 0 

(17) 

where K1 = Cz/(r2 + rl), K2 = Cz/2 and K4 = cz(r 4 - 
r4)/4a2(r 2 - r2 ) .  Equation (17) gives full-rank normal equa- 
tions, from which all of P, Q, T, wo, w], and w2 can be de- 
termined. Although the values of P, Q, and T evaluated from 
eq (15) are not numerically identical to those from eq (17), 
they are almost so. 

Test Calculations 

The above described calculations were tested on some ex- 
perimental hole drilling measurements made using a PRISM- 

RS laser interferometry system (Hytec, Inc., NM). The ar- 
rangement of this equipment follows the schematic plan 
shown in Fig. 1. Steinzig and Ponsle01 and Steinzig et al)  8 
give details of the measurement procedure. A bent beam as- 
sembly of the type described in Steinzig et al.t8 was used to 
create a specimen with known residual stresses. A 1.59 nun 
diameter hole, 0.5 mm deep, was drilled in the specimen 
surface. ESPI measurements as described in Steinzig and 
Ponslet 11 were made both before and after drilling the hole. 
For these measurements, the illumination beam was aligned 
at 66 ~ from the specimen normal, and the object beam was on 
the same side at 49 ~ . This arrangement was chosen to provide 
optical clearance for the drill used to cut the hole. 

Figure 3(a) shows the measured phase map around the 
drilled hole. The light and dark fringes correspond to se- 
quential half-wavelength displacements along the sensitivity 
direction. Noise in the measured data causes the grainy tex- 
ture of the fringes. The central curve in Fig. 3(a) indicates the 
hole of radius a. The two dashed curves indicate the annular 
integration boundaries at radii r l / a  = 2.0 and r2/a = 4.0. Al- 
though all these curves are concentric circles on the specimen 
surface, they appear as ellipses in Fig. 3(a) because the object 
beam was not normal to the specimen surface. However, the 
resulting coordinate transformation in the phase map does not 
create any difficulties. After identifying the specimen-based 
coordinate (r, 0) for each pixel, eq (12) can be used directly. 
The normalization by the total number of pixels, N, removes 
the need for any further scaling of dimensions. 

Table 1 summarizes the stresses calculated from the phase 
map in Fig. 3(a). The results show that the proposed calcu- 
lation method gives residual stress values in good agreement 
with the experimental expectations. Equations (17) and (15) 
give very similar but not identical results. The subsequent "in- 
plane" calculations use only the lower four rows of eq (15), 
while the "out-plane" results use only the upper four rows. 
In general, the "out-plane" results are less reliable than the 
others because of the modest size of the out-of-plane dis- 
placements. They are particularly unreliable here because, in 
addition, the displacement sensitivity vector has only a small 
out-of-plane component. Stress evaluations performed using 
eqs (15) and (t7) likely have similar accuracies, and are pre- 
ferred over "in-plane" and "out-plane" calculations because 
of their greater data content. Equation (15 ) has the advantage 
of being more numerically efficient, while eq (17) is able to 
determine the rigid-body motions. 

The results from eq (17) indicate that the some rigid-body 
motions have occurred. Zero displacement shows as a white 
area in Fig. 3(a). The dark areas in the far-field away from 
the hole, where zero displacements are expected, indicate 
the presence of significant rigid-body motions. As a test of 
the rigid-body motion calculation provided by eq (17), the 
calculated rigid-body motions were subtracted from the data 
in Fig. 3 (a). The result in Fig. 3(b) shows the expected brighter 
areas in the far-field. 

As a further test of eq (17), the calculated stress-induced 
displacements were also subtracted. The "residual" plot in 
Fig. 3(c) shows a uniform bright area, indicating that the stress 
solution was successful at modeling the ESPI data. The area 
immediately adjacent to the hole appears darker, suggesting 
that some displacements were not determined by the calcula- 
tion. However, further investigation revealed these pixels are 
mostly decorrelated, and do not contain useful information. 
This decorrelation can be seen in Figs. 3(a) and (b) because 
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Fig. 3- -Phase maps around the drilled hole, with integration radii r ] /a  = 1.33 and r2/a = 4.0: (a) measured data; (b) measured 
data minus rigid-body motions; (c) residuals after subtracting theoretical model; (d) theoretical model 

TABLE 1--CALCULATED RESIDUAL STRESSES FOR THE PHASE MAP IN FIG. 3 
x-stress y-stress xy-stress Displacement x-rotation y-rotation 

Method (MPa) (MPa) (MPa) (ixm) (IX m) (ixm) 

Expected 207 0 0 - - - 
eq (17) 193 - 4  -2  0.174 -0.002 0.008 
eq (15) 193 -2  - 4  - - - 
eq (15) (in-plane) 193 - 2  -4  - - - 
eq (15) (out-plane) 332 -70  -56  - - - 
Least-squares 194 -2  - 3  0.174 -0.001 0.008 

the fringe pattern does not extend right up to the hole bound- 
ary. Instead, it fades out close to the inner integration radius. 
This radius was chosen here at r I / a  = 2.0 as a compromise 
between excluding the decorrelated pixels near the hole, and 
including the immediately adjacent information-rich, high- 
displacement pixels. The reason for the decorrelation is not 
clear. It may perhaps be due to abrasion of the surface by the 
passage of chips cut from the hole. 

The choice of outer integration radius in Fig. 3 also in- 
volves a compromise. This radius should be large enough to 
enhance data averaging by including many pixels within the 
annular integration area. However, it should not be excessive 
because the surface displacements far from the hole are rela- 
tively small, and the information content of the far-field pixels 
rapidly diminishes with radial position. A suitable range for 
the outer integration radius is r z / a  = 3.5 - 5.0. 

Figure 3(d) shows the theoretical fringe pattern corre- 
sponding to the stresses and rigid-body motions calculated 
by eq (17). The result successfully reproduces the experimen- 
tally measured fringe pattern in Fig. 3(a), and provides a fur- 

ther confirmation of the proposed calculation method. (Note 
that Fig. 3a equals Fig. 3d plus Fig. 3c.) The theoretical data 
are smooth and do not have the grainy texture of the experi- 
mental data. The experimental graininess is caused by optical 
noise, an artifact that the proposed calculation method coun- 
teracts by averaging many pixels. Using data from within the 
integration area of the residual plot in Fig. 5, the root-mean- 
square (rms) of the noise is 0.030 Ixm. This compares with 
the rms of the "signal" (the theoretical data corresponding to 
Fig. 3b) of 0.209 Ixm, giving a signal-to-noise ratio of 7.0. 
This modest ratio confirms the need for the substantial data 
averaging that is a major feature of the calculation method 
presented here. 

Conclusions 

The mathematical method proposed here is an effective 
and practical procedure for calculating residual stresses from 
hole drilling ESPI data, independent of rigid-body motions 
associated with hole drilling or temperature changes. Even 
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though the signal-to-noise ratio of typical ESPI data is mod- 
est, the method achieves good computational stability by av- 
eraging a large amount of data. It does this without excessive 
numerical effort by exploiting the known trigonometric re- 
lationships among the data. The resulting stress calculations 
are very rapid, taking less than 1 s using an ordinary desktop 
computer. This feature makes it practicable to extend the cal- 
culation method to non-uniform stress measurements. This 
extension will be reported in a future publication. 
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