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Abstract. This paper proposes a new practical method for estimating forward rate curves using bond 
prices available in the market. It is intended to improve the least square estimation method proposed by 
Carleton and Cooper by imposing additional constraints to guarantee the smoothness of the forward rate 
curves. The resulting problem is a nonconvex minimization problem, for which we will propose an 
efficient algorithm for calculating an approximate optimal solution. Computational experiments show 
that this method can efficiently generate smooth forward rate curves without increasing the residual errors 
in terms of least square fitting. Also, we will compare this result with an alternative and more efficient 
constrained least absolute deviation method. 
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1. Introduction 

The purpose of this article is to propose a new practical method for estimating the 
term structure of interest rates (forward rate curve) which plays a crucial role in the 
evaluation of bond prices. Given the term structure, we can calculate the mispricing, 

i.e., the difference between the theoretical price and the market price of individual 
bonds. If the market price of a certain bond is significantly lower (higher) than the 
theoretical price, we would be able to obtain an excess return by buying (selling) this 
undervalued (overvalued) bond. 

Also, the term structure can be used to calculate such indexes as effective yield, 
yield to maturity, duration and convexity of each bond. These indexes are of 
particular importance when we evaluate a bond portfolio. Further, the forward rate 
curve plays an essential role in the evaluation of derivatives by way of H e a t ~  
Jar row-Morton model (1990). Many interesting bond portfolio optimization models 
have been developed (See Konno and Inori, 1989) in recent years and in these models 
it will be also necessary to make an efficient estimation of the term structure to 
construct a portfolio with smaller risk and larger return. 

In 1976, Carleton and Cooper, in their pioneering paper proposed a least square 
method to estimate the term structure from the prices of bonds in the market. It 
turned out that the calculated forward rate tends to become unstable toward the end 
of the horizon when applied to the Japanese bond market. In fact, it fluctuates more 
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than ten percent per year as we proceed far into the future. This is unrealistic from 
the practical point of view, since a large fluctuation of interest rate is usually 
associated with a significant change of the economic condition, which cannot be 
projected far into the future. 

Thus this method should be replaced by a more stable method using a smooth 
polynomial function interpolating fewer data with smaller errors such as the ones 
calculated from government discount bonds (Chambers et al., 1984; McCulloch, 
1971, 1975). Unfortunately, however, we have only a few discount government bonds 
in Japan, most of which are of short maturity, so that this interpolation method may 
not be reliable enough to be used for practical purposes. Thus we modified the 
Carleton-Cooper method by imposing appropriate restrictions on the fluctuation of 
forward rates so that the resulting forward rate curve is smooth enough. 

In the next section, we will summarize the least square method developed by 
Carleton and Cooper. Section 3 will be devoted to several schemes to generate 
smoother forward rate curve and to a few additional modifications of the standard 
model. Numerical results of these methods will be presented in Section 4. 

2. Classical Least Square Method 

Let there be n types of bonds Bj ( j=  1,... ,n) in the market. Also, let Tj be the 
maturity, c a the coupon/period, f j  the face value and pj the market price of the bond 
B~. The theoretical price Pj of Bj is given by the formulat below. 

{ ~  1 1 } 
Pj=cj  + (1+i l ) (1+i2 )  + "'" + (1+ i l ) (1+ i2 )""  (1 +ir j )  

1 
+ J  J(1 + i , )  (1 + i2)'"(1 + i t , ) '  

(1) 

where i, is the forward rate during period t. 
Let T be the time horizon of the estimation process under consideration and let 

1 
t =  1, . . . ,  T. (2) Yt (1 +i ,) ,  

Also, let 

f cj, t = l ,  ..., T~-a, 
c j , = ] c j + f j ,  t = T j ,  

[0, t=Tj+l  . . . . .  T. 

(3) 

Then the equation (1) can be rewritten as follows 

Pj =cj l  Ya +cj2YlY2 + "'" +CjTYl "'" YT, 

Further, let 

z t = y l y 2 . . . y t ,  t = l , . . . , T .  

j - - - - l ,  . . .  , n .  (4) 

(5) 
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Then we have a linear expression 

P j = C j l Z l + C j 2 Z 2 +  ... +C~TZT, j = l  . . . . .  n (6) 

which is equivalent to (4). Thus if we obtain a good estimate of zt(t = 1, . . . ,  T), then 
we can recover Yt by using the relation 

Zt 
Yt= , t =  1 . . . . .  T, (7) 

Zt-1 

where Zo = 1. The forward rate it is calculated by the formula (2). 

Since i t>O for all t, variables Yt should be always less than or equal to one. 
Viewing (7), zt's have to satisfy the relation 

1 ~ Z  1 ~ Z 2 ~  "'" ~ Z T > O .  (8) 

The difference between the theoretical price Pj and the market price pj 

T 

ej = ~ c j t z t - p j ,  (9) 
t = l  

is called the mispricing of the bond Bj. 
Thus the standard least square estimation leads to the following quadratic 

programming problem: 

minimi   

subject to 1 >z~_>z2> -.. >-zr>O, 

which can be solved very fast by.standard algorithms (Luenberger, 1984). This is the 
method proposed by Carleton and Cooper in 1976. 

As noted in the introduction, this model leads to unstable forward rate sequences 
when applied to the bond data of the Japanese market. This is partly due to the fact, 
that the investor's projection of interest rates tends to become imprecise as we 
proceed toward the future. Also, sometimes a considerable instability is observed in 
the earlier stages of the entire horizon, which is considered to be a significant 
drawback of this approach. 

In the next section, we will propose several modifications to ensure a more stable 
forward rate sequence. 

3. Improvements of Carleton-Cooper Method 

3.1. IMPROVEMENT TO GUARANTEE SMOOTHNESS 

The first and the simplest modification is to add an upper bound constraint on the 
forward rate, i.e., 

it <<-i . . . .  t = l , . . . , T ,  (11) 



172 HIROSHI KONNO AND TORU TAKASE 

where/max is the maximal allowable value (10%/year, say) of the forward rate. This 

constraint is equivalent to 

ZT>__dZT_I >_d 2 Z T -  2 k ""  >_d T -  1Z 1 >_d T, (12) 

where d = (1 +/max)- 1 
The second modification is to impose smoothness conditions on forward rates. 

The most  straightforward method is to add the following constraint; 

]it--it+ll<_e, t = l ,  . . . ,  Y--1.  (13) 

However, this leads to an intractable nonlinear constraint in terms of z variables, i.e., 

Z t~t t i Z t <_e, t = l ,  . . . ,  T - 1 .  (14) z~+l 
To avoid this difficulty, we impose a constraint of the form 

1 1 + i , + 1  
- - < - - E l + e ,  t = l , . . . , T - - 1 .  (15) 
l + e  l+ i t  

Note that this condition can be rewritten as follows 

- e ( l+ i ,+~)<_i t+l - i t<e( l+i , ) ,  t = l  . . . .  , T - 1 .  

Hence, (15) is almost equivalent to (13) by noting that O<_it<i . . . .  where imax is 

usually less than 0.05 when we take 6 months as one period.. 
Using the relation (7), the constraint (15) can be represented in terms of z variables 

a s  

1 zt 2 
- -  _< - -  _ < l + e ,  
l + e  zt_lzt+ t 

Thus we obtain the problem: 

t =  1 . . . .  , T -  1. (16) 

t = l  . . . . .  T - l ,  

minimize f ( z ) -  _ cs,zt-  pj 
j = l  3=1 

subject to l >_Zl > ... >Zr, 

ZT ~ d Z T - l >  . . .  > d T - l Z l ~ d  T, 

1 z~ 
- -  < -  - -  - - < l + e ,  
1.gp e Z t -  l Zt + 1 

Zo=l .  

convex quadratic programming This is a problem with 

(17) 

additional nonconvex 

constraints for which there exists no efficient algorithm to calculate a global minimum. 
tn the sequel, we will propose a practical algorithm for obtaining a good locally 

optimal solution. Let us introduce an auxiliary variable 

x~= - I n  z,, t =  1 . . . .  , T, (18) 
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and represent the problem (17) using x variables as follows: 

minimize g(x) - c jr exp( - x t ) -  p~ 
j = l  t = l  

subject to O<-xl <-x2 < - ... <-xr, (19) 

XT <--a+xr-1 <--2a+xr-2  <- "" <- (T - -1 )a+ x l  <_Ta, 

- - ~ < - x t _ l - - 2 x t + x t +  1 <_o~, t = l ,  . . . , T - - l ,  

X 0 ~ 0,  

where e = In(1 + e) and a = - I n  d. This is a linearly constrained nonlinear least square 
problem whose objective function is nonconvex. 

It is not easy in general to find a globally minimal solution of a nonconvex 

minimization problem. However, we can construct an efficient method for calculat- 

ing a good locally optimal solution using the special structure of the problem (19). 
The first step is to solve a convex quadratic programming problem: 

minimize f ( x )  - _ c j t z t -  pj 
j = l  t = l  

(20) 
subject to l_>z~_> ... >--ZT, 

Zr>--dzr - l  >--"" > - d r - l z l > - d  r. 

Let z ~ ( t=  1, . . . ,  T) be its optimal solution. If z~ satisfy the constraint of the 

problem (17), we are done. Let zt k be the feasible solution of (17) obtained at the kth 

iteration. We will linearize the objective functionf(z) of (17) around x ~  - l n  z~ and 
solve the convex quadratic programming problem: 

minimize gh(X) =-- Cjt exp(--xt  k) (1 - - (x t - -  x~))-- pj 
j = l  t = l  

subject to O < x l  <x2 <-...  <XT,  (21) 

X T < a + X T _ I  <_2a+XT 2 < _ . . .  < _ ( T - - 1 ) a + x l  <_Ta, 

--~<--Xt_l--2xt+xt+~<_o:,  t =  1, . . . ,  T - - l ,  

Xo=0. 

Let x k + 1 = (X ~ + 1 . . . . .  x ~+ 1 ) be an optimal solution of this problem. If g(x k + 1 ) ( g (X k), 

then we go to the next iteration. If, on the other hand g(xk+I)>_g(xk), then we stop 

calculation. Since the feasible region of (21) is compact, there exists an accumulation 

point, say x*, of the sequence {xk}. Therefore the calculation is stopped if 

g(xk)--g(xk+l)<~ and ]g(xk+l)--gh(Xg+l)l<'y , (22)  

is satisfied for small enough 3, 7 > 0. 

Convergence of this approximation procedure may not be fast in general situation. 
However  the approximation is rather accurate in our problem since xt has to satisfy 



174 HIROSHI K O N N O  AND TORU TAKASE 

the condition 

0 <xt  < Tln(1 "+- ~max) "( 1, 

by noting that T_<20 and e _<0.05 and usually much less in most circumstances. 
It is remarked that if we choose e small enough, we will have smoother forward 

rate curve. Instead, the calculated minimal value of the sum of the squares would 
increase as e decreases. The problem is therefore essentially multi-objective and we 
need to have compromise between the smoothness of the forward rate curve and the 
sum of the squares of mispricings by choosing an adequate level of e. 

3.2. Further Improvements 

Instead of minimizing the sum of the squares of mispricing, we may minimize the 
sum of the absolute value of mispricing, i.e., 

minimize j~= l t=~l CjtZt--PJ 
subject to 1 ->zl->z2-> ... >--ZT, (23) 

ZT>__dZT_I >_ . . .  > d r - l z l  >d r, 

1 z{ 
- - _ < - - _ < l + e ,  t = l, ... , T. 
1-l-C, Z t _ l Z t +  1 

By using a linear approximation to the objective function around ztk=exp(-x~), we 
have the following problem: 

minimize c jr e x p ( -  x ~) (1 - (x, - x ~))- pj 
j = l  t 

subject to 0<-xl <-x2 < - ... <-Xr, (24) 

x r  - < a + x r - l - < 2 a + x r - 2 - <  ... < ( T - - 1 ) a + x l  -<Ta, 

-o~<_Xt_l-2Xtq-xt+l<_c~, t = l ,  . . . ,  T - l ,  

Xo =0. 

It is well known that this problem can be reduced to a linear programming problem: 

minimize ~ uj + ~ vj 
j = l  j = l  

r (25) 
subject to ~ c j t e x p ( - x ~ ) ( 1 - ( x t - x ~ ) ) + u j - v j = p j ,  j = l ,  . . . ,n ,  

t = l  

0 ~ X I ~ X 2 " <  . . .  ~ X T ,  

x r < a + x r _ l  < 2 a + x r _ 2 <  ... < ( T - - 1 ) a + x t  <Ta,  

- - e < x t _ l - - 2 x t + x , + l < c e ,  t = l , . . . , T - - 1 ,  Xo=0, 

u j>0,  vj>0, j = l  . . . . .  n, 
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for which we can apply an efficient parametric simplex algorithm when we vary the 
value of c~, or equivalently the value of e parametrically. 

Note that both least square and least absolute deviation estimates are unbiased 
estimates of ejs if they are independently and normally distributed with mean zero 
and variance 02. In case ej's do not satisfy these conditions, then the least absolute 
deviation estimation is more robust and computationally more efficient. 

The underlying principle of the formulation above is to treat each bond equally 
regardless of the amount of transaction. We may instead assign larger weights to 
those bonds which are heavily transacted as proposed by Takamori and Shimizu 
(1994) in their recent article. This scheme leads to the following problem: 

minimize F(z)- ~ bj t~=lcjtz,-pj 
j = l  

subject to 1 >z l  > --. > z r ,  (26) 

zr>dzr_l>... >dr-lz,>d r, 
1 z{ 

- -  < - - _ < l + e ,  t = l ,  . . . ,  T - l ,  
I df-,~ Zt_iZt+ I 

where bj is the amount of Bj transacted in the market. They argue that this 
formulation can be interpreted as the minimization of total arbitrage in the bond 
market. Also, similar idea can be applied to the least square model, in which case we 
have to solve the followng problem: 

minimize F(z)=_ ~ bj ~, cj~zt-pj 
j = l  t = l  

subject to 1 > z l  > ... > z r ,  (27) 

ZT >--dZT-1 >-- "'" >-d T - 1 Z l  >-d T, 

1 z} 
- - < - - _ < l + e ,  t = l  . . . . .  T - l ,  
13v~. Z t - lZ t+  1 

In the next section, we will provide the results of numerical comparison of the 
standard formulation and several improvements proposed in this section. 

4. Numerical Tests and Its Analysis 

We calculate the forward rate curves using the market data of the 48 government 
bonds whose initial maturity is ten years. We choose 6 months as the length of one 
period and calculate the forward rate for twenty periods using NEC 
PC9821/i486TMDX(33MHz). 

Figures 1 and 2 show the results of the least square scheme (17) and the results of 
the least of the least absolute scheme (23) for various values of smoothing parameter 

using the market data of September, 1992. 
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Fig. 2. The forward rate curve on September, 1992 with several c~ in LP. 
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It is seen from this that the forward rate curve becomes smoother as ~ decreases. 
We employed 10 -5 as the value of convergence parameter ~ throughout all 
experiments. Convergence condition was satisfied within 3 iterations. The CPU time 

until convergence never exceeded 60 seconds. The calculated solutions are very good 
locally optimal solutions, though there is no guarantee that they are globally 
optimal. 

Figure 3 shows the forward rate curve for the market data of March, 1994, 
calculated by both the least square model (17) and the least absolute deviation model 

z,<:;~ :~:': :';:'r ;" .~77 :~T~.~.7~7.77. ;7~..7.!.7..7.7.7.7:.77.7!;7.:;; 7:;; :7:~7~ 

5 LP a=oo 

~/year 4 i , ~ ~ ~ y 0 . P  a=oo 

2 ~ ~ l i p ~  . . . . . . . . . . . . . .  ..':r :"->-~'~' ~:~ ~ ........ "~'~"'%* a=0. 003 

13 21 39 57 75 93 111 

m o n t h s  

EIQP a=0.003 [-1LP a=0 .003  []QP a=oo  NILP ~=oo 

Fig. 3. The forward rate curve on March, 1994. 
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Fig. 4. The average of the squares of mispricing in QP  or the average of the absolute deviations 
of mispricing in LP. 



178 HIROSHI K O N N O  AND TORU TAKASE 

(23). We see from these curves that the least square scheme leads to somewhat 
smoother forward rate curves as expected. 

The overall computation time was not significantly different. Least absolute 
deviation model (23) requires more iterations than (17), though it requires less 
computation per iteration. It appears that (23) is more efficient than (17) for the 
problem with larger T and/or n. 

Figure 4 shows that average amount of mispricing ejs for least square and least 
absolute deviation scheme for various values of e. It is observed from this that the 
amount of mispricing increases as c~ decreases, i.e., as we impose more strict restriction 
on the smoothness of the forward rate curve. Based upon a number of computations 
using market data, we conclude that e=0.003, or 0.3%/6 months fluctuation of 
forward rate, is an appropriate level of smoothing restriction, in which case the 
forward rate curve is sufficiently smooth while the amount of mispricing is almost the 
same as the case without restriction on smoothness, i.e., the case with c~ = oo. This 
conclusion applies to both least square and least absolute deviation schemes. 

The calculated solution may not be a globally optimal solution of the problem 
(17). However, there is a good reason to believe that it is in fact globally optimal 
since we reached the same solution regardless of the choice of the starting feasible 
solution. (This point has to be investigated further.) One significant difference 
between (17) and (23) in regard to the pattern of mispricing is that more than 40% of 
the bonds are free from mispricing in the least absolute deviation scheme when c~ is 
oe while the mispricing is scattered among all bonds in the least square scheme. 

Finally, Figures 5 and 6 show the comparison among the models (17), (23) and 

iiiii!ilifiiiiiii{iiiiii~:}iii!iiif!iiiiililili!iiiil}iiiiiliiiiii!~~ 
!i~i~i::!il~i~i~i::i[:iii!ilili!ili!iili:iiii}liiiiililI!i!iiiilii!!!i~k 
~iiii::i::iiii~i~jiilili::iiiili::ii!iiliiii::)ilIiiiiilH~~)~ 
ii;i i   illiii ilil::i:iii!ili! h' 7 
ii:.i siiitiiiiii~! ~ i ! i i i i l ! ~ ~ j  

LP no a~oun 5.5 

LP a ~ o ~ - ] 5  ~/:,'ear 

OY no a~oun ",]'5 

02 3.5 

3 21 39 57 75 93 I i i  
months 

[] QP amount [] 02 no amount [] LP amount [] LP no amount I 

Fig. 5. The forward rate curve on September, 1992 (ct = oe). 
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Fig. 6. The forward rate curve on September, 1992 (~=0.003). 

(26), (27). There is certainly some difference, but it is hard to derive a definite 

conclusion from these figures, whether it is better to incorporate the amount of 
transaction into the objective function. 
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