
The theorem admits an obvious generalization to any finite number of domains ~j ~ All 

the classes which arise in this case are again Faber invariant with respect to ~ �9 

result [6]. 

from Theorem 3 one obtains Shirokov's 
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SPACES WITH "SMALL" ANNIHILATORS 

S. V. Kislyakov UDC 513.881 

In this note one investigates the properties of subspaces ~ of cC$), such that 

~ is "not a very large part" of the space C(S) ~ The fundamental result is: 

if ~ is reflexive, then every operator from ~ into ~ is absolutely sum- 

mable. 

In this note we consider subspaces ~ of C(~), whose annihilators ~{~eC(~)~: ~(~}=0, 

~e~} are "small" in some sense. 

i. One of the remarkable results in the theory of p -absolutely summable operators is 

A. Grothendieck's theorem which states that every (linear and bounded) operator defined on 

the ~4-space and taking values in ~ is 1-absolutely summable. # In [i], Lindenstrauss 

and Pelczy~ski have raised the question whether the converse theorem holds, i.e., whether the 

space X is necessarily a ~ -space when the equality ~,~)= ~(~,~) holds. 

The following theorem gives a negative answer to this question. 

THEOREM i. Let ~ be a reflexive subspace of the space ~(~). Then 

C = ( ( II 

It is known that the quotient space LI~)/~ is not a ~-space when ~ is infinite- 

dimensional and reflexive. 

#We adhere to the notations and to the terminology adopted in [i]. In particular, ~p(X~Y) 

is the collection of all p -absolutely summable operator from X into ~ �9 
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We outline the proof of Theorem i. 

THEOREM 2. Let &c~(~) and assume that the space C(~)/6 is reflexive. If X is 

such that ~(~X)=~(Y~X) for all Y and all ~ , ~ , then ~(~X)=~(~,X) �9 

In Theorem 2 one can take for X , e.g., the space I,~(~) , ~-~% . 

Theorem 1 follows from Theorem 2. Indeed, let qF be the canonical mapping of ~,(~} 

onto ~(~)/~, ~=(~,(~}/~)~ c~oo(~) . From Theorem 2 it follows that every operator from 

into ~ is 2-absolutely summable and thus it can be extended to an operator from [,~(~I 

into ~4 From here and from the fact that the space ~i(~I/~. is complemented in its second 

conjugate space, one obtains at once that every operator from C~ into ~4(~)/~ can be "lifted" 

to an operator from C o into ~(~). But this means that for every unconditionally convergent 

series ~ in [a~(~)/~.. there exists an unconditionally convergent series ~Or, r~ in Lq(~l 

such that ~=~(~). Now Theorem 1 can be easily derived from Grothendieck's theorem. 

For the proof of Theorem 2 one requires two lemmas. 

LEMMA i. Let A~X be Banach spaces, ,T~B(~,X). Then there exist a space 

2 , an isometric embedding j :X-%-~ , and an operator T~ from A into ~ such that the 

and Z/~X are isometric and ~T=~; here ~ is the inclusion mapping of spaces A/Cr 

into A. 
Proof. 

Let %<p~oo 

and Maurey) , if 

We set z=(AcX)s , where ~={(~TT~): ~E~} ~ and ~ are given by the formulas 

and ~(~)=(0~z)+ H �9 

We shall say that the space X possesses property (~Mp) (after Rosenthal 

T~T~ is the identity embedding of ~p in -oo , 

II T, II" liT, II A . 
LEMMA 2. If Y and X/Y do not possess property (RMp), then ~ does not have prop- 

erty ~ffMp). 

For the proof of Theorem 2 one needs only the case p = ~ , and for this case the lemma 

is proved in [6]. 

Proof of Theorem 2. Let TEB(~,~) it is sufficient to prove that ~e~(~,X) for 

some ~>% .~ Applying Lemma 1 to the operator T (with A=O(~)), we obtain the space Z , the 

operator T4 , and the isometric embedding ~. From the results of Rosenthal and Maurey [3, 

Chap. 8] it follows that neither X, nor z/~X=C(~)/~, possesses property (~Moo) �9 By virtue 

of Lemma 2, the space Z does not have the property ~R~)either. Thus, T~(C(~),Z) 

for some ~ ([3, Theorem 92] and [2, Proof of Proposition 2.1]). Since T is part of 

the operator ~ , we have T~(~,X)). 

Making use of the full extent of Lemma 2, one can obtain the following theorem. 

THEOREM 3. If O(~)/~ does not have property (~p) and ~ does not have property 

(~M~) , then Nma~(p,~)Cl~,X) = I~(~,X). 
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2. THEOREM 4. Let ~C(~) , ~r162 such that both spaces C(~I)/~ ~ and C[~)/&r 

are reflexive. If ~4 ~r , then there exist spaces ~ and ~ , ~cC(~)~, ~ ~r ~ , such 

that: I) the spaces C([4~/~ and C(S~)'/P~ are finite-dimensional; 2) there exists an iso- 

morphism q , mapping ~ and Fr for which ~(~)= ~ .  

COROLLARY. If [~ and [~ are reflexive subspaces in ~4(7) and b~)/E~h4~)/Br , then 

one of the subspaces ~4 , Er is isomorphic to the product of the other one with a finite- 

dimensional space. 

COROLLARY. There exists a continuum of pairwise nonisomorphic spaces X , not ~- 

spaces and such that ~4(X,~)= B~X,~). 

Indeed, hp can be embedded into ~ if pe (~, 2]. 

3. The spaces ~ which occur in Theorem 2 possess a series of other properties which 

makes them similar to the spaces C(~) �9 

THEOREM 5. Assume that C(~)/~ is reflexive. Then: I) ~ and all of its conjugates 

satisfy the Dunford--Pettis condition, while the spaces ~+, ~ ,...~(~*~... are weakly 

sequentially complete; 2) the spaces ~ , ~ .... ,~(~[... satisfy the Pelczynski condition. + 

The second part of this theorem is obtained with the aid of Lemma i, while the first 

part -- with the aid of the following lemma which is easily derived from Rosenthal's theorem 

[4]. 

LEMMA 3. Let X be a Banach space~ ~c X , and assume that Y does not have subspaces 

which are isomorphic to ~ Let ~ be the canonical mapping of X onto X/V , and let {~ 

be a bounded sequence in X such that the sequence [q(x~)} is weakly fundamental, Then 

Ix~} contains a weakly fundamental subsequence. 

4. It would be interesting to find out whether Theorem 2 remains valid if (~ is sub- 

jected to other conditions (e.g., if one requires that the space ~1=~(~)/~)~be separable). 

I do not even know whether an analog of Theorem 2 holds for the classical space OA (one 

can show that if the quotient space ~(~)/& is reflexive, then the spaces &~ and C~ are 

not isomorphic). Nevertheless, the following theorem holds. 

THEOREM 6. A reflexive space can be embedded into C~ if and only if it can be embed- 

ded into some space h~(~) . Moreover, if ~ is a reflexive subspace of the space C~ ~ then 

there exists an operator T from ~(C2~ 62), such that TJ~ is an isomorphism and such that 

on the space [([) there exists a cross section for the canonical mapping of 0(~)* onto 

C[ . 

Finally~ for spaces with a separable annihilator, the following analog of the fundamental 

result of [5] holds. 

THEOREM 7. Let ~ be a metric compactum, ~cC(~), and assume that the space ~a" is 

separable. If T~B(~,~) and the set T~(X ~) is not separable, then in ~ there exists a 

complemented subspace Y , isomorphic to g([O,~), and such that T/V is an isomorphism~ 

#The definitions mentioned in the conditions of Theorem 5 are described, e.g., in ['7] (regard- 

ing [7], see also the footnote on p. 1103 of this issue). 
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SPECTRUM OF OPERATORS IN IDEAL SPACES 

A. K. Kitover UDC 517.948.35 

One considers "weighted translation" operators in ideal Banach spaces. It is 

proved that if the translation is aperiodic (the set of periodic points 

has measure zero), then the spectrum of such an operator is rotation- 

invariant~ This result can be extended (under certain additional restrictions) 

to "weighted translation" operators acting in regular subspaces of ideal spaces, 

in particular, to operators in Hardy spaces. 

In this note we prove the rotation-invariance of the spectrum of aperiodic operators 

of "weighted translation" in ideal* spaces and uniform B-algebras. # 

THEOREM i. Let (X,~I be a space with a positive ~-finite measure, let E be the 

ideal space of measurable functions on ~ , and let ~ be a measurable mapping of X onto 

such that: 

i) ~)=0 ~-~ ~(@(e))=0~ 

2) the translation operator X~ is defined and bounded in E. Assume that the set of 

-periodic points in X has measure zero and that Me~(X,~) . Then the spectrum of the 

operator T =MT~ is rotation-invariant. 

Proof. Assume that ~ belongs to the continuous or to the point spectrum of e(T), and 

let l~I=~ �9 Let us show that ~(~) . For any measurable set ~ , ~cX , we define the sets 

~(~)~=0,~, .... bythe equalities ~0(~)= ~ ,~(~)=~(~-~(~)) We fix a natural number N By 

virtue of the aperiodicity of ~ there exist (see [4]) sets ~..7~N with the properties: 

i) the sets ~i(~)~ ~=I~..~N~-0, ~N4-~, are pairwise disjoint; 

Regarding ideal spaces and the corresponding terminology, see [i, p. 91]. 

#For operators induced by ergodic transformations in L ~ , the corresponding result has been 

obtained by Petersen [2], while for operators with unitary spectrum in uniform ~ -algebras -- 

by the author [3]. 
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