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The diversity of a set of species refers to the joint dissimilarity of the species in the set. This paper discusses the 
measurement of diversity from the set of pairwise distances between the species in the set. A measure called the 
effective number of species is developed from a non-parametric probability inequality and is shown to have a 
simple interpretation in terms of comparing linear experiments. 
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1. Introduction 

There is widespread concern that human activities - most  notably tropical deforestation - are 
contributing to a large-scale reduction in biological diversity through the extinction of plant and 
animal species (e.g. Wilson, 1992). While there is general agreement that  the conservation of diver- 
sity is important ,  it is also important  to recognize that the conservation of  diversity must compete 
for attention and resources with other worthwhile social, environmental,  and economic goals. As 
long as the resources for the conservation of  diversity are scarce, they must  be allocated across 
conservation projects. To allocate these resources for maximal impact on diversity, it is necessary 
to move beyond generalities to a more precise definition of diversity and, specifically, to measure 
diversity. This problem is addressed in a small but growing literature (e.g. Vane-Wright et al., 1991; 
Eiswerth and Haney, 1992; Weitzman, 1992; Solow et al., 1993). In this paper, we discuss some of 
the issues in measuring diversity and we propose a new measure. 

For  the purposes of  this paper, the diversity of  a set of  species can be described as the joint 
dissimilarity of  the species in the set. The information available for constructing a measure of  diver- 
sity is the set of  pairwise distances between the species in the set. These distances can be based on 
morphological  or behavioural differences, or on more refined (although not necessarily more infor- 
mative) molecular biological methods. This use of  the term diversity differs from that in ecology (e.g. 
Pielou, 1975), where diversity is a property of  the relative abundances of  species without regard to 
the differences between them. 

Before proceeding, a word is in order about  the interest that this problem may hold for statis- 
ticians. First, in a broad sense, the problem of  measuring diversity can be viewed as characterizing 
an aspect of  the distribution of  points in space. It  is, therefore, related to standard problems 
in multivariate analysis, al though the aspect of  interest - namely, diversity - is somewhat  non- 
standard. Second, one of  the approaches described in this paper  constructs a diversity measure f rom 
a non-parametr ic  probabili ty inequality. Interestingly, this approach leads to a measure that has a 
straightforward interpretation in the context of  comparing linear experiments. 
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2. A decision-making framework 

Solow and Polasky 

Making effective conservation decisions depends on factors other than the measurement of  diver- 
sity. Before turning to the measurement problem, it is useful to outline a simple decision-making 
framework in which a specific measure can be embedded. The reason for this digression is that a key 
aspect of  species conservation - interactions between species - is most conveniently treated outside 
the measurement question and, for completeness, some indication of  how it can be handled is in 
order. 

Suppose that the total set of  species under consideration is T. In principle, T could consist of  
either a set of  target species or all the species on Earth. Extinctions partition T into a set of extinct 
species X a n d  a set of  surviving species Y. The pattern of  extinctions is uncertain and can be charac- 
terized by a probability distribution. The aim of  a conservation strategy C is to influence this dis- 
tribution. Without further specification, let the diversity of a set of  species S be D(S ). A reasonable 
basis for evaluating C is the expected diversity of  the surviving species: 

Ec(D(Y)) = E D(y)pc(y) (1) 

where the summation extends over all subsets y of  T and Pc(Y) is the probability under C that 
Y = y .  

Many important  ecological interactions are subsumed in Pc (Y). In particular, a myopic strategy 
that seeks to conserve a set of  highly diverse species without also conserving the species on which 
they depend will have low expected diversity. To ensure that mistakes of  this kind are not made 
when species interactions are poorly understood, the best instrument of  species conservation may be 
the conservation of  the habitat in which the species live. 

3. The measurement of pure diversity 

To implement the decision-making framework outlined in the previous section, it is necessary to 
specify the diversity measure D(S ). One measure of  the diversity of  a set of  species is the number of  
species in the set. One problem with this measure - which is called species richness - is that it does 
not take account of  differences between species. For  example, a set consisting of  four species of  ant is 
in some sense less diverse than a set consisting of  one species of  ant, one species of  elephant, and one 
species of  fern. 

Let the distance between two species si and sj be dij. It is natural to equate the diversity of  a set 
consisting of  s; and sj to an increasing function of dij. For  example, Fig. 1 shows two sets, each 
consisting of  two species represented as points. Because the distance between the species in set S1 
is less than the distance between the species in set $2, $2 is more diverse than $1. One way to think 
about the measurement of  diversity is as an extension of  the notion of  distance to more than two 
points. 

To facilitate the discussion, it is helpful, as in Fig. 1, to have a graphical representation of  n > 2 
species that preserves pairwise distances. If  the pairwise distances are metric, then n species can be 
represented by points in Euclidean space of  dimension ~< n - 1. Even if the distances are not metric, 
the species can be approximately represented by points in Euclidean space via non-metric scaling 
(e.g. Kruskal, 1964). If  the pairwise distances satisfy the stronger ultrametric condition, then the 
species can be represented as the terminal nodes of  a rooted tree. Even if the distances are not 
ultrametric, the species can be approximately represented in a tree (e.g. Sneath and Sokal, 1973). 

Constructing a sensible measure of  diversity is not as easy as it may seem. As before, let 
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Figure 1. The pair of species in Sl is less diverse than the pair of species in S 2. 

T = (sl, s2 , . . . ,  SN) be the total set of species and let di be the average distance between species si and 
all other species in T. Eiswerth and Haney (1992) suggested that the diversity of  a subset S of T be 
measured by 

e ~ ( S  ) = F_, d,. (2) 
siES 

To see why this measure will not work, consider the four species represented in Fig. 2. In this case, 
the species are represented in a symmetric, unrooted tree, with the distance between two species 
given by the sum of  the lengths of the branches connecting them. For this configuration, 

d 1 = d 2 = 2(2a + b + c)/3, 

8 3 = d 4 = 2(a + b + 2c)/3. 

Under this measure, the diversity of the pair (sl, sz) is greater than the diversity of the pair (sl, s3), 
although d12 < d13. The fundamental problem with this measure is that, in calculating dr, no dis- 
tinction is made between species that will be lost and those that will survive. 

To narrow the search for sensible measures of diversity, it is useful to set out some requirements 
for such measures. Three natural requirements are the following. First, diversity should not be 
decreased by the addition of a species. That is, if S c S ' ,  then D(S ) <% D(S ' ) .  This is called mono- 
tonicity in species. Second, diversity should not be increased by the addition of a species that is 
identical to a species already in the set. This means that, for metric distances, D(S t_J So) = D(S ) 
if and only if d0i = 0 for some si E S. Weitzman (1992) referred to this as twinning. Third, diversity 
should not be decreased by an unambiguous increase in the distances between species. Specifically, 

B 1 

b 
$5  

S 4 

Figure 2. Under EH(S), the pair (S1, $2) is more diverse than the pair (si, $3), e v e n  though d12 '< d13. 
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for a one-to-one mapping of  S onto S '  such that dij ~ di~j, , with at least one strict inequality, 
D( S ) <<. D( S ' ) .  This is called monotonicity in distance. 

The first measure to satisfy these requirements was proposed by Weitzman (1992). To begin with, 
Weitzman assumed that the diversity of  a single species is 0 and defined the distance between a single 
species So and a set of  species S as the nearest-neighbour distance, 

d(s0, S ) = min d0i. (3) 
siES 

With this definition, the measure is given by 

W ( S )  = max[W(S - si) + d(si, S - si)], (4) 
siES 

where S - si is the set formed by omitting si from S. 
A heuristic motivation for this measure is the following. It would seem natural to require that 

D(S U So) = D ( S ) +  d(so, S) .  Moreover, this would provide an algorithm for calculating D(S) :  
starting with any species in S, D(S ) could be calculated by adding the remaining species one at a 
time and incrementing diversity by the nearest-neighbour distance. Unfortunately, the results of  this 
calculation depend on the order in which the species are considered. The maximization in (4) 
removes this ambiguity. 

One attractive feature of  this measure is that, in the case where the species can be represented 
exactly in a tree, it corresponds to the length of  the tree. This seems natural and convenient. One 
drawback of  this measure is that, outside the ultrametric case, it is not strictly monotone in distance, 
in the sense that it need not increase with an unambiguous increase in distances. For  example, in the 
case of  three species, Weitzman's measure corresponds to the sum of  the maximum and the mini- 
mum of  the three pairwise distances. It is, therefore, unaffected by changes in the intermediate 
pairwise distance. 

4. A utilitarian approach 

The discussion so far has essentially assumed that diversity is desirable and has focused on con- 
structing a measure with reasonable properties. A different view is that it is not so much diversity 
per se that is valuable, but the benefits that diversity provides. For  example, one justification for 
species conservation is that some species may provide a future medical benefit. In this section, we 
explore the implications of  this argument for the measurement of  diversity. 

Suppose that interest in conservation arises from the possibility that species will provide a specific 
benefit in the future. The essential property of  this benefit is that having more than one species that 
provide it is no better than having a single species that provides it. An example of  such a benefit is a 
cure for a disease and, for concreteness, we will use this as a metaphor. 

Consider a set of  species S = (sl, $2,... , Sn) and let B i be the event that si is a cure. The event that 
S contains a cure is 

n 

8(s)= UBi. 
i=1 

Because the expected benefit for S is the product of  the value of  a cure and the probability 
p(S ) = Pr (B(S)),  p(S ) provides a basis for comparing S to other sets of species. 

In the absence of  specific information, it is reasonable to assume that Pr(Bi) = p, i = 1 ,2 , . . . ,  n, 
with p unknown. We will make the further assumption that 

Pr ( B i [B j) = p + (1 - p ) f  ( dq), (5) 
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where f i s  a known function satisfying the following conditions; 

f ( 0 )  = 1, f (o r  = 0, f '  ~< 0. 

Under this model, the conditional probability of  B i given Bj declines from I to p as dij increases from 
0 to cr It follows from (5) that 

Pr (Bi N Bj) = p2 + p(1 - p ) f ( d u ) .  (6) 

For  consistency, assume that the distances are metric and that the func t ionf i s  positive definite. 
An example of  such a function i s f ( d  ) = exp ( - 0 d ) ,  0 > 0. It may be helpful to think o f f ( d  ) in the 
following way. Consider the binary random variable I i = 1 if B i and 0 otherwise, i = 1 , 2 , . . . ,  n. 
Then f(dij) is the correlation between Ii and/ j .  

In general, it is not possible to find p(S ) from the univariate and bivariate marginal probabilities. 
It is, however, possible to place a lower bound on p(S). For arbitrary events Ai, i = 1 ,2 , . . .  ,n, 
Gallot (1966) showed that 

Pr Ai ~> sup (c'P1P~c)/(c'P2c), 
C 

where c is an arbitrary n-vector, P1 = (Pr (A1). . .  Pr (An))' and P2 = [Pr (A i N Aj)], i, j = 1 , 2 , . . . ,  n. 
In terms of  the model outlined above, this implies that 

p(s) >/sup (1 +p(1 -p)(c'Fc)/(c'?c)) 
C 

where F = [f(dij)], i , j  = 1 ,2 , . . .  ,n, and P is an n x n matrix with all elements equal to p2. In 
general, the elements of  F depend on S, although this is suppressed in the notation. Provided 
that F is non-singular, it can be shown that 

sup (c'Pc)/(c'Fc) = p2 e 'F- l  e 
C 

=p2V(S)  (7) 

where e is an n-vector of  l 's (e.g. Gantmacher,  1959). A similar result involving a generalized inverse 
of  F follows from Kounias (1968) in the case where F is singular. Since the lower bound on p(S ) is 
an increasing function of  V(S ), different sets of  species can be compared in terms of this measure, 
with larger values corresponding to greater lower bounds. 

The measure V(S) has some appealing properties. Iff(dij) = 0 for all i ~ j (i.e. the species are 
unrelated), then F is the identity matrix and V(S ) is equal to n (i.e. the number of  species in S). If  
f(dij) approaches 1 for all i,j (i.e. the species are perfectly related), then V(S ) also approaches 1. As 
discussed below, while it is possible for V(S ) to exceed n, it is conjectured for a reasonably con- 
strained family of func t ions f tha t  V(S ) lies between 1 and n. In a sense, V(S ) can be interpreted as 
the effective number of  species in S. 

Some intuition about  V(S ) can be gained by exploiting a connection to the comparison of  linear 
experiments (e.g. Hansen and Torgerson, 1974). Consider a set of observations: 

Y i = b t + e i ,  i =  1 ,2 , . . . , n  

where la is the unknown mean and 8i, i = 1 , 2 , . . . ,  n, are zero mean errors with covariance matrix F. 
It may be helpful to think of  the observations as being taken at locations in space, with F reflecting 
spatial covariance in the error process. I f  only a subset of the observations are to be retained to estimate 
tx, a natural criterion for comparing different subsets is the variance of  the generalized least squares 
estimator ( e ' F - l e ) - l ,  which is the reciprocal of  V(S ). We will return to this connection below. 
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We now take up the question: does V(S) satisfy the three requirements for a diversity measure? 
Let S = (Sl,S2,... ,Sn) with 

= ( c . e . c . ) / ( c , F , c . )  V(S) sup ' 
Cn 

in obvious notation. Let S' = S U sn+l and let c*+~ = (c'nO)'. Since 

V( S ) = sup (Cn+l,Pn+ 1Cn+l)/(C*n+rFs'C*+l) 
Cn 

~< sup (e.+l,P.+lc.+l)/(c.+l,Fs,cn+l) 
Cn+ l 

: v ( s ' ) ,  

V(S') cannot be smaller than V(S). This ensures that V(S) is monotone in species. 
Let S and S '  be as above with dl,.+l = 0. This means that the first and last rows and columns of  

Fs, are identical. For  any (n + 1)-vector C.+l, 

(Cn+l,Pn+l Cn+l )/(Cn+l'Fs'Cn+l) 
! ! 

= (CnenCn)/(cnFscn)  (8) 
where the first element of  c, is equal to the sum of  the first and last elements of  C,+l and all other 
elements of  cn are equal to the corresponding elements of c,+l. It follows that V(Sr), which is the 
supremum over c,+1 of  the left-hand side of  (8), is equal to V(S ), which is the supremum over cn of 
the right-hand side of  (8). This ensures that V(S ) satisfies twinning. 

In general, V(S) is not monotone in distance. That  is, it is possible to construct a positive definite 
matrix F with positive elements such that e ' F - l e  does not increase with a decrease in one of  the off- 
diagonal elements of  F. This possibility is discussed in Eaton (1992) in the context of  comparing 
linear experiments. In terms of  the situation outlined above, this means that it is possible to reduce 
the variance of  the estimator of  IX by increasing the correlation between two observations (leaving 
the other correlations fixed). Briefly, this seemingly paradoxical result arises from the possibility that 
IX can be estimated without error if F becomes singular in a certain way. When Fis  nearly singular in 
this way, an increase in correlation that moves F closer to singularity in this way can also reduce 
variance. 

It is possible to show in the 3 • 3 case that a sufficient condition for monotonicity in distance is 
thatJ~j >t f k  fj k for all i,j, k (i.e. all partial correlations are non-negative). Since the triangle inequal- 
ity ensures that this condition is met for exponential f ,  we conjecture that V(S ) is both monotone in 
distance and lies between 1 and n for this choice o f f .  

The main disadvantage of  V(S) is that it assumes knowledge of  the function f.  In some cases, 
there may be sufficient information to approximate this function reasonably well. In other cases, it 
may be best to assume that f (d )  has a simple parametric form and to view V(S) as a family of  
measures indexed by the parameter. Alternatively, a single measure can be found by integrating over 
a specified prior distribution for this parameter. It is also possible, as noted below, to place rough 
bounds on V(S) by assuming thatf(dij) is either 0 or 1. 

5. An example 

In this section, a simple example of  the application of  the measures discussed above is presented. 
The data used in this illustration were taken from Rodman (1991). They consist of  pairwise 
distances between 26 species of  plants that produce glucosinolate (sulfur-containing compounds 



Measuring biological diversity 101 

Table 1. Taxa of glucosinolate-producing plants and putative relatives 

Taxon Code Taxon Code 

Akaniaceae AKA Tovariaceae TOV 
Bataceae BAT Tropaeolaceae TRO 
Brassicaceae BRA Balsaminacea BAL 
Bretschneideraceae BRE Celastraceae CEL 
Capparaceae CAP Centrospermae CEN 
Cariacaceae CAR Dilleniaceae DIL 
Drypetes DRY Euphorbiaceae EUP 
Gyrostemonaceae GYR Flacouticeae FLA 
Limnanthaceae LIM Geraniaceae GER 
Moringaceae MOR Koeberliniaceae KOE 
Pentadiplandraceae PEN Oxalidaceae OXA 
Resedaceae RES Passifloraceae PAS 
Salvadoraceae SAL Sapindaceae SAP 

related to mustard oils that have been identified as potential cancer-fighting agents). The species are 
listed in Table 1. The distances were based on an analysis of  96 characteristics. The species are 
displayed graphically in Fig. 3. To construct this figure, Rodman (1991) applied principal coordi- 
nate analysis (e.g. Gower, 1966) to the matrix of  pairwise distances and plotted the species along the 
first two principal axes. 
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Figure 3. Locations of 26 species of glucosinolate-producing plants along the first two principal axes 
(Rodman, 1991). 
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Table 2. Values of W(S) and V(S) for 
Sl = all 26 species; $2 = (FLA, RES, GER), 
$3 = (CAP, RES, TOV, BRA, KOE, GYR, 
BAT, SAL, MOR). 

v(s) 

s w(s)  0 = 0 .1  0 = 0 . 5  

$1 106.73 2.62 10.55 
$2 38.82 2.32 3.00 
S 3 25.81 1.50 3.66 

Solow and Polasky 

In Table 2, the values of  W(S ) and V(S ) are given for three sets of  species: $1 = all 26 species, 
$2 = (FLA, RES, GER),  and $3 = (CAP, RES, TOV, BRA, KOE, GYR, BAT, SAL, MOR). In 
qualitative terms, $2 is small, but dissimilar, while $3 is large, but similar. In calculating V(S ), we 
assumed that f ( d )  = exp ( - 0 d )  and two choices of  0 were considered: 0 = 0.1 and 0.5. Loosely 
speaking, the effect of  increasing 0 on V(S ) is to give more weight to the number of  species and 
less to their dissimilarity. The measure W(S) attaches no weight to the number of  species except 
through its effect on the accumulation of inter-species distances. In this sense, W(S ) is similar to V(S ) 
with 0 = 0.1 (e.g. they give the same ranking of  $2 and $3). In contrast, the ranking is different with 
0 = 0.5, since V(S ) is more strongly influenced by the number of  species. In fact, for 0 = 0.5, the 
species in $2 are effectively independent, so that their effective number is equal to their actual number. 

6. Discussion 

The diversity measures discussed in this paper are clearly best suited for situations in which there is 
extensive information about the species of  interest. Even in such special situations, questions 
remain. For  example, in addition to establishing the conditions under which V(S) is monotone 
in distance, it would be useful to have some idea of  the tightness of Gallot 's inequality. 

In practice, situations in which distances have been measured for all species pairs are exceptional. 
For  example, many conservation decisions concern large habitats containing large numbers of 
species from different groups and certain pairwise distances are unavailable or unreliable. It is 
still possible, in such cases, to place bounds on V(S). For  example, if distance data are available 
within genera but not between genera, then an upper bound for V(S) is the sum of  the effective 
number of species in the genera (i.e. corresponding to the case where f(dq) = 0 for si and sj in 
different genera). 

It should be clear that the problem of  measuring diversity remains very much open. The main 
contribution of  the work outlined in this paper may lie in its formalization of this problem. The 
proposed measures are clearly not satisfactory in all respects. Further effort is needed to understand 
the behaviour of  these measures and to develop improved measures. 
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Discussion 

E . P .  S M I T H  a n d D . R .  J E N S E N  

Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, 
USA 

Diversity is an ecological property which is conceptually simple but has a variety of  meanings to 
different people and no formal definition. This lack of agreed-upon formalism has led to a plethora 
of  ways to define, measure and interpret the concept. Diversity has been studied in ecology for over 
50 years and the literature on diversity, in ecology and other areas, is extensive. An early biblio- 
graphy by Dennis et al. (1979) on ecological diversity included over 1000 references. The text on 
diversity by Magurran (1988) includes a reference list of  over 250 papers on ecological diversity; the 
review paper on the problem of estimating species richness (Bunge and Fitzpatrick, 1993) mentions 
over 550 references from a variety of  fields. Not  all of  this literature is favorable to the measurement 
of  diversity. The pessimism in ecology seems to have peaked in the early 1970s with the publication 
of  the article by Stuart Hurlbert  (1971) on the nonconcept of  diversity and the well-known comment 
by Poole (1974) that diversity measures are 'answers to which questions have not yet been found'. 

There is nonetheless a need for measures associated with a biological community, as ecological 
data are usually multivariate and requires summarization. This need has become especially impor- 
tant with the recent political emphasis on biodiversity and research on diversity has flourished. The 
article by Solow and Polasky (1994) presents another diversity measure that may be of value in the 
analysis of  policy decisions in conservation ecology and in economic ecology. They make an impor- 
tant contribution to diversity theory by defining admissible criteria that a measure must satisfy 
and then finding a measure which is satisfactory. The purpose of  this note is to point out some 
connections with other work on diversity and other results from the probability literature and to 
detail some of  the practical difficulties in applying their measure. 


