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Two mathematical programming formulations are presented which allow the determination of diameter distri- 
butions that maximize the diameter class diversity in uneven-aged northern hardwood stands. Distributions 
generated from these models were found to be comparable from a management standpoint and could be incor- 
porated into existing linear programming models as alternative management scenarios. The models presented 
here provide an initial framework for quantitatively addressing the requirements of the US National Forest 
Management Act in matters of diversity in the planning process. 
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1. Introduction 

The US National Forest Management Act (NFMA) final rule (Federal Register 47(190), 1982) 
requires that diversity be considered in formulating management alternatives in the national 
forest planning process. N F M A  specifically states that 'Forest planning shall provide for diversity 
of  plant and animal communities and tree species consistent with the overall multiple-use objectives 
of  the planning area'. In addition, it calls for the quantitative evaluation of  diversity in both past and 
present conditions so that the impact of  proposed management practices on diversity may be evalu- 
ated. The N F M A  is vague as to how such quantifications of diversity are to be handled, however. 
Presumably, the drafters of  N F M A  saw this as an area open for future research. 

In this paper, diversity is viewed as a community property; accordingly, the trophic, taxonomic 
or structural levels that comprise the community must be specifically delimited. Most often, it is 
unrealistic to identify the components of  a community as all the living organisms within a region. 
Instead, the limited class of  organisms for which diversity assessment is desired needs to be clearly 
determined; in reference to this class, Pielou (1974, p. 289) has coined the term taxocene, which may 
be applied with equal validity to taxonomic groups, structural components, or even communities 
within communities (e.g. forest stands within a landscape mosaic). 

In making diversity comparisons, it is not uncommon to find that diversity has increased accord- 
ing to one index, but decreased according to a second index. This merely reflects the fact that 
diversity is a complex multidimensional property of  a community. To view diversity through the 
lens of  a single index is to project that multidimensional complexity on to a one-dimensional ordinal 
scale with distorted perception and possibly misleading conclusions. In view of the inadequacy of  a 
single index, we quantify diversity by means of  diversity profiles. A diversity profile is a curve 
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depicting the simultaneous values of  a large collection of  diversity indices. Thus, the profile portrays 
the views of  diversity from many different vantage points simultaneously and in a single picture. 

This paper takes up the issue of  optimizing diversity in uneven-aged forest management. For  
concreteness, the discussion is in terms of  diversity of  the diameter-class distribution, but other 
forms of  diversity could also be used. In uneven-aged forest management, there is the idealized 
notion of  a 'target'  stand: a forest, initially at the target stand, is allowed to grow and then is cut 
back to the target stand after a fixed number of  years, known as the length of the cutting cycle (cc). 
The cycle then repeats itself with cuttings every cc years. The problem is to determine the target 
stand according to some optimality criterion. The growth equations also place limits on the permis- 
sible target stands, so this is a constrained optimization problem. Traditionally, the optimality 
criteria have been based on economic considerations. This paper brings diversity considerations 
into this framework through an optimality criterion with economic considerations incorporated 
in the form of  constraints. 

The optimal target stand in uneven-aged forest management is defined by: (1) the optimal species 
mix; (2) the optimal, sustainable residual diameter distribution (number of  trees per acre by dia- 
meter class left after harvest) and associated maximum tree size; (3) the residual stocking level or 
basal area per acre (total cross-sectional area of  all trees in the target stand); and (4) the optimal 
cutting cycle length. For  simplicity, we use a growth model that incorporates all species in a stand 
into one set of  growth equations, obviating the need to consider optimal species composition. In 
addition, we assume a cutting cycle length of  5 years. Thus, our model is reduced to one that defines 
the optimal diameter distribution for all species with sustainability, economic and stocking con- 
straints. The model may be adapted to even-aged stand management, and many other types of  
constraints not considered here can be envisioned. For  example, extensions to the model could 
incorporate wildlife concerns: tree diameter and height relationships could be used to incorporate 
some measure of foliage height diversity into the model which would allow the maximization of  bird 
species diversity using relationships similar to those of  MacArthur  and MacArthur  (1961). A sol- 
ution to this problem would provide the manager with tree diameter and height distributions for 
management of multiple objectives. 

2. Average species rarity and diversity 

In this section we discuss the concept of  community diversity as average species rarity, first proposed 
by Patil and Taillie (1979). Throughout  this discussion we speak in terms of  a conceptual com- 
munity, C, which is composed of  s species. However, it is important to realize that 'species' is 
simply a convenient label for the categories into which we aggregate individuals, and that the 
names or labels of  the individuals themselves are of no consequence. In addition, in this discussion 
we define abundances in terms of  numbers of  individuals (by species). That  is, in an s-species com- 
munity, the absolute abundances are given as N1 ,N2 , . . . ,Ns  such that ~Si=lN i = N, the total 
number of  individuals. Just as 'species' is used generically for some method of  categorization, 
other measures of  abundance could also be used; these include biomass, board foot or cubic foot 
volume, basal area, or any other mensurational quantity. 

With the above thoughts in mind, we find that the absolute abundances and total number of  
individuals in a community are secondary quantities in diversity considerations; the apportion- 
ment, or relative distribution of individuals and the number of  species are of  primary interest. 
The relative abundance vector for a community is given by n = ( n l , . . . ,  ns), where yc i = Ni/N;  
therefore, E]=lni = 1. The total number of  species in the community, s, is called the species rich- 
ness; the conceptual community may therefore be written as C(s, n), or simply C(n) since s is implied 
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in the dimension of  n. Now consider a community such that all species have the same relative 
abundance; that is, ni = 1/s = nE for all i, so that s alone determines the abundance vector. Such 
a community is denoted by CE(s) and is termed the completely even community. 

Diversity is defined here as average community rarity. The rarity of  species i is a quantitative 
measure associated with that species and is denoted by R(ni). Patil and Taillie (1979, 1982) discuss 
two types of  rarity measures: rank-type and dichotomous-type. The dichotomous-type rarity measure 
is used here; it is given by 

( 1  - 
, - o o  < 13 < o o .  ( 1 )  

Rarity is a species property while diversity is a property of  the community. To determine community 
diversity, rarity is considered a measurable random variable and diversity is given as its expectation, 
g[R(Tti) ]. Therefore, using the dichtomous rarity index, we find that the diversity for community 
C(s, n) is 

S 
= ( l  - §  

i = 1  = 13 ' 13 ~> - 1. (2) 

The restriction on the parameter 13 is required in order that A~ (n) have certain desirable properties 
(see Patil and Taillie, 1979, 1982, for more discussion). Note that the normal limiting definition is 
used as [3 = 0 for both R~(=i) and A~(n). 

The use of  the Patil-Taillie diversity profile A~(n) as the diversity measure has two important 
consequences. First, three of the common ecological diversity indices are special cases of  A~(n). 
When 13 = -1 ,  A_l(rt ) is the species count; at [3 = 0, A0(n) is the Shannon index; and at [3 = 1, 
A 1 (n) is the Simpson index. This ties the A~(n) definition of  diversity in with much of  the ecological 
literature on diversity, both past and present. 

The second important consequence of  using A~(n) is that if 13 is allowed to vary while n is held 
fixed, a plot of  A~(n) by [3 yields the Patil-Taillie diversity profile. Diversity profiles for several 
communities may be plotted simultaneously to provide visual diversity comparisons. If  two profiles 
intersect, then the communities are not intrinsically comparable in terms of diversity, the results of  
the comparison being dependent upon the specific diversity measure employed. However, some 
conclusion about  the comparative diversity may still be possible using the intersecting profiles. 
When 13 is small (close to -1) ,  A~(n) is more sensitive to rare species than when 13 is large (close 
to +1). This can easily be seen by noting that A_ 1 (n) is the species count index in which all species, 
irrespective of  the associated community abundance vector, receive the same weight. However, 
Simpson's index, A 1 (n), is insensitive to rare species. Therefore,/3 may be interpreted as a 'sensi- 
tivity' parameter. For example, in a mature, even-aged, mixed Appalacian hardwood forest, the 
forester may place great importance on the occasional 'high-value' species such as black walnut. 
In this case, the forester would empha.size the portion of the profile corresponding to small values of  
[3 in assessing forest diversity. The red-eyed vireo, however, who sees an unbroken canopy of  choice 
mature oak habitat for nesting and foraging, would be more interested in measuring diversity at 
larger 13 since abundance of  what it considers 'high-value' species is of  primary importance. 

3. Uneven-aged stand growth model 

The model presented is a whole-stand, mixed-species, distance-independent growth model, for 
uneven-aged northern hardwoods. The original growth model developed by Ek (1974) used three 
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non-linear regression equations to predict the number of  ingrowth, upgrowth, and mortality trees 
over 5 year growth periods. This set of  equations subsequently was modified by Adams and Ek 
(1974) for use in their study, and has been used by numerous other investigators in optimization 
studies. Their growth model is expressed in the following set of  equations: 

/ B P A \ -  1.40072 
I(t) = 7.07933 ~T---p~ ) 

Ui(t)  = O.O0330Ni(t  - I)~ ~ exp (-0.00286 BPA), i = 1 , . . . ,  s 

M i ( t )  = O . 0 4 1 0 9 N i ( t -  1), i = 1 , . . .  ,s. (3) 

Here 

I ( t )  = 

= 

Me(t)  = 
N , ( t -  1) = 

Ni ( t )  = 

ingrowth: the number of  trees per acre growing into the 6-inch diameter class during the 
growth period; 
upgrowth: the number of  trees per acre growing from diameter class i to i + 1 during the 
growth period; 
mortality: the number of  trees dying in diameter class i during the growth period; 
number of  trees in diameter class i at the beginning of  the growth period; 
number of trees in diameter class i at the end of  the growth period. These are calculated 
according to the following three equations: 

Ni( t )  = N i ( t  - 1) + I ( t )  - Ui(t)  - M i ( t ) ,  for i = 1, 

Ni( t )  = N i ( t -  1) + Ui_l ( t  ) - Ui(t)  - M i ( t ) ,  for i = 2 , . . .  ,s 

Ns+l(t) = Us(t) ,  for the last diameter class. 

S = 

Y t i  = 

Y2i 

and 

(4) 

number of  diameter classes; s -- 9 here; 
2-inch diameter class midpoint diameters at breast height (DBH = 4.5 feet), beginning 
at 6 inches (i.e. 6, 8 , . . . ,  22); 
rr Y 2 / ( 2  x 12) 2 -- 0.005454 y2  = tree basal (cross-sectional) areas in square feet corre- 
sponding to the Yli  (tree cross-sections are generally assumed circular for basal area 
calculations). 
site index: a measure of  site quality; S = 55 here; 
~]S=l Y 2 i N i ( t  - 1) = basal area per acre in square feet; 
~ i = l N i ( t -  1) = number of  trees per acre. 

S 
BPA = 
TPA = 

This non-linear growth model predicts the number of trees growing into the smallest diameter 
class (ingrowth), the number of  trees growing up one class (upgrowth) for each diameter class, and 
the number of  trees dying in each diameter class over the 5-year growth period. Equation set (4) 
provides the linkage between this growth model and the two optimization models presented in the 
next section. 

4. Maximizing diversity 

Earlier, it was noted that for any given vector of  relative abundances n a diversity profile could be 
generated by allowing 13 to vary in (2). In this section, A~(n) is viewed in the opposite sense: 13 is held 
fixed and n is allowed to vary subject to the constraints that 13 >/ - 1 and E~=l~ri = 1. When this is 
done, a divers i ty  sur face  IS generated for the specified 13. 
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Figure 1. AI~ diversity contours for three-species communities (13 = 1). 

Figure 1 presents a triangular chart of  a three-species (s = 3) community with each of  the three 
axes of the chart scaled such that 0 ,N< ni ~< 1, i = 1 , . . . ,  3. This type of chart is useful for envisioning 
the diversity surface since it automatically incorporates the constraint Y~i=lniS = 1. The contours 
plotted on the interior of  the chart represent constant values of  the A~0t ) diversity surface when 
13 = 1 (Simpson's index). Any corner point on the chart represents a single-species community, edges 
are two-species communities, and interior points are three-species communities. The chart clearly 
shows for 13 = 1 that the A~ 0t) diversity surface reaches its maximum at the center - the completely 
even community. 

A similar chart is shown in Fig. 2 for the A~(n) surface for 13 = 2. Note the slight difference in the 
shape of  the diversity surface level curves when compared with Fig. 1. In Fig. 2, the curves are less 
circular and are beginning to become somewhat triangular in shape. Indeed, if the A~(n) surface is 

5 
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Figure 2. AI~ diversity contours for three-species communities (13 = 2). 
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Figure 3. Model (6) contours for three-species communities. (Note that the surface is actually piecewise 
linear.) 

plotted as [3 --* cxD, the level curves become more and more triangular. The maximum, again, is 
clearly seen to occur at the completely even community when 13 = 2. 

Moving in the other direction, the diversity surface becomes flatter as [3 approaches -1 .  In the 
limit of 13 = -1 ,  the surface is constant on the interior of the triangle, so conventional contours 
cannot be drawn. 

That the completely even community maximizes diversity for a given number of species s is well 
known (Patil and Taillie, 1979, 1982; Pielou, 1974; Solomon, 1979). In general, the problem may be 
formulated for A~(~) as 

max A~(n) subject to ~ ni = 1. (5) 
{~} i=1  

It is straightforward to show that the solution to (5) is C~.(s). This is an interesting finding because it 
allows the introduction of an alternative objective function into model (5); maximizing (5) is equiv- 
alent to the following problem: 

, s 
min ~ [ ~E - ~i[ subject to ~i = 1. (6) 
{~} i=1 i = ]  

The unevenness m e a s u r e  Y]S=I [ ~E - -  7~i [ in (6) is known as the Pietra index of income inequality in 
economics (Arnold, 1987). The diversity surface for this formulation is presented in Fig. 3. Note the 
difference in the shape of the level curves in this surface when compared to Figs 1 and 2; the level 
curves for (6) are hexagonal. This surface also is minimized at the completely even community, 
implying that diversity is at its maximum. 

5. Maximizing diameter class diversity 

Consider the following question for an uneven-aged, northern hardwood stand: given certain 
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stocking, economic, and biological growth constraints, what is the diameter distribution that 
maximizes diameter class diversity? Based on the results of  the last section, the intuitive answer 
to this question is the diameter distribution that is most nearly even. However, the result will not 
be a completely even diameter distribution if the constraints used in the model impose any true 
restriction on the diversity surface. 

Under the current scenario, notice that 'species' has now become synonymous with diameter class; 
therefore, s is now the number of diameter classes which is held constant. Relative abundances 
composing n are determined in terms of the number of  trees per acre. 

A mathematical programming model structure first introduced by Adams and Ek (1974) is 
adopted here. Two general model formulations are presented and solved as non-linear programs. 
The concepts discussed in the previous section may be extended to s > 3 in these two models to 
maximize diameter class diversity. The first formulation in equation set (7) maximizes the 
diameter-class diversity using the objective function from (6) and is termed Model I. 

S 

m i n Z  I n/r - ni[ subject to: 
{'~} i=1 

S 

i=1 

N i ( t ) - N i ( t - 1 ) > > - O ,  i =  1 , . . . , s + l ;  

0 < 1ti ~< 1; 

BPA = PSL; 

LEV = ESL. (7) 

Here 

N i ( t -  1) 

U~(t) 

BPA 

LEV 
VGS 

VG 
CC 

Vi 

a r r =  
PSL = 
ESL = 

= number of  diameter classes ('species'); s = 9 in this study. The diameter class width used 
was 2 inches, with a minimum diameter class of  6 inches; 

= number of  trees in diameter class i in the optimal stand at the beginning of  the 5-year 
growth period; 

= number of  trees in diameter class i in the optimal stand at the end of the 5-year growth 
period given the growth dynamics predicted by the growth model; 

= total basal area per acre in the optimal stand (taken at the midpoint of  the 2-inch 
diameter classes); 

= VG/((1  + arr) cc - 1) - VGS -- land expectation value for the optimal stand; 
= ES=l ViNi(t - 1) --- value of  initial growing stock; 
= E~i+=] Vi Ni(t) - VGS = 5-year value growth; 
= cutting cycle (time between harvests) length in years (cc = 5 in this study); 
= individual tree value in dollars for the i th diameter class. The individual tree values 

used in the computation of  LEV are Martin's (1982) fair site (site index 55) values 
(see Table 1); 
alternative rate of  return (3% in this study); 
some physical stocking level of  basal area per acre; 
some economic stocking level in present value dollars per acre. 

Model II maximizes AI3 (n) with the added constraint that 13 must be fixed, the rest of  the model is 
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the same as Model 

max A~ (n) 
{~} 
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I. The complete formulation is given as follows: 

subject to: 

i = l  

i = l , . . . , s + l ;  N i (  t )  - N i (  t - 1) >/0, 

O<~i~< 1; 

BPA = PSL; 

LEV = ESL; 

13=b, 

where 13 may be fixed at any value b such that - 1  ~< b < oo. 

(8) 

The growth dynamics for both formulations are modelled with the set of  non-linear whole-stand 
diameter-class growth equations given in (3); therefore, the diameter distribution recovered in the 
optimal stand is for the entire community composed of  all species - no individual species distri- 
butions are available. 

The physical stocking constraint on basal area and the economic constraint on LEV keep the 
solutions from both models feasible from a biological perspective. I f  both of  these are set simply 
to be positive, Model I will lead to a degenerate solution; Model II may find a feasible solution with 
non-zero n, however, the stand basal area and trees per acre effectively will be zero. Therefore, the 
growth constraints alone do little to determine a biologically reasonable solution. In addition, if 
only one of  these two constraints is used and if BPA is restricted between lower and upper 
bounds (e.g. BPAL ~< BPA ~< BPAu), both models always seem to converge to a solution at the 
lower bound. 

6. Model results 

Models I and II were optimized using the generalized reduced gradient program G RG 2  (Lasdon 
and Waren, 1986). Solutions were found at several economic and physical stocking combinations; 
all solutions presented satisfied the Kuhn-Tucke r  stationarity conditions. 

Table 1 presents solutions to Model I with LEV constrained only to be positive, but with stand 
basal area set at several stocking levels. Note that the diameter distributions in Table 1 are not 
completely even; this is a consequence of  the constraints on growth and basal area which are all 
binding in both model formulations. A plot of  the A~(n) profiles for these three communities is 
shown in Fig. 4. The distribution at 60 ft z is the most diverse community according to the diversity 
ordering of  the Al~(n ) profiles. In addition, the unevenness criterion correctly orders each com- 
munity with respect to diversity in this example. 

The most striking aspect of  the distributions in Table 1 is that LEV is zero for all solutions. The 
reason for this is that LEV and evenness work against each other in these formulations. In order to 
even out a distribution (i.e. maximize diversity), as many trees as possible are put into the larger 
diameter classes. This happens in accordance with satisfying the growth and BPA constraints until 
LEV reaches its lower bound of  zero. However, trees in the sawtimber size classes ( 1> 12 inches) 
contribute substantially more to holding costs in the calculation of LEV; therefore, few trees are 
needed in these classes to drive LEV to zero. Thus, the positive constraint on LEV is a mechanism 
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Figure 4. A~ profiles of maximum diversity diameter distributions for Model I at different basal area per 
acre stocking levels. 

that  works against  evening out  the d i s t r ibu t ion  at optimali ty.  Indeed,  if LEV were left uncon-  
strained, it would  be dr iven negative in the opt imal  solut ion,  result ing in a more  diverse c o m m u n i t y  
than  the 60-ft 2 solut ion in Table  1. Such a result ma y  be reasonable  if f inancial  considera t ions  are of  
no  concern  to the landowner .  

Maximiz ing  Model  II  is no t  as s t ra ightforward as min imiz ing  Model  I. The reason for this was 
po in ted  out  earlier: i nasmuch  as different diversity surfaces are generated at  each 13, A~ (n) should be 
opt imized several times, each at a different level of  13 to allow for compar i son  of  the result ing 

Table 1. Maximum diversity diameter distributions for Model I at different 
basal area stocking levels. 

Basal area per acre 
Diameter class Value 
(inches) 6Oft 2 8Oft 2 12Oft 2 per tree a 

Trees per acre 
6 18.44 30.03 64.63 0.11 
8 13.66 21.90 45.62 0.30 

10 10.67 16.86 34.16 0.54 
12 8.63 13.47 25.02 3.83 
14 7.16 11.05 20.08 6.15 
16 6.05 9.25 16.35 8.61 
18 5.20 7.87 4.80 11.23 
20 4.52 3.01 0.11 14.66 
22 1.47 0.56 0.04 17.79 

Total TPA 75.80 114.00 210.81 
LEV S/acre 0.00 0.00 0.00 
Unevenness b 0.47 0.55 0.72 

a The tree values used are from Martin's (1982) fair site guides; values for 24 inch and 
26 inch trees used by Martin were $21.19 and $24.97 respectively. 
b Unevenness is defined as E~=ll nE - ~zi I- 
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Table 2. Maximum diversity diameter distributions with 80 ft 2 of basal area 
per acre for Model II at different 13. 

Diameter class 
(inches) 0.01 1.0 10.0 100.0 

Trees per acre 
6 30.53 29.99 30.03 34.78 
8 22.26 21.87 21.90 25.29 

10 17.13 16.84 16.86 18.51 
12 13.69 13.45 13.47 10.29 
14 11.22 11.04 11.05 8.47 
16 7.66 9.24 9.25 7.11 
18 6.53 7.86 7.87 6.06 
20 3.03 2.66 3.01 5.24 
22 2.01 0.89 0.56 1.91 

Total TPA 114.06 113.84 114.00 117.66 
LEV S/acre 0.00 0.00 0.00 0.00 
Unevenness 0.58 0.55 0.55 0.67 

distributions. Table 2 presents the results of  this process for four levels of  [3 at 80 ft 2 of  basal area per 
acre. All of  the constraints (with the exception of  that on 13) have remained the same in each of  these 
solutions; therefore, the solution space has not changed - the only difference contributing to the 
slightly different results is the shape of  the diversity surface at each 13. This phenomenon can be 
envisioned readily by imagining one or two simple linear constraints in Figs 1, 2, and 3. Note  
that  depending upon the arrangement  of  the constraints in these figures, the optimal solution 
may be slightly different in each case. This same reasoning applies to the results in Table 2. 

The results in Table 2 show a range of  only four trees per acre difference between the resulting 
stands; therefore, f rom both a biological and practical perspective, there is no difference between the 
resulting distributions at different 13. Theoretically, the value of  the unevenness statistic might be 
used to judge which of  these distributions is, in fact, the most  diverse at the 80-ft 2 level. However, the 
unevenness criterion is only a one-dimensional statistic and has not been shown to order com- 
munities consistently for a given s as have the A~(n) profiles. Indeed, a plot of  the four A~(n) 
profiles (not shown) reveals that they are not intrinsically comparable since the profiles cross. In 
this case, it seems reasonable to pick the community  at 13 = 10 since it has the smallest unevenness 
and is the solution to Model I (see Table 1). Given the practical considerations, nothing is com- 
promised in this decision. 

One further cautionary note is in order when optimizing Model II. I f  [3 is set equal to - 1 ,  the 
diversity surface generated by A~(n) is a constant at s -- 1 for all n, as noted earlier. In this case, the 
only factors restricting the solution are the constraints, and any point which satisfies the constraints 
within the feasible solution space may be chosen as a solution. Thus, Model I I  should never be 
optimized at 13 = - 1  as solution vectors having little relation to the results of  Model I may 
result. In addition, if 13 is left unconstrained in Model II, the same result occurs since [3 ~ - 1  in 
this case. 

The results of  adding a LEV constraint different from zero to Model I are shown in Table 3. The 
first distribution constrains LEV to be $100 per acre while allowing BPA to go free. The other two 
distributions constrain both LEV and BPA. Comparing the 60-ft 2 and 80-ft 2 distributions in Tables 
1 and 3 clearly shows that the effect of  the LEV constraint is to add more trees to the smaller 
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Table 3. Maximum diversity diameter distributions for 
Model I at different basal area stocking levels with LEV 
constrained to $100. 

Basal area per acre 
Diameter class 
(inches) 50.7 aft 2 60 ft 2 80 ft 2 

Trees per acre 
6 26.78 25.56 42.38 
8 19.79 18.84 30.72 

10 15.42 14.64 23.53 
12 11.34 11.80 18.71 
14 9.40 9.75 15.28 
16 4.98 8.22 4.64 
18 2.25 5.06 3.62 
20 0.07 0.15 1.93 
22 0.03 0.00 0.00 

Total TPA 90.06 94.02 140.81 
LEV S/acre 100.00 60.00 80.00 
Unevenness 0.74 0.62 0.75 

a The BPA constraint was free in this distribution. 

119 

diameter classes while removing trees f rom the larger sawtimber classes. This causes a decrease in 
the holding costs, allowing LEV to increase over the distributions in Table 1. It  also decreases the 
unevenness statistic and, therefore, the diversity, as expected. This illustrates the interplay between 
evenness and LEV alluded to earlier. 

7. Concluding remarks 

The models presented provide a f ramework for quantitatively considering diversity as part  of  
natural  resource mathematical  programming models. Diversity here is considered the objective to 
be maximized in both model formulations. However,  Gove et al. (1994) consider how diversity may 
be reinterpreted into constraint form if some other objective was desired. The limiting factor in these 
formulations is the non-linearity of  the A~(n) function and growth equations, requiring solution 
techniques which necessarily fall within the realm of non-linear programming.  Biologically and 
mathematical ly such non-linearity makes sense, however, it excludes the explicit use of  such func- 
tions in large linear programming models such as those used in national forest planning. Diameter 
distributions produced by solving Model I could, however, be incorporated into linear program- 
ming models in the form of  alternative management  scenarios. 

The solutions of  Models I and I I  suggest that  both models will give approximately the same 
answers. However,  because of  the nature of  the diversity surfaces generated in these models and 
the uncertainty of  diversity ordering based on a single index like unevenness alone, it is recom- 
mended that  both models be solved, as was done in the previous section. In addition, Patil-Taillie 
A~(n) profiles should always be plotted when comparing models for diversity ordering. Other pro- 
files are available and may  also be useful. For  example, in comparing the distributions of  Table 2, 
the A~(n) profiles plot very close to each other, and it is difficult to determine if and where they 
cross. In this case the Pati l-Taill ie right tail-sum profiles of  the relative abundance vector were 
extremely helpful (see Patil and Taillie, 1979). 
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In each of  the tables presented, the absolute abundance vectors are given because this measure is 
necessary for management. It is therefore possible to incorrectly interpret the results of  these tables 
by trying to judge evenness based merely on the diameter distributions alone, while not taking into 
account the respective total trees per acre. In addition, the 'species richness' was held constant for 
each distribution to facilitate comparison. I f  new distributions were generated with different num- 
bers of  diameter classes, this would also enter into the subsequent evaluation of  diversity ordering. It 
should be remembered that the relative abundances and species richness are the keys for evaluating 
diversity. 

Models I and II were kept relatively simple in order to introduce the concept of  maximizing 
diversity and related diversity ordering. For  example, ~t is treated as a deterministic vector in 
both models. Actually, because of the stochastic nature of the underlying growth equations, n is 
a random vector with unknown sampling distribution. Gove and Fairweather (1992) provide a 
method for evaluating the precision of  the optimal diameter distribution by using a Weibull distri- 
bution function to characterize the diameter distribution, thus reducing the dimensionality of  the 
problem to three parameters. They bootstrapped the original plot data yielding a multivariate dis- 
tribution of  the Weibull parameters for the optimal stand diameter distribution. This multivariate 
distribution was transformed and subsequently modeled with the multivariate normal distribution 
to enable confidence limits to be placed on the optimal diameter distribution. Similar analyses could 
be done with the models presented here to quantify the stochastic nature of  these models. 
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