
H A M I L T O N I A N  D Y N A M I C S  O F  A R I G I D  B O D Y  

I N  A C E N T R A L  G R A V I T A T I O N A L  F I E L D *  

LI-SttENG WANG and P.S. KRISHNAPRASAD 

Electrical Engineering Department f~ Systems Research Center, University of Maryland, 
College Park, MD 20742 

and 

J.It. MADDOCKS 

Mathematics Department, University of Maryland, College Park, MD 20742 

(Received 15 November, 1990) 

Abs t rac t .  This paper concerns the dynamics of a rigid body of finite extent moving under 
the influence of a central gravitational field. A principal motivation behind this paper is 
to reveal the hamiltonian structure of the n-body problem for masses of finite extent and 
to understand the approximation inherent to modeling the system as the motion of point 
masses. To this end, explicit account is taken of effects arising because of the finite extent 
of the moving body. In the spirit of Arnold and Smale, exact models of spin-orbit coupling 
are formulated, with particular attention given to the underlying Lie group framework. 
Hamiltonian structures associated with such models are carefully constructed and shown to 
be non-canonical. Special motions, namely relative equilibria, are investigated in detail and 
the notion of a non-great circle relative equilibrium is introduced. Non-great circle motions 
cannot arise in the point mass model. In our analysis, a variational characterization of 
relative equilibria is found to be very useful. 

The reduced hamiltonian formulation introduced in this paper suggests a systematic 
approach to approximation of the underlying dynamics based on series expansion of the 
reduced hamiltonian. The latter part of the paper is concerned with rigorous derivations of 
nonlinear stability results for certain families of relative equilibria. Here Arnold's energy- 
Casimir method and Lagrange multiplier methods prove useful. 
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1. I n t r o d u c t i o n  

In the study of the Newtonian (gravitational) many-body problem, it is customary 
to treat the bodies as point masses. See (Sternberg (1969), Smale (1970a) (1970b), 
and Abraham and Marsden (1978)). However, the proper accounting of stable plan- 
etary spins for instance, would seem to require the consideration of bodies of finite 
extent which will be assumed rigid (possibly nonhomogeneous) as a first approxima- 
tion. The works of Duboshin (1984), Ermenko (1983), Elipe and Cid (1985), Elipe 
and Ferrer (1985), are concerned with the existence of special solutions (e.g. cen- 
tral configurations) in the Newtonian many-rigid-body problem. However, in these 
papers, the natural geometric and group-theoretic underpinnings of the problem 
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are not exploited to the full extent possible. We are not aware of a prior systematic 
program along these lines. 

Another relevant body of work concerns the design of large earth satellites, 
where aerospace engineers have had to account for a "gravity-gradient torque" and 
its effect on the stability of earth-pointing satellite attitude. In the literature related 
to this problem, there are studies of relative equilibria and quasi-periodic motions 
based on various approximate models of the coupling between orbital motion and 
attitude motion of earth satellites. We refer the reader to the work of Beletskii 
(1966), Duboshin (1958), Roberson (1970), (1958), Longman (1971), Meirovitch 
(1968), Mohan, Breakwell and Lange (1972), Likins (1965), Sincarsin and Hughes 
(1983), Pascal (1985), and Sarychev (1975). The basic problem at hand is the 
dynamics of a rigid body or gyrostat in a central gravitational field. 

In the present paper, we work out the noncanonical hamiltonian structure of the 
problem of motion of a rigid body in a central gravitational field. The group SO(3) 
of three dimensional rotations appears as a symmetry group. Poisson reduction 
by the action of SO(3) yields a nine-dimensional system that corresponds to 
observing the dynamics from a moving frame, in this body frame, the dynamics 
manifests the effect of a fictitious torque known as the gravity-gradient torque. 
There are Casimir functions that are conserved independently of the hamiltonian 
and hence of any (convenient) approximations to the Newtonian potential. We 
compute relative equilibria and determine their stability. All motions (whether exact 
or approximate) remain confined to the level sets of Casimir functions which are 
eight or six dimensional symplectic leaves. 

It is noteworthy that the Poisson structure for the finite dimensional problem 
studied here is closely related to the one used by Krishnaprasad and Marsden 
(1987), in their study of the dynamics of a rigid body with a flexible attachment (a 
physically distinct and infinite-dimensional problem). A key link is the geometry of 
Poisson reduction. 

Several comments are in order. A key feature of this paper is the systematic 
use of modern geometric mechanics, i.e. methods based on symplectic geometry, 
Lie symmetry groups, reduction in the Poisson and symplectic senses, and non- 
canonical hamiltonian structures. We also appeal to various variational characteri- 
zations of relative equilibria. In fact, such variational characterizations are found to 
be useful in exploring the notion of non-great circle relative equilibria. Among the 
results of this paper, we recover by new methods certain classical stability results 
due to Beletskii that apply in a certain approximation. It is however important 
to note that the energy-Casimir and Lagrange multiplier methods adopted here 
provide systematic computational tools for stability assessment in a much broader 
context as can be seen from the references at the end of this paper. Thus it should 
be possible to extend and further develop the framework of this paper to describe 
elastic or fluid-filled bodies moving in a central force field. 

In the interest of making this paper essentially self-contained, we have worked 
out the relevant hamiltonian structure in detail in Appendix B of this paper. Also, 
relevant background on the stability theory is outlined in Appendix C. 
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Fig. 1. Rigid Body in a Central Gravitational Field 

2. Configuration Space 

In Figure 1, let C denote a fixed gravitating body of mass M (with spherical 
symmetry) that  influences the motion of a rigid body B of mass m. The inertial 
frame of reference (of the observer) is attached to C and a body frame is fixed 
on the rigid body B at its center of mass. A typical material particle Q in the 
rigid body is represented by the inertial vector q = BQ + r, where B is an 
element of SO(3) (independent of the particle) and r is the vector from C to 
the center of mass of body B. At any instant, the configuration of the rigid body 
B is determined uniquely from the pair (B, r )  C SE(3), the special Euclidean 
group of rigid motions in ]R 3 . 

In what follows, we will see that  this is an example of a simple mechanical system 
with symmetry in the sense of Smale (1970a) (see also Abraham and Marsden 
(1978)). Appendix A includes a short introduction to the abstract framework. 

3. L a g r a n g i a n  

The kinetic energy of the rigid body relative to the observer at C is 

1 / 12 T = -~ ](t din(Q) 

13 

where dm (.) denotes the mass measure of the body. Here onwards, ]-] denotes the 
Euclidean norm in ]R 3. It is an elementary fact that the above expression simplifies 
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to the formula 

1 m 
T = ~ <f2, I D >  + - ~ l §  ~ (1) 

where f~ is the body angular velocity vector of the rigid body , m is the total 
mass of the body and I is the moment of inertia tensor of B in the body frame. 

Recall that the body angular velocity f2 is defined by/3 = B~, where 

= f~a 0 -DI 
-f22 f21 0 

is the skew-symmetric matrix associated to •. 
The spatiM angular velocity w is defined by /} = ~bB, and we have the 

relation w = Bf2. In the notation of Appendix A, we note that K = 2T defines 
a riemannian metric on SE(3) the configuration space. 

The gravitational potential energy of the body B is given by, 

V = - f G M  d GMdm(Q)  
- ~  r e ( Q ) = - /  Ir + BQI ' (2) 

J 

B 13 

where G is the universal gravitational constant. 
The Lagrangian for the problem is then a function 

L : T(SE(3))--~ IR, 

( B , r , ~ , i  ~) ~-+ T - V. 

4. S y m m e t r y  

The inertial observer at C has the freedom to change his frame of reference to a 
new orientation. This corresponds to an SO(3) action on the configuration space 
c = SE(3 ) :  

r : SO(3)  x C  ~ r 

(P, (B,r))  ~-~ ( P B , P r ) .  

It is easily checked that this action leaves invariant the kinetic energy T ( rieman- 
nian metric on C ) and the potential V. 

The hamiltonian H = (T + V) is given by, 

1 <l-I, 1-1 II> + I P I u f G M  ,tdm (Q), (3) 
H = -~ 2m I r + BQ 

B 

where II = I f2 is the body angular momentum of the rigid body B, and p = m~ 
is the spatial linear momentum of the body. One has also the formula, 

r --- BI~2 + r • 2 4 7  = BII + r x p  

for the spatial angular momentum of the rigid body. 
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It can be verified that  ~r = ~r (II, B,r,p) is an Ad*-equivariant momentum 
mapping for the lifted action oT* on T*SE(3) and hence is a conserved quantity 
for the dynamics XH �9 This is further equivalent to Euler's balance law. To see 
this, let ~resultant denote the force resultant on the rigid body. Then, 

GM(r + BQ) 

B 

and by linear momentum balance, 

[9 : ~Cresult ant.  (4) 

On the other hand, the torque resultant, 

f (r + BQ) x(7" + BQ) GMdm(Q ) 
~ r e s u l t a n t  I r  + BQ I 3 = O. 

i 

J 
13 

Thus angular momentum (or Euler's) balance law yields: 

= O. (5) 

Collecting together the balance laws one can write the spatial form of the dynamics 
a s  

[9 = - / ; +  

13 

/) = d~B, 

= p/m. 

Equivalently, in mixed body and space variables (II, B, r,p) we get: 

J GM(BTr x ?)din(Q), 
l~I = II x I-1II + [r  ~ B~)I 

13 

r a M  (r + BQ) [9 = - [ r + BQ I 3 am(Q), (7) 
13 

= BI-1H, 

i ~ = p/m. 

Now, since H is SO(3)-invariant, one can induce a hamiltonian H on the quotient 
T* (SE(3 ) ) /S0 (3 )  and express the dynamics Xjq in terms of appropriate reduced 
variables (see Appendix B for the general framework). In the present context it is 
easy to determine the reduced variables. Note that  

~T" : SO(3) x T*SE(3) --* T*SE(3) 

(R, (n, B,,-,p)) ~ (n, RB, R,-, Rp) 
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is the lifted action on T*SE(3). A representative for each equivalence class in 
T*SE(3)fSE(3) is given by (if, I, BTr, BTp). Thus the reduced variables (or con- 
vetted variables) are: II, the body angular momentum, A = BTr, the convected 
radius vector from C, and It = BTp, the convected linear momentum. In terms 
of these convected variables, the dynamics Xsi takes the form 

a M  (A x ~) dm(Q), lI = 1I x I - ~ I I  + + Q 

B 

= A X I - 1 I I  + It~m, 

/i  = It x I - 1  II  - [A  + tr 1 

/3 

(s) 

and the hamiltonian /i/ is given by, 

' <  } IItl' / OM 
/:/ = 7 I I ' I - 1 I I  + 2m I A + Q I din(Q)" (9) 

D 

Equations (8) with hamiltonian (7) are the Poisson reduced equations on 

T*SE(3)/SO(3) ~_ so*(3) x N. 3 x IRa. 

In terms of the Poisson tensor A on so*(3) x IR a x N3 derived in Appendix B, 
these equations take the compact form, 

= o /V H 
- I  \ VvH 

= A VH.  (10) 

The Poisson structure is rank-degenerate, and there are nontrivial Casimir functions 
of II, A, #. ( Casimir functions are kinematic conserved quantities for equations 
of the form (10). See Appendix B for the precise definition. ) In fact, any function 
Cr of the form 

c+ = r  A • Itl2), 

is a Casimir function. Here r : IR --+ ~ is any smooth scalar function. Moreover, 
these are the only Casimir functions defined on the open set of generic points of 
A .  

From the general properties of Casimir functions (see Appendix B) we know that  
Cr is an integral invariant for any hamiltonian vector field and in particular for 
Xsl r. It is further important to note that replacing _f/ by a suitable approximation 
(such as derived from series expansions of the Newtonian potential term) does not 
affect the integral invariance of Cr This is of some use in developing an analytic 
perturbation theory. 
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5. R e l a t i v e  Equ i l ib r i a  

The concept of relative equilibrium goes back to Poincard. For simple mechanical 
systems with symmetry, there is an elegant characterization of relative equilibria due 
to Smale (1970a). We discuss this below and use it in computing relative equilibria 
for a rigid body in a central force field. 

Let (M, K, V, G) be a simple mechanical system with symmetry as defined 
in Appendix A. Assume that  the lifted action of G acts on T*M freely and 
properly. Then the quotient space T* M / G  is a smooth manifold with an induced 
Poisson structure. Let {','}0 be the canonical Poisson bracket on T*M.  Given 
f ,  g C C ~ (T*M/G) ,  the induced Poisson bracket of f and g is defined by 

{f, g} o ? = { f o ~ ,  g o t } 0  

where ? : T*M ~ T * M / G  is the canonical projection. For any G-invariant 
hamiltonian function H on T ' M ,  we have the induced function H : T * M / G  ---+ 
]R defined by, 

_fI o ;r(x) : H(x) .  

In terms of the induced Poisson structure, and / t ,  the projected hamiltonian vector 
field XH on T * M / G  is defined by the condition, for any f E C ~ ( T * M / G ) ,  

X fi[f] -- {f, /2I}. 

DEFINITION 1. ze ~ T*M is a relative equilibrium for H if 

x ~  (e(z,)) = o. �9 

For the dynamics XH of a rigid body in a central gravitational field, the relative 
equilibria are determined by setting the time derivatives in equation (8) (or (10)) 
to zero. On the other hand, in general position, i.e. II r 0, ~7Cr spans the kernel 
of A. Thus we have the energy-Casimir characterization of relative equilibria in 
general position: (II, A, #) is a relative equil ibrium/ff  

V / t  : ~76r for suitable r (11) 

/fir ( Lagrange multiplier characterization ) 

( / | v ~  = ~  ~ • 2 1 5  . (12) 
\ ~/m \ (n + ~ • . )  • ~ / 

where c r 0 is a constant and 

I / (A) = - ]A + QI din(Q). 

Before we proceed to solve (11), we note an alternate characterization of relative 
equilibria. 
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REMARK 1. It can be shown, cf. (Abraham and Marsden, 1978), that z~ is a rel- 
ative equilibrium iff there exists a ~ �9 ~, the Lie algebra of G, such that the flow 
of XH, 

r ~ .  (zo) = exp(~) (zo), 

(i.e. the dynamical orbit is simply a group orbit). Thus if the observer were to be 
set in uniform motion according to the one-parameter group exp(t~), then for such 
a moving observer, a relative equilibrium will appear to be stationary. 

In the work of Smale (1970a) (1970b), there appears a characterization of relative 
equilibria for simple mechanical systems with symmetry (see Appendix A for the 
relevant notation). We present this as an algorithm to determine relative equilibria. 

ALGORITHM 1 (relative equilibria). Step 0. Pick ~ �9 ~, the Lie algebra of G .  
Let ~M denote the corresponding vector field on M determined by the action q~ of 
G. 
Step 1. Search for the critical points qe �9 M of the function ( the augmented 
potential ) 

V~ : M - - + I R  

1 
V~(q) = V(q) - ~ K (~ (q) ,  ~M(q)) (13) 

Step 2. Find the corresponding conjugate momentum p~ by the formula 

Pe = K~ (~M(qe)). (14) 

Then z~ : (q~, p~) is a relative equilibrium for the hamiltonian function 

l ((tr H(aq) = V(q) +-~K . �9 

This principle was used in (Wang and Krishnaprasad, 1989) to determine rel- 
ative equilibria for the dynamics of two rigid bodies connected by a ball-in-socket 
joint. In what follows we apply this principle to find the relative equilibria for the 
problem of rigid body motion in a central force field. Here, the elements of a simple 
mechanical system with symmetry consist of 

M - -  SE(3), 

K((U1,U2), (Wl, W2)) = tr(U1 I' W T) + m < U2, W2 >E, 

I r + GM V(B,  r) = - BQ i dm(Q), 

G = so(3),  

where < . ,  - >E denotes the Euclidean inner product on IR 3, 

(u1, u2), (wl ,  w2) �9 T(., r)SE(3), 

and F is the coefficient of inertia of the rigid body. The superscript T in Wi denotes 
matrix transpose. 
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E so(3), the corresponding infinitesimal generator of the group action 

~(B,  r) = (~B, &). 

and 

K ( ~ M ( B ,  r), ~M(B,  r))  = < BT~,  I B T ~  >E + m I~ x r I ~, 

V~(B, r) 1 1 -- < BT~, I BT~ > E  2 - ~ m l , ~  x , , I  ~ 

- I r + B Q  I dm(Q) .  

We then get the first order conditions for (B, r) to be a critical point: 

(i) m ~ x (r x ,.) + f~ (r + "q )  ~ . . . .  I ~ +  BQ P am(,(4) = 0 

( r x B Q )  G M  
(ii) ~ x ( B I B T ~ )  - fB I r + B Q P  d m ( Q )  = O. 

(15) 

Next, we calculate p~ in Step 2. The map K ~ can be found as follows. For (ffVlB, w2), 
((~I B,  u2) E T(B,r )SE(3) ,  

K ~ ( ~ B ,  ~ ) ( < B ,  ~) 
= tr (dv lB I ' B T ~ T )  + m < w2, u2 >E 

= < u l ,  B I B T w l  >E + < u 2 ,  row2 > E .  

Thus 
K ~ ( ~ I B ,  w2) = ((BIB'Twl)  B, mw2)  6 Ti*B,~ ) SE(3).  

We then have 

Pe = t(b(~M(q~)) 

Note that  in the formula for Pc, the two components correspond to the angular 
momentum and linear momentum respectively. If we let it denote the body rep- 
resentation of the linear momentum, we get 

(iii) it = mBW~r.  

Substituting Q = B T ~, A = BTr ,  conditions (i), (ii), (iii) read 

(i ') m Q x ( a  x A) + fB (~ + Q)aM l a + Q p d m ( Q )  = O, 

(ii ')  gt X I ~  -- f13 ()~xQ) G M  I ~ + Q P d m ( Q )  = O, (16) 

(i i i ' )  # = m (Q x A). 
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These conditions are identical to the conditions obtained from the reduced dynam- 
ics (8) and the definition of relative equilibrium. 

Now, if we take the cross product with )~ on both sides of (it), we get 

fB (A~ x Q)GM . . . .  m~o x (a~ x (ao x ~o)) + [-~2 ; Q-7 amW; = 0. 

(Here again the subscripts e refer to equilibrium.) Comparing it with (ii'), we obtain 

m , ~  x ( G  x ( G  x A~)) + G x I G  = O. 

By standard identities in vector analysis, we get 

f~  x (I - m,~.~ T) a~ = 0. (17) 

We conclude that  f~  must be an eigenvector of the matrix I - mA~A T. 
Let ke denote the corresponding eigenvalue. Then one can obtain the relative 

equilibrium characterization (12) from (16) by setting, 

1 
c = k~ + m t Ar 12" (18) 

Conversely, using the identity, 

), x ( ( a x ) , )  x a)  = - a  x (~ x ( a x . X ) )  = ( ) ,  a), . ,  

and a few further algebraic manipulations, one can derive (16) from the relative 
equilibrium characterization (12). We leave the verification to the reader. Thus 
the two characterizations are equivalent. Of course, for simple mechanical systems 
with symmetry, the equivalence of the energy-Casimir characterization (11) or (12) 
and the variational characterization based on the augmented potential V~ holds in 
general. 

Note that  we fix ~ while searching for critical points of V~. Thus f~ = BT~ is 
of fixed norm as B varies over SO(3). Let 

l a l  2 = I~12 = ~. 

Define l)~ (a, ,~) to be Ve(B, V) expressed in the convected variables ft, A. Then, 

1 m 12 l)/~ (f~, A) -- 2 < f~' I f l  > E  -- -~- I f~ X A + I )  (A). (19) 

Clearly, the critical points of !)~ on the sphere j D l 2 = fl satisfy the unconstrained 
variational principle, 

i 12 (20) d(9" + ~ l a  ) = 0, 

where 1/2c is a Lagrange multiplier. The first order conditions associated to (20) 
are, 

1 Ift + m A  x ( f t x  A) = - f t  (21) 
C 

. ~ ( a  x a) x a = v ~ 9 .  (22) 
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These are exactly the equations we get by eliminating # = m(~  • A) in the rela- 
tive equilibrium characterization (12). The unconstrained variational principle (20), 
parametrized by e, and the associated first order conditions (21), (22) appear to 
be most suited to the explicit computation of relative equilibria. Before we pro- 
ceed with such specific computations we make some general geometric observations 
concerning relative equilibria. 

Observe that,  by taking the inner product of both sides of (iii') with Ae, we get 

<Ae, # e > E =  0 (23) 

at a relative equilibrium ( $e, #e, De ). If ( re, Be ) is a relative equilibrium 
configuration, then the dynamical motion is such that  

v ( t )  = e t~ re 

B(t)  = e tf Be. (24) 

This follows from Remark 1 that at a relative equilibrium the dynamical orbit is 
just a group orbit. 

PROPOSITION 1. In relative equilibrium, the radius vector r(t) generates a right 
circular cone. 

Proof. From (24), 

^ 

< r ( t ) ,  ~(t )  > ~  = < ~ re, ~ r  "e > z  = < ~e, re > . .  

Also 

< r,~ >E ~ < r,~ >z  
< r -  1~1~ , ~  i~1~ >E 

< r , ~ > ~  
= < r, r > E  i~1 = 

^ ^ 

< e ~ re, e t~ ~ >2 E 
= < re, re > s  -- i~1~ 

< re, ~ >3  - constant. = < re, r~ > E  1~12 

<~,~>~ ~ 112 
Thus r(t) is a circle of radius < re,re > E -  I~P ] 

r,~ >E/1~12)~. See Figure 2. �9 

centered at C / = (< 

NON-GREAT CIRCLE MOTIONS. 
For a rigid body of finite extent, if the center of (relative equilibrium) rotation 

C ~ does not coincide with the center C of the force field, then the stationary motion 
will be called a non-great circle motion. The existence of such motions is in question. 
See, e.g. the model problem below and also the gyrostat example in Rumyantsev 
(1972). 



360 LI-SHENG WANG, P.S. KRISHNAPRASAD AND J.H. MADDOCKS 

m 

Fig. 2. Cone generated by r( t )  

From equation (7), 

a M  (r + BQ) 
- [ r  + BQ I a 

din(Q) 

d 2 ^ 
= m e t~ ~2 r e .  

^ ^ 

Substituting r = e t~ re and B = etr Be on the left hand side, we get, 

I GM(re + Be Q) ~2 
- I~e + BeQ ]a dm(Q) = m re. 

B 

Taking the inner product of both sides with ~, we get, 

_ / GM <~, r~>E § <~, BeQ>E 
Ire + BeQI 3 

B 

dm( Q ) = m < ~, ~2 r e > =  O. 

Hence 

J din(Q) j 
<~, re >6 ]re + BeQ ]3 = - 

D 

<~, BeQ>~ 
[re + BeQ 13 din(Q). 

Equivalently, 

/ <~, BeQ>E J dm(Q) 
< ~ ,  re > 6 - -  - Ire + BeQ 13 am(Q) / Ire § BeQI 3" 

B 

The quantity < ~, re >6  is proportional to the cos(O) (refer to Figure 2), and C 
and C ~ coincide iff < ~, re >E ----- 0. If the body B were a point mass, Q = 0 and 
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hence < ~, re >E = 0. If for a rigid body of finite extent, 

< ~, Be @ >~ din(O) f [;: ~: 5-Y4~ r 0, 
13 

the integral 

then C, C' are not coincident. 
Since 

T T < ~ ,  r e > E = < B e ~ ,  Be r e > E =  gte'Ae, 

we conclude that  a relative equilibrium (Ae, ~e, pc) determines a non-great circle 
motion iff 

c~. Ae # o. (25) 

One can test the non-vanishing condition (25) in various settings. 
We now demonstrate that  there are examples which do not admit great circle 

relative equilibria. We first assume that the relative equilibrium is a great circle. 
Then the equilibrium can be found by solving ( from (21), (22) and f t .  A = 0 ), 

f t x  If~ = 0, 

/ s  GM( A + Q) 
I~+QI 3 din(Q) = ,~I~J~A. (26) 

We note that  given the norm of ~, the two equations above are decoupled and are 
equivalent to 

1. ~ is an eigenvector of I. 
2. A is a critical point of the function 

f/ = I ~ + Q---~I dm(Q) + lal~l,Xl ;. 

Moreover, the second condition is equivalent to finding the critical points of 

subject to 

fB GM V~ = ]A+ QI din(Q), 

~ IAI 2 = constant. 

with ml~l 2 being the Lagrange multiplier. 
Now we consider a model problem. The body is an asymmetric "molecule" 

consisting of six point masses, two on each principal axis. See Figure 3. 
In this example, we know that  I is diagonal and thus for a great circle solution, 

f / m u s t  be along one axis. For a given set of data, for example, 

r r t x l  = 101, m~2 = 1, my I = 1 0 0 ,  my2 -= 1, mzl = 99, mz2 = 1, 

xl = 0.01, Yl = 0.01, zl = 0.01, 
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mz 1 

Y l  

X2 e2 mx 
�9 2 

Y2 

my 1 
mz 2 

�9 m x  
e l  1 

my 2 

Fig. 3. The "molecule" 

the corresponding z2, y2, z2 can then be determined such that  (0,0,0) is the 

center of mass. The corresponding function Vt on the sphere ]~] = 400 is shown 
in Figure 4. The coordinate system is as follows. The sphere is parametrized by the 
usual spherical coordinates 0, 0 < 0 < 7r, and r 0 < r < 2~r. In Figure 4, the 

function Vt is plotted above the disc of radius 7r, with (0, r interpreted as planar 
polar coordinates. 

The extremal critical points are determined numerically to be as follows. 

maxima : A = ( - 3 9 8 . 5 , - 3 3 . 7 , - 7 . 2 ) ,  (399.3 , -22 .1 , -10 .6) ,  

minima : ~ = (13.7,32.4,398.5), ( -4 .0 ,8 .5 , -399 .9) .  

These extremals are found by using an optimization package CONSOLE (Fan et al., 
1989) with the assistance of the 3-D graphical representation in Figure 4. From 
Figure 4, we note that  there are also two saddles near the axis e2. We therefore 
search for the maxima along that  axis and check if they are also minima in the 
transverse direction. By this process, we can verify that  no critical value of )~ is 
perpendicular to a principal axis. Accordingly, we conclude that for this example, 
there are no great circle relative equilibria. 

6. Approx imat ions  

For typical applications in the modeling of planets or artificial earth satellites, the 
nominal radius of the orbital motion is very large compared to the dimensions of the 
orbiting body. Accordingly, it seems appropriate to consider various approximations 
of the gravitational potential based on Taylor series in a neighborhood of ] ;~ I = c~ 
or equivalently ] r I = cx~. Whilst such approximations are common in the literature 
cited in the Introduction, it is unclear whether the symmetries and conservation 
laws inherent in the problem are respected by the approximation process. 
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Fig. 4. The function V t 

In the present paper: we take the Poisson reduced model (10) as the logical 
starting point for approximations. The hamiltonian H is approximated to various 
orders of e = (nominal dimension of body) / (orbital radius), by the Taylor series 
expansion of the V ( t)  potential term appearing in H: 

9 ( I )  = - II + QI din(Q) 

_ { } - --V~-I-fudm(Q) 1 -  pxp - 21AI ~ § ~ H '  +o(111-4 ) 

- [ I~1 J + - 2 ~ p t r ( I ) + 2 - N - ~ < ' ~ ' I I >  +~ (27) 

In (27) the first term in square brackets is of the order e ~ and the next term is of 
the order e 2. The e 1 term is absent due to the vanishing of fu Q dm(Q). 

We will therefore consider two approximate model hamiltonians, 

1 _ H0 = 2 < n '  I - i n >  + 1~12 a M m  (2S) 
2 ~  I11 ' 

1 I#[ 2 a M m  G M  t r(I)  
H2 = ~ < n ' I - l n >  + 2m III 2111 ~ 

3 G M  
+ ~ 1115 <A,  I ~ > .  (29) 

Upon substituting /t0 and //2 respectively for /:/ in the Poisson reduced dynam- 
ics (10), one obtains the order zero reduced dynamics; 

l:l -- II • I -1II  
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= I x I - m I I  + p/m 
/3 = # x I-1II  G M m  

and the order two reduced dynamics; 

3 G M  
- -  tr (I)A 21 15 
G M  

- -  < A, IA  > 

3GM 
= II X I - i I I  + i - ~  AIA 

1 l 

= A X I - 1  II + #/ rn  

/~ = # X I-1II  --GMm A 

3 G M  15 
- - - I A  + 

2 

(30) 

(31) 

As already noted at the end of section 4, all such approximations admit a common 
set of conserved quantities (Casimir Functions) of the form Cr = r (I II + A x p 12). 
Since the order 0 dynamics is essentially decoupled, it has additional conserved 
quantities of the form r II 12), and the spin energy 1/2 < II, I -1II  >. If the body 
is spherically symmetric, i.e., I = kl ,  then the order two approximation collapses 
to the order zero approximation. In general, the order two approximation displays 
nontrivial spin-orbit coupling. 

6.1. ORDER ZERO RELATIVE EQUILIBRIA 

With the order zero approximation o f / I ,  the relative equilibria (f~e, Ae) satisfy 

I [t~ = k De (32) 
G M m  
I A i------- ~ A~ = m(D~ x Ae) x ~ .  (33) 

By taking the inner product of both sides of (33) with D~, we conclude that 
Ae �9 ~2~ = 0, i.e. all relative equilibria in the order zero approximation give rise to 
great-circle orbits. From (33) and the condition ~ �9 A~ = 0, we get the Kepler 
frequency formula, 

l a l  = (34) 

Summarizing, the only relative equilibria for the order zero approximation are 
(a) ~ is a principal axis of I; 
(b) A~ is a vector perpendicular to a~ satisfying the Kepler formula (34); 
(c) #e = m(a~ x A~) completes a triad. 

With the same assumptions as (a) and (b) above, it is possible verify the existence 
of "uniformly spinning solutions" to the order zero reduced dynamics: 

II(t) = Ia ( t )  = Ia~ 

= exp t 6:- fio (35) 

w t W 
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with the modified Kepler frequency formula, 

(r I~'~el) ( Gl--~e ]3) 1/2 = (36) 

The quantity w measures the body spin relative to a moving Frenet-Serret frame 
at the center of mass of the body. 

6 . 2 .  ORDER. TWO RELATIVE EQUILIBRIA 

The first order conditions for the variational principle (20) take the form 

1 rn[A[2)~ (37) ( I - m A A T ) ~  = ( c -  

. lal2A - m ( a  G M m  3 G M  tr(I)  
- 

3 G M  15 G M  T 
+ - - ~ I A  2 [AT g(~ IA)~ 

The equations (37) admit a family of solutions (relative equilibria) corresponding 
to great circle motions: 

(a) fir is a principal axis (eigen-vector) of I with corresponding principal mo- 
ment of inertia Ii, i -- 1, 2, 3; 

(b) A~ is a principal axis (eigen-vector) of I perpendicular to 12~, with associated 
principal moment of inertia Ij ; 

= m • 
and, the following modified Kepler frequency formula holds: 

[D~ ] = ~ 1 + 2~n [ Ae [2 " (38) 

In the above relation i, j, k are distinct and takes values in {1, 2, 3}. Hence 
the correction term in (38) may be of either sign. It follows that for the order 
two approximation there are twenty-four 1 parameter families of relative equilibria 
(accounting for ~ being in each of the six directions parallel to the principal axes 
(with sign) and four directions for A corresponding to each choice of f}), the scalar 
parameter being/3 = [D [2 = [~ [2 as in Section 5. 

This conclusion appears to be a classical result exhibited in different form. See 
for instance the book of Beletskii (1966). However, the hamiltonian point of view 
together with the approach of reduction has entirely eliminated the formidable mess 
of Euler angles and such. 

In the following, we show that for practical parameter ranges, all the relative 
equilibria in the order two approximate model are great circle motions. Let 

( I - r n ~ T ) f i  = c~, 

o r  

I ~  - a ~  = mAAT~. 



366 LI-SHENG WANG, P.S. KRISHNAPRASAD AND J.H. MADDOCKS 

With the notation r = ATf~, we have 

mrA = Ifi - aft .  (39) 

We note that r ~ 0 corresponds to solutions that  are not great circles, while r = 0 
implies a standard eigenvalue problem. The dot product of (39) with f~ then yields 

OZ i~1~ ( ~TIf t  - mr2),  

and substitution in (39) gives 

1 1 2 rA - ml~12(l~12-~T)m + ~ - ~ r  ~. (40) 

Taking the dot product with s of the second equation in (37), we get the following 
equation 

(m+~trX--21~4)~TI1)r2111 I I + iA-~ ~TIA = 0. (41) 

Assuming r r 0, and multiplying (41) by r, we have 

Zlal ~3 ~t~t41TIA)r 2 2 i l l  + ]-~12~TIrA = O. ( ~  + . -~wt~ l  - 

With the expression for rA in (40), we obtain the equality, 

,,3 ~i~14 IT112111 + 111~12 DTID)r2 (m + 27Z~ri- 

_ 3 { l a l 2 1 i a l 2  _ l a T i a l = }  
mll lUl~l  = 

But we know from Cauchy-Schwartz that 

(42) 

1~121I~12- IfFIftl 2 > 0, 

and thus (42) can have a solution with r # 0 only if 

3 3 
m + 2---~trI  - I T I I  + it1~1~1= ~ T I ~  < 0. 

This latter inequality can hold only if 

15 
m - 2]I]------xITIA _< 0, 

or  

where 

15ATiA > 1, 
2 m  

1 ~=~, Q 2  

f = ~ _ ( Q ) .  

(43) 



HAMILTONIAN DYNAMICS OF A RIGID BODY 367 

It is easy to see that for large A, (43) is not satisfied. In particular, the ratio 
[Q[2/IA[2 must be greater than 1/15. But for typical artificial satellites, this ratio is 
approximately 10 - l~ . For the motion of moon around the earth, it is approximately 
1.6 x 10 -5. Thus we have shown that for the practical case of large orbit radii, 
the 24 relative equilibria (for the second order approximate  model) are the only 
relative equilibria. This conclusion is of special interest since we have constructed 
a numerical example ( the "molecule" in Section 5 ) in which the exacl model has 
no great circle relative equilibria. 

7. S tabi l i ty  of  Re la t ive  Equi l ibr ia  in the  A p p r o x i m a t e  Models  

In this section, we study the stability properties of the relative equilibria for the 
approximate models discussed in Section 6. For both cases, the triple (II, A, tt) is a 
relative equilibrium if the three vectors are along the three principal axes. Without 
loss of generality we let 

= IIII e l  ~ - -  I l le , 

 lrtltAI 
# ~  = e3 = mlCtl l 

(44) 

where ID] and IAI are related through the appropriate form of the Kepler frequency 
formula, and 

I el  = 11el, I e2 = I2e2, I e3 = I3e3. 

We shall examine the stability of this relative equilibrium in various cases de- 
termined by the relative magnitudes of the principal moments of inertia Ii .  

7 . 1 .  O R D E R  ZERO APPROXIMATE MODEL.  ( INSTABILITY PROOF ) 

For the order zero reduced dynamics (30), the energy-Casimir method of Ap- 
pendix C is inconclusive since the second variation of the energy-Casimir function is 
only positive semi-definite (has a zero eigenvahe). We linearize the system around 
the relative equilibrium (44). Let 

We have the linearized system 

5x = A 5x, 
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where the matrix A is 

0 0 0 0 0 0 0 0 0 

0 0 A23 0 0 

0 A32 0 0 0 

0 0 ~ 0 0 

0 0 0 0 0 

0 0 0 0 _lnl  
11 

0 mlnll~{ 0 roaM I~*~ - - - ~ -  0 

~lnllSq 0 0 0 ~maM 

0 0 0 0 0 

0 0 0 0 

0 0 0 0 

0 1__ 0 0 
m 

19_I 0 • 0 
11 rn 

0 0 0 • m 

0 0 0 0 

0 0 0 

mGM 1131 0 

where 

: ( i -  �88 A23 11 

A32 = (112 - ~)lnl 
By the frequency formula (34), we can write A in the form 

0 0 0 0 0 0 0 0 0 

0 0 L3-• . I~1 o o o o o o 

0 12 -- I1 - ;= I~l o o o o o o o 

0 0 ~ 0 0 0 • 0 0 

o o o o o I~1 o • o m 

1 o o o o -I~1 o o o 

0 _ mlnlP, I 0 -ml f l [  2 0 0 0 0 0 
I2 

ml~ll,Xl 0 0 o 2mlf~l 2 0 0 0 I~l 
11 

o o o o o - m l ~ l  2 o -If~l o 

Denote the upper left 3 x 3 submatrix by B and the lower right 6 x 6 submatrix by 
C. It can be shown that  

pl(s) =zx d e t ( s I -  B) = s (s2 + I 3 -  Il h -  I1 I2 1~12 ' 

p2(s) ~= d e t ( s I -  C) = 82 (s u + [al2) 2 . 
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The characteristic polynomial of A is p(s) = pl (s)p~(s). It can be further verified 
that the minimal polynomial of A is 

re(s) = s2 ( s 2 + I 3 - I l I 2 - I 1  ) 
The occurrence of a repeated root of the minimal polynomial at s = 0 implies linear 
instability of the relative equilibrium (44) for the order zero approximate model (See 
Gantmacher (1960), Theorem 3, pp. 129). Alternatively, the one parameter family 
of "uniformly spinning solutions" given by (35) represents a perturbation of the 
relative equilibrium (44) that departs any small neighborhood of the relative equi- 
librium in finite time, and hence we have instability. We note that this conclusion 
is independent of the relative magnitudes of the Ii's. 

REMARK 2. The projection of (II, A, It) to the space of II projects the order zero 
dynamics to the usual rigid body dynamics. For this projected dynamics, the equi- 
libria in which the vector II is along the maximum or minimum principal axes are 
stable. 

7 . 2 .  O R D E R  TWO APPROXIMATE MODEL.  ( E N E R G Y - C A s I M I R  METHOD ) 

We now study the stability of relative equilibria of the order two reduced dynam- 
ics (31). For the relative equilibrium (44), we have the following identity, ( from (37) 
or (38) 

m i n i  ~ GM (m + 3 9 I - I~1 ~ 2--[~ tr(I) - 2 - ~  ~)"  (45) 

Now we discuss sufficient conditions for the stability of these 24 relative equilibria. 
In general, for a hamiltonian system with hamiltonian H and Casimir C, we 

have the energy-Casimir type sufficient condition for stability (see Appendix C). 
The general form of the energy-Casimir function for our case is 

1 l[it[2 m G M  GM 3GM T (1  ) / tr  = HTI-1II+2 In+ xitl . 

The first variation of ~rr is 5/]rr A, It) = VHr 6x, where 

Vt/ (H, It) 

( I-1II + r  ) 

3trI 15;~ rI~ "~ 3 G M  v ~  
m + 2--VF - 2--5[XW-) A + -TXW~'~ + r , 

- r  

and 6x is as in Section 7.1, and, 

n = I I + A x # .  
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The matrix representation of the second variation of He is denoted by V3~rr A, #) 
and has the following form, 

/1-1  + r + r  T --r -- r  r + r  

r -4- r  T G M  ( 3t~I i5~TI;~ ~ 
iXl---~ m + ~ -  21~1 ~ ] 1  

3GM ( 5t~I 35~TI~ ~ 
i~,1 ~ m + ~  21~1 ~ ]hA T 

15GM )~ ),T I 15GM T)~ ),T 
- - - f - ~  . . . . .  - - f - ~  . . . . .  

..~ 3G M -[ 
i ,X l  ~ ~ - r - r  

-r  + r 

+r i 

- r  - r  r r  + r  + r  21 - r 
m 

_r 

In the above formulae, r represents its value at Inl2/2, and the same convention is 
applied to r Now we find the variations at (II,, Ae, #,) .  By using (45), we have 

V/~C(II, ,A,,#e) = ( I + r  mlAIl~l~2 , 

IAII~I,3 

where 
K = 11 + mlA[ 2. 

Thus in order for the first variation to vanish, we require 1 + r  = 0, or 

1 
r (46) 

Substituting these values in the second variation formula, we get a symmetric matrix 
F = v ~ + ( I I o ,  ~,o, ~o) 

R - I 1  0 0 0 rn]~2[[A[ 0 0 0 [,k[ 
I1R R R 

0 K - I 2  0 m]fl[[A[ 0 0 0 0 0 
I2K K 

0 0 K-X~ 0 0 0 I~1 0 0 IaK K 

0 ml~lUq 0 F44 0 0 0 0 0 K 

0 0 0 Fs~ 0 0 0 F59 R 

o o o o o F66 0 I~1 0 

0 0 ~ 0 0 0 /~ 0 0 rnK 

o o o o o I~1 o ~- o 

P,I 0 0 0 F59 0 0 0 R-'~I~'I~ R mR 
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where 

1 1 
_ - - _ r  2, R K 

3 G M  . 
E44 = m l a l 2 ~  + -N~- ( •  - h ) ,  

mlAl=5 2mGM 
F55 -- -rnlf~l~(4+ n " +  IAI - ~ -  

I 1 

F59 = - ] f ~ l ( l + ~ ) ,  

3 G M  . f  
F66 = mlal  ~ + - [ ~ - - (  3 - I~). 

With the lower triangular matrix L defined by 

1 0 0 0 0 

0 1 0 0 0 

0 0 1 0 0 

0 I~mlall'Xl 0 1 0 
K-12 

mlalI,W~ 0 0 0 1 
R - I 1  

0 0 0 0 0 

0 0 _ I~1~1 0 0 
K - I 3  

0 0 0 0 0 

L9I 0 0 0 L95 

where 

IlI~1 
L91 = R - I------~ (ml~21L95 + 1), 

U59 
L95 = 

D55 ' 

U59 = -]f t  I I + R  I1 ' 

D55 = ml~l 2 4 +  R 

we can transform F into a diagonal matrix 

2 m G  M 

I~13 , 

D = L F L  T,  

where 

R - - I 1  K - I 2  K - I 3  

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

1 0 0 0 

0 1 0 0 

_lal  
F66 0 1 0 

0 0 0 1 

(11 -- 12)D44, - D 5 5 ,  F66, 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 
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11 -13  u~ R-K } 
m(K - ~31' (• - f2)Ds~, ~ + m~-R:71)  ' 

D 4 4  : m l ~ l  2 3 G M  

Dss 3G M 
- -  rnIAlSF~6 �9 

(Since congruence transformations preserve the matrix inertia, we can read off the 
number of negative eigenvalues of F from D.) 

We shall now consider the case in which, 

1 1 >  I 3 >  I2. 

To have stability from the energy-Casimir method, we require that  all the eigenval- 
ues of F ( equivalently of D ) be positive. This holds if 

R - 11 
> 0, (56) 

R 
D55 < 0, (57) 

u~+ R - K  
- -  > o. (58) 
D55 m( R - I1) 

From (47), we have 

R -  /1 /1 mIAI 2 
- 1 - -  + r 2. 

R R K 

Thus (56) holds if r  > 0. We next consider (57). By the definition (55) of D55 and 
the frequency formula (45), we get 

Ds~ 
K - I1 

= mlal ~ 4 + R _ I ~  
2 ) 

1 + ~ t r I l l  - ~ 2 9  I " 

Let 
3 

- 2ml~12 (11 + / 3 -  212). 

For the case under consideration e > 0 and for [A[ large compared to the typical 
dimensions of the body, e is small. The other term, 

K - I1  m[A[ 2 ( 1 / K  - r ~) 
R -  11 mlAI2/K + r 2 

For IAI large and r large enough, 

K - 11 ml~l ~ (-r 2) ml~l ~ 
R - I1 r  2 [~[2 11 
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Thus 

D55 ~ ml~[ 2 4 l + e  

for ]A[ Large and r Large enough. Since 0 > >  4, we have D55 < 0. This is (57). 
Now we look at (58). It is easy to see that  /f we show 

R - K  
U529 q- rn ( /~ -  I1) D55 < 0, (59) 

then together with (57), we have (58). From (7.2), for IA] large and r large enough, 

u59 ~ - I ~ l ( 1 -  o). 

From the definition (47) of R, we have 

R - K  

R 
- r  2. 

Thus 
- "''-'q~"/~3l~tl2 ,v --it _ 1 + 0 ,  R K 

m ( R - / 1 )  rn])q= -~ C t t I l i ( 2 l a ] 2  --  11 
K 

for [AI large and r large enough. Now we verify (59). Under the same condition, 

U ~ 9 q - m ( R _ I 1 ) D 5 5  ~-" 1~212(1-0)2+ (l+O)m[~2[ ~ 4 l + e  

= ]~2] 2 5 - 1 +---7 + (1 - ]--+-7)0 

-1912o < 0. 

0) 

Thus (59) hold for [A] large and r large enough. We have the following theorem. 

THEOREM 1 (STABILITY). For the order two approximate model, the relative 
equilibrium 

I l l  = [ l I I  I A = I2A I p : I3p 

is stable if ]A I is sufficiently large and, 

Ii > I 3 >  I> 

This shows that the relative equilibrium in which the body center of mass tra- 
verses a circular orbit, the angular velocity lies along the principal axis of the body 
with the largest associated moment of inertia ( minor axis of the ellipsoid of iner- 
tia ), and the radius vector is aligned to the principal axis with the least associated 
moment of inertia ( major axis of the ellipsoid of inertia ), is a stable relative 
equilibrium. 
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REMARK 3 (HISTORICAL REMARK). A similar theorem appears in Beletskii's 
book (1966), pp. 94-102. Beletskii uses a spatial/inertial model of the coupling 
between translational and rotational motion and presents arguments based on a 
Lyapunov-Chetayev approach (Chetayev, 1961), and uses in effect the variational 
equations about the stationary motion. In contrast, here we make consistent use of 
modern hamiltonian methods and reduced variables. The methods of this paper yield 
a nonlinear stability theorem and generalize to nonrigid and other complex configu- 
rations. See for instance the examples considered in (Krishnaprasad and Marsden, 
1987), (Maddocks, 1987), (Holm et at., 1985), (Lewis, 1990), (Simo et al., 1989a), 
(Posbergh et al., 1988). 

7.3. ORDER TWO APPROXIMATE MODEL. (LAGRANGE MULTIPLIER APPROACH) 

The previous section demonstrated that it is sometimes not straightforward to 
explicitly find an appropriate function r in the energy-Casimir method. In Ap- 
pendix C, we describe a more classical characterization of relative equilibria as 
critical points of the constrained variational principle, 

min H2 (if,)% p) (60) 

subject to C(II, A,#) = constant 

where H2 is the hamiltonian (29) and C is the Casimir �89 ]II+A • p]2. The associated 
first-order conditions coincide with the characterization (11) of relative equilibria, 
with the unknown constant c being interpreted as a Lagrange multiplier. 

The Lagrangian ( in the sense of optimization theory ) associated with the 
above constrained variational principle is recovered if in Section 7.2 we take r = 
- c  x. Consequently the second variation can be recovered as a special case of that 
calculated in Section 7.2. When r is linear, r  = 0, and consequently, R = K. 
Therefore the second variation of H - c C reduces to F c which is 

n -s ,  0 0 0 -'~1~11~1 0 
I lK  K 

0 g - I i  0 '~lall~l 0 0 
I2K K 

0 0 K-I3  0 0 0 I3K 

0 "~lnll~l 0 F44 0 0 0 K 

0 0 0 F ~  0 0 K 

0 0 0 0 0 F66 0 

0 0 I;~1 0 0 0 s, 
K m K  

o o o o o o 

o o o o o 

0 0 _IAI~ 
K 

0 0 0 

Ifi_J 0 0 
K 

0 0 

o F;9 

0 

0 0 

--1 0 

o 
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TABLE I 

12 min I2 middle I2 max 

I1 > /3  (1) 1 (2) 2 (3) 3 

I1 < /3  (4) 2 (5) 3 (6) 4 

where 

to 

where 

mlAI 2. 2mGM 
Fd~ = -mlUZ[2(4 + - - - ~ )  + iAi------ ~ 

ml;~l 2 
F~% = -I~l(1 + - - F - ) .  

A comparatively simple Gaussian elimination then reveals that  F c is congruent 

DC 
K -  I1 K -  I2 K -  I3 

diag I l K  ' I 2 K  ' I 3 K  ' ( I1- I2)D44,  -D55, F66, 

m-0~-2_-73 ) , ( / 3 -  I2)Dss, D55 3'  

D~ 5 = 5m1~]2 2 m G M  

and the other coefficients are as defined previously. From the identity (45), we have 
further that  

D~5 = mlf~l 2 5 1 +  e " 

For I,~1 sufficiently large, the expressions for the various coefficients reveal that 
K is large and positive, and D44, D~5, F66 and Dss are all positive. Consequently 
the signs of the entries of D ~ are determined by the signs of the entries 

{ "~-, "~-, "~- , (11- - - /2 )  , - - ,  "~-, ( / 1 -  I 3 ) ,  ( 1 3 -  12 ) ,  "~-}.  

We shall restrict attention to satellites in which the inertias are distinct so 
that  F c is nonsingular. Otherwise additional symmetries arise, and the analysis is 
slightly more complicated. There are six cases of distinct inertias. See Table I, in 
which the number of negative eigenvalues of F ~ is shown in each case, and each 
case is assigned a reference number in parentheses. 

According to Theorem 3 (in Appendix C), it suffices to analyze whether the 
condition 

(h, Fch) > O, V h r 0 and (VC(IL,,~, m), h) = 0 (61) 
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is satisfied. Because the subspace of admissible variations h has codimension 1, 
condition (61) cannot hold whenever F c has two or more negative eigenvalues. 
Accordingly the only case in which (61) might hold is case (1), I1 > /3 > Is, in 
which F ~ is nonsingular and has precisely one negative eigenvalue. 

To analyze (61) in case (1), we shall apply a general result bearing upon fami- 
lies of extremals to variational principles. Notice that  (44) actually defines a one- 
parameter family of relative equilibria which can be regarded as being parametrized 
by the magnitude of the radius of the orbit, i.e. IAI. But the multiplier c is related 

(cf. (46)), so the family can also be parametrized by to [A[ through c = ii+m[),12 
the multiplier c. Along this family the Casimir can be written, using (44) and (45), 
as  

!1n+ 2 = lalS(II+ml: l )  
GM(I +mI ,2) (mlAi 2 3 ) 

= mlAi  5 + ~ ( / 1  - 2/2 -4-/3)  (62)  

Consequently, for ]A[ large the Casimir is an increasing function of [A[ along the 
family of relative equilibria, and consequently a decreasing function of c. We may 
now apply the aforementioned result. 

LEMMA 1 (Maddocks (1987), Lemma 5.2). Suppose a family of variational prin- 
ciples of the type (60) have a family of critical points x~(c) parametrized by the 
multiplier c. Moreover, suppose that the second variation at a particular extremal is 
nonsingular with one negative eigenvalue. Then the second-order sufficient condi- 
tions (61) at that extremal are satisfied if and only if the constraint C is a decreasing 
function of the multiplier c at that parameter value. 

COROLLARY 1. Solutions (44) in case (1), I~ > I3 > Is are Lyapunov stable for 
all [A[ sufficiently large. 

Proof 
It has been shown that  the hypotheses of the previous Lemma hold, and that  

C(c) is decreasing for relative equilibria with [A[ sufficiently large. Thus condi- 
tion (61) holds and Theorem 3 in Appendix C then applies to provide the desired 
result. 

Accordingly we have rederived the Stability Theorem proved in Section 7.2. As 
a final remark, we observe that we have not proven instability in the order two 
model. Actually the results of Maddocks (1990)(Section 5) can be applied to show 
that  for large [A[ the relative equilibria in any of the cases (2),(4),(6) in Table I, 
are dynamically unstable. An outline of the analysis is that  when F r has an even 
number of negative eigenvalues and C(c) is a decreasing function, the linearized 
dynamics must possess an unstable real eigenvalue. 

8. C o n c l u s i o n s  

This paper represents a first step in our program to understand the geometry and 
dynamics of motion in a central gravitational field. Treating the rigid body as a 
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model problem, we adopt a modern approach to hamiltonian mechanics to address 
questions concerning approximation, symmetry and reduction, Poisson structure, 
relative equilibria, and associated nonlinear stability problems. Our methods should 
extend naturally to problems of current interest such as the dynamics of tether- 
connected ( and other ) multibody systems in orbit, the dynamics of elastic shells, 
etc. A common thread in the program would be the use of geometrically exact 
models ( i.e. models that respect natural groups of symmetries ). 

Among the new results of this paper we note the reduced model(s), examination 
of non-great circle solutions, the instability proof for the order zero approximation, 
and the rigorous proof of a nonlinear stability theorem in the order two approxi- 
mation. 

The geometric framework adopted here should be helpful in understanding and 
further exploring some of the deep and exciting questions that have emerged in re- 
cent years such as: spin-orbit coupling and the problem of Hyperion (Wisdom, 1987) 
(Goldreich and Peale, 1966) (Goldreich and Peale, 1968) (Peale, 1986) (Rumyant- 
sev, 1972); the stable resonances of Markeev and Sokolskii (1975); the work of 
Beletskii (1981). In the Ph.D. dissertation of Wang (1990), gyrostats in central 
force fields are considered from the point of view of the energy-momentum method 
(Simo et al., 1989a). 

Further questions concerning bifurcations and instability are of some interest 
and appear to be worthy of careful study. In addition to the methods used in the 
present paper, such investigations may be facilitated by some of the new techniques 
based on the energy-momentum method (Simo et al., 1989b). We hope to report 
on these problems at a later date. 

Let (M, K) 
action, 

Append ix  

A. Simple Mechanical  Systems wi th  S y m m e t r y  

be a riemannian manifold and let G be a Lie group with associated 

where (I)g 
bundle isomorphism, 

defined by 

for all Vq, wq 

: G x M---*M 

%(q) 

in an isometry for each g 

K ~ : 

E G. The riemannian metric induces a vector 

T M  --~ T * M  

K % )  = K ( v , ,  

E TMq. The canonical symplectic structure w = -dOo on T * M  
can be pulled back to 

a = * 

which is also an exact symplectie structure on T M .  One can verify that the action 
lifts to symplectic actions eT and (I) T* on T M  and T * M  respectively. 
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Let V : M --* ]R be a G- invar iant  (potential) function on M. The hamiltonian 
H : T * M  ---+ lR, is defined by, 

1( 1 ) , H (aq) = -~ K (K  ~ c~,, (i<~)-10lq "{- Y o T M (Olq) 

w h e r e  T M : T * M  -'~ M is the canonical projection. The hamiltonian vector 
field XH on T * M  determined by H,  is given by the condition, 

d g ( Y )  = w ( X H , Y ) ,  

for all vector fields Y on T*M. The hamiltonian system ( T * M , w , X H )  or equiv- 
alently the quadruple (M, K, V, G) is a simple mechanical system with symmetry. 
It admits a momentum mapping in a natural way. To see this, let ~ denote the 
Lie algebra of G and ~* the dual space of ~. The symplectic action ~T* on 
T ' M ,  defines a Lie algebra homomorphism of G into hamiltonian vector fields on 
T ' M ;  we denote this correspondence as ~ F-+ ~T*M. Then the map, 

J : T * M  ~ ~* 

defined by, 
J(o~q).~ = (leT.MOO) (aq), ~ E G 

is an Ad*-equivariant momentum mapping. Hence J is a conserved quantity of 
the system ( T * M , w , X H ) .  (See Abraham and Marsden (1978) for proofs.) 

B. P o i s s o n  S t r u c t u r e  a n d  R e d u c t i o n  

In this appendix we outline the essentials of Poisson reduction and derive the Pois- 
son bracket applicable to the problem of rigid body motion in a central force field. 
A good source for Poisson structures is the book by Libermann arid Marle (1987). 
See also Olver (1986), the papers of Weinstein (1983), Marsden and Ratiu (1986), 
and Krishnaprasad and Marsden (1987). 

A Poisson manifold P is a smooth manifold equipped with an ]R-bilinear map 
(Poisson structure) on the space of smooth functions, 

{., .}p : C~ x C ~ 1 7 6  C~176 

satisfying the axioms, for f , g  E C~ 

(i) { f , g ) p  = - { g , f } p ,  
(ii) {fg,  h}p =- g{f ,  h}p  + f { g , h ) p ,  
(iii) {f ,  { g , h ) p  )p  + { g , { h , f } p } p  + { h , { f , g } p ] p  =0 .  

Associated to a Poisson structure, there is a unique twice contravariant skew- 
symmetric, smooth tensor field A on P such that 

{ f , g } p  = h (df, dg), 

where dr, dg are differentials of f ,  g, respectively. The tensor field A defines a 
vector-bundle morphism, 

A # : T * P  ~ T P  

~ ~-* A # ( ~ )  E T~P 
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satisfying, 

Z, ( A # ( ~ ) )  = h (~) (~,  Z~), for all Z, �9 T;P. 

Let G be a Lie group and let �9 : G x P --~ P, (g, x) ~-+ ~g(x),  be a group action 
such that  ~g(.) is a Poisson morphism for every g �9 G. Suppose that  the action 
is proper and free. Then there exists a good quotient PIG that  carries a Poisson 
structure {., "}P/a induced from the one on P satisfying, for f ,g  �9 C~(P/G) ,  

{f ,  g}P/G o ~r : { f  o 7r, g o 7r}p. 

Here 7r : P ~ PIG is the canonical projection. By construction, it is a Poisson 
morphism. 

G-equivariant dynamics on P induce dynamics on PIG. Suppose h : P ~ ]1~ 
is a G-invariant hamiltonian function on P , i.e., 

h ( % ( ~ ) )  = h ( ~ )  v 9  �9 a .  

Define a vector field Xh by 

Xh[f] = { f , h }p  Y f �9 C~(P) .  

The hamiltonian h descends to ]~ : PIG ~ ~ and determines a reduced dynamics 
)(s on PIG by 

Xs []] = {f,]~}P/G V] �9 C ~ (P/G). 

Here ]~ ([x]) = h(x) for an equivalence class [x] in PIG. 
In what follows, we work out the Poisson reduction of T*SE(3) by SO(3). The 

resulting bracket captures the geometry of the central force field problem studied 
in this paper. 

Let < -,. > denote the pairing between T'SO(3)  and TSO(3) defined by 

T'SO(3) • TSO(3) ~ a 

1 tr( ~ WA ) ( O~A ' W A  :> : 2 

P = T*SE(3) carries a canonical symplectic structure and hence a Poisson structure 
{., .}p given by 

o] oo oo o] { f ,O}p(B,  BfI ,r ,p)  = < DBf ,  OO > _ < DBg, Of > 4 . . . . . . . .  , 
OBfI OBfI Or Op Or Op 

where (Of/Or).(Og/Op) denotes the natural pairing, i.e. the Euclidean inner product  
on •3. 

The group G = SO(3) acts on SE(3)  by left multiplication. This action lifts to 
a symplectic action on T*SE(3) given by 

(R, (B, BfI, r, p)) ~-~ (RB, RBfI ,  Rr, Rp). 
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Thus a representative for an equivalence class in P/SO(3) is given by 

(fl, BT r, BT p). 

Let A = BTr, # = BTp. We will compute the reduced Poisson structure on 
T*SE(3)/SO(3) ~_ so*(3) x R3 x R3. Since so*(3) -~ IR3, the question is equivalent 
to finding a Poisson structure on ~ a  x IR3 x IR a. 

Let f,g E Cc~ 3 x IR3 x R3), and define f , ~  C C~176 as 

f(B, BfI, r,p) = f ( l I ,  BTr, BTp). 

By the definition of reduced Poisson structure, we have 

{f, g}p/a(II, )t, #) = {f, O}p(B, BfI, B)~, Bit). 

(The right hand side is the canonical bracket in T*SE(3).) Then, by the canonical 
bracket on T*SE(3), 

{f,g}p/a(lI,.~,#) = <  DBf,-----=Og > _ < DBO, Of > o f  . . . . .  O,j 0~1 Of 
OBII + N  Op Or N 

Instead of computing each term in the above formula individually, we compute 
the differential of ]. Let W = (By1, B(~ll'I + ~52), v3, v4) e T(B,BfI,r,p)T*SE(3 ). It 
generates the curve 

(Be'~l, Be*~l(n + t ~ ) ,  r + tv3,p + tv4) C T*SE(3). 

Thus the differential is given by, 

dr(B, BfI, r, p). W = -~ ] + r + + 

=d--7 f A- 

Of . (fjTI BTp + BTv4 ) Of Of.  @TBT r + BTv3 ) + 
= OII "v2+-g-~ 

( Of Of)  Of Of Of 
: --)t X - ~ - - ~  X ~ "V 1 -1--~-"~'V2"4-B-~ "v3"~ B-~-~ .v  4. 

Let the elements in T(B,BfI,r,p)T*SO(3 ) be denoted as 

We have 

(B(bI~I + a), Bb, e, d ) .  

Of Of Of 
a = - , X •  b - 

0 # '  0 I I '  

Of BOf 
c = d :  07" 
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Thus we obtain 

A ~-bs)) 
D B f  = B ( 0 0 - - ~ I ] - ( A x  Of 

35)-("• ~ ' 
\ 

o ]  o$ o ]  _ B o f  
0--7 = B - ~ ,  Op Op" 

The reduced bracket can then be derived as 

A 

of 
DBHf = BOH, 

{f, g}p/o(n, ~, ~) 

35) - '~?N 

(~i~ --ag --agA /o7 
35)- 

Of Og 
> +B35 �9 B~  

Og Of 
>-B35 . BN, 

1 Of Og 1 ,%TOg Of~  Of Og Og Of 
= ~ t r  fI ~ . . . . . . . .  

o,( o.) o.( o, o,) 
+-~  :~•215 - o ~  ~ • 2 1 5  ' 

Of Og Of og Og Of 
= - n . ( ~  • ~ )  + 3 5  07 - 0-5 o7 o,( o,) o, o,) 

+ ~ .  ;,•215 --yfi. ~ •215  

- -  0 o h  �9 

In terms of the notation introduced before, the matrix form for the Poisson tensor 
A is 

I 0 I �9 
p - i  o 

REMARK 4. The reduced Poisson structure derived here is very closely related to 
the one derived by Krishnaprasad and Marsden for the dynamics of a rigid body 
with a flexible attachment (1987). The key link is the geometry. In (Krishnaprasad 
and Marsden, 1987) the unreduced phase space is infinite dimensional and is given 
by 

P~ = T 'SO(3)  x T*C 

where C = { f :  [0, L] ~ / R  3 I f is smooth} is the configuration space for the shear 
beam attachment. In the present paper the unreduced phase space is 

P = T*SE(3) = T 'SO(3)  x T * ~  3. 
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In both settings, the reduction is by SO(3). In (Krishnaprasad and Marsden, 1987), 
the Poisson bracket takes the form 

L 

(f, g }~ /~  = - n .  ( -~  • -5-d) + -52 @ oh ~ ds 
o 

L L 
+ 

o o 

where the eonvecled variables )b It are 1R 3 valued functions on [0, L]. As we let the 
flexible attachment become vanishingly small (L ~ O) with infinitely large density, 
{', "}p•/G "collapses" to {., "}P/G"  

REMARK 5. [Casimir functions] A function f on a Poisson manifold (P, {., .}p) 
is said to be a Casimir function if 

{f ,  r  = 0 v r  

Note that a Casimir function is automatically a conserved quantity for any hamil- 
tonian vector field Xh on P. I f  {., .}p is induced from a symplectic structure and 
P is connected, then the only Casimir functions are the constant functions. In 
the present context, on (P/G,  {., "}P/G) there are nontrivial Casimir functions. I f  
(II , ) t ,  it ) is a generic point on P / G  (i.e. a point where the matrix A has maximal 
rank (= 8)), then on a neighborhood of this point any Casimir function is of the 
form, 

c~ = r  ~ x itl 2)  

where r : ~ --+ ~ is an arbitrary real-valued function. 
This follows from the observation that V Cr is in the null space of A. 

C. S t ab i l i t y  C h a r a c t e r i z a t i o n  

We recall the Energy-Casimir theorem ( see Holm, Marsden, Ratiu, and Weinstein 
(1985)).  Consider a finite dimensional Poisson system with a hamiltonian H 

= {x, H}(x)  ~ A ( x ) V H ( x ) .  (63) 

Assume the null space of A is not empty and is spanned by VC, where C is some 
( fixed ) Casimir function. Then xe is an equilibrium of (63) iff 3 A such that, 

VH(xo) = ~ vd(~o).  (64) 

Notice that if C is a Casimir, so is any smooth function C of C, and VC also spans 
the null space of A. So the equilibrium condition (64) can be rewritten as 

V ( H + C ) ( z ~ )  = 0, 

for a whole class of Casimirs. Note that  H + C is a conserved quantity along 
trajectories of (63). We have the following theorem. 
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THEOREM 2 (Energy-Casimir). I f  there exists a Casimir function C such that 

V(H + C)(xo) = 0, (65) 

V2(H + C)(x~) > 0, (or < 0) (second variation) (66) 

then x~ is a Lyapunov stable equilibrium of (63). 

Proof Define 

V(x) = (H + C ) ( x ) - ( H  +C)(x~). 

By assumption ~72(H + C)(x~) is positive definite, so we know that  x~ is a strict 
local minimum. Thus there exists a neighborhood U of x~ such that  

v(x ) = 0, 

v ( x )  > 0, 

Since H + C is a conserved quantity along trajectories of the given system, we have 
also 

v ( x )  = 0, vx  u - 

We may therefore conclude that  x~ is Lyapunov stable by a standard lemma (see 
e.g. Hirsch & Smale (1974), pp. 193). A similar argument can be applied in the case 
that  ~72(H + C)(x~) is negative definite. ,, 

Next we describe an alternate approach to obtain a stability theorem. Consider 
the constrained variational problem 

min H(x),  (67) 

subject to C(x) = b. (68) 

where b is a constant representing prescribed data. The Lagrangian corresponding 
to this optimization problem can be written as 

L(x,A) = H ( x ) -  AC(x), 

with A E IR. The first order necessary conditions for (68) then coincide with (64). 
We now recall the following lemma. 

LEMMA 2 ( See e.g. Bertsekas (1982), p. 68). Let P be a symmetric matrix and Q 
a positive semidefinite symmetric matrix, both of dimension n x n. Assume that 

(x, Px) >0, V x Ts O, with (x, Qx) = O, 

then there exists a (large, positive) scalar ~ such that 

P + c ~ Q  > 0, 

i.e. P + (~Q is positive definite. 

We can now state the stability criterion as follows. 
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THEOREM 3. Suppose that x~ and A~ E 1R are such that 

and, moreover, 

(h, ~7~L(x~,~r > O, V h # O w i t h ( V C ( x ~ ) ,  h )=O.  

Then xe is a Lyapunov stable equilibrium of (63). 

Proof Let 

(69) 

(70) 

Q = VC(x~) VC(x~) T, 

so that by hypothesis P and Q satisfy the conditions of the previous lemma. Thus 
we can find a E R such that P + c~Q is a positive definite matrix. Now, with the 
notation b = C(x~), define the augmented Lagrangian by, 

Then 

1 
Lo(~,~)  = H ( ~ ) - ~ O ( ~ ) + ~ ( O ( ~ ) - b )  2 

= VH(xo) - ~ v S ( x ~ )  + ~ (5(x~) - b) V~(xo)  = 0, 

+4  VS(~o)vS(xo)  ~ 
= P + a Q  >0.  

Thus the augmented Lagrangian satisfies the requirement of a Lyapunov function 
and Theorem 2 can be applied to conclude that xe is a Lyapunov stable equilibrium 
of system (63). 

REMARK 6. (a) Conditions (69), (70) form a set of sufficient conditions for 
x~ to be a constrained local minimizer of (68). 

(b) In application of Theorem 2, we would search for a suitable Casimir C 
to fulfill the conditions (65), (56). However, in application of Theorem 3 we can 
fix a particular Casimir C and a scalar A satisfying (69), and then attempt to 
verify (70). The analysis in Sections 7.2 and 7.3 illustrates the differences between 
the two schemes. 

(c) With appropriate hypotheses, both Theorem 2 and 3 can be generalized to 
cases in which there are n independent Casimirs, and the underlying space is infinite 
dimensional. .. 
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