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A b s t r a c t .  Techniques are developed to facilitate the transformation of a perturbed Keplerian system into Delaunay normal 
form at first order. The implicit dependence of the Hamiltonian on I, the mean anomaly, through the explicit variable .f, 
the true anomaly, or E, the eccentric anomaly, is removed through first order for terms of the form: 

coe  , f ~ : ' h ~ r + ~ )  and {.~.}(E+~), 
t , l n  J "  r 

where the angle v is independent of I and k is an integer constant. The procedure involves no expansionln the powers of 
the eccentricity. 

1. I n t r o d u c t i o n  

Let the power series 

7/' = 7/ ;  + n-r. 7/'~, (1) 
n = l  

represent a l tami l tonian  for a perturbed Keplerian system where the leading term 

~2 

7 / ;  - 2L,2, 

corresponds to the undisturbed two-body motion in Delaunay variables. Canonical methods of solution 
appropriately t ransform Equation (1) such tha t  Hamil ton 's  equations in the new phase space are amenable 
to analytic integration. If the transformed IIamil tonian depends solely on the new momenta  the new co- 
ordinates become linear functions of t ime and the new momenta  constants  of the motion. A common 
approach in developing Equat ion (1) into such a t Iamil tonian is a sequence of Lie transformations.  The 
first t ransformation is constructed to render the coordinate i (short-period terms) ignorable and a sub- 
sequent t ransformation to render the Delaunay coordinates g and h (long-period terms) 'ignorable. This 
note addresses in par t  the construction of the first transformation. 

Applying the Lie t ransformation 

(/', g', h', L', G' ,  H ' )  ~ (l, g, h, L, G, H),  

to Equat ion (1), the transformed IIamiltonian through first order in the per turbat ion parameter  e is given 
by Deprit  (1969) as 

7/' ~ 7 / =  ~o + e(7/1 + Lo(W1))  + O(e2). (2) 

In general the normalization process begins with the construction of the generator W1, such tha t  through 
first-order 7 / =  7 / ( - ,  g, h, L, G, H).  The generator is constructed to eliminate from the expression 

I~ 2 OWl 
7/1 + Lo(W1) = 7/1 L 3 0 I  ' (3) 
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its dependence on I, the mean anomaly. Closed-form components of the generator that remove the implicit 
dependence of 7~ 1 on I through the explicit variable f ,  the true anomaly, or E, the eccentric anomaly, for 
terms of the form 

COS (:o:}(+:+.) {+,.}(+,+.). (4) 

are developed in the next section. The angle v is independent of l and k is an integer constant. This is 
equivalent to determining the quadratures 

COS "~ 
f ( s i n ) ( k E + v ) d l  and / ( ; ~  + v ) d l .  (5) 

The quadratures in Equation (5) arise in many problems of perturbed Keplerian motion. An exam- 
ple is at first order in the planetary problem�9 For compactness, expressing the planetary perturbation 7/1 
explicitly in the true and/or eccentric anomaly results in three fundamentally different types of terms. 
First, present in the expansion are terms independent of the mean anomaly. Second, terms implicit in the 
mean anomaly of the perturbed or perturbing planet, and third, terms implicit in the mean anomaly of 
the perturbed and perturbing planets. The removal of the second type of terms (which are characterized 
by Equation (4)) is the subject of this note. Removal of the third type of terms is much more difficult. 

2. Remova l  Techn iques  

The classical approach is, first, to express Equation (4) explicitly in I as an infinite series through Besselian 
expansions of the two-body expressions. For example, using the trigonometric identities 

~ 'c~ + v) r c~ k -  s inv+ sm }kE, (6) 
~sin = c~ v~. sin J ~ + ' +  ~cos 

one can express { ~.~ } ( kE  + v) in terms of the mean anomaly by substituting for the eccentric anomaly 
(Brouwer and Clemence, 1961) 

oo cos / 1, if k = O; 
(sin i/i:_ ( c o s }  _ Ao}+k~],l[,s,.+_i(ne)+j,,+++(ne)l(sin}nl, Ao = l,-e/2' ifl#+l=l; (7) 

.=1 0, if Ikl > 1; 

where Jn(ne) is a Be~el coefficient of order n and argument he. Replacing the appropriate integrand in 
Equation (5) by Equation (7) renders the integration through some order in the eccentricity e straightfor- 
ward. Clearly, this method results in an unwieldly number of terms, particularly, when the perturbation 
consists of many harmonics�9 

The approach used herein is an implicit method which results in a closed-form generator by avoiding 
these infinite series expansions�9 The following partial derivatives (Brouwer and Clemence, 1961) are 

utilized a g  r OE a o g  cgg Of Of rla ~ _ (8) 
cg.f - ~la' Ol - r '  Ol - O.f Ol Ol r z ' 

where # = ",/1 - e 2. 

A. Remova l  of  t h e  Eccen t r i c  A n o m a l y  

The elimination of the eccentric anomaly is an orderly process in view of the elementary quadratures 

/tc  (kE+.)dl ](1 ,cos- +E --- - e cos E)~. sin ~( + v)dE.  (9) 
J t s i n  .~ 
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Integrating for [k[ = 1 and Ikl # 1 gives 

cos- e l f  cos1 (1 ~_) (s in  kefsin}(2kE+v) 
f(sin }(kE + v)dl -:i sin i v 4- k = _ c o s } ( k Z +  ~) ~: T t c o  s 

ke 2 [ s in ) (_kE  + v), Ikl = 1, (10.a) 
4- -4 -  l cos 

COS e f ( s in}(kE +v)dl= -t- l{::)(kE +v) W- 2 ( - - k ' ~ {  sincos -~([k + 1]E + v) 

e f sin } ([k - 1]E + v) (lO.b) 
2(-r:q:-:)tcos , Ikl ~ 1. 

Note, when [k[ = 1 a quantity dependent upon the eccentricity and angle v is introduced into the 
Lransformed Hamiltonian. This results from requiring the generator to be strictly periodic. 

In secular motion studies, the average of Equation (5) is required. Hence, averaging Equation (10) 
gives 

2 r  

: j r  Js in  ( +~ , )dZ= (11) l 0, if ]kl # I. 
0 

B. Removal  of  the  True Anomaly  

T, he elimination of the true anomaly is more involved. To facilitate this process the latter quadrature in 
equation (5) is decomposed 

f~f c~  + v)dl = f [cos v~ fc~ }kf :F sinv~ sin }kfl dl, 
sin d t  ~ s m -  ~cos) J 

=cosy  /~c~ ~: sinv /~f sin ~kfdl,. (12) 
J (  s i n  9 j (  c o s  J 

where the quadratures above will be determined separately. 
The removal of cos kf will be considered first. From tile analysis of Chebyshev polynomials 

Arfken, 1985) one can write 

cos ks = ~ b~')(cos ])'-~', (:3) 
i = 0  

where (k)  (k-- i-- i)l'2k-2i. (14) b~ k) = ( -1) '  ~. (k - 2i)! 

Rewriting cos f in terms of the radial distance r and expanding gives 

(c~ r 
k - 2 i  

j = 0  

(15) 

where (n) = ,-_L.' ,, denotes the binomial coefficients. Substituting Equation (15) into Equation (13) 
m rt l .  I n - -  rrl~:~_~ . '  / ~ \  

and integrating using r~quauon (~) gives 

k/2 k-21 

i=O j=O 

(16) 
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where 
b}~) = (-1)2'-k+1 (k ; 2i) b~). 

Four types of integrals appear in Equation (16). These are 

(17) 

j = 0: d/= t, (IS.a) 

j =  1: f ~ d f -  y2(esinE +l) ,  (18.b) 

j -~ 2 : f fl 3 df = 73(r + I), (18.c) 

j > 3 : f , / 3 ( 1  + ecosf)J-2df, (18.d) 

where r = f - 1 is the equation of center. Expanding the integrand of Equation (18.d) and integrating 
gives 

j >_ 3: / I }  2j-1 a \ J - 2  j - 2  . r (hi n 

where use is made of the identity 

with 

n 

2 p-----1 
(19) 

= (n_p)/2J2n_l  and 6np= 0, i f n + p  odd. 

The evaluation of Equation (16) for 5 > k > 1 is summarized in Table I. 
In the removal of cos kf, a term dependent upon the eccentricity is introduced into the transformed 

ttamiltonian as a consequence of requiring the generator to be strictly periodic. The expressions in Table I 
are regular for circular orbits (e = 0) as seen by expanding the right hand sides in terms of the mean 
anomaly. The average of the expressions in Table I is straightforward. The general result is given by 
Kozai (1962) as 

1 [ (-e)k(1 + k,?) 
- -  cos kf  dl = (21) 
2= J (1 + r/) k 

P The removal of sin kf will be conmdered next. Differentiating Equation (13) with respect to f give~ 

( k - 1 ) / 2  

sink f =  ~ d~k)sinf(cosf) TM, (221 
i----O 

where 

Utilizing Equation (15) in Equation (22) and integrating using Equation (8) gives 

( k - 1 ) / 2 k - 2 i - I  
d!k.)e2i-k+l f ~2j-1 2-j sin k f dl = Z Z ,a J ( r  ) sin f df , 

i=0 j=0 

03: 

(24 

where d}~)=(-1)~-2'+~-1( k - 2 i - , ,  j 1)d} ~) (25 
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Four types of integrals appear in Equation (24). These are 

r 2  . 

j = 0:  - ~ s m f d f  = -Tcos E, (26.a) 

/ T/r 73 ln(72a) (26.b) j = 1: --sinfdfa = ---e \ - -r- / '  

j = 2 : / ,73 sin f d f  = -73 cos f, (26.c) 

j > 3 : / 73 (1 + e cos f)J-2 sin f dr. (26.d) 

Expanding the integrand of Equation (26.d) and integrating gives 

,-2 �9 ) [ c~(.) 
�9 a j - 2  . 73en ( j  -- 2 sin:*= E - cos: 

- J \ r /  \ n 
n = 0  

+ ~ a(~)(cos(p-.l)f cos(p+ l)f~] (26.d) 

,=i 2 ~ p--1 ~--~i /J' 
where use has been made of Equation (19). The term with divisor p - 1 in Equation (26.d) is to be 
ignored if p = 1. The evaluation of Equation (24) for 5 > k > 1 is summarized in Table II. 

The expressions in Table II are regular for circular orbits as seen by expanding the right hand sides 
in terms of the mean anomaly. The average of the expressions in Table II is straightforward. The general 
result is 

2 r  

[ sinkf dl : O. (27) 
d 
0 

Similarly, the average of Equation (12) is obtained by using Equation (21) and Equation (27) 

2 r  

i fI~~ = (-')k(1 + kT) (cos~ (28) 
2~r J l .  sin (1 + 7) k ~ sin v .  

0 
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TABLE I 

Evaluation of f cos kf dl for k = I, 2,..., 5 

f cos f di = - e l  + r/2 sin E 

f cos 2 f dl - (-~-y-~ ( l + 2rl ) " + 2rl2 [~b - 2e sin 

_ e3(1 + 3r/) - 1/2 +~2)es inE+4rles in f]  f cos3f dl = --~ -+---~l + ~-~ [-8r/~b -1- 3(3 

e s (1 + 57/) l - + ~ [ - 8 ( 5 +  cos5fdl  --(~-q_-~ 3 0 2 ) ~ + 5 ( 5 +  lO~?2 +174)e3sinE+8(5+~7~)~esinf 

- 8 0 e 2 s i n 2 f  + 4r/e3 sin 3f] 

TABLE II 

Evaluation of f sin k f  dl for k = 1,2, . . . ,  5 

sin f dl = -r/cos E 

2~ [ 2, [ ~2 a '~ eosE] f s in2ldl  = "~- [-O tn~--~-) +e  

/sin3fdl=~[8o21n(~-~)-'3+o2'eeosE-'rl2eeos'] 

sin 4f dl = --~ 
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3. Concluding Remarks  

The techniques illustrated herein are derived from efforts to transform the planetary Hamiltonian into 
Delannay normal form when the perturbation 7fl is expanded in terms of the eccentric and/or true 
anomaly. These techniques were implemented using a symbolic processor and facilitated the construction 
of a first-order generator for the planetary theory. The most difficult terms to remove at first order in the 
planetary problem are those given by Equation (4), with an additional angular argument that depends 
upon the mean anomaly of a perturbing planet. Current research is directed towards removing these 
terms. 
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