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Abstract. This paper describes European-style valuation and hedging procedures for a class of 
knockout barrier options under stochastic volatility. A pricing framework is established by applying 
mean self-financing arguments and the minimal equivalent martingale measure. Using appropriate 
combinations of stochastic numerical and variance reduction procedures we demonstrate that fast and 
accurate valuations can be obtained for down-and-out call options for the Heston model. 
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1. Introduction 

The management of exchange rate risk particularly for major currencies such 
as the U.S. Dollar, Japanese Yen and German Mark is an important problem 
in modem finance. In this paper we consider the pricing of foreign exchange 
rate barrier options under stochastic volatility. With particular reference to the 
Heston (1993) model, we use appropriate combinations of stochastic analytic and 
numerical methods. 

A barrier option is one, the payoff structure of which, depends not only on the 
final price of the underlying security but also on whether the price of the security 
has hit a pre-determined level or barrier. These are path dependent options since 
their value depends on the past history of security prices. 

Some barrier options return a fixed payoff if the barrier is reached. Other types 
called knockout options disappear or become valueless if the barrier is touched. 
We will examine a class of knockout options called down-and-out call options. 
These are derivative securities which become valueless or are knocked out if at 
any time prior to maturity the underlying asset reaches or falls below the barrier. 
If the barrier is not reached the option returns the standard European call payoff 
structure. A knockin option is a barrier option which only has some value or comes 
into exercise if the barrier is hit. Knockout or knockin barrier options are of interest 
mainly because the possibility of hitting or not hitting the barrier means that they 
are cheaper than the corresponding standard options. 

The observation frequency of a barrier option refers to how often the barrier 
condition is checked. Clearly this is an important feature of a barrier option since 
a more frequently observed option will usually be cheaper than a less frequently 
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observed one. For continuously observed barriers, and where the underlying secu- 
rity is assumed to evolve according to the Black-Scholes model, analytic valuations 
are now available for several types of instruments. For example closed-form solu- 
tions for various products have been provided by Merton (1973), Kentwell (1992), 
Rubinstein and Reiner (1993) and Rich (1993). 

Unfortunately these formulas do not in general hold in cases where depar- 
tures from the Black-Scholes model are permitted. In particular, in recent years 
researchers have focussed much attention on the merits and effects of allowing for 
stochastic volatility. However to our knowledge the barrier option pricing problem 
has not been solved analytically in this environment. Some examples of stochastic 
volatility models include those proposed by Hull and White (1987), Johnson and 
Shanno (1987), Scott (1987), Wiggins (1987), Melino and Tumbull (1990), Heston 
(1993) and Hofmann, Platen and Schweizer (1992). 

The main aim of this paper is to show that fast and accurate numerical valuations 
are now possible for knockout or knockin barrier options even in a stochastic 
volatility setting. We demonstrate these mthods by computing the prices of down- 
and-out call options for the Heston model. 

We choose the Heston model because analytic valuations are available for stan- 
dard European options and because this model assumes that volatility movements 
are random and can be correlated with the returns of the underlying security. These 
are features which seem to be desirable in a stochastic volatility model. 

We remark that the methods developed and used here can also be applied to 
the valuation of both standard European and barrier options for many other types 
of stochastic volatility models. The standard European component of these valua- 
tion procedures should therefore be of independent interest since many stochastic 
volatility models have proved to be analytically intractable even for the valuation 
of these standard instruments. 

2. The Black-Scholes Framework 

Let W = {Wt,  t >1 to} be a one-dimensional Brownian motion defined on the 
probability space ([2, 5 r ,  P),  where the filtration .T = (:Ft)t>>.to is taken to be the P-  
augmentation of the natural filtration of W. We assume P is the risk-neutral measure 
and that we have two deterministic riskless price processes B a = {B~, to ~ t <~ T} 
and B y = {By,  to <~ t <~ T}  here also called bonds for the domestic and foreign 
markets respectively, together with an exchange rate process X = {Xt ,  to <<. t <~ 
T}. The arbitrage free model which describes the dynamics of the bonds and 
exchange rate processes is given by the following system of stochastic differential 
equations. 
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dB[ : r i b  [ dt, 

dB d = rd Bd dt, 

d(Bf  Xt) = rdB[Xt  dt + crB{Xt dWt, 

(2.1) 

for to ~< t ~< T with initial values at time to of B{0 = _b f ,  Bdo = _b d and Xto = x__ 

and final values at time T of BT y = B d = 1. With this model the random variable 

t3{Xt, to <~ t <~ T can be considered as a price adjusted foreign bond (adjusted by 
the exchange rate) which represents the value of the foreign bond in the domestic 
economy at time t. Consequently the process (BJ:X) replaces the risky asset in the 
standard Black-Scholes formulation for stock dynamics. To simplify the notation 
in what follows we will not include the initial conditions in the symbols used to 
denote the bond price and exchange rate processes. For example we will use Xt 

yt0,_x rather than l~ t to denote the value of the exchange rate at time t, to ~< t ~< T. 
The constant values rf  and rd represent the foreign and domestic interest rates, 
respectively. The parameter cr denotes the volatility of the price adjusted foreign 
bond B f  x .  

Using Ito's formula it follows from the last equation in the system of equations 
(2.1) that 

dXt = (rd -- ry)Xt dt + crXt dWt, (2.2) 

for to ~< t ~< T. Note that the bond price processes B f and B d can be solved 
explicitly using the relations 

t3{ = e -rf(T-t) (2.3) 

and 

B d = e - r a ( T - t )  

for to ~< t ~< T. Let us now consider a down-and-out call option on the price 
adjusted foreign bond process B I X .  First we restate the definition of this option. 
It gives the holder the right to buy units in the foreign currency at time T at the 
fixed exchange rate K;  but only if the exchange rate process X has not hit or fallen 
below the barrier level H before maturity at time T. 

To model the payoff structure of this type of instrument we will consider the 
region 1-'0 defined by 

Fo = [to, T) x (H, +c~).  (2.4) 

Let T : f/ --+ N+ be the stopping time given by 

T = inf{t > to: (t, Xt) f[Fo}. (2.5) 
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Using r we define the region 

F, = {(r(w),Xr(oo)) E [to,T] x 91: w E f t }  (2.6) 

Cr = ( X T  - -  K)+I{r=T}. 
Let the valuation function u : Po U F1 -+ 91 be given by 

u(t ,x)  = E(Bdh(r ,  Xr)[Xt  = x) 

= BdtE(h(r ,X~)lXt  = x) 

0: for to ~< t < T (2.8) 
h(t ,y)  = ( y - K )  +" for t = T  

with K > H.  This definition and (2.7) means that we can express G in the form 

c(co)  = (2.7) 

for co E f~, where h : [to, T] • 91 -+ 91 is some Borel measurable function. The 
function h restricted to Pl can be regarded as the payoff function for our contingent 
claim. 

From the continuity of the sample paths of X we see that Pl C_ [to, T] x 91 and 
consequently the payoff structure G given by (2.7) is well-defined. 

For a down-and-out call option we take the function h:  [to, T] • 91 --+ 91 to be 
given by 

(2.9) 

for (t,x) 
process given by 

Xt  = B[  Xt/Bat (2.10) 

for to ~< t <~ T,  and ~2: [to, T] x 91 + 9t the valuation function 

fz(t, 02) = E(h(r ,  eg[r)lXt = x) (2.11) 

for (t, ~) E [to, T] • 91, where "r is the same stopping time as defined in (2.5) and 
corresponds to the process X (not X).  The function ~2 is well-defined since for any 
co e [to, T] • 91. 

E F0 U F1. Define ) f  = {Xt, to ~< t ~< T} to be the Bd-discounted 

so that F1 contains all points on the boundary of F0 which can be reached by the 
diffusion process X.  We assume that (t0, Xt0) E F0. 

With these definitions established the payoff structure for a European style 
down-and-out barrier option denoted by G: f~ -+ 91+ can now be expressed in the 
form 
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Expanding ){t using Ito's rule, (2.10), the first two equations in (2.1) and (2.2) 
we see that 

d X t  = ~rf(2t dWt  (2.12) 

for to ~< t ~< T. Also, applying Ito's formula for semimartingales, the Kolmogorov 
backward equation for f ,  which holds because of the form of (2. l 1), and equation 
(2.12) we can infer that 

f 
tAT 0 

f t = u t 0 +  - dXs a to O~ Us (2.13) 

for to ~< t ~< T, where tit = f ( t  A % J{tA~-) for to ~< t ~< T. 
Let us now apply a dynamic portfolio strategy �9 = (~t, fit)rE[to,T], where at 

time t, to ~< t ~< T, we hold r/t units in the domestic bond Bt ~, and ~t units of the 
foreign bond with each unit valued at B [ X t  in the domestic economy. 

We choose ~t and rJt by 

0 
~t = 0--S2t (2.14) 

and 

t i t  = u t  - -  ~ t 2 t .  ( 2 . 1 5 )  

Using the relations (2.3) and (2.10) we see that if 7- = T, then X~- = X~- and if 
7- < T, then from the definition of h given by (2.8), h ( T , - ~ )  = h(T, Xr)  = 0, so 
that 

E(h(T, 2~-)) = E(h(T, X~-)). 

This result together with the relation (2.9) applied to the processes ){ and X means 
that 

f(t  A  ,2tA ) = A 7-,XtA,)/Bg (2.16) 

for to ~< t ~< T. Note that from (2.16) we can write 

= , 4 t ,  

for 

( t ,  e r 0 u r l  

so that 

o O / B {  
-~zu = 
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and consequently the hedge ratio ~t, to <~ t ~< T, can equivalently be expressed in 
the form 

~t = J-~ut/B[. (2.17) 

By (2.10), (2.15) and (2.16) the value ut of the portfolio with strategy ff in the 
domestic economy at time t, to <~ t ~< T, satisfies the relation 

: + 

where ut = u(t A r, Xta~-) for to <~ t ~< T. Moreover using equation (2.9) and the 
condition B r = 1 we have 

= 

for any w E ft. However G(w) = h(r(w), X~Go)(w)) represents the payoff struc- 
ture for our option for w E ft. Consequently our portfolio process fully replicates 
this payoff structure for any scenario w E ft. 

In addition, the Ito integral ftt0 A~- ~s dXs can be interpreted as the discounted 
gain from trade resulting from the movements of Xt,  to <. t <. T. Consequently 
from (2.13), (2.14) and (2.16) our portfolio process is self-financing following an 
initial cost of uto = f%Bdo �9 The fair price for the option at time to is therefore 
Uto = u(to A r, XtoAr). Thus by continuously hedging the portfolio using the 
strategy ff we can fully replicate the payoff structure G of the option. 

The equations (2.9) together with (2.14) and (2.15) provide a mechanism for 
determining both the fair price of the option and the corresponding hedge ratios 
needed to replicate the underlying payoff structure. For the Black-Scholes model 
described by the system of Equations (2.1), these prices and hedge ratios can be 
computed explicitly. 

3. A Model  with Stochastic Volatility 

For practical reasons we would like to use more general classes of models other than 
the Black-Scholes formulation described by (2.1) above. In particular the assump- 
tion of constant volatility is regarded by many individuals as being too restrictive. 
Consequently we now consider a more general process Z = (B I, B d, X ,  v), which 
allows for stochastic volatility and which is defined by the following system of sto- 
chastic differential equations: 

dB[ = r i b  { dt, 

dB d = rdBdt dt, (3.1) 

dXt  = # tXt  dt + (klvt + k 2 v ~ ) X t  dWt 1, 

dvt = - d t  + (Pl t + P 2 v ~ ) ( 0  dWt 1 + x/1 - 0 2 dWt2), 
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for to ~< t ~< T with kl, k2,Pl ,P2 >/0, ts ~< 0, p C [0, 1], initial values at time to of 
B f  = bf Bd  fT to - , to = b-d, x to  = x_ and vto = v a n d f i n a l v a l u e s ,  a t t i m e T o f B  = 

B d = 1. With this system of equations W 1 and W 2 represent independent Wiener 
processes defined on the probability space (~t, .T, P).  

Let us explain some of the main features of this model. As in the previous section 
the bond price processes B I and B d are both deterministic with constant interest 
rates r I and r d, respectively. The exchange rate process X follows a generalized 
geometric Brownian motion with a stochastic diffusion coefficient. 

The process v is closely related to the instantaneous variance of the exchange 
rate process X. In our model this process is disturbed by some external noise, 
where Q accounts for the correlation between this noise source and the noise of the 
exchange rate process X. Note that v is continuously pulled back towards a long 
term value ~. The parameter t~ measures the strength of the restoring force and is 
referred to as the mean reversion factor or speed of adjustment. 

For parameter values kl = Pl = 1, k2 = P2 = 0 and ~ = 0 the process v follows 
a geometric Brownian motion and can be interpreted as the volatility process of the 
exchange rate X. For parameter values kl = Pl = 0 and ]'g2 : P2 = 1 the system 
of equations corresponds to the Heston (1993) model. 

We will now briefly consider pricing and hedging procedures for a European 
style down-and-out call option for the system of equations (3.1) with a continuation 
region P0, stopping time r ,  exercise boundary Pl and payoff structure G given by 
(2.4), (2.5), (2.6) and (2.7), respectively. 

For this type of valuation problem the stochastic volatility in our model creates 
an intrinsic risk which in general does not allow for the full replication of the 
underlying payoff structure without extra cost. Following the approach of Foellmer 
and Schweizer (1991) and Hofmann, Platen and Schweizer (1992), we obtain for 
a contingent claim with payoff structure h(r ,  X r )  given by (2.8) an option pricing 
formula of the form 

= ttt(t A T, XtAr,  VtAr) = BdArE,(h(r,  Xr 

= Bdfi.(h(r,Xr 
(3.2) 

for to ~< t ~< T, where the expectation is chosen with respect to an appropriately 
defined probability measure P.  

For incomplete markets, for example, if Pl r 0 or P2 r 0 in the system of 
equations (3.1), there is still no general agreement on how to choose this measure. 
Based on the arguments presented by Hofmann, Platen and Schweizer (1992) we 
will choose this measure P as the minimal equivalent martingale measure. 

An equivalent martingale measure/5 for the given exchange rate process X is 
one for which the Bd-discounted process X given by (2.10) is an (,T,/5)-martingale 
and the measures P and P have the same nullsets. Thus, an equivalent martingale 
measure can be interpreted as one which induces a price system which is consistent 
with having ){ as an equilibrium exchange rate. 
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An equivalent martingale measure/5 for X is called minimal if any local P -  
martingale M which is orthogonal to X remains a local martingale under /5 .  
Intuitively, /5 is that equivalent martingale measure which is closest to P in a 
certain sense. 

In practical terms, using the minimal equivalent martingale measure/5 has the 
effect that the actual expected growth rate for our exchange rate process X changes 
to rd -- r I .  However the dynamics of the non-traded asset, namely the volatility 
component  v, remains unchanged, in a weak sense, under the new measure. Thus 
for our model (3.1), the stochastic differential equations for the components X and 
v become 

d X t  = ( r d - r f  )X t  dt  + (klV t -F k2v~)Xtd~Vt  1 (3.3) 

and 

dvt = n ( v t -  ~) dt  + (plvt  + p2v/-~)(O dl~t 1 + ~fl - ~o 2 dl~t z) 

respectively, where ~TI, r l  and l~  2 are independent Wiener processes under/5.  For 
additional commentary on use of the minimal equivalent martingale measure see 
again Hofmann, Platen and Schweizer (1992). 

With this measure/5 the hedging strategy �9 r ~ = ( ~ t ,  Zlt)tE[to,T] has components 
which are similar to (2.14) and (2.15) and can be written in the form 

0 ~2 ~ (3.4) 

and 

I - I  I - 

~t = u t  - ~ t X t  

for to ~< t ,%< T, where ){t is given by (2.10) and 

- '  = ~ ' ( t  A T, 2 tA~,  VtAr) E,(h(T, 2 )lfd. U t -~- 

(3.5) 

(3.6) 

As in the case for the Black-Scholes model considered in the previous section we 
can show that the time t value of the portfolio with hedging strategy �9 ~ is u~. Also 
from (3.2) and the condition BaT = 1, we can show that u~ r = h('r, XT). This 
means that the hedging strategy �9 t replicates the claim's payoff at the terminal 
time T. However, the strategy �9 r ~ = (~t, ~t)t~[to,T] will not in general be riskless. 
Therefore, the process 

f 
t A ~  

- ' -  (8 d28 Ct ~ ~t "]tO 
(3.7) 

of cumulative Bd-discounted costs, is not a constant as it is in the classical Black- 
Scholes case. In fact applying Ito's formula for semimartingales, (3.3) and (2.12), 
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together with the Kolmogorov backward equation which holds for ~2~ by (3.6), we 
have 

/ t A r  / t A r  Oqu, 
- - ,  - - ,  , - 

J to J to OV s 

x (0 dlTgs 1 + ~ / ~ -  O 2 dl~2), 

so that from (3.7), 

-, f tA~ 0 , 
Ot = Uto + .  -~v%(plvs + p2vf%s)(~) dlTV's 1 + ~/1 - 0 2 dl/~rs 2) (3.8) 

d t o 

for to ~< t ~< T. This means that the variance of Ct under/5 denoted by "~ar(Ct) 
can be calculated using the relation 

( "Var(Ct) = /)  s(PlVs -t- p2~/~-s)(L) dlTg 1 

+V/f_  Q2 dW2)) 2) 

= / ) \ J to  -~vrZ~(piv~ +p2v/%s) ds . 

This result shows that in general ~rar(Ct) > 0 for to ~< t ~< T so that Ct fluctuates 
randomly. Consequently the strategy ~)' is not self-financing in these incomplete 
market circumstances. But the choice of the probability measure/5 will be such 
that the Bd-discounted cost process C becomes an (9 r,/5)-martingale as can be 
seen from (3.8). This makes the strategy (b' mean-self-financing, that is 

E,{ CT - CtlUt} = 0. (3.9) 

Moreover, it can be shown that (Ir minimizes the remaining risk 

= 1?{(Or  - 0 )217d. (3.10) 

We remark that the hedging strategy (I)' given by (3.4) and (3.5) using the minimal 
equivalent martingale measure, is mean self-financing also in the case where both 
rg and rf  are stochastic. 

4. Numerical Procedures for Barrier Options 

The problem with general systems of stochastic differential equations of the type 
described in (3.1) and (3.3) is that there is usually no explicit solution for the option 
pricing formula (3.2) or hedging strategy (3.4) and (3.5). In these cases we usually 
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require the application of stochastic numerical and other related approximation 
methods to estimate the solution. 

As indicated by (3.2) computation of an option price for the stochastic volatility 
model (3.1) with the adjusted Equations (3.3) requires an estimate of the expec- 
tation, under the measure P ,  of functionals of the underlying diffusion process. 
For this type of problem we do not require strong or pathwise approximations; 
rather it is sufficient to approximate the underlying probability law of the diffu- 
sion process. The numerical schemes called weak approximations are designed to 
approximate these probability laws and are therefore suitable for option pricing esti- 
mates. These schemes are classified according to their weak order of convergence, 
which is defined as follows: 

Let (t)A be an equi-spaced discretization grid of the form 

t o < t 1  < . . .  < tN : T 

with step size A -- ( T  - t o ) / N .  We say that an approximation y A  = { y ~ ,  k E 
{ 0 , . . . ,  N}}  for the d-dimensional diffusion process Y converges with weak order 
/3 > 0 as the step size A tends to 0 if there exist constants K > 0 and 50 < T such 
that for every function 9 : 9~a --+ ~ from a given class C of test functions we have 
for all A E (0, 50) the inequality 

IE(g(Y~)) - E(g(Y~)) I  ~< K A  ~. 

For the class C of test functions we may use for instance the polynomials. This 
choice allows a clear classification of a wide range of numerical schemes and 
also includes the convergence of all moments of YN and YN ~. For example, the 
Euler scheme, see Kloeden and Platen (1992), converges under sufficient regularity 
conditions, applied to the drift a and diffusion b coefficients, with weak order 
/3 = 1.0. A more complete coverage of stochastic numerical procedures and their 
applications, including issues relating to strong and weak orders of convergence, 
is provided by Kloeden and Platen (1992). 

With reference to the numerical experiments described in the next section we 
used a derivative free method of weak order/3 = 2.0 due to Platen (1984) which 
as an approximation for the d-dimensional diffusion process Z = ( Z 1 , . . . ,  Z a) 
which satisfies the d-dimensional stochastic differential equation 

m 

dZt  = a (Z t )  d t +  ~ b J ( z t )  d W  j (4.1) 
j=l  

has the form 

= + � 8 9  + 

+ [(bJ(/~J+) + bJ([~J_) + 2bJ(YkA))AIfV j 
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m 

• E(bJ(( f~_)  -~- bJ((_f r)  - 2bJ(y~X))A~rprJki-(1/2) ] 
j = 1  
re j  

lj•l J /~j  ^ j  2 + [(bJ(R'+)-b ( _ ) ) ( ( A W ; )  - ZX) 

m 

+ ~-~(bJ(( f~)-  b/(Crr)) (AI fVJAI~  + Vr,j)]A -(1/2) (4.2) 
j = l  
r~:j 

for k E { 0 , . . . ,  N - 1} with supporting points 

m 

= Yk zx + a ( Y ~ ) A  § EbJ(YkA)AIfvJk, 
j : l  

R~ = y ~  + a(Yd)zX 4- bJ(Yd),/-s 

~:~ = Yd  • bJ(Y:), /X, 

where A!W~ j �9 { 1 , . . . ,  m},  k �9 { 0 , . . . ,  g - l} are chosen as independent 
N(0,  A) Gauss• distributed random variables under the measure/5.  These ran- 
dom variables correspond to the m independent driving Wiener processes in the 
underlying diffusion process Z. 

In this scheme we also choose the variates 1~1,j2 for j l ,  j2 �9 { 1 , . . . ,  m} as 
two-point random variables with 

/5(Vjl,j 2 = •  = �89 for j2 = 1 , . . . , j l  - l, 

VJl ,Jl ---- - A ,  and 

TVj,,j2 = --TVj2,j, for j2 = j l  + 1 , . . . ,  m. 

For the Heston model under consideration we use the value m = 2 because of the 
form of (3.3). 

Let us now consider the problem of applying Monte Carlo simulation to approxi- 
mate the option price U~o = u I (to, x, v), at time to, given by Equation (3.2). If we use 
the discrete time weak approximation y A  = { y ~  = (X kA,vkA),k �9 {0, . . .  ,N}}  
given by (4.2) for the vector diffusion process Z = {Zt = (Xt, vt), to <~ t ~ T}  
given by (3.3) we can estimate the corresponding option price u~0 at time to with 
the discounted conditional expectation 

B~0~(h(~ ~, ~ X=~)IY6 = (z_,v)), (4.3) 

where the stopping time "I- A : f~ --+ 9l is given by 

TA(w) = inf{ti:  (ti, Xi  zx) ~ F0, i �9 { I , . . . , N } }  (4.4) 
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and the function ~.A. f~ _+ {1 , . . . ,  N} is defined by 

7reX(w) = inf{i" ( t l , X ~ )  r F0, i E {1 , . . .  ,N}} 

forw E f L  
A Monte Carlo estimation of (4.3) would involve generating the outcomes 

Y~(coi) = (X~(wi),vZX(wi)) for say M paths wi, i E {1, . . .  ,M},  using the 
numerical scheme (4.2) and then computing the sample mean given by 

1 d M (Wi), ~rA(~od(cOi)) - Bto - a  X a . 
i=1  

(4.5) 

This expression would be the estimate of the option price, where each h(7-A (w/), 
X~(w,)(wi)), i E { 1 , . . . ,  M},  represents an independent realization of the random 

variable h( r ~, X ~  ). 
We can ensure that the discounted conditional expectation (4.3) is close to the 

option price u~0 by use of appropriate numerically stable higher order schemes, 
however the closeness of the two estimates (4.3) and (4.5) depends ultimately on 
the variance of h(T, Xr). Increasing the sample size M of our simulation, generally 
reduces the variance but only with order M -(1/2) as M --+ oo. Unfortunately with 
current technology this rate of convergence is too slow for many types of valuation 
problems including the case of down-and-out calls for the Heston model. In these 
circumstances we require other estimators; ones which have the same or nearly the 
same expectation but smaller variance. 

In this section we derive an error minimization technique which delivers high 
accuracy and speed and which meets the practical demands of the problem. Speci- 
fically, as reported in Section 5, we are able to compute option prices with a relative 
error of 10 .3 at a 99% confidence interval within 10 seconds on a 486 PC, 33 MHz 
computer. We will not attempt to provide a comparative study of different variance 
reduction methods. Rather we describe one of the best methods which is sufficient 
to obtain a practical solution to our problem. However based on our experience with 
similar or related problems a variance reduction of 1000-10000 times, compared 
to what can be achieved with the raw Monte Carlo estimator (4.5), would typically 
be obtained with this procedure. 

This error minimization technique, which we now describe, is based on the use 
of control variates and was found to be effective for the computation of down-and- 
out call prices for stochastic volatility models of the form (3.3). The method was 
incorporated in the numerical procedures whose results, for the Heston model, are 
described in the next section. The main idea with this method is to simulate only 
the difference between the Heston model and another one which is close to the 
Heston formulation and for which a known explicit formula exists for the option 
price. The Black-Scholes framework is clearly a reasonable choice as a generator 
of control variates for the Heston model. 
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To be more explicit we consider two vector valued processes Z = {Z t  = 

( B [ , B d ,  X t ,  vt), to <~ t <~ T }  and 2 = {Zt_= (B{,Bdt,2t,Ot),to <. t <~ T }  
defined on the same probability space (~, 5 c, P )  by 

d B :  = r f B{ dr, 

d B  d = raBt d dt, 

d X t  = ( r d - - r f ) X t  at  + x / ~ X t  dl:V 1, 

dvt = t~(vt - ~) dt + crv/~(O dlTgl + x/q- - 02 dl~2), 

d X t  = (rd -- r i ) X t  dt  + 0 2 t  d17r 

dot = 0 

(4.6) 

for to ~< t ~< T with initial values B{o = b_ f ,  Bdto = b_ a, )(to = Xto = z__, Vto = v_ and 

0t0 at time to, and final values BT f = B d = 1, at time T,  where 1?r 1 and ITV 2 are 

independent Wiener processes under the measure/5. Here the processes Z and 2 
correspond to the Heston and Black-Scholes models respectively with 0t = 0t0 for 
all t, to ~< t ~< T. The initial value 0t0 can be chosen so that the processes Z and 

are close in some reasonable sense. For example, one possible choice for 0t0 is 
to let it be equal to the square root of the average value of {vt, to <~ t <. T }  as it 
would evolve according to the Heston model but with no noise component, that is 
with ~r = 0. 

In this case vt can be solved explicitly with 

vL = v + (v__ - "0) e ~(t-t~ (4.7) 

for to ~< t ~< T, so that 

Oto = T - t o  vt dt  

i (e~(T-to) - 1). (4.8) 
~) i 

= v + a ( T  - to) 

Let the region 1-'o and stopping time ~- be given by (2.4) and (2.5), respectively 
using the process X. Define the stopping time ? : w --+ 9l by 

?(co) = inf{t0" (t, Xt) ~ P0}. (4.9) 

The option price at time to for the process Z, denoted by ~2~o = ~2'(to, z__, 0to) can 
be computed from the formula (3.2). Thus 

^' = Bdo/)(h('f, X§ = x_), (4.10) u t  o 
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where we recall that ~: has the initial value )ft0 = x at time to. This price 
corresponds to the case of a continuously observed down-and-out call option for 
the Black-Scholes model with constant volatility and is known explicitly. This fact 
will be used in the control variate formulation described below. 

Consider the random variable 

d (h(% Xr)  - c~(h(~, X§ - / ~ ( h ( ~ ,  2 , ) ) ) )  Rr,-~ = Bto (4.11) 

which using (4.10) can be written in the form 

Rr,.~ = Bdo(h(T, Xr) _c~(h(~c,f(,) _ Uto/̂ , Bto)d ). 

Since, by equation (4.10), 

' 
Rr, , )  = B h ( r ,X~) )  = Uto , 

Rr,~ is an unbiassed estimator for u~0 which is the option price we want to compute. 

If 2 is close to Z, which is the case for reasonable choices of the parameters 
ry, rd, n, ~, or, 6, x__ and v_, with ~3t0 chosen according to (4.8), then the variance 
of the estimator R~-,~ will be much smaller than the variance of Bdtoh(r, X~). 
Consequently the corresponding statistical error will be smaller than that obtained 
from a standard Monte Carlo simulation of u~0 using the variate Bdtoh(r, X~). 

At this point we replace the diffusion processes Z and Z with corresponding 
discrete time weak approximations Y~  = (X ex , v ~) and Y~  = () (~,  ~3 ~x), respec- 
tively, using the numerical scheme (4.2). The discrete time representation of the 

A estimator Rr,e denoted by R~_,e, now takes the form 

= X~A) a(h(~  a ,  ^a  ^, ,B  d,, - X ~ a )  - uto I to)), (4.12) 

where r A and 7r A are given by 

r A = inf{ti" (ti, X~ )  q[ Fo, 1 <~ i ~ N},  

7r A = inf{i e { 1 , . . . , N } "  (ti, Z ~ )  CFo} 

and ~/x and r ex are defined in a similar fashion except we replace the discrete time 
approximations X ~  with 3 fp ,  i E { 1 , . . .  ,N} .  

A Monte Carlo estimation of the option price u~0 using (4.12) would be per- 
formed in a similar fashion to that for the estimate based on Equation (4.3) and 

A given in (4.5). That is we would obtain say M outcomes R~-,.~(wi) and compute 
A 1 ~_M 1 1:l~.~ (wi). The optimal value of a to minimize the the sample mean Uto = -~ 

sample variance ~ ~ M  1 (R~. (wi) -UtAo)2 can be obtained as the simulation 
proceeds as is explained by Clewlow and Carverhill (1992, 1994). 
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It can be seen from the formulation of this variance reduction technique that it is 
very general and can be applied to a wide class of stochastic volatility models and 
other valuation problems. It can also be conveniently combined with other variance 
reduction techniques such as the use of antithetic variates, see for example Hull 
and White (1987, 1988). 

Note also that when the value of the parameter H is very low, the option price 
u~0 of a down-and-out call approaches that of a European call option. Consequently 
these procedures enable us to calculate standard European calls but in a stochastic 
volatility setting. This result is of independent interest since, for the Heston model 
under consideration, the closed-form valuation procedures provided by Heston 
(1993), which rely on the inversion of certain characteristic functions in the complex 
plane, are difficult to implement. 

Furthermore, these procedures can be adapted to take into account the observa- 
tion frequency of the option. This is of considerable practical value as the barrier 
condition, for all traded instruments of this kind, is in fact observed and tested only 
at discrete points in time. This is usually daily but sometimes can be less frequent. 
Clearly the observation frequency of a barrier option can have a significant effect 
on the price of the option. To see how these methods can be changed to suit the 
observation frequency of the option let {tij : j E { 0 , . . . ,  J}} for some integer 
J ~< N be a subset of time points from our discretization grid {ti, i E { 0 , . . . ,  N}} 
with rio = to and which corresponds to the times or fixings at which the barrier 
condition is checked. Thus we assume our discretization grid (t)A is finer than the 
fixings for our barrier option. 

We now replace the estimator R ~ ,  with 

= ego , ) - o (4.13) 

where 

r  inf{tij �9 (t i j ,Xi~) r ro, j e { 1 , . . . , J } }  

and 

#A = inf{ij" (ti~,Xi~j) qf ro,j e {1 , . . .  , J}} .  

That is, for the component h(-U x, /x Xea )  of the estimator R~,, we use the fixings 

of the barrier option as the times to stop the approximation X ~ , j  E { 1 , . . . ,  7-}. 

However for the control variate h(r A , _~xA ) - u~0 we use the whole grid (t)A, to 

determine the times at which the approximation ~ / A  i E { 1 , . . . ,  N} should be 
stopped. This is necessary as we want to ensure, see (4.10), that 

- % / B t o )  "~ O. 
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Since the option price ~2~0 is obtained from a continuously observed barrier we use 
the whole grid (t)A. 

We remark finally that all of the methods and results described in this paper 
can be adapted to other types of barrier options, such as down-and-out puts or 
up-and-in calls, in a stochastic volatility setting. In addition, even extra features 
such as double or partial barriers can still be accommodated with these methods. 
For example a partial down-and-out call for the Heston model would be similar to 
the usual down-and-out call except the barrier condition would only be applied for 
a subset of  the interval [to, T]. In this case we could reasonably expect that a good 
control variate would be a linear combination of the form alY1 + a2Y2, where Y1 
is obtained from a standard European call and Y2 is obtained from a down-and-out 
call for a corresponding Black-Scholes model. As is the case for the estimator _R~ 

or R ~ ,  we can compute the optimal values of the coefficient vector (oq, ce2) using 
least squares analysis, see again Clewlow and CarverhiU (1992, 1994). 

5. Simulation Results for Barrier Options 

As has been previously mentioned there is no explicit solution for the option price 
or hedging strategy for the model described by the system of Equations (3.3). 
However using the numerical techniques described in the previous section we can 
obtain fast and accurate valuations. For the numerical experiments described in this 
section we employed the higher order approximation (4.2) to reduce the systematic 
error, that is the difference between Rr,e given by (4.11) and Rr~§ given by (4.12), 
see Kloeden and Platen (1992). We also incorporated the two variance reduction 
methods of control and antithetic variates to minimize the statistical error, see again 
Kloeden and Platen (1992). 

For these simulation experiments we used the Heston and control variate models 
corresponding to the vector process Z and Z, respectively, given by (4.6). For 
simplicity we used the values rd = r f  = 0. This means according to the first 
equation in (3.3) that there is no drift component in the stochastic differential 
equation for the exchange rate X under the minimal equivalent martingale measure 
P.  The other parameters were assigned the following default values: H = 95.0, 
K = 100.0, n = - 2 . 0 , ~  = 0.01,a = 0.2,0 = 0.0 ,T = 0.5 with initial values 
X0 = z__ = 100.0 and V0 = v_V_ = 0.01 at time to = 0. 

The statistical errors and associated confidence intervals were estimated by 
dividing the total number of outcomes into say L batches. The sample means were 
taken within each batch to form asymptotically Gaussian statistics. The means/2L 
and sample variance ~ of these statistics were then taken over the batches. We 
obtain statistical error bounds at a 99% confidence level by forming the interval 

(~L  -- aL,  IZL -Jr eL), where aL = tO.99,L-lr / L  and t0.99,L-1 is the value o f  

the Student t-distribution with L - 1 degrees of freedom evaluated at a confidence 
level of 99%. For the numerical scheme (4.2) we used N --= 16 discretization 
points with L = 20 batches, each with 256 trajectories. The paths in each batch 



VALUATION OF FX BARRIER OPTIONS 211 

were themselves divided into 64 groups of 4, constructed by means of an antithetic 
variate generation procedure as follows: 

For N discretization points, define X: { 0 , . . . ,  N - 1 } --+ { -  1, 1 } by 

+1" i ~ < ( N - 1 ) / 2  

X(i) = -1" i>  ( N - 1 ) / 2  

for i E { 0 , . . . ,  N - 1}. Let (AW~:,AW~),kE^ 1 ^ 2 { 0 , . . . ,  N - 1}, be the Wiener 
increment approximations used in the numerical scheme (4.2). As has been noted 
previously we use the value m = 2 because there are two independent driving 
Wiener processes in the Heston model given by (4.6) using the process Z. A single 
realization for the control variate estimator A Rr,~(Wl),Wl E f~ given by (4.12) is 

^ 1 ^ 2 { 0 , . . . , N  1}.  obtained by determining the 2N outcomes (AW~, AW{),  k E 
With these outcomes we compute simultaneously the additional outcomes 

(5.1) 

for k E { 0 , . . . ,  N - l }. These three, antithetically produced, sets of outcomes are 
then substituted into the numerical scheme (4.2) to produce three additional realiza- 
tions for the estimator R~_~,§ say R~A.~(w2),R~.~(w3) and R~e(w4),w2,w3,w4 E a. 
This method thus combines full reflection of both independent Wiener components 
and partial reflections for approximately half of the time interval [0, T]. The pro- 
cedure is computationally efficient since we require only one original set of 2N 
pseudo or quasi random numbers to produce the four realizations for the estimator 

A Rr, e. Using a 486, 33 MHz person computer, with 16 discretization points and 
5120(= 20 x 256) same paths, option prices can typically be computed within 
10 seconds. For all of the numerical results presented in this section a relative 
statistical error, based on the criteria given above, of 0.1% at a 99% confidence 
level was achieved. The instantaneous variance vt of the exchange rate evaluated 
at time t, to ~< t ~< T, has a stationary distribution with P-a.s. positive values, 
whenever - n 0  ~> �89 2. Consequently for these default parameter settings the value 
for cr is the maximum possible value and produces the most pronounced stochastic 
volatility effects. These choices for the model parameters also represent a worst 
case scenario for the valuation procedures and software, as they generate the largest 
corresponding error terms. 

Figure I shows a typical pattern of prices for down-and-out calls for both the 
Heston and Black-Scholes models using different values of the barrier level H.  For 
the Black-Scholes model we used the process Z defined in (4.6) together with the 
initial value ~30, at time 0, given by (4.8). For the Heston model using the process Z, 



212 DAVID HEATH AND ECKHARD PLATEN 

(9 
U 

2.5 

1.5 

0.5 

0 
90 

Black-Scholes 
............................... ~ Heston ..... 

I I I I 

92 94 96 98 I00 
B a r r i e r  Level  

Figure 1. Option prices for the Heston and Black-Scholes models for different levels of the 
barrier level H. 

again defined in (4.6), we used the default value, cr = 0.2. As previously mentioned 
this means that a strong stochastic volatility effect is incorporated and that relatively 
large price differences between the two models of the order of 5 - 7% result for 
barrier levels below 95% of the spot exchange rate X0 = z__ --- 100.0. 

Note that for low values of the barrier level H, the barrier effect is reduced and 
we obtain corresponding European call prices for the Heston and Black-Scholes 
models, respectively. Clearly for the default parameters used, the Heston model 
returns lower prices, however for other settings higher prices can be obtained. 
A three dimensional representation of these results for the Heston model using 
different values for the barrier level H and times to maturity T is given in Figure 2. 

An important consideration for financial institutions dealing with exotic options 
are the risks associated with trading in these instruments. One of the reasons for the 
interest in the Heston model is its potential to provide the basis for better hedging 
of the underlying security. Hedge ratios for both the Heston and Black-Scholes 
model are illustrated in Figure 3 using different values for the spot exchange rate 
X0 and a barrier level H = 80.0. These hedge ratios were computed from central 
finite differences and the technique of common random number generation, see for 
example Ross (1991) or Law and Kelton (1991). For the default parameter settings 
and values of X0 in the range 90.0 ~< X0 <~ 95.0 hedge ratio differences of the 
order of 5 - 10% were observed. For the Black-Scholes model, we calculated the 
initial value �9 according to (4.8) as has been explained for the results shown in 
Figure 1. 
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Figure 2. Option prices for the Heston model for different levels of the barrier and time to 
maturity. 
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Figure 3. Hedge ratios for Heston and Black-Scholes models for different values of the 
exchange rate. 

Figure 4 displays price differences (u~ - ~2~) between the Heston and Black- 
Scholes models using different values for the spot exchange rate X0 and times to 
maturity T. The values for the other parameters used are as given in the default 
parameter set except for the value of H which was set at 95% of the level of X0. 
The parameter �9 for the Black-Scholes model was again determined from (4.8). 
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Figure 4. Price differences between the Heston and Black-Scholes models using different 
exchange rates and times to maturity. 

Price Difference 

0.15 
0.1 

0.05 
0 

-0.05 
-0.i 

-0.15 

i10 

0.94 
9O 0.96 0.98 

Barrier Level % 1 80 

120 

i00 

Spot Exchange Rate 

Figure 5. Price differences between the Heston and Black-Scholes models using different 
levels of the barrier and times to maturity. 

This figure clearly illustrates a version of the smile effect in prices which has been 
observed empirically for many instruments. 

A different view of similar results showing the smile effect in prices can be 
obtained if we keep the time to maturity T constant at the default value T = 0.5 
and change the barrier level H as a percentage of the spot exchange rate X0. This 
view of price differences (u~ - z2~) is shown in Figure 5. 
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6. Conclusion 

In this paper  we have shown that efficient valuations of  European-style barrier 
options can be obtained in a stochastic volatility setting using stochastic numerical  
and variance reduction techniques. In the case of  the Heston model  and down- 
and-out call options, simulation experiments have shown that reliable, stable and 
fast valuations can be delivered which provide a high degree of  accuracy. These 
valuation procedures can also be applied to estimate the prices of  other standard 
European-style options under stochastic volatility. 
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