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Enclosing solutions of overdetermined 
systems of linear interval equations 
Ji~,f Rov~ 

A methtxt for enckming solutkms of overdetermined ~stems of linear interval equations is described. 
Several aspects of the problem (algorithm, endosure improvenlent, optimal endosure) are studied. 

060A0qKI, I per-eH ;  nepeonpehe.,xeHHmX 
AIfHeflHblX rlnwepsaAbUblX CI, ICTeM ypaBuenI,Ifl 
I,{. POH 

I'IpP~ICTLIBo'leH MeTO~I Haxem~aemm ~xa~BoqeK ayta  pelIlt2H|iH IlepeOllpejleTleHHblX dIHHC~IHhlX }IHTepI~I.,'Ib- 

HMX CHCTeM ypaeuemtf~.  Ott t tcat lo HecKo/It, KO aCIlttKTOB 3a/tat{H -- CaM a211x~pI-ITM, Cy~KeH{t¢ eK~}JI¢~-{¢K, 

H;IXOgKft~HI|~ OIITltM;ldlbHbIX t~r~}aoqeK. 

1. Introduction 
In tiffs paper we consider the following problem. Given an overdetermined system of linear 
interval equations 

Arx  = b I ( t)  

with an m x n interval matrix 

A t = {A; A ~ -  A < A < A t + A }  

where m > n (in practice: m is essentially greater than n, see [3]), and an interval m-vector 

b I = {b; b e -  6 < b < be +6}  

(componentwise inequalities), find an interval vector Ix, 5] satisfying 

X C [~, 5] (2) 

where 
X = {x; A x  = b for some A E A I, b E b ~} 

is the so-called solution set of  (1) (the possibility of  X = q) is not excluded). An interval vector 
Ix, 5] satisfying (2)is  called an enclosure of  X.  

This problem has been extensively studied for the square case m = n (see Neumaier [4] 
for a survey of methods), but little seems to be known for the general case of overdetermined 
systems (m > n). In our main result (Theorem 1) we give a simple method for constructing 
an enclosure of  X ,  based on solving an auxiliary linear inequality. Next we describe an 
algorithm for solving this inequality and we give a necessary and sufficient condition for its 
finite termination (Theorem 2). The  algorithm may be run repeatedly with randomly chosen 
parameters to obtain a sharper result as an intersection of all the enclosures computed. This 
gives a new method for the square case as well. 
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2. Enclosure theorem 

J. ROHN 

The following theorem is the main result of this paper. 

Theorem 1. Let R be an arbitrary n x m matrix 1 and let xo and d > 0 be arbitrary n-vectors 

such that 

G d  + 9 < d (3) 

holds, where 

and 

Then 

G = I I  - nA~I + IRI A 

g = I R ( A : o  - b¢)! + IR l (A lxo t  + 6). 

X g [z0 - d, =0 + d]. (4) 

Comments. The result is formulated in this way (using R and x0) in order to be able to get a 
verified enclosure (4) even with rounded inputs. We recommend to take 

A T -1 T R ( c A , : )  Ac (5) 

(an approximation of the Moore-Penrose inverse of Ac; cE Proposition 1 below) and 

Xo ..~ Rbc. 

Then G and g can be computed from the initial data and from R, x0 (I is the unit matrix), 
hence the problem reduces to solving the inequality (3). Since Acz,  A are rn x n and R is 
n × m, the matrix G is a square matrix of size n x n, where n is the lower of the two dimensions 

iTS, n. 

Proof. Let x E X,  so that A x  = b for some A E A x, b E b I. Then x = x + R ( - A x  + b) = 

( I  - R A ) x  + Rb, which implies 

x -  xo = ( I -  R A ) ( x -  xo) + R ( b -  Axo)  

= ( I  - R A ¢ ) ( x  - xo) + R(Ac  - A ) ( x  - xo) + R(bc - A : o )  

+R(A~  - A)xo + R(b - b~) 

and taking absolute values, we have 

[z - =01 < I Z -  RAi l .  Ix - z01 ÷ [ R [ A l z -  z01 

+ l R ( b o  - Ao=o)l + IRl~l=ol + ]RI6 
= G t x - = o t + 9 .  

Thus for a d satisfying (3) we obtain 

( I  - G ) I x  - Xo[ < 9 < ( I  - G )d .  (6) 
t Nofice the transp~sed ,size. 
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Since g > 0, (3) implies Gd < d, which in view of G >  0 and d > 0 gives e(G) < 1 (cf. 
Neumaier [4, Section 3.2]), hence ( I  - G) -1 _> 0. Premultiptying (6) by ( I  - G) -1, we obtain 
Ix - x0[ < d, which proves x E [x0 - d, xo + d]. Hence X C_ [Xo - d, xo + a~. [] 

The inequality m >_ n has  not been used in the proof. Therefore the proof may create 
an impression that the result is valid for arbitrary rn, n. This is not the case, as the next 
proposition shows: if (3) holds (which implies Gd < d since 9 >_ 0), then it must be rn _> n; 
hence this inequality is implicitly contained in (3). 

Proposition 1. I f  Gd < d holds for some R and d > O, then each A E A I has linearly 
independent columns. In parricu/ar, (ATA) -1 ex/sts for each A 6 A I. 

Proof Assume to the contrary that A x  = 0 for some A E A I, x # O. Then R A x  = O, hence 
x = x - FlAx = (I  - FiAe)x + Fl(Ac - A)x,  which implies 

[z] _< [I - RAcI" Ix] + ]R[AIx [ = G]x[ 

and consequently 

(I - a ) lx l  _< 0. (7) 

But from the proof of Theorem 1 we know that existence of a positive solution to Gd < d 
implies (I  - G) -1 _> 0. Hence premultiplying (7) by this matrix yields Izl _< 0, thus z = 0, 
which is a contradiction. Hence, each A E A I has linearly independent columns; the rest is 
obvious. 0 

3. Algorithm 
The inequality (3) can be solved as an equation 

d = G d + g +  f 

where f is some positive vector. This observation suggests the following algorithm for solving 
(3): 

f:= a (small) positive vector; 
ff := 0; 
repeat 

d : =  d'; 
d ' : = G d + g + f  

until [d' - d[ < f 
{then d is a positive solution to (3)}. 

First we give a necessary and sufficient condition for finite termination of the algorithm. 

Theorem 2. The Following conditions are equivalent: 

# o(a) < 1, 
(ii) the algorithm terminates in a / /h i re  number of  steps for some f > O, 

(iii) the algorithm terminates in a t~nite number  o f  steps for each f > O. 
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Proof (i) =~ (iii): if o(G) < 1, then for each f > 0 the sequence dj+l = Gdj + 9 + f generated 
by the algorithm is Cauchian, hence convergent. Thus dj+1 - dj ~ O, hence Idj+l - djl < f 
for some j .  (iii) =~ (ii) is obvious. (ii) =* (i): if the algorithm terminates for some f > O, then 
from Id' - d I < f we obtain d ~ = Gd + g + f < d + f ,  hence Gd < Gd + 9 < d and since d > O, 
we have o(G) < 1. [] 

Hence, finite termination is independent of the choice of f (which, however, may influence 
the number of steps). For practical purposes it is recommendable to change the stopping rule 
of the algorithm to 

. . . k : =  k +  1 un t i l  ( Id ' -d{  < f o r k > k m ~ )  

where k is an iteration counter and kmax is a prescribed maximum number of steps. If 
k > km~, then the existence of a positive solution to (3) has not been proved. 

Since R and x0 in Theorem 1 can be chosen arbitrarily, we may try to sharpen the 
enclosure obtained by a repeated use of "I2aeorem 1: 

compute an initial enclosure xZ; 
for j := 1 to jmax do begin 

generate randomly A E A t, b E bl; 
R ~ (ATA)-IAT; 
xo ,'~ Rb; 
use the algorithm to compute a d > 0 satisfying (3); 
x I := z z A [z0 - d, x0 + d] 

end 
{then X C zt} .  

4. Optimal enclosure 
Once an enclosure x 1 = [x_,5] has been found, we may use the information contained therein 
to compute the optimal (narrowest) enclosure of X. Define 

Z = {z E Nn; zj = 1 if xj > 0, zj = - 1  if ~j < 0, Izji = 1 otherwise} 

and for each z E Z let Tz denote the diagonal matrix with diagonal vector z. As a consequence 
of the Oettli-Prager theorem [4], if we solve the linear programming problems 

x_~ = inf{xi; bc - 6 <_ (Ac + ATz)x,  (Ac - ATz)x  <_ be + 6, Tzx >_ 0}, 

~ = sup{xi; bc - 6 <_ (A, + ATz)x,  (A~ - AT..)x < b~ + 6, T,x  > 0} 

for each z E Z and each i E {i, . . . , n }  (we employ the convention inf0 = cx~, sup0 = -cx~), 
then for x__i, ~i given by 

x. = min{x~; z E Z}, 

~ = m a x { ~ ;  z ~ Z }  (i = 1 , . . . , n )  

we have that X ~ 0 if and only i f x  i <_ ~i for each i. If this is the case, then [x ,~  is 
the optimal enclosure of X. This procedure requires solving 2n.  card(Z) linear programming 
problems. Therefore it can be recommended only if the cardinality of Z is moderate. 

Final remark. In particular, all the results apply to the square case (m = n). Some related issues 
are briefly mentioned in [5]. 
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