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Abstrac t .  Multivariate image analysis can be used to 
analyse multivariate medical images. The purpose could 
be to visualize or classify structures in the image. One 
common multivariate image analysis technique which 
can be used for visualization purposes is principal 
component analysis (PCA). The present work concerns 
visualization of organs and structures with different 
kinetics in a dynamic sequence utilizing PCA. When 
applying PCA on positron emission tomography (PET) 
images, the result is initially not satisfactory. It is 
illustrated that one major explanation for the behaviour 
of PCA when applied to PET images is that it is a data- 
driven technique which cannot separate signals from 
high noise levels. With a better understanding of the 
PCA, gained with a strategy of examining the image 
data set, the transformations, and the results using 
visualization tools, a surprisingly easily understood 
methodology can be derived. The proposed 
methodology can enhance clinically interesting 
information in a dynamic PET imaging sequence in the 
first few principal component images and thus should be 
able to aid in the identification of structures for further 
analysis. 

Key words: PET imaging - Multivariate image analysis 
- Principal component analysis - Visualization of 
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In t roduct ion 

Multivariate statistical methods are used for classifica- 
tion [1], regression [2] and factor analysis (FA) [3]. 
These multivariate statistical methods have been used 
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over two decades for different purposes in the analysis 
of multispectral images in the remote sensing discipline 
[4], Some multivariate methods have also been used in 
medical imaging for quite some time [5]. 

A collection of approaches, including multivariate 
statistical methods for tissue characterization in magnet- 
ic resonance (MR) imaging, are presented in [6]. In nu- 
clear medicine [positron emission tomography (PET), 
gamma camera imaging], the multivariate analysis of 
image data is mostly concerned with estimating the pa- 
rameters of a compartment model [7]. The methodology 
is referred to as factor analysis of dynamic structures 
(FADS). In [8] several proposals for performing FADS 
are reviewed. It is well known that FADS is used to 
solve an under-determined problem. There are an infinite 
number of sets of factors which are possible solutions. 
The modifications done to the original algorithms main- 
ly propose different constraints on the solution in order 
to reduce the set of possible factors. 

A starting point for the multivariate statistical meth- 
ods could be a principal component analysis (PCA) 
[9-1 1 ]. PCA is a data-driven technique used to explain 
the variance-covariance structure in a data set through a 
set of linear combinations of the original variables. PCA 
is often used to find a first set of factors in a factor anal- 
ysis. In [12], one of the pioneers in the area reviews the 
use of FA in nuclear medicine. It is pointed out that FA 
is used to overcome some of the limitations of a region 
of interest (ROI) analysis, but FA introduces new prob- 
lems, such as interpretation of the obtained factors. FA 
could, however, be incorporated in the ROI analysis in- 
stead of being an alternative. It is suggested that FA 
could have a role in improving reproducibility in the 
ROI analysis. This paper is concerned with this matter. 
We will re-examine the possibility of using the concep- 
tually simple PCA on dynamic imaging sequences for 
visualizing in a few images the major structures in the 
sequence. This approach can be used as an intermediate 
step in an ROI analysis. 
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Materials and methods 

A short description of multivariate images and PCA is presented 
in Appendix A. 

Synthetic image data. In order to understand the result of applying 
PCA on multivariate images, synthetic images simulating simple 
but representative dynamics are used. Two synthetic multivariate 
images with a spatial size of 128x128 pixels, and with grey scale 
in the range 0-4095 (12 bit pixels), will be used. 

The first synthetic multivariate image consists of two images. 
It contains background, two circular homogeneous areas with 
changing grey levels, and additive noise. The standard deviation is 
fixed for each image, so all signals in an image have the same 
noise. The signals were designed to be linearly related, which 
gives a true dimensionality of one. This multivariate data set is de- 
scribed by three normal distributions and the number of samples 
from the corresponding normal distribution (Table 1). 

The second synthetic multivariate image consists of ten imag- 
es. It contains a constant background and three small circular ho- 
mogeneous areas with grey levels changing for the different 
bands, as defined in Table 2. 

PET image data. Four different PET image data sets utilizing dif- 
ferent tracers will be used as illustrations. The images all have a 
spatial size of 128x128 pixels. The grey scale is in the range 
0 4095. The number of collected frames varies between l0 and 20 
for the different acquisitions. 

Background noise normalization. The synthetic multivariate image 
defined in Table 1, shown in Figure la, simulates two images from 
the same slice but different frames in a dynamic PET imaging se- 
quence. The important properties are different background noise, 
and two structures which are close in amplitude. For a more de- 

Table 1. Definition of the signals in a noisy synthetic multivariate 
image with two dimensions. The used notation for the normal 
distribution is N(mij, cri). mij is the mean value for the signal j in 
image band i; o i is the standard deviation for all signals in image 
band i. nJ samples are present fi'om the signal j in all bands. The 
corresponding images are shown in Fig. 1 a 

Image Slli S12i S13i 
band i (big object) (medium (background) 
(variable) n1~530 object) n3=15 650 

n2~200 

1 N(2300,300) N(2600,300) N(2000,300) 
2 N(2200,50)  N(2400,50)  N(2000,50)  

tailed discussion of the proposed background noise normalization 
than is presented in this section, see [13] and [14]. 

Performing PCA of this multivariate image results in a new, 
transformed, multivariate image. The images contained in this 
new multivariate image, the principal component (PC) images, 
represents orthogonal maximum variance directions for the analy- 
sed data set. Mathematically, these directions are derived as the 
eigenvectors of the covariance matrix for the data set. PCA is a 
data-driven technique, which cannot by itself discriminate be- 
tween signals and noise. In this section we would like to illustrate 
how the background noise can influence the choices of the maxi- 
mum variance directions. 

The space spanned by a p-dimensional histogram of the p im- 
age bands in a multivariate image will be called feature space. It is 
in this space that the PCA selects the maximum variance direc- 
tions. A visualization of this space is the 2D histogram, often re- 

1 

U2 c 

II B 2 

Fig. 1. a The two images bands defined by Table 1. The first band 
is to the left, the second is to the right. The visible signals are the 
big object S1 l, the medium object S12, and the background S13. 
Note that the two bands have different noise, b The feature space 
for the first synthetic image represented as a scatter plot. The 
eigenvectors u~ and u 2 obtained from the PCA are indicated. This 
type of plot will be called an eigenvector-scatter plot. e The 
eigenvector-scatter plot for the case of using noise normalized 
image data. Note how the shape of the clusters in feature space 
have changed from elliptical to circular, and that the first 
eigenvector points out a direction given by the centres of gravity 
for the clusters, d The result of a PCA of the noise-normalized 
synthetic multivariate image. PC 1 to the left, PC2 to the right. The 
structures are only visible in PCI 

Table 2. Three signals and a background defined for a ten-dimensional synthetic multivariate image. The signals are plotted in Fig. 2a, 
and the images are shown in Fig. 2b 

Image $21 i $22i $23i $24i 
band (big object) (medium object) (small object) (background) 
(variable) n/=530 n2=200 n3= 110 n4= 15 540 

i = 1..10 3000 exp (0.5i) 3000 exp (0.07i) 3000 (1 exp(0.22i) 100 
4000 (1 - exp(0.06i)) 
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ferred to as a scatter plot. For image data, it shows the position of 
the pixels in a 2D subspace of feature space. If the multivariate 
image consists of only two images, the scatter plot shows the 
whole feature space. The feature space for the example image is 
shown in Fig. lb. The numbers in the plot indicate which axis rep- 
resents which image. 

A scatter plot with indicated eigenvectors will be referred to as 
an eigenvector-scatter plot. Figure lb is an eigenvector-scatter 
plot. The eigenvectors uj and u 2 are shown in the plot; note that 
they are orthogonal. It is possible to examine the characteristics of 
the PC images using the eigenvector-scatter plot. 

The unequal background noise in the two images in the used 
synthetic multivariate image is visible in the feature space repre- 
sentation as producing elliptically shaped signals. The first eigen- 
vector u I does not indicate the two structures, but points out a di- 
rection very much influenced by the large background noise in the 
first image, which in the figure is vertically directed. The two re- 
suiting PC images will be very similar to the two original images 
(see Fig. la). 

All parameters, including the noise, are known for this syn- 
thetic data set. It is then possible to normalize the data to uniform 
noise. The result will be circular blobs in feature space, and three 
overlapping circular blobs representing the three signals are visi- 
ble in Fig. lc. After the background noise normalization, the two 
structures are successfully indicated by the first eigenvector be- 
cause the centres of gravity for the circular blobs representing the 
signals now define the maximum variance direction. The struc- 
tures will in this case be shown in good contrast in the corre- 
sponding image PC 1 (Fig. 1 d). 

From this example with noisy synthetic data an important con- 
clusion can be drawn. Preprocessing by normalization of the back- 
ground noise can improve the possibility to separate signals from 
noise using PCA, a task which PCA itself is not capable of solv- 
ing since it is data driven. The method is motivated from numeri- 
cal experiments [13], and has theoretical support [15]. 
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Results 

PCA of a noise-free synthetic image 

The values  for the different  s ignals  in the no ise - f ree  syn- 
thetic mul t ivar ia te  image  are p lot ted  in Fig.  2a. The  syn- 
thetic image,  shown in Fig.  2b, is subject  to a PCA.  In 
Fig.  2c the first five ob ta ined  PC images  are shown.  
Higher  PC images  are s imi lar  to PC4 and PC5,  conta in-  
ing no structure.  As  expected ,  there is a subs tant ia l  re- 
duct ion in the d imens ional i ty .  Only  the first three PC im- 
ages contain  structure.  It is poss ib le  to give a s imple  in- 
terpreta t ion of  these PC images  by  observ ing  the weights  
of  the cor respond ing  e igenvectors ,  but this is b e y o n d  the 
scope of  this paper.  This  synthet ic  image  data  set has on- 
ly three d imens ions ,  even though ten d imens ions  are ini-  
t ia l ly used to descr ibe  the data  set. This pe r fo rmance  o f  
PCA,  creat ing PC images  showing the s ignals  cont ras ted  
to one another,  is be l i eved  to be useful  as a p reprocess -  
ing step before  an ROI analysis .  

A methodology for  applying PCA to PET image data sets 

Figure  3a shows the same sl ice imaged  in ten f rames  in a 
dynamic  PET head scan. It is a s tudy of  the bra in  in a 
pat ient  wi th  t empora l  lobe  ep i l epsy  using the t racer  I IC- 
L-deu te r ium-depreny l .  In the sequence o f  image  bands  
there are early, late and more  complex  signals.  The  re- 
sult f rom the prev ious  sect ion suggests  that improved  
contrasts  be tween  the different  s ignals  should  be ob-  
ta ined through a PCA.  In Fig.  3b the resul t  of  a P C A  is 
shown. The  behav iour  is not as expected.  The  majo r  sig- 
nal components  are not  contras ted in the first few PC im- 
ages; ins tead signals  appear  in many  of  the PC images .  

The P C A  has fa i led  to r ep roduce  the resul t  ob ta ined  
in the previous  sect ion using the noise- f ree  synthet ic  im-  
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Fig. 2. a Time-activity curves for the three signals defined in 
Table 2, shown in Fig. 2b. b The ten image bands defined by Table 
2. The first band is in the upper left corner, and the tenth band is 
in the lower right corner. This set up will be used for all images, 

and the images are always shown contrast stretched, c The first 
five PC images obtained when PCA is applied to the noise-free 
synthetic image shown in b. From left to right: PC I to PC5. The 
dimensionality is reduced to three 

European Journal of Nuclear Medicine Vol. 21, No. 12, December 1994 



1288 

Fig. 3. a One slice from a dynamic study of the brain 
in a patient with temporal lobe epilepsy using the 
tracer l lC_L_deuterium_deprenyl, b The ten PC 
images derived through a PCA of the PET image in a. 
Structures are visible in many of the PC images, e 
The first five PC images obtained after noise 
normalization and PCA of the PET image shown in a. 
In PC2, the epileptic focus (bright area) and the 
cerebellum (dark area) are indicated 

age data. Since PCA is a data-driven technique, the ex- 
planation of the difference in the result from the synthet- 
ic and the real image data is not to be found in the mode 
of analysis, but in the properties of the data set. 

A multivariate image contains information which can 
be hard to fully comprehend due to the high dimension- 
ality of the data set. The work presented in this paper 
was carried out using a software called MUSE [16], de- 
signed for exploratory interactive multivariate image 
analysis [17, 18]. Using MUSE, real and synthetic image 
data, the influence of background noise was identified as 
a major factor contributing to the disadvantageous result 
of PCA when applied on raw PET image data. 

In order to compensate for the difference in back- 
ground noise, one starts by estimating the background 
noise for each slice and frame. An estimate of the back- 
ground noise can be obtained using an ROI situated in 
the background. Alternatively, an estimate of  the back- 
ground noise can be made from the image reconstruction 
data. The noise in a slice is approximately proportional 
to the number of  counts registered for this particular 
slice and frame. The noise in the investigated slice is 
normalized for each frame using the estimate, i.e. the in- 
vestigated PET image is noise normalized. PCA is ap- 
plied to this preprocessed image data set. 

Applying the proposed methodology, using an auto- 
matic estimation of the noise (from the reconstruction 
data), to the PET example in Fig. 3a results in the PC 
images shown in Fig. 3c. A visual comparison of the PC 

images in Fig. 3c to the PC images in Fig. 3b indicates 
that the signals are better visualized using noise-normal- 
ized image data. 

The signal-to-noise ratios (SNRs; see Appendix B for 
a definition) for the two cases are shown in Fig. 4. In or- 
der to display the differences for the higher PCs, Fig. 4 
does not show the SNRs for the first PC. It is close to 
230 for both cases. The plot indicates that the noise is 
more successfully handled in the case of  noise-normal- 
ized image data, because when the noise level is reached 
it is stable. Compare this to the non-normalized case, 
where there are increases in SNR for higher PC images. 
Those PC images show structure even though the noise 
level should have been reached. The plot of the SNRs 
supports the visual impression that the appearance of the 
signals is more favourable if the noise normalization is 
used, and they appear in the first few PC images only. In 
conclusion, PCA applied to noise-normalized image data 
will show a result which is more in line with what would 
be achieved using a noise-free image data set. 

Applying PCA to several PET image data sets 

Four different PET image data sets utilizing four differ- 
ent tracers will be used to illustrate the potential of per- 
forming PCA of automatically noise normalized PET 
images. The result will be PC images which highlight 
spatial areas with different kinetic behaviour. Dynamic 
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Fig. 4. A plot showing the SNRs for the PC images derived from 
the original PET data (Fig. 3b) and the PC images derived from 
the noise-normalized PET data (Fig. 3c) 
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Fig. S. The dynamic curves plotted for the relevant structures in 
Fig. 3c 

Fig. 6. a A slice through the abdomen, including the liver, in a 
patient with a multitude of metastases from a carcinoid turnout 
examined after the injection of l lC-5-hydroxytryptophan, b The 
first five PC images obtained after noise normalization and PCA 

UPTAKE OFC-11-~HTP 

1000 g It- ~ ~m- 
~,0o ',, ," 

5 10 15 20 25 30 35 40 
TIME (MIN~ 

of the PET image shown in a. Indicated structures in PC2 are the 
aorta (bright area), the tumours (dark area) and the liver (grey 
area), e The dynamic curves plotted for the relevant structures in b 

curves for these areas are obtained from interactively 
marked ROIs. 

Figure 3c shows the first five PC images for the pre- 
viously used example with l lC-L-deuterium-deprenyl in 
a patient with temporal lobe epilepsy. The weighted av- 
erage image PC1 shows lower uptake in the cerebellum 
(CBL). From PC2 and the dynamic curves shown in Fig. 
5 it is seen that the uptake in the cerebellum differs from 
cortex and epileptic focus, with a pronounced initial up- 
take followed by a more significant washout. The epilep- 
tic focus is contrasted against normal brain tissue with a 
low initial uptake and high late uptake. 

Figure 6a shows a slice through the abdomen, includ- 
ing the liver, in a patient with a multitude of metastases 
from a carcinoid tumour. Ten of the used 14 frames are 

shown. The patient was examined after the injection of 
x lC-5-hydroxytryptophan, a tracer which indicates the 
synthesis of serotonin which is extensive in this type of 
tumour [19]. In the PC images in Fig. 6b, a very high 
uptake of l~C-5-hytroxytryptophan is nicely demonstrat- 
ed in PCl.  The second PC image indicates not only that 
the magnitude of the uptake in the tumour metastases is 
enhanced, but it clearly also demonstrates a different ki- 
netic pattern compared to the liver. The aorta with its 
separate kinetics is also highlighted. The kinetic curves 
obtained in ROIs in the liver, the metastases and the aor- 
ta are demonstrated in Fig. 6c. 

Figure 7a shows a slice through the abdomen in a pa- 
tient with a large ductal pancreatic tumour and a small 
metastasis in the tip of the liver obtained with 18F-flu- 
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Fig. 7. a A slice through the abdomen in a patient with a large 
ductal pancreatic tumour and a small metastasis in the tip of the 
liver obtained with ~SF-fluorodeoxyglucose. b The first five PC 
images obtained after noise normalization and PCA of the PET 
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image shown in a. Indicated structures in PC2 are tumours (upper 
clark areas), the liver (bright area to the left) and a kidney (bright 
round structure in the centre), c The dynamic curves plotted for 
the relevant structures in b 

Fig. 8. a A slice through the thoracic region, including the heart 
and lung, after the injection of ]lC-acetate for the visualization of 
the oxidative metabolism in the heart, b The first five PC images 
obtained alter noise normalization and PCA of the PET image 
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shown in a. The different kinetics of the ventricles are well 
captured in PC2 and PC3. c The dynamic curves plotted for the 
relevant structures in b 

orodeoxyglucose.  Figure 7b shows that the magnitude o f  
the uptake of  laF-f luorodeoxyglucose averaged over the 
sequence is only slightly enhanced in the turnout, as 
seen in PC1. PC2 shows that the kinetics of  the tumours 
are significantly different f rom those observed in the liv- 
er. The kinetic patterns obtained in ROIs are shown in 
Fig. 7c. 

Figure 8a shows a slice through the thoracic region, 
including the heart and lung, after the injection o f  l lC- 
acetate for the visualization o f  the oxidative metabol ism 
in the heart. The first PC image in Fig. 8b documents  the 
very high uptake in the heart muscle, The fol lowing two 
PCs separate the time sequences of  initial passage o f  the 
blood radioactivity into the right ventricle fol lowed by 

passage into the left ventricle. The kinetic patterns ob- 
tained in ROIs are shown in Fig. 8c. 

D i s c u s s i o n  

Positron emission tomography  is undergoing very rapid 
development,  primarily due to the multitude of  new trac- 
er substances which are available for human studies. 
Many of  these new tracers necessitate dynamic examina- 
tions and dynamic  models for analysis which consider 
the relative contributions f rom blood volume with a vari- 
able blood concentration, organ perfusion, partition co- 
efficients, reversible and irreversible binding, metabo- 
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lism of  the tracer and washout  from the organ. The com- 
plex dynamic behaviour often makes it difficult to identify 
anatomical structures which differ in one or more re- 
spects. It is logical to assume that inspection o f  only a few 
frames in a dynamic sequence or an image obtained as an 
average over part of  the examination, is not sufficient. 

In the present communicat ion we propose a method- 
ology, PCA of  a dynamic PET study, to aid in the identi- 
fication of  structures with different kinetic patterns. This 
identification can be used as a starting point for different 
types o f  analysis, e.g. kinetic analysis of  an ROI placed 
on the basis o f  anatomical identification also using PC 
images. This method can be viewed as a technique to re- 
duce the dimensionali ty of  the data set by successive 
identification of  which components  constitute max imum 
variance, and to illustrate these components  as images. 

The methodology  includes three attractive features. 
Firstly, the PC images will appear with decreasing SNR 
(see Fig. 4). Therefore only the first few PC images need 
to be inspected. Only in cases with higher dimension- 
ality in the dynamic behaviour will structures appear in 
higher PCs. Secondly, the method is optimizing the sig- 
nals by simultaneously considering the complete set o f  
images in the dynamic sequence. Thirdly, the method is 
totally independent o f  any kinetic model  and thus does 
not include any model-based restrictions. 

It is possible to perform local PC transformations (see 
Appendix A) using an ROI which covers the objects. For 
the presented PET images, using an ROI improves the 
SNRs for the first few PCs, but without major  visual im- 
provement.  It is believed that using an ROI improves the 
behaviour of  PCA, but the improvement  is too small to 
be clearly visible. The reason for this belief is that if the 
pixels belonging to the background are used in the calcu- 
lations, the direction of  the first eigenvector is strongly 
influenced by those pixels, and this influences the follow- 
ing eigenvectors because of  the orthogonali ty between 
eigenvectors. An RO1 which excludes a large part o f  the 
background reduces its influence on the eigenvectors. 

It should be noted that the procedure to normalize the 
background noise in each slice and frame creates frames 
with equal noise levels for all slices. This is equivalent 
to expressing all pixels with the same uncertainty. 

An implementation of  the proposed methodology is 
currently in use for evaluation at the PET Center, Upps- 
ala University. The implementation uses automatic esti- 
mations of  the noise, and also has the possibility o f  using 
local PC transformations. Using a modern workstation, 
the calculation of  the PC images for all slices takes 5 -10  
rain, depending on the number  of  frames. The clinical 
material presented was processed using this software. 

Applicat ion o f  PCA to SPET imaging sequences is 
clearly possible, without any modifications o f  the meth- 
odology. If  the methodology is applied to gamma  camera 
data, the noise normalization should be replaced by 
noise stabilization of  the Poisson-distributed noise [ 14]. 

In conclusion,  a methodology for applying PCA to 
PET sequence image data has been proposed.  It uses an 

estimate o f  the background noise in each slice and frame 
to normalize the images to equal noise level. Applicat ion 
o f  PCA to these preprocessed PET image data results in 
PC images with structures of  interest visible in only the 
first few PC images. 

Acknowledgements. This work was partially supported by grants 
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Appendix A 

Multivariate image data 

An image can be created by measuring the intensity distribution in 
some wavelength band over a spatial area. The image will show 
samples (pixels) from the distribution describing the measured 
variable. A sequence of p measurements of the same spatial area 
creates a multivariate (mnltitemporal) image data set in which 
each image represents one variable in a p-dimensional multivari- 
ate space. The stack of p images can be described by assigning a 
p-dimensional vector for each pixel in the two-dimensional image 
matrix (Fig. A l) The pixel vectors are samples from a multivariate 
(multitemporal) distribution. 

In medial imaging, a multivariate image data set could be a 
magnetic resonance tomography sequence with images of the 
same slice using different acqtfisition parameters [e.g. different 
repetition times (TR) or echo times (TE)]. A multitemporal image 
data set could be a PET sequence showing one slice in a dynamic 
imaging sequence where frames are obtained at different times af- 
ter the injection of the tracer substance. Alternatively, a multivari- 
ate PET sequence could consist of the same slice imaged using 
different tracer substances. The multivariate and multitemporal 
data ;ets can be treated in the same way. A multitemporal distribu- 
tion is a special case of the multivariate distribution, with time as 
the only variable. A very high degree of correlation can be expect- 
ed between image bands in a multitemporal image. 

Principal component analysis of multivariate image data 

The theory of PCA can be found in many textbooks on multivari- 
ate statistics [9-11]. In the area of image analysis, PCA is also 
known as the Karhunen-Lobve transform and as the Hotelling 
transform [20]. How to apply PCA to image data is clearly dem- 
onstrated in [21]. Only a short description will be given here. 

The multidimensional image data array with M rows, N col- 
umns and p variables (image bands) is unfolded, forming a two- 
dimensional matrix of size p(M N). The sample covariance matrix 
S for this data set is of size p x p. A PCA starts with computing 
the eigenvalues (sorted according to decreasing magnitude) "~ii and 
the corresponding (normalized) eigenvectors u i of S. These calcu- 
lations are straightforward using standard algorithms [22]. The 

Fig. A 1. A stack of images, i.e. different variables measured for 
the same scene (slice), can be thought of as an image of pixel 
vectors. Each pixel vector is then considered to be sample from a 
multivariate distribution 
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principal components (PCs) are new variables which point out or- 
thogonal directions with maximum variance in feature space. 
They are linear combinations, defined by the eigenvectors, of the 
original variables. All samples are transformed using the eigen- 
vectors, and after the transformation they represent samples from 
the corresponding PCs. 

The transformed samples can be viewed as images when 
analysing multivariate image data. Calculate the (sorted) eigenval- 
ues and the corresponding (normalized) eigenvectors of S. Let the 
matrix U have the eigenvectors as columns. Let the multivariate 
image be represented as a column vector of images, 1. Transform 1 
to a multivariate image lpc: 

Ipc=U'l.  (1) 

The created image bands, the elements of lec, are called PC imag- 
es or score images. The PC image corresponding to the first 
eigenvector will be termed PC1 and so forth. The transformation 
defined by U is referred to as the PC transformation. 

Local  PCA 

In the description above all pixel vectors in the image were used 
when calculating the covariance matrix S. But in many practical 
cases it may be desirable to exclude pixel vectors belonging to a 
static background, for example in a medical image tomograph da- 
ta set, from the calculations. One way to accomplish this is to use 
an ROI. After outlining an ROI, let only the pixel vectors which 
belong to the ROI take part in the calculation of S. This is a way 
to limit the input data set without actually changing the image da- 
ta. PCA using an ROI is referred to as a local PCA. 

Appendix B 

Measur ing  image quali ty  

It is difficult to measure the quality of the PC images obtained 
through a PCA. In [5] an estimate of the signal-to-noise ratio 
(SNR) in PC image band i is defined as: 

~ii -- )V pp (2) SNR i = 
~,pp 

where ~ii is the i:th ofp  eigenvalues. 
This estimate is useful for MR images, which can be assumed 

to have relatively low noise. The noise properties of PET images 
are quite different. The background noise is so large that it can be 
interpreted as signal by the PCA, and the last eigenvalue .a.pp will 
then be a poor estimate of the background noise. 

A different method is used in this paper. The SNR is estimated 
from measurements of variance for each band. The signal in band 
i is estimated as the variance V within an ROI covering the signal- 
ling area, Vi(ROlslgn~l) for example the skull. The noise in band i 
is estimated as the variance within an RO] situated in the back- 
ground, Vi(ROInoise). Then, the SNR for band i can be estimated 
using the two measurements: 

V/(ROI signa 1 ) 

SNRi  - V/(ROinois e) . (3) 
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