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Abstract. The objectives of this paper are twofold: the first is the reconciliation of the differences 
between the Vasicek and the Heath-Jarrow-Morton approaches to the modelling of term structure of 
interest rates. We demonstrate that under certain (not empirically unreasonable) assumptions prices 
of interest-rate sensitive claims within the Heath-Jarrow-Morton framework can be expressed as a 
partial differential equation which both is preference-free and matches the currently observed yield 
curve. This partial differential equation is shown to be equivalent to the extended Vasicek model of 
Hull and White. The second is the pricing of interest rate claims in this framework. The preference 
free partial differential equation that we obtain has the added advantage that it allows us to bring 
to bear on the problem of evaluating American style contingent claims in a stochastic interest rate 
environment the various numerical techniques for solving free boundary value problems which have 
been developed in recent years such as the method of lines. 
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1. Introduction 

There are currently two popular approaches to the modelling of  the term structure 
of  interest rates (and related contingent claims) based on arbitrage adjustments. 
The first (and earliest developed) descends from Vasicek (1977) and the second 
from the work of  Heath-Jarrow-Morton (1992). Both approaches impose on the 
economy under consideration the condition of  no riskless arbitrage between bonds 
o f  differing maturity. The Vasicek approach results in a partial differential equation 
for the price of  bonds and related contingent-claims. A widely perceived disad- 
vantage of  this approach is its dependence on investor preferences in the form of  
the market price of  interest rate risk. On the other hand, the HJM (Heath-Jarrow- 
Morton) approach expresses prices as expectation operators of  payoffs calculated 
with respect to a risk neutral measure and hence it has the advantage that it is 
independent of  investor preferences. The HJM approach has a further advantage 
over the Vasicek approach in that it matches the currently observed yield curve. 
However, Hull and White (1990) have shown that by allowing certain coefficients 
of  the Vasicek model to be time varying it is possible to obtain preference free 
expressions for prices which also match the currently observed yield curve. In spite 



218 CARL CHIARELLA AND NADIMA EL-HASSAN 

of this latter contribution, the relationship between these two approaches remains 
unclear in the literature. 

This paper has two main aims. Firstly to shed some light on the differences 
between the two above mentioned approaches. To this end, we demonstrate that 
under certain (not empirically unreasonable) assumptions about the forward rate 
volatility, prices within the HJM framework may be expressed as a partial differen- 
tial equation which is both preference-free and matches the currently observed yield 
curve. This partial differential equation turns out to be equivalent to the approach of 
Hull and White. The preference free form of this partial differential equation facili- 
tates the evaluation of American style contingent claims in a stochastic interest rate 
environment by the various techniques for solving free boundary value problems 
which have been developed in recent years. In this paper, we employ the method of 
lines approach. The general framework we adopt will lead to improved numerical 
techniques for evaluating such contingent claims in the HJM framework. 

The difference between the two approaches to term structure modelling stems, 
to a large extent, from the particular choice of underlying state variable whose 
dynamics drive the prices of bonds and various interest rate dependent contingent 
claims. In the Vasicek approach, the underlying state variable is the instantaneous 
spot rate of interest, whereas in the HJM model it is the instantaneous forward 
rate of interest. At first sight it seems that the essential differences between the 
two approaches is HJM's sophisticated use of martingale theory. However, the 
essential difference is their choice of state variable which implies that in the HJM 
world, the stochastic dynamical system driving prices is non-Markovian, whilst in 
the Vasicek world these dynamics can only ever be Markovian. The Markovian 
representation allows prices to be expressed as a partial differential equation with 
appropriate boundary conditions via use of the Fokker-Planck equation for the 
stochastic dynamical system of prices. The equivalent of the Vasicek partial differ- 
ential equation in the HJM world will generally be an integro-partial-differential 
equation though this has not yet been specifically derived in the literature. Bhar 
and Chiarella (1995) have shown that under a certain specification of the volatility 
of the instantaneous forward rate the stochastic dynamical system driving prices 
in the HJM world can be reduced to a Markovian system. Similar results have also 
been demonstrated by Ritchken and Sankarasubramanian (1995) and Carverhill 
(1994). The import of this observation is that it then becomes possible to express 
the (implied) integro-partial-differential equation for prices under HJM as a stan- 
dard Vasicek type partial differential equation. Our main contribution is to derive 
this latter equation, to link it to approach of Hull and White (1990) and to show how 
the method of lines may be applied to the evaluation of American bond options. 

Our work complements other recent work in this area. In particular, the work 
done by Chesney, Elliot and Gibson (1993) and Yu (1993). The former authors 
employ the Cox, Ingersoll and Ross (1985) framework to obtain a quasi-analytical 
formula for the pricing of American bond (and yield) options. This approach inher- 
its the disadvantage of the CIR framework in that the governing partial differential 
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operator does not match the currently observed yield curve. Yu (1993) also inves- 
tigates the valuation of American bond options in a one-factor HJM framework, 
deriving a partial differential equation for the valuation of all interest rate sensitive 
claims. However it is not clear how the non-Markovian term of the HJM model 
could be handled numerically, especially in relation to a partial differential equation 
in finite dimensioned space. The American option value is determined in terms of 
the corresponding European option price and an early exercise premium. 

The plan of the paper is as follows. Section 2 reviews the Vasicek and HJM 
approaches. This section of course covers familiar ground however we feel it is 
necessary to provide a framework in which the links to be drawn out in later 
sections can be better appreciated. Section 3 reviews thr results that allow the HJM 
dynamics to be reduced to Markovian form and obtains the preference-free partial 
differential operator for the pricing of contingent claims. Section 4 draws out the 
link of our approach with that of Hull-White approach. Section 5 discusses how the 
method of lines may be applied to evaluate American bond options in the framework 
we consider. Section 6 shows how to extend the approach we have adopted to a 
more general class of forward rate volatility functions which can depend on the 
instantaneous spot rate of interest. Section 7 draws some conclusions. 

2. Review of the Vasicek and HJM Models 

In this section we review the essential features of the Vasicek and HJM models 
which are relevant for our subsequent analysis. 

2.1. THE VASICEK MODEL 

The starting point of the Vasicek model is an assumption that the instantaneous 
spot rate of interest, r, is driven by a stochastic differential equation of the form 

dr  = ~(0 - r) dt + a dw, (1) 

where 0(> 0), ~;(> 0) are respectively the long-run instantaneous spot rate of 
interest and the speed of adjustment towards it, while ~r is the volatility (i.e. 
standard deviation) of changes in the instantaneous spot rate. The dw are increments 
of a standard Wiener process w. In Vasicek's original derivation ~;, 0 and cr were 
assumed constant. However, as we show below, this assumption can be relaxed 
for the derivation of the partial differential Equation (6) below. In general, the 
parameters 0(> 0), n (>  0) and a (>  0) could be functions o f t  and/or r. 

The price, P(r, t), at time t of a pure discount bond maturing at time T ( >  t) 
is assumed to be a function of r and t and is written P(r, t, T). Hence, by Ito's 
lemma it is driven by the stochastic differential equation 

d P  
-~- =- #p dt + ap dw, (2) 
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where 

and 

OP r)OP , 202P'~ / 
~'P = -5? + '~(~ Or + ~a Or---7) P 

(3) 

a OP 
cry - P Or" (4) 

By forming portfolios of bonds of differing maturities and applying the principle 
that there should be no riskless arbitrage opportunities between bonds of differing 
maturities Vasicek derives the relationship 

" P  ----s - ~(r, t), (5) 
(Tp 

where ~b(r, t) is the (maturity independent) market price of interest rate risk. The 
specification and estimation of this function is now well known to be one of the 
awkward features of this approach. Vasicek assumes qS(r, t) to be a constant which 
we denote ~b. Upon use of (3) and (4), expression (5) becomes Vasicek's partial 
differential equation 

OP cM" OP 1 20q2P 
O--t- + [~(0 - r) - ]-~-r + gcr ~-ffr 2 rP = 0 (6) 

which must be solved subject to the final time condition 

P(r, T, T) = 1 (7) 

and the initial condition 

P(ro, O, T) = Po, 

where P0 is the current (i.e. time zero) price of the bond and r0 is the current 
instantaneous spot rate of interest. 

If it is desired to evaluate the price C(r, t, To) of say a European option on the 
bond (with TB, Tc being maturity dates of the bond and option respectively) then 
C also satisfies the same partial differential equation i.e. 

OC 4xr'OC 1 20zC 
o--Y + [ ~ ( o -  ~) - J-gV + ~ ~  ~ ~ c  = o (8) 

subject to the final time condition 

C (r, Tc, Tc) = max[O, P(r, Tc, TB) -- E] (9) 



TERM STRUCTURE OF INTEREST RATES 221 

where E is the exercise price of the option. 
The option valuation problem is thus a two part process. Firstly, the system 

given by (6)-(7) is solved for the bond price on Tc <~ t <<. TB so that (9) may be 
formed. Subsequently, the system given by (8)-(9) is solved on 0 <<. t <<. Te. 

Hull and White (1990) extend the Vasicek model by allowing the parameters 
n, 0 and cr as well as the market price of risk, r to be time-dependent. They proceed 
by imposing the Vasicek form of solution 

P(r, t, T) = A(t, T) e -rB(t'T), (lO) 

and essentially choose the 'free' parameters n(t), O(t) so as to match the currently 
observed term structure. 

2.2. THE HJM MODEL 

In this discussion of HJM we assume only one noise process, and draw on the 
intuitive derivation of Bhar and Chiarella (1995). For a proper technical discussion 
the reader should refer to HJM (1992). 

The driving state variable of the HJM approach is f ( t ,  T), the forward rate at 
time t for instantaneous borrowing at time T, which is assumed to be driven by a 
stochastic integral equation of the form 

/0 /o f ( t , T )  = f (O ,T ) +  ~ ( s , T ) d s +  ~f(8 ,T)dw(s) ,  (11) 

or the equivalent stochastic differential equation, 

d f ( t , T ) = ~ ( t , T ) d t  + a f ( t , T ) d w ( t ) ,  (O<. t <<. T). (12) 

Here a(t ,  T) and af(t ,  T) are the drift and volatility of the forward rate respec- 
tively. In general these could depend on f (t, T) or on r (t). However, for the present, 
we merely assume that they are dependent on time and maturity and possibly r(t). 

Since the r(t) = f ( t ,  t) it is a simple matter to derive 

/0' /0' r(t) = f(O,t) + c~(s,t) ds + af (s , t )dw(s)  (13) 

or, in differential form 

[ /: ] dr(t) = fE(O,t) +~( t , t )  + ~2(u,t)du d t+a(I ) ( t , t )dw( t )  

+[fota~(u, t )dw(u) l  dt, (14) 

where the subscript i denotes the partial derivative with respect to the ith argument 
and f (0, t) can be obtained from the currently observed yield curve. It is the integral 
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in the last term of Equation (14) which renders the HJM framework non-Markovian, 
as it depends on the history of the noise process up to time t, hence in general is 
path dependent. However, as discussed below certain choices of a f (t, T) allow us 
to express the stochastic dynamics of the HJM economy in Markovian form. 

From the instantaneous forward rate we can express the price at t of the pure 
discount bond maturing at T as 

P ( t , T ) = e x p ( - f T f ( t , s ) d s ) .  (15) 

By use of Fubini's theorem and Ito's lemma HJM show that the bond price must 
satisfy the stochastic differential equation 

dP(t,T) = [ r ( t )+  b(t,T)]P(t,T)dt + a(t,T)P(t,T)dw(t), (16) 

where 

T f 
a ( t , T ) - -  ft a ( t ,u)du,  (17) 

and 

b(t,T) - - a(t ,  t~) dy + �89 2. (18) 

As in the Vasicek approach, portfolios of bonds of differing maturity can be 
set up (with bond dynamics now driven by (16)). The condition that there be no 
riskless arbitrage opportunities between bonds of differing maturities here reduces 
to 

b(t, T) + r T) = O, (19) 

where r is given the market price of interest rate risk. This latter equation can 
by manipulated to yield 

[ /; ] a ( t , T ) = - J ( t , T )  r  J ( t , u ) d u .  (20) 

Equation (20) essentially states that in an arbitrage free economy the drift of 
the forward rate is determined by the forward rate volatility and the market price 
of interest rate risk. 

Using Equation (20), the stochastic differential equations for r(t) and P(t, T) 
become 

/: s /: r ( t )  = f(O,t) + J(u , t )  aI(u,y)dydu + aY(u,t)d~(u), (21) 
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or, in differential form 

0 t t dy du] 
d r ( t ) =  [f2(O,t) + ~-~ fo a f (u ' t )  L cry(u'y) 

.1 

dt 

(22) 

dP(t,T)=r(t)P(t,T)dt+ - af(t,u)du P(t,T)dGa(t), (23) 

where the new Wiener process zb (t) is defined by 

~9 t = - r  d s .  (24) 

HJM further show that the conditions of Girsanov's theorem are satisfied under 
fairly unrestrictive assumptions on the aY (t, T). This in turn implies that the proba- 
bility measure under w and zb are equivalent. Loosely, this means that events which 
are rare under one measures remain rare under the other measure. Furthermore 
under the equivalent measure zb(t) is a standard Wiener process. 

From Equations (21) and (23) it is a fairly simple matter to show that the relative 
bond price, Z(t, T) is given by: 

(/0' ) Z ( t , T )  = P ( t , T ) e x p  - r ( y ) d y  , (25) 

Clearly Z(t, T) is a martingale and hence may be expressed as 

(26) 

where/~t denotes the mathematical expectation (calculated with respect to informa- 
tion at time t) with respect to the probability measure induced by zb(t). In practical 
terms this means Et can be calculated by simulating the stochastic differential 
Equation (21) a sufficiently large number of times and taking dzb(t) ,-~ N(0, dr). 

The difficulty in making a direct comparison between the Vasicek and HJM 
approaches is that it is not a simple matter to re-express P(t, T) in (26) as the 
solution of a partial differential equation. Although, as we have stated in the 
introduction, it is in principle possible to obtain an integro-partial differential 
equation for P(t, T) from (26). We show in the next section that under appropriate 
assumptions on the forward rate volatility cry (t, T) it is possible to express P(t, T) 
as the solution of a Vasicek type partial differential equation. 
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3. A Preference Free Partial Differential Equation 

As we have stated in the previous sections, the system dynamics of the HJM 
framework are in general non-Markovian and the equation expressing prices will 
in general be some kind of integro-partial differential equation. However, Bhar and 
Chiarella (1996) show that if one assumes that the forward rate volatility function 
has the general form 

af  (t, T) = pn(T - t) e-~(T-t)G(r(t) ), (27) 

where pn(U) is the polynomial 

pn(u) = ao + alu + . . .  + anu n, (28) 

and G is some reasonably well behaved function, then the system dynamics may be 
expressed in Markovian form. The cost of this reduction is the introduction of some 
supplementary state variables which summarise various statistical properties of the 
path history. Similar results are also reported by Carverhill (1994) and Ritchken 
and S ankarasubramanian (1995). 

Here we restrict our attention to almost the simplest possible version of Equation 
(27), namely 

J (t, T) = a e -)~(T-t), (29) 

whenpn(u) - po(u) is a constant. 
Since this functional form has the property 

af (t,T) = -)~af (t,T), 

we see from Equation (22) that the non-Markovian term may be expressed as 

fo taf  (u,t)dCv(u) = -/k f o t j ( u , t ) d ~ ( u ) .  

However, from Equation (21) we have that 

fo ta f  (u,t)d~(u) = r(t) - f(O,t) - foYaf (u,t) fu t sif  (u,y)dydu. 

Thus, it is obvious that the non-Markovian term may be expressed as 

t f ,k [f(0, t ) + f o t a f ( u , t ) f u a f ( u , y ) d y d u - r ( t ) ] t  (30) f 0 a 2  (u, t) dz~(u) = 

Finally, substituting (30) into Equation (22), we see that the stochastic differen- 
tial equation for r(t) may thus be written in the form 

dr(t) = [D(t) - ),r(t)] dt + a d~(t),  (31) 
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where 

/: D(t) = f2(0, t) + ) ,f(0,  t) + a(u,  t) 2 du. (32) 

The stochastic differential Equation (31) may be regarded as a preference free 
version of the one employed by Vasicek. The function D(t) is determined by the 
current yield curve and the parameters a and ~ of the forward rate volatility function, 
as is the (time dependent) long run mean. Equation (31) should be compared with 
the time dependent generalisation of the Vasicek model proposed by Hull and 
White (1990). Below we show how these two forms are equivalent. 

Initially we might think that we could use Equation (31) to derive a preference 
free version of the Vasicek partial differential Equation (6). As the market price of 
interest rate risk q5 is zero under the preference free measure induced by t0(t), and 
the term ~ (0 - r) of the derivation in Section (2.1) is replaced by D (t) - )~r (t) in 
this section, we might expect Equation (6) to become 

OP ~r] OP 1 2002P 
~-~ + [D(t) - Or + gcr ~ r  2 rP  = 0. (33) 

We now show that this latter partial differential equation can be derived directly 
from Equation (26), the HJM form which occurs as a preference free expectation 
operator. The expectation operator/) t  in Equation (26) is induced by the stochas- 
tic differential Equation (24) which under the forward rate volatility function in 
Equation (29) becomes the stochastic differential Equation (31). This stochastic 
differential equation has associated with it the Kolmogorov backward Equation 
(34) for the transition probability density of the distribution of r(T) conditional on 
r (t) = r, denoted by 7r (r (T), T Ir , t) (i.e. the probability of observing r (T) at time 
T conditional on r(t) at time t < T). 

1 2 0271" 07i" 071- 
~a ~ + [D(t) - Ar]~rr + -~- = 0, (34) 

with to ~< t ~< T.  
The initial time to could be the point in time that we are seeking to value the 

bond which in turn could be the maturity date of an option on a bond maturing at 
time T. 

Introducing the elliptic partial differential operator K,  given by 

1_2 02 O 
K = 2o ~ r  2 + [D(t) - ~r] 

we can write Equation (34) as 

07r 
K T r + - ~ - = 0 ,  t0~<t~<T,  

(35) 

(36) 
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which must be solved subject to the initial condition 

7r(r(T), Tit,  T) : 6(r(T) - r), 

where 6 is the Dirac delta function. 
Given the transition probability density function 7r, we can in principle calculate 

the expectation in Equation (26). However this calculation is not so simple as 
we need to calculate the expectation not of a function of the state variable r(t) 
but rather of a functional of that variable viz exp ( - f t  T r(s)ds). Gihman and 
Skorokhod (1965) discuss the techniques required to calculate expectations of 
such functionals, the main one being the Feynman-Kac formula. That result allows 
us to state that the expectations of the functional in Equation (26) satisfies the 
partial differential equation 

OP 
K P  +--~  rP  =O, to <~ t <. T (37) 

subject to the initial condition P(T,  T) = 1. This partial differential equation is 
indeed identical to that in Equation (33) and is the preference free Vasicek partial 
differential equation. 

Jeffrey (1995) has also considered Markovian specifications of the spot interest 
rate within the HJM framework. He considers specifications in which the spot 
interest rate is determined by a single Markovian stochastic differential equation 
and examines the initial term structure must satisfy in such a framework. Our 
starting point is the non-Markovian stochastic differential Equation (14) for the 
spot rate of interest. We impose forward rate volatility functions of the form (27) 
and find the Markovian system that results. In our approach, there will not be 
in general a single Markovian stochastic differential equation but rather a linked 
system of Markovian stochastic differential equations, as discussed in Section 6 of 
this paper. The nature and size of the general stochastic differential system when 
the general form (27) is used is given by Bhar and Chiarella (1995). It so happens 
that for the particular case (29) the dynamics for the short rate, r, are indeed driven 
by a single Markovian stochastic differential equation. Furthermore, in this case 
the resulting preference free partial differential equation that we obtain is in the 
form of the standard linear parabolic second order equation found in the contingent 
claims literature. In contrast, the partial differential equation obtained by Jeffrey 
is nonlinear and of third order and its boundary conditions are not fully specified, 
hence solution techniques for it are unexplored. 

4. The Link to the Hull and White Approach 

Let us again return to the stochastic differential Equation (31) for the instantaneous 
spot rate of interest, 

dr(t) = [D(t) - ,kr(t)] dt + adz~(t). 
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This equation has the same structure as the one used in the generalised Vasicek 
model of Hull-white (1990). It is clear that if the volatility and the reversion rate 
are made constant (but the drift rate is time varying), then the above mentioned 
system defaults to the extended Vasicek model. It should then be the case that 
our D(t) corresponds to the r of Hull and White (see their Equation (16)). In 
appendix 1 we give details of the relevant calculations. In particular we show that 
the B(0, T), il(0, T) of Hull-White in this situation are given by 

B(O,T)=(1--e-AT)/Aro,  (38) 

and 

A(0, T) = - f(0, T) d T +  (1 -- e-~T)/A. (39) 

Substituting these expressions into Hull and White's Equation (16) yields that 
their r is given by 

qS(t) : A f(0, t) q- f2(0, t) + a2(1 - e-2At)/2A. (40) 

On the other hand, substituting the forward rate volatility function (29) into the 
expression for D (t) Equation (32) also yields the right hand side of Equation (40). 

Thus this version of the Hull-White model (i.e. constant volatility and reversion 
rate) can clearly be seen to be equivalent to an HJM model with a forward rate 
volatility function of the form (29). 

The relationship between an HJM model with forward rate volatility 

J ( t , T )  = pn(T - t)e -~(T-t) (n >1 1) 

and the extended Vasicek model of Hull-White seems more difficult to establish. 
This issue is discussed in Chiarella and E1-Hassan (1996). 

5. Evaluating American Options Using the Method of Lines 

In section 3 of this paper, we presented the formulation of a partial differential 
Equation (33) which is both preference free and matches the initial yield curve. 
This derivation was facilitated by the choice of the forward rate volatility of the 
form in (29) which renders the dynamics of the spot rate of interest in the HJM 
framework Markovian. Hence, the price of any claim, where the underlying state 
variable is the spot rate of interest, must satisfy (33) subject to appropriate boundary 
conditions. Hence, the price of a discount bond, P(r, t, TB) at time t, maturing at 
time Tu, can be determined by numerically solving the partial differential equation 

OP OP 1 20zP 
0-7 + + v = o (41) 
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subject to P(r, TB,TB) = 1. Similarly, the preference-free partial differential 
Equation (33) facilitates the valuation of American type bond options as solutions 
of a free boundary value problem. That is, the valuation of American options 
reduces to solving the system (41)-(45) by a range of a fast and accurate solution 
techniques, including the method of lines (Meyer (1977)), linear complementarity 
methods or variational inequality techniques (Wilmott, Dewynne and Howison 
(1993)). To illustrate the general nature of typical numerical of the numerical 
solution, the method of lines will be used. 

The following notation has been used for this example. Let V(r, t, TB), be 
the value of an American option on a discount bond with exercise price X and 
expiry T. The maturity of the underlying discount bond is TB where T ~< T9. 
Note that both price of the discount bond and the value of the option on the bond 
are functions of the same state variable, namely the stochastic spot rate of interest 
rate, r, whose dynamics given by (31) for the volatility function (29) chosen. 
Hence, V(r, t, T) must also solve the partial differential Equation (33) subject to 
appropriate boundary conditions. In particular, the price of the American put option 
must satisfy 

0 V  (~V 1 2192V 
-~  + [D(t) - )~rl-ff~ r + ~a -ff~r2 rV  = 0 (42) 

subject to 

V( r , s ,T )  > m a x [ X - P ( r , s ,  TB),0], (r,s) e C, (43) 

lim V(r, s ,  T )  = max[X - P(r, T, TB), 0], 
s--~ T 

(44) 

lim V ( r , s ,T )  = ( X -  P(r*,s, TB)), s e [ t , T ] ,  
rtr* 

(45) 

lim OV(r ,s ,T)  _ 1, 
~ *  OP(r, s, TB) 

s c [t, T], (46) 

where C denotes the continuation region defined as 

C =  {(r,s) [ O < r  <r*,  t <. s<~ T} 

In the continuation region C, the optimal strategy for the American put is to 
hold the option rather than exercise it. In this region, the price of this discount 
bond is greater than the time dependent critical price of the bond, P*. Hence the 
continuation region can be redefined in terms of the discount bond price as 

C = {(r,s) I P(r ,s ,  TB) > P*(r*,s, TB), t <. s <. T}  

The complement of the continuation region, the stopping region S is defined as 

s = < T }  



TERM STRUCTURE OF INTEREST RATES 229 

or in terms of the bond price 

S =  ((r,s) l P(r,s,  TB ) <~ P*(r*,s, TB), t <~ s <~ T} 

The optimal strategy in this region is to exercise the option. 
The method of lines technique was applied to the problem of American put 

options on stocks by Meyer and Van der Hoek (1995), Goldenberg and Schmidt 
(1994) and Carr and Faguet (1994). The complete algorithm and implementation 
details in these works form the basis of the application of the method of lines to 
this problem, as summarised briefly below. 

The method of lines with invariant embedding is a numerical technique used in 
solving free boundary problems by front tracking the time dependent boundary. In 
this method, the time variable is discretised and the time derivative is replaced by a 
discrete difference quotient at each time step. This reduces the partial differential 
Equation (41) to a sequence of free boundary problems for a second order differ- 
ential equation which must be solved at each time step for the value of the option 
and the time dependent critical exercise price of the bond. 

Letting 7 be the time to maturity of option such that 7 = T - t, (41) is written 
a s  

�9 02V OV 
T)-~r2 + D*(r'7)-~r - h ( r , T ) V  OV K(r, 07 -- O. (47) 

Defining a partition of time to maturity of the option into equally sized intervals, 
[TO, 71,.. .  7n], where 7i = iAt  with At = T-t The time derivative is thus 1V " 
replaced with a backward difference approximation of the form 

OV(r, Ti) V(r, Ti) - V(r, Ti_l) 
(48) 

07 At 

Substituting the above difference approximation into the governing Equation 
(47) and dividing by K(r, 7i) = �89 we obtain the following second order ordinary 
differential equation 

d2V(r, Ti) D*(r,T) dV(r, Ti) h(r,T) 
+ V(r'*i) 

_ 1 [V(r, 7i) - V(r, Ti_,).] (49) 
K(r, Ti) At ' 

fori = 1 , . . . , n ,  
where K(r, Ti) = l a2, h(r, Ti) = r,D*(r, Ti) --- [D(7 i ) -  Ar]. 

The second order differential Equation (47) is then transformed to a system of 
two first order ordinary differential equations 

dV(r, Ti) _ V/'(r) = Ui(r), (50) 
dr 
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dUi(r) 
dr 

U~(r) - -D~(r) 
Ki(~) Ui(~) 

[ hi(r) 1 
+ [Ki(r) + Ki(r)At] V~(r) Ki(,-)At Vi_ 1 . (51) 

The system can then be solved using the Ricatti transformation given by 

= + ( 5 2 )  

Here Y and W in the Ricatti transformation (52) are obtained by solving the 
following initial value problems, also known as the invariant embedding equations 
(Meyer (1973)). 

dYi(r) -- Yi' = 1 + di(r)Yi(r) - c/(r)Y 2, 
dr 

(53) 

dWi(r) 
dr 

( 5 4 )  

where 

D~(r) [ hi(r) 1 ] 1 
- = + ' - g ( )ht 

The equations (53) and (54) are integrated numerically using the trapezoidal (or 
higher order) rule to determine Y and W at each point in time (see Meyer and Van 
der Hock (1995), Goldenberg and Schmidt (1994) for details). 

The Ricatti transformation holds for all values of the state variable, r, including 
the free boundary. Hence, the critical bond price, P*(r*, s, TB) at time step t, 
is determined as the root of (52), using the boundary conditions (45) and (46) 
for the put option. Having determined the values of Y/ and Wi, Ui is found by 
substituting (51) into (50) and integrating numerically. The option value at this 
time step is then determined by substituting the values of Y/, Wi and Ui into the 
Ricatti transformation (51). 

The advantages of using a numerical technique such as the method of lines 
for solving the American option problem include relative efficiency and accuracy, 
and the ability to handle coefficients of the partial differential equation which are 
functions of the state variables and time (Meyer (1977)). 

The values of a I-year American put option on a 3-year discount bond 
with face value 100 determined for various exercise prices are shown in Table I. 
The determination of these values involves a two stage process: the determina- 
tion of the bond prices using finite difference techniques over the time interval 
[t, T]. These values were then used in the method of lines described above to cal- 
culate the value of the option. Note that the state variable in the partial differential 
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Bond 
price 

114- 

m -  

Critical Exercise Price 
X=, 100 

, , , , , , , , , , , , , , , , , , 

Time to Maturity rv'eatsl 

Figure 1. Time dependent critical exercise boundary using methods of line. 

Table I. 1-year American put option on a 3-year bond 

Exercise price 
Step size 95 100 105 Run 

Time (secs) 

1 0 .6631 1.2876 1.7641 4.651 A t =  
1 At = ~ 0.6627 1.2873 1.7639 5.155 

At = ~ 0.6626 1.2870 1.7638 7.031 

Bond face value = 100; tr ---- 0.08334, )~ = 0.16034. 
The initial forward rate was determined using a polyno- 
mial expansion as suggested in (Bhar and Hunt (1993)). 
The values of the fl coefficients are flo = 0.08485, fll = 
-0.03178, f12 = -0.02327, f13 = 0.00312. 

Equation (33) is the short term interest rate, however, the bond prices correspond- 
hag to these rates are also needed to determine option prices and the early exercise 
boundary. 

To gain some insight into the relative accuracy and computat ional  efficiency of  
the method o f  lines technique as applied to the problem proposed in this paper, the 
system (41)-(45)  was solved numerical ly using the implicit finite difference method 



232 C A R L  C H I A R E L L A  A N D  N A D I M A  E L - H A S S A N  

Table II. 1-year American put option 3-year bond - finite 
differences 

Exercise price 
Step size 95 100 105 Run 

Time (secs) 

1 At = ~ 0.6615 1.2854 1.7622 5.104 
At = 1 0.6617 1.2859 1.7626 6.715 

1 At = 1-~ 0.6620 1.2862 1.7629 8.002 
1 At = ~ 0.6626 1.2869 1.7636 19.632 

(Wilmott, Dewynne and Howison (1993), Hull (1993), Brennan and Schwartz, 
1978). The results of this approach are reported in Table II. 

The computational times for each approach will obviously depend on the hard- 
ware used, the optimality of the software code and the computational intensities of 
the algorithms used in the solution techniques. The software used for the results 
in this article was written in the C programming language and was executed on a 
COMPAQ P51001 personal computer. 

Comparison of the results in Table I and Table II for pricing the American put 
using the system (41)-(45), indicates that the method of lines is relatively efficient 
with less processing time required than the finite difference method. Using the 
results of the finite difference technique with At  = --~ in Table II as an 'accurate' 
value of the option, the option price calculated with method of lines converged 
these results about three times faster than the finite difference method. The method 
of lines also provides a much more direct approach to approximating the time 
dependent critical exercise boundary. 

6. More General Volatility Functions 

In this section we allow the forward rate volatility to also be a function of the 
instantaneous spot rate of interest in the form 

off(t, T) = cr e-A(T-t) G(r(t)), (55) 

where G is a suitably well behaved function. Typically we might take 

G(r)=r  7, (0~<7), (56) 

which is in the case 7 = I then allows us to draw a link with the generalised Cox-  
Ingersoll-Ross model of  Hull-White. The motivation for including a dependency 
on r(t) in Equation (55) is to capture the effect on volatility of a general movement 

Pentium 100 MHz 
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in the level of market rates. Ideally we would also like to allow a dependency on 
f ( t ,  T) but it then becomes impossible to reduce the driving stochastic dynamics 
to Markovian form. 

Bhar and Chiarella (1995) show that for the forward rate volatility (55) the 
stochastic dynamics for r(t) may be expressed in the Markovian form 

dr = [f2(O,t) + Af(O,t)  + a2r - Ar] dt + aG(r)d(v,  

de = [G(r) 2 - 2Ar dt. 

(57) 

(58) 

We note in passing that the quantity r is given by 

L 
t 

r = G(r(s))2e -2)~(t-s) ds, (59) 

which can be calculated from the history of the r process up to any point in time t. 
The Kolmogorov operator for Equation (59) may formally be written 

1 2 2 027r a(r(t)) + [Y2(0, t) + A f(0, t) + a2dp(t) - Ar] 07r 
Or 

2A 07r + I t ( r )  2 -  

The partial differential equation for the bond price may thus again be written 

a P  
K P + --~ r P  = O, to~<t~<T. 

The partial differential operator K now involves the two state variables r and r 
The early exercise boundary in the American bond pricing problem becomes an 
early exercise surface however the method of lines is also able to be adopted to this 
situation. However we leave discussion of details of this implementation to future 
research. 

7. Conclusions 

By choice of a suitable time dependent function for the volatility of the forward 
rate in the HJM framework we have obtained a preference free partial differential 
equation for the pricing of contingent claims. We have thus been able to show how 
a particular version of the Hull-White extended Vasicek model can be obtained 
from the HJM framework by an appropriate choice of the forward rate volatility 
function. We have shown how the method of lines may be implemented to evaluate 
American bond options in the HJM framework. Finally, we have shown how to 
obtain a preference free partial differential equation when the forward rate volatility 
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is a product of a time dependent term and a function of the instantaneous spot rate 
of interest. 

The work reported here may be extended in a number of ways. Firstly the 
method of lines may be implemented for the evaluation of American bond options 
in the case discussed in section 6. Secondly the technique employed by Chesney, 
Elliot and Gibson (1993) to obtain quasi-analytical formulae for American bond 
option prices may also be applied to the preference free partial differential equations 
derived here. 

Appendix 1 

Consider H-W's extended Vasicek model 

dr = [0(t) + a(t)(b - r)] dt + a(t) dz. (60) 

Adding and subtracting the market price of risk p(t) [in place of the H - W - A ( t ) ]  
we can rewrite (60) as 

/: dr = [0(t) + ba(t) + p(t)a(t) - a(t)r] dt + a(t) d[z(t) - p(s) ds] (61) 

Defining the new Wiener process 

f0 t 5(t) = z(t) - p(s) ds 

and following H-W by setting 

(62) 

r = O(t) + ba(t) + p(t)a(t),  (63) 

we can express (61) as 

dr = [r - a( t )r]  at  + o ( t )  (64) 

This clearly has the same structure of Equation (23). The two approaches will 
be equivalent if we can show that 

r  (65) 

a ( t ) ( H -  W )  - A, (66) 

a( t ) (H  - W)  - a. (67) 

Our Equation (23) has been obtained under a forward rate volatility 

af ( t ,  T) = cre -A(T-t), (68) 
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which implies a bond price volatility 

ft T e-~(u-t) ap (t, T) = cr du = cr 
[e -A(T- t )  - -  1] 

), (69) 

As stated in the text considered by H-W in which (in their notation) a(t) and 
a(t) are constant. Note that no assumptions are being made about O(t) and p(t). 

To draw out the comparison with H-W we need to consider their B (0, T), A (0, T) 
terms in the case a(t),  a( t)  constant. 

From Equation (61) of their appendix 

B(O,T) = R(r ,O ,T)aR(r ,O,T)T  
rerr (r, 0) ' (70) 

where R(r, t, T) = the continuously compounded interest rate at t applicable to 
(t, T), fiR(r, t, T) = the volatility of R(r, t ,T) ,  at( r ,  t) = the volatility of the 
instantaneous spot rate r(t). 

Note also that volatility is here defined as standard deviation of proportional 
changes. 

By definition 

- 1  
R ( r , t , T )  -- (T - t) l n P ( r , t , T ) ,  (71) 

By application of Ito's lemma and using Equation (15) we obtain 

dRR - T - ~  ( - r ( t )  . . . .  p ( t ,T ) )  dt ( T - t )  R 

from which we deduce 

- 1  ag ( t ,T )  
aR(r, t, T) -- (T - t) R(r, t, T)" (73) 

From the last equation 

aR((r, t, T)R(r ,  t, T ) ( T  - t) = - a g ( t ,  T). (74) 

Equation (74) gives us the numerator of Equation (70). To obtain the denomi- 
nator of Equation (70), we note from (68) that 

 r(r, t) = J ( t ,  t) = (75) 

Substituting (74) and (75) into (70) we find that 

B(O,T) - - a p ( O , T )  
ro(~ 
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We next use Equation (60) of H-W to obtain A(0, T). In fact 

lnA(0 ,T)  = lnP(ro, O,T) + roB(O,T), 

= lnP(ro, O,T) + (1 - e -AT ) (76) 

We note that in P(ro, 0, T) is related to the current forward rate curve f(0,  T). 
via 

f0 T In P(ro, 0, T) = - f(0,  T) dr. (77) 

Substituting into (76) 

In A(0, T) = - f0 T f ( O , r ) d r  + ( 1 - e  -~T) )~ -- A(0, T). (78) 

Finally we consider equations (76) and (77) of H-W to calculate their a(t), r 
quantities 

First, from H-W Equation (76) 

a(t) = - 0 2 B ( 0 ' t ) / 0 t 2  
OB(O,t)/Ot 

= ~ .  

Of course this result is trivial in the present context, but at least provides a check 
on the calculations. 

Next consider H-W Equation (77) which reads 

r = -a(t)  ~176 o2A(o,t) 
Ot Ot 2 

[ 0 B ( 0 ' t ) ]  2 T V a ( r )  ]2 
+L ~ J fo LOB(~,T~/OrJ dr. (79) 

Thus using the above results we obtain 

r = - )~ [ - f (0 ,  t) + e -At] + f2(0, t) + A e -At 

e -2At cr2r2(e2~t 1) 
-} %2 2,k 

O-2 
= ),f(0, t) + f2(0, t) + G ( 1  - e - 2 A t ) .  
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We observe that this is indeed equivalent to our D(t) term. 
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