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Equilibrium Relations in a Capital Asset Market: 
A Mean Absolute Deviation Approach 
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Abstract. We consider the equilibrium in a capital asset market where the risk is measured by the absolute 
deviation, instead of the standard deviation of the rate of return of the portfolio. It is shown that the 
equilibrium relations proved by Mossin for the mean variance (MV) model can also be proved for the 
mean absolute deviation (MAD) model under similar assumptions on the capital market. In particular, a 
sufficient condition is derived for the existence of a unique nonnegative equilibrium price vector and 
derive its explicit formula in terms of exogeneously determined variables. Also, we prove relations between 
the expected rate of return of individual assets and the market portfolio. 
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I. Introduction 

In Konno (1990), and Konno and Yamazaki (1991), we proposed the mean absolute 

deviation (MAD) portfolio optimization model, in which the absolute deviation of 

the rate of return of the portfolio is minimized subject to such constraints as the 

average rate of return and amount of available fund. 

'Risk' is usually measured by the standard deviation (or the variance) in financial 

optimization models and these mean variance (MV) models have served as the 

'standard' model for almost forty years since Markowitz (1952) proposed his model. 

The MV model has several nice properties, particularly if the rate of return on assets 

follows a multivariate normal distribution. Many important results in financial 

economics are based upon the MV model. 

The computational difficulty associated with solving large scale (parametric) 

quadratic programming problems limited the use of this model in practical ap- 

plications until the mid 80's. Efforts to improve the algorithmic efficiency are now 

under way, among which is the development of the MAD model. It has been argued 

in Konno and Yamazaki (1991), and Shirakawa and Konno (1993) that 

(a) The MAD model is equivalent to the MV model if the rate of return on the assets 

follows a multivariate normal distribution. Also, the resulting optimal portfolio 

is very much similar to the one derived from the MV model even if the dis- 
tribution is not normal. 

(b) The MAD model enables us to derive MAD efficient frontier even if the return 
distributions do not possess finite variances. 
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(C) The MAD model leads to a parametric linear programming problem instead of 
a parametric quadratic programming problem of the MV model. Thus a very 
large scale problem can be solved in a reasonable computation time. 

The computational advantage has led many fund managers to use the MAD 
model as a tool to solve a large scale portfolio optimization problem. Also, it has 
been argued by Press (1982), and Shirakawa and Konno (1993) that the scale 
parameter or absolute deviation is a valid measure of risk in a parametric portfolio 
optimization model. Suppose that the rates of returns follow a multivariate symmet- 
ric stable distribution. Then this model is equivalent to the multivariate normal 
distribution model when the index of stable distribution ~ is 2. However if ct ~ (1, 2), 
the portfolio return rate does not have a finite variance, whereas the absolute 
deviation exists. Moreover if  we minimize the absolute deviation for the #iven expected 
rate of  return, we can maximize the expected utility for any risk averse investors under 

thef ixed expected rate of  return taroet. Also, Worzel and Zenois (1992), and Mulvey 
and Zenois (1992) have successfully applied the risk in terms of absolute deviation to 
a class of bond optimization models. We may safely say that the MAD model can 
serve as an alternative to the MV model both computationally and theoretically. The 
reader should refer to Konno and Yamazaki (1991), and Shirakawa and Konno 
(1993) for a more complete discussion about comparison of the MAD model with the 
MV model as well as discussion on the MAD efficient frontier. 

The purpose of this paper is to derive several equilibrium relations in a capital 
asset market where the risk is measured by the mean absolute deviation (henceforth 
the MAD capital asset market) under the set of assumptions similar to those 
imposed by Mossin (1966). In particular, we will derive a sufficient condition for the 
existence of a unique non-negative equilibrium price vector and derive its explicit 
formula in terms of exogeneously determined variables. We also derive CAPM type 
equilibrium relations. It will be shown that the nonlinear programming duality 
theory can be successfully applied to derive important equilibrium relations for the 
MAD capital market. This means that many, if not all the theoretical results 
established in the MV world can be extended to the MAD world as well. 

In Section 2, we state the basic assumptions of the MAD capital asset market. 
Section 3 will be devoted to the analysis of the optimization problem of an individual 
investor. In section 4, we will derive an equilibrium price vector and linear relations 
between the expected rates of returns of individual assets and the market portfolio. 
Also, we compare it with the standard results in the MV capital market. Finally, in 
Section 5, we will discuss the effects of modifications of the assumptions imposed in 
Section 2. 

2. The MAD Capital Asset Market 

Let us assume that there exist n risky assets Sj ( j  = 1, . . . ,  n) and one riskless asset So 
in the capital asset market M which consists of m investors 1~(i = 1 .. . .  , m). Each 
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investor 1~ joins the market as a price taker with his initial endowments and 
exchanges assets so as to maximize his utility Us. 

Assumption I: Ui is a function of p and v where p is the expected rate of return (per 
period) of the portfolio and v is the absolute deviation (per period) of the rate of 
return of the portfolio. Also, Us satisfies the following conditions. 

OUi(p, v) 
- -  > 0 (2 .1 )  

Op 

OU~(p, v) 
- -  < 0 (2 .2 )  

& 

Readers are referred to Shirakawa and Konno (1993) for the implications of this 
assumption. 

Assumption 2: All investors share the common knowledge about the joint prob- 
ability distribution of the rates of returns (R, .... , R,) of assets ($1,..., S,). 

Further, we will assume that the market satisfies several conditions commonly 
imposed in financial economics, for example Black (1972), Fama (1976), Lintner 
(1965), Mossin (1966), Sharpe (1964) and Sharpe (1970). 

Assumption 3: There is no cost and no tax associated with transactions. All assets are 
infinitely divisible. Also, each investor can borrow or lend cash at the risk free rate ro 
without limit, whose unit price is Po - 1. However, he cannot sell risky assets short. 

Assumption 4: The value of assets owned by each investor remains constant before 
and after the exchange. Also, total units of each asset remain constant. 

Let x ~ and xij (i = 1,..., m; j = 0, 1 .... , n) be the units of asset S a owned by li 
before and after exchange, respectively. We will assume 

x ~  ~ x ~  i = l , . . . , m ; j = 0 , . . . , n  (2.3) 
i=1  

Also, let pj be the unit price of Sj at the time of exchange. Then Assumption 4 
imposes the following conditions on the variables: 

xlo + ~ pjxlj= w ~ i = l , . . . ,m (2.4) 
j = l  

x i j = x  ~ j = 0  ... . .  n (2.5) 
i=1  

xij>O, i = l , . . . , m ; j =  1 ... . .  n (2.6) 

where 

w ~ ~= X~ + ~ pjx ~ (2.7) 
j = l  

x ~ (2 .8)  0 /x 
Xj = 

i=1  

o is the total units of Sj in the market. w ~ is the value of I~'s initial endowments and xj 
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Let Rj (j  = 1,..., n) be the random variable representing the rate of return/period 
of Sj. Then the rate of return/period of the portfolio associated with xi is given 
by 

R(xi) = ~ pjRjxUw ~ (2.9) 
j=O 

The standard deviation a(xi) and the absolute deviation v(xi) of R(xi) are defined as 
follows: 

a(x,) = x/E[{R(x,) - E[R(x,)]} 2] (2.10) 

v(xi) = E[] R(xi) - E[R(xi)] I] (2.11) 

where E [" ] stands for the expected value. 

T H E O R E M  2.1 I f  (R1,..., R,) are normally distributed multivariate, then 

v(xi) = ~ ~r(xi) (2.12) 

Proof. See Konno (1990). []  

Thus, if (R1,..., R,) is normally distributed multivariate, then the MAD model and 
the MV model are equivalent from the theoretical point of view. Also, it has been 
demonstrated that these two models lead to similar results even if (R1 .... , Rn) are not 
normally distributed (See Konno and Yamazaki (1991) and Konno et al. (1994) for 
details). 

3. Utility Maximization of an Individual Investor 

Let us consider an optimization problem associated with investor Ii. Assumption 4 
implies that Ii tries to minimize the absolute deviation v(x~) if the value of the 
expected rate of return r(x~) is fixed. 

We consider the following problem. 

minimize 

subject to 

v x,= l/wo 

Xio + ~ pjxij = w ~ 
j = l  

roxio + ~ pjrjxij = pw ~ 
j = l  

(3.1) 

xlj~>0, j =  1 ..... n 
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where r~ = E [ R j ]  ( j  = 1, . . . ,  n) and p is a parameter greater than ro. 1 By eliminating 
Xio from the last two equations, we obtain an alternative representation of (3.1): 

subject to ~ (rj - ro)p~xi~ = (p - ro)w ~ (3.2) 
j = l  

x i i > O ,  j = l  . . . . .  n 

Let us now consider a generic program: 

minimize E ~ (Rj - ri) Q 
l _ l j= l  

subject to ~ (r: - ro)zj = 1 (3.3) 
j = l  

zj_>0, j = 1, . . . ,n  

Assumption 5: There exists an asset S t such that rj > ro. 

THEOREM 3.1 (3.3) has an optimal solution. 

Proof. See Appendix. [] 

Let z* (j = 1 .... , n) be the optimal solution of (3.3) and let v* be its optimal value. 
Then it is easy to see that an optimal solution 2ij of (3.2) is given by 

"2ij = (p - ro)wi~ j = 1, . . . ,  n (3.4) 

Also, the minimal value f(p) of (3.1) is given by 

g(p) = (p - ro)v* (3.5) 

Let 

Ui(p) - U~(p, ~(p)) (3.6) 

and let 

Pi = argmax{t~i(p); p/> ro} (3.7) 

Assumption 6: p~ is finite and uniquely determined for all i (i = 1 ... . .  m). 
We thus established the following theorem: 

THEOREM 3.2. The optimal portfolio x * ( j  = 1 . . . . .  n) o f  the investor I~ satisfies the 
relation 

pjx i j  = (Pi ro)w~ *, j = 1 . . . . .  n (3.8) 
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4. Equil ibrium Relat ions  

In the preceding section, we solved the utility maximization problem of individual 
investors and established the relation (3.8). We next derive conditions under which 
the market clearance relation (2.5) is satisfied. 

First, (3.8) implies 

, , ,  j :  
i = 1  i = 1  

In view of (2.5), pj has to satisfy 

pjx ~ = ~ (p, - ro)w~ *, j = 1, . . . ,  n (4.1) 
i = 1  

Let us define 

* = 0} (4.2) Jo = {J; zj 

J+ = {j; z* > 0} (4.3) 

LEMMA 4.1 

p~ = 0 for  j ~ Jo (4.4) 

o Proof. This follows from (4.1), by noting xj > 0. [] 

If pj = 0, then the associated variables xlj's play no role in the optimization 
problem (3.1) and thus can be eliminated from the model. In fact, no one would be 
interested in transacting zero priced asset, since it would not affect the return on the 
absolute deviation of the portfolio. (The condition (2.5) can be trivially satisfied by 
choosing x* = x ~ j ~ Jo) 

Let us now assume without loss of generality that 

z * > 0 ,  j = l , . . . , n  (4.5) 

Putting the relation (2.7) into (4.1), we have a system of linear equations 

{ ~ o } ,  (4.6) pjx ~  (pi - ro) X~ + p~xil z j ,  j =  l . . . .  ,n. 
i = 1  / = 1  

Let 

(Pi - ro)z*- (4.7) 
i = 1  j = l  Xj 

and impose the following assumption 
Assumption 7: mo # 1. 

THEOREM 4.2 The system o f  equations (4.6) has a unique non-negative solution 

p* = ~ ( p , -  ro)X~ - mo)x ~ j = 1 . . . . .  n (4.8) 
i = 1  

i f  and only i f  mo < 1. 
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Proof. Let 
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ao = ~ (pi - ro)x~ >-0, 
i = 1  

a = ( P i  - -  r o ) x ~  ..., (Pi - -  r o ) x  > O, 
i ~ l  i = l  

z.*y 
. . . . .  >0, 

\Xl 

A = ba T. 

Then the system of equations (4.6) can be represented as follows: 

p = aob + Ap. (4.9) 

Under Assumption 7, I - A is non-singular and (I - A)-1 = I + A/(1 - too). Thus 
the solution p* of the system (4.6) is uniquely given by p* = aob/(1 - too). Since 

aob --- 0 and mo r 1, we have p* > 0 if and only if mo < 1. [] 

This theorem shows that the equilibrium price p* of asset Sj is a decreasing 
function of ro. Also, it is an increasing function of pi and tends to infinity when mo 
approaches 1 from below. Now let 

n 

x f  = z*/~, z'{, j = 1 ..... n (4.10) 
/ = 1  

Also, let us define the 'market portfolio': 

PM = (X~ .. . . .  X. u) (4.1 1) 

Discussions of the last two sections are summarized in the following important 
theorem: 

T H E O R E M  4.3 (TWO F U N D  SEPARATION THEOREM) Let (p• .... , p*) be the 
price vector given by (4.8). Then each investor Ii holds the combination of positive 
multiple of the market portfolio PM and riskless asset So after the transaction. Also, the 
total demand for each asset S i matches the total supply of S j, if all investors are MAD 
in the sense of Assumption 1. 

From now on we assume that (R1 .. . . .  R,) is distributed on R" and that the 
probability measure P is absolutely continuous with respect to the n-dimensional 
Lebesgue measure. That is, 

Pr{(R1,. . . ,  R,) ~ A} = fx~af(x)dx' A ~ ~(R"), (4.12) 
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where N(R") denotes the a-field of Borel set. Then 

Pr Rjz~ = = O, for z e R"\{O}, K e R. 
k j = l  

Let 

H. K O N N O  A N D  H. SHIRAKAWA 

(4.13) 

which represent the sample and the expected rate of return of the market portfolio, 

respectively. 

Oj = 

where 

T H E O R E M  4.4 Let 

E [(RM -- rM)sign{RM -- rM}] 
E[LRM - -  rMll 

sign{x} = 1(0, - 1 ) / f  x > ( = ,  < ) 0 .  (4.17) 

Then 

rj - ro = O j ( r M  - -  ro), j = 1 .. . . .  n (4.18) 

Proof. Let us note that x~ t, ( j  = 1,... ,  n) is an optimal solution of the problem: 

minimize f ( z ) =  E I ~ (Rj-rj)zj 1 
j = l  

subject to ~', (rj- ro)z~ = 1 /~  z*, (4.19) 
j = l  3=1 

zj>-O, j = l  .... ,n 

First we show that f is continuously differentiable on R"\{0}. Let f ' (z ;  d) be the 
one-sided directional derivative at z e R"\{0} with respect to the direction d e R", 

defined by 

' z  = f(z + ~d) - f ( z )  f ( ; d )  lim" (4.20) 
,~$0 

, j = 1,. . . ,n,  (4.16) 

rM = ~ r~xf, (4.15) 
j = l  

RM = ~ Rjx~ t, (4.14) 
j = l  
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By Lebesgue's Dominated Convergence Theorem (Rao (1973)), we have 

if(z; d) 

I1 ~ (Rj -- rj)(zy + adj) -- 
= E  im J=~ 

~ J , o  

~ (R i -  rj)zj ] 
j=1 
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a (Rj - -  r j ) d j  sign (Rj - rj)zj + 
= E  im s=l c j = l  x 

L aJ ,  0 

X j = l  j = l  

= E R j - r j ) s i g n  ~ (Rj-rj)zj  dj 
j = t  k j = l .  

+ E ( R j  - r j ) d j  ( R j  - r j ) z j  : 0 P r  ( R j  - r j ) z j  = 0 
j ~ ~ . j = l  

(4.21) 

From (4.13), the second term in (4.21) is 0. Then we have 

i f ( z ; d ) =  E R 3 - r j ) s ign  ~ (Rj-rj)zj dj 
j = l  t . j = l  

and hence 

for all d e R" 

[, }] ~f(z) = E R j -  rs)sign ~ (R j -  rj)z i . (4.22) 
OZj I. j = 1 

Thus the objective function f in (4.19) is convex, continuous and differentiable. 
On the other hand, the constraints in (4.19) are linear with nonempty feasible 
region A such that 0 r A. Then the constraints satisfy the Lagrangean regular 
conditions which guarantees the existence of the Lagrange multiplier vector (Konno 
and Yamashita (1978)). Therefore the Karush-Kuhn-Tucker condition is the necess- 
ary and sufficient condition for optimality of x u in (4.19). This together with 
Theorem 3.1 implies that there exist constants # and 2j (j = 1, ..., n) satisfying the 
following conditions: 

Of(x M ) 
8zj #(ri - r0) - 2j = 0 j = 1,..., n (4.23) 
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First 

L n * 
( r j -  ro)x M = 1 / ~  zj 

j = l  j = l  

)gx~t = O, j = l , . . . , n  

)9, x ~ - > O ,  j =  1 , . . . ,n  

let us note 
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2 j = 0 ,  j = l  . . . . .  n (4.24) 

since x M > 0 and 2jx f = 0, j = 1,... ,  n. From (4.22) through (4.24), we have 

E Rj - ri)sign (R~ - rj)x x f  - # (rj - ro)x) 4 = 0 
j = l  ~ . j= l  j = l  

Thus we have 

E (Rj - rj)x~ t sign ~ (R~ - r j )x~  E[IRM - rM[] 
j k j = l  = (4 .25)  # =  

L (rj -- r o ) x f  rM -- ro 
j = l  

Therefore from (4.22) through (4.25), we have 

r j - r o =  
E[ (R j  - rj)sign{RM -- rM}] (rM -- ro) 

E [ I R M  - rMll 

The proof is now complete. [] 

The constants 0j's will be called the ' theta '  of the asset, which will play the same 

role as well known 'beta ' :  

Coy [-R j, R u l  
~ J -  VER,~] ' j =  l ' ' ' ' ' n  

in the MV capital market. 
Figures 1 and 2 show the behaviors of flj's and 0j's for two typical stocks, Nomura  

Security and the Bank of Tokyo. We calculated these values using 36 monthly 
historical data (i.e., T = 36) collected in the Tokyo Stock Market, where we used RM 
as the rate of return of the N I K K E I  225 index. In fact, we calculated flj's and 0/s  for 
all N I K K E I  225 stocks and found that they behave more or less in the same way as 
the ones shown in Figs 1 and 2 except for a few stocks. Thus 0j may be used as a 
substitute for flj, though neither one of which is stable enough from the practical 

point of view. 
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t . 2  . ,." 
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~TA . . . . .  T~-TA 
Fig. I. Nornura security. 
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8501 3 5 7 9 11866t 3 5 7 9 118713l 8 5 7 9 11 8981 
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L~--FA ..... THETr 
Fig. 2. Bank of Tokyo. 

5. Discussions 

We will briefly discuss what will happen if we modify some of the assumptions. 
(a) Alternative Assumptions on the Short Sale of Risky Assets, Riskless Borrowing of 
Cash and the Risk Free Asset: 
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First if we allow short sale of risky assets, then the non-negativity conditions on 
the variables x~j's in (3.1) and z /s  in (3.3) should be entirely eliminated. However, all 
the results hold with minor modifications except Theorem 4.2. (The sign of p* 
depends on the sign of z* in this case.) 

Second, if it is not allowed to borrow cash, then we have to add constraints 
Xio > 0, (i = 1 .. . . .  m) in (3.1). This leads to the addition of the constraints 

• ~ j  < w ~ i = l , . . . , m  
j = l  

in (3.4). Then (3.4) is no longer valid in this case and the subsequent analysis would 
be much more complicated. Note, however, that the analysis of this case is also very 
complicated in the MV world. 
(b) Discrete Sample Space: 

We assumed in Section 4 that the sample space of the rate of return (R1,..., R.) 
is R" when we derived Theorem 4.4. If (R1, ..., R,) is distributed on a finite set 
of points (rlt . . . . .  r,,), (t = 1,.. . ,  T), the optimization problem (4.19) will be replaced 

by 

minimize f(rjt - rj)zj 
t = l  j = l  

subject to ~ (rj - r o ) z j  = 1 / ~  z* 
j=l j=l 

zj>~O, j =  1 , . . . ,n  

wherefr = Pr{(R1, . . . ,  R,) = ( r l , . . . ,  r,,)}, t = 1,.. . ,  T We can easily show that (5.1) is 
equivalent to a linear program 

(5.1) 

T 

minimize Y'. Yt 
t = l  

subject to Yt - i ajtxj >- O, t = 1,.. . ,  T 
j = l  

Yt + ~ ajtxj  >" O, 
j = l  

)=1 j=l 

xj>_O, j = l  .... ,n  

t = 1 .. . . .  T (5.2) 

where a jr = ft(rjt - r j). In this case, we cannot claim the condition (4.13). However by 
the duality theorem of linear programming (Chv/ttal (1983) and Luenberger (1984)), 
the similar result in Theorem 4.4 holds under some additional condition for (5.2). 
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Appendix 

Proo f  o f  Theorem 3.1. 

Let A be an (n + 2) x n matrix defined by 
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A = 

m m 

g l  - -  g o  r 2  - -  r o  . . .  gn  - -  1"0 

r o  - -  Y l  g o  - -  1"2 . . .  g o  - -  r n  

- 1  0 ... 0 

0 ... 0 - 1  
m 

and let b = ( 1 , -  1, 0, . . . ,0)T �9 R n+2. It is obvious that rank A = n and the feasible 
region of problem (3.3) is given by the polytope ~ = {z �9 R"; Az < b}. From 
Assumption 5, we can easily show that 

( )T 1 0 � 9  
Z'  : O , . . . , r  j _ r o , . . .  , 

and hence (3.3) is feasible. From Minkowski's Theorem (Nemhauser and Wolsey 
(1988), p. 96), ~ is represented by 

={z�9 y'2iz s+ct ~ #kV k,x 
j ~ J  k ~ K  

x s~s ~ 2s = l '2s >0 ,  k~r ~ #k = 1, pk > 0 , ~  > 0 }  

where {zS; j �9 J} is the set of extreme points of ~ and {vk; k �9 K} is the set of extreme 
E " rays of ~ .  Let f(z) = {IEs=I(R s - rs)zsl }. It is easy to show that f is convex and 

hence continuous. If K = ~b, ~ is compact and we always have the optimal solution 
of (3.3)by Weierstrass's Theorem (Luenberger (1969)). Hereafter we assume K r q~. 
From the definition, f is positively homogeneous. That is 

 ,z,z 
where II "II denotes the n-dimensional Euclidean norm and R + = {x �9 R; x > 0}. Let 
us define the compact subset ~ c N by 

~p = {z  �9 R"; z = ~ ,~sz j + ~ ~ #~v ~, • 
j ~ J  k ~ K  

x s~sY~ ,~s = 1,,~s _>0, k~:Z #k = 1,~k _>0,0 _<~ _</~} (.4.2) 
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where fl _> 0. Since ~a is compact, f always has an optimal solution z~' ~ ~p on ~p. 
Let f "  -- f(z*), n _> 0 and 

,,.* = + k 

j e J  k~K 

where 

~ 2~ = 1,2y > 0  for j ~ J ,  ~ pT ,=l ,#~ ,>OforkEK,  O < c t " < n  
j ~ J  k~K 

We show that one can always assume that {~"} is bounded. Suppose {~"} is un- 
bounded. Then from (A.1), we have 

lim f .  = lim Nz*Nf / 
Zn* 

= lim I I z * l l  �9 lim f (  z* ~ (A.3) 
. . . . . .   kllz*lU 

= ov ' l im f (  z* 
 \llz*ll) 

Since ( f ,  } is non-increasing and non-negative sequence, we have 0 < lim,_+oo f ,  < 
oo. This together with (A.3) implies that lira,+ ~o/(z*/ll z* II) = 0. On the other hand, 
since {~"} is a non-decreasing and unbounded sequence, limn-~ ~ ~" = oo. Then 

lim f = lira f 2~zJ+~  ~ #kV 

(A.4) 

From (A.3) and (A.4), we have lim,_.~o f(Ek~K#~V k) = lim~-~o E{IZ~=I(R~- rj)x 
"v k k~K #k j I} = O. Convergence in L~ norm guarantees the existence of a subsequence 

which almost certainly converges. Hence there exists subsequence {rim } ~ {n} such 
that limm-~| Ey= ~ (Rj rj)(Zk~r "" k, - -  #k Vj)= 0, P-a.s. Then we can derive by the con- 
tradictory argument that there exists # * =  (#~r,. . . ,#ffry s Rl+rl, Zk~K#~r = 1, such 
that Zi=l (R ~ " - rj)(Xk~K [.2 k* v~)k = 0, P-a.s. Let us define z~ = X~s 2~z j + ~"Xk~r #~V k. 
Then we can easily show that l im,o~ f ( z * ) =  l im ,~ ,  f(z,*)>_ f(zo*)=f(z*). This 
means that the global minimum value of f on ~ is attained by z* ~ ~o with ~o = 0. 
Hence we can always select {~"} to be bounded. Now it is obvious that the optimal 
solution z* of (3.3) is given by z* = z*, where N > l i m , ~  c~". [] 
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Notes 

SAn investor can achieve zero risk (zero absolute deviation) when p = r o . By definition v(xi) >- 0 for all xi. 
Hence, we can assume that p -> ro under Assumption 1. 
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